JP6958214B2 - Manufacturing method of processed steel parts - Google Patents

Manufacturing method of processed steel parts Download PDF

Info

Publication number
JP6958214B2
JP6958214B2 JP2017200351A JP2017200351A JP6958214B2 JP 6958214 B2 JP6958214 B2 JP 6958214B2 JP 2017200351 A JP2017200351 A JP 2017200351A JP 2017200351 A JP2017200351 A JP 2017200351A JP 6958214 B2 JP6958214 B2 JP 6958214B2
Authority
JP
Japan
Prior art keywords
steel
manufacturing
processed
steel sheet
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017200351A
Other languages
Japanese (ja)
Other versions
JP2019073763A (en
Inventor
力 岡本
武 豊田
林 宏太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017200351A priority Critical patent/JP6958214B2/en
Publication of JP2019073763A publication Critical patent/JP2019073763A/en
Application granted granted Critical
Publication of JP6958214B2 publication Critical patent/JP6958214B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、鋼加工部品及びその製造方法に関する。 The present invention relates to processed steel parts and methods for manufacturing the same.

自動車の衝突安全性向上に対する社会的要求はいっそう高まっており、自動車の衝撃吸収部材は、高強度化により、走行時に衝突した場合のエネルギー吸収特性に優れた鋼材が使用される。一方で、一般に高強度化に伴い、鋼板の変形能は低下するため、成形時に部品に割れが発生する。 Social demands for improving the collision safety of automobiles are further increasing, and steel materials having excellent energy absorption characteristics in the event of a collision during traveling are used for the impact absorbing members of automobiles due to their increased strength. On the other hand, in general, as the strength increases, the deformability of the steel sheet decreases, so that the parts are cracked during molding.

高強度鋼板の成形で発生する割れには、延性不足に起因する割れとブランク加工、穴打ち抜き加工のせん断面に発生する穴広げ起因の割れがある。これらの特性はいずれも強度の増加に伴い低下する。 Cracks generated in the molding of high-strength steel sheets include cracks due to insufficient ductility and cracks due to hole expansion that occur on the sheared surface of blanking and punching. All of these properties decrease with increasing strength.

鋼板の加工性を高めた高強度鋼材として、加工誘起変態型(TRIP型)鋼が知られている。TRIP鋼は、鋼材にオーステナイトを残留させ延性を向上させた鋼であり、衝突時に力が加わると、オーステナイトが硬いマルテンサイトに変わり、変形部分の強度が局部的に高まることで延性を高めることができる。 As a high-strength steel material with improved workability of a steel sheet, a work-induced transformation type (TRIP type) steel is known. TRIP steel is a steel in which austenite remains in the steel material to improve ductility. When a force is applied at the time of collision, austenite changes to hard martensite, and the strength of the deformed part is locally increased to improve ductility. can.

一方で、TRIP鋼はブランク加工、穴打ち抜き加工においてもマルテンサイト変態が生じるため、穴広げ加工においては、この硬いマルテンサイトと柔らかいフェライトの界面が割れの起点となり、穴広げ性は低い。同じく延性の高いDP鋼は、もともとの組織にフェライト相とマルテンサイト相を含んでおり、同様の理由で穴広げ性が低い。 On the other hand, since TRIP steel undergoes martensitic transformation even in blanking and punching, the interface between the hard martensite and the soft ferrite becomes the starting point of cracking in the hole expanding, and the hole expanding property is low. DP steel, which also has high ductility, contains a ferrite phase and a martensite phase in its original structure, and has low hole expandability for the same reason.

特許文献1には、鋼組織が残留オーステナイトを面積%で3%以上有する、延性、伸びフランジ性に優れた高張力冷延鋼板が開示されている。 Patent Document 1 discloses a high-strength cold-rolled steel sheet having excellent ductility and stretch flangeability, in which the steel structure has retained austenite in an area% of 3% or more.

特許文献2には、フェライト相とマルテンサイト相からなる、耐衝撃性が改善された2相鋼板が開示されている。 Patent Document 2 discloses a two-phase steel sheet having an improved impact resistance, which is composed of a ferrite phase and a martensite phase.

特許文献3は、所定の成分組成、組織を有する温間加工による伸び及び伸びフランジ性に優れた高強度鋼板、及び上記鋼板を100〜400℃、好ましくは150〜250℃で温間加工することにより得られる高強度部材又は高強度部品を開示している。 Patent Document 3 describes a high-strength steel sheet having a predetermined composition and structure and excellent elongation and stretch flangeability by warm working, and the steel sheet being warm-worked at 100 to 400 ° C., preferably 150 to 250 ° C. The high-strength member or high-strength component obtained by the above is disclosed.

特開2015−161023号公報Japanese Unexamined Patent Publication No. 2015-161023 特開平10−147838号公報Japanese Unexamined Patent Publication No. 10-147838 特開2004−190050号公報Japanese Unexamined Patent Publication No. 2004-190050

高強度鋼板においては、特許文献1のように、鋼板だけで延性、伸びフランジ性の両立を担保することは十分ではない。 In a high-strength steel sheet, as in Patent Document 1, it is not sufficient to ensure both ductility and stretch flangeability with the steel sheet alone.

特許文献2で開示された2相鋼板は、前述のとおり、延性は高いが、フェライト相とマルテンサイト相を含むので、穴拡げ性が低い。 As described above, the two-phase steel sheet disclosed in Patent Document 2 has high ductility, but has low hole expansion property because it contains a ferrite phase and a martensite phase.

部品のプレス成型性を形状の工夫により下げる方法も考えられるが、形状の変更により変形能の消費を抑える方法は、形状の自由度の観点から限界になりつつある。 Although it is conceivable to reduce the press formability of the part by devising the shape, the method of suppressing the consumption of deformability by changing the shape is becoming the limit from the viewpoint of the degree of freedom of the shape.

また、特許文献3のように鋼板に温間加工を施す場合、温間では一般に、鋼板の成形性が高まるため、延性、穴広げ性(伸びフランジ性)とも高めることが可能であるが、温間での加工は金型の損傷が激しい点、スケールの噛み込みなどで、部品に疵が発生しやすい点に課題がある。 Further, when the steel sheet is warmly processed as in Patent Document 3, the formability of the steel sheet is generally improved in the warm state, so that both ductility and hole widening property (elongation flange property) can be improved. There are problems in the processing between the molds, such as severe damage to the mold and biting of the scale, which tends to cause defects in the parts.

本発明は、上記の事情に鑑み、鋼板にせん断加工を施した後の穴広げ性を向上させ、後のプレス加工時の割れの発生を抑制できる鋼加工部品の製造方法を提供することを課題とする。 In view of the above circumstances, it is an object of the present invention to provide a method for manufacturing a processed steel part that can improve the hole expandability after shearing a steel sheet and suppress the occurrence of cracks during the subsequent press working. And.

本発明者らは、せん断加工を施した後プレス加工を施す鋼加工部品の製造方法において、せん断加工後の穴拡げ性(延性)を向上させ、プレス加工による割れを防止する方法について鋭意検討した。その結果、せん断加工後に適切な熱処理を施すことにより、せん断加工によって劣化した特性を回復し、穴拡げ性を向上させ、プレス加工による割れも防止できることを見出した。 The present inventors have diligently studied a method for improving hole expandability (ductility) after shearing and preventing cracking due to press working in a method for manufacturing steel processed parts that are sheared and then pressed. .. As a result, it was found that by performing an appropriate heat treatment after the shearing process, the characteristics deteriorated by the shearing process can be recovered, the hole expandability can be improved, and cracking due to the press process can be prevented.

本発明者らはさらに検討を重ね、本発明を完成した。その要旨は以下のとおりである。 The present inventors further studied and completed the present invention. The summary is as follows.

(1)鋼板にせん断加工を施し、加工された鋼板に200〜600℃で5分以下の加熱処理を施し、加熱処理後の鋼板をプレス加工することを特徴とする鋼加工部品の製造方法。 (1) A method for manufacturing a processed steel part, which comprises shearing a steel sheet, heat-treating the processed steel sheet at 200 to 600 ° C. for 5 minutes or less, and pressing the heat-treated steel sheet.

(2)前記加熱処理がせん断加工された箇所を局所的に加熱する処理であることを特徴とする前記(1)の鋼加工部品の製造方法。 (2) The method for manufacturing a processed steel part according to (1), wherein the heat treatment is a treatment for locally heating a sheared portion.

(3)前記局所的に加熱する処理は、加熱処理後のプレス加工において割れが生じやすい箇所を加熱することを特徴とする前記(2)の鋼加工部品の製造方法。 (3) The method for manufacturing a processed steel part according to (2), wherein the locally heating treatment heats a portion where cracks are likely to occur in the press working after the heat treatment.

(4)前記加熱処理が炉加熱であることを特徴とする前記(1)〜(3)のいずれかの鋼加工部品の製造方法。 (4) The method for manufacturing a processed steel part according to any one of (1) to (3) above, wherein the heat treatment is furnace heating.

(5)前記局所的に加熱する処理は、レーザーによる加熱処理であることを特徴とする前記(2)又は(3)の鋼加工部品の製造方法。 (5) The method for manufacturing a processed steel part according to (2) or (3), wherein the locally heating treatment is a heat treatment using a laser.

(6)前記せん断加工が打ち抜き加工及び/又は穴抜き加工であることを特徴とする前記(1)〜(5)のいずれかの鋼加工部品の製造方法。 (6) The method for manufacturing a steel processed part according to any one of (1) to (5) above, wherein the shearing process is a punching process and / or a hole punching process.

(7)前記鋼板の組織が、オーステナイトを面積率で5%以上含有することを特徴とする前記(1)〜(6)のいずれかの鋼加工部品の製造方法。 (7) The method for producing a processed steel part according to any one of (1) to (6) above, wherein the structure of the steel sheet contains austenite in an area ratio of 5% or more.

(8)前記鋼板の化学組成が、質量%で、C:0.05〜0.50%、Si:0.10〜3.00%、Mn:1.00〜8.00%、P:0.100%以下、S:0.010%以下、Al:0.005〜2.00%、N:0.010%以下、O:0.010%以下、Nb:0〜0.10%、Ti:0〜0.20%、Cr:0〜0.50%、及びMo:0〜0.50%を含有し、残部がFe及び不可避的不純物であることを特徴とする前記(1)〜(7)のいずれかの鋼加工部品の製造方法。 (8) The chemical composition of the steel sheet is C: 0.05 to 0.50%, Si: 0.10 to 3.00%, Mn: 1.00 to 8.00%, P: 0 in mass%. .100% or less, S: 0.010% or less, Al: 0.005 to 2.00%, N: 0.010% or less, O: 0.010% or less, Nb: 0 to 0.10%, Ti : 0 to 0.20%, Cr: 0 to 0.50%, and Mo: 0 to 0.50%, and the balance is Fe and unavoidable impurities. 7) A method for manufacturing a processed steel part.

本発明の鋼加工部品の製造方法によれば、鋼板にせん断加工を施した後の穴広げ性を向上させ、後のプレス加工時の割れの発生を抑制することによって、難製造部品の加工が可能となる。 According to the method for manufacturing a processed steel part of the present invention, it is possible to process a difficult-to-manufacture part by improving the hole expanding property after shearing the steel sheet and suppressing the occurrence of cracking during the subsequent press working. It will be possible.

本実施形態の鋼加工部品の製造方法は、鋼板に打ち抜き加工、穴抜き加工等のせん断加工を施し、その後プレス加工により鋼加工部品を製造する方法において、せん断加工後に熱処理を施すことを特徴とする。熱処理は、具体的には、200℃以上、600℃以下、好ましくは400℃超、600℃以下の環境で、5分以下の時間で施す。 The method for manufacturing a processed steel part of the present embodiment is characterized in that a steel sheet is subjected to shearing such as punching and drilling, and then heat treatment is performed after the shearing in a method for manufacturing a processed steel part by press working. do. Specifically, the heat treatment is performed in an environment of 200 ° C. or higher and 600 ° C. or lower, preferably 400 ° C. or higher and 600 ° C. or lower, in a time of 5 minutes or less.

オーステナイトを含む鋼板にせん断加工を施すと、切断面近傍は強加工を受けることとなり、鋼板中のオーステナイトは加工誘起変態によりマルテンサイトに変態し、プレス加工時に割れ発生の起点となる。 When a steel sheet containing austenite is sheared, the vicinity of the cut surface undergoes strong processing, and the austenite in the steel sheet is transformed into martensite by work-induced transformation, which becomes the starting point of cracking during press working.

本実施形態においては、上記の熱処理により、回復および、マルテンサイト相を焼戻し、あるいは、マルテンサイトをオーステナイトに逆変態させる。マルテンサイト相が焼き戻されると靭性が向上し、プレス加工による割れを抑制することができる。また、マルテンサイトをオーステナイトに逆変態させると、更に、伸びのよい結晶格子であるオーステナイト組織が鋼加工部品中に導入されるので穴拡げ性と延性が向上し、プレス加工による割れを抑制することができる。 In the present embodiment, the above heat treatment recovers and tempers the martensite phase, or reverse-transforms martensite into austenite. When the martensite phase is tempered, the toughness is improved and cracking due to press working can be suppressed. In addition, when martensite is reverse-transformed into austenite, the austenite structure, which is a crystal lattice with good elongation, is introduced into the steel machined parts, which improves hole expansion and ductility and suppresses cracking due to press working. Can be done.

本実施形態の熱処理においては、温度の低い範囲では、回復やマルテンサイト相の焼戻し、加工組織の回復による効果が中心であるが、温度が高くなると、マルテンサイトのオーステナイトへの逆変態による効果が中心となり、割れ改善効果はより顕著に表れる。前者の効果はDP鋼などマルテンサイト相を含む鋼板においても効果を得ることができ、オーステナイト相を含む鋼においては、両者の効果を受けることができる。 In the heat treatment of the present embodiment, in the low temperature range, the effects of recovery, tempering of the martensite phase, and recovery of the processed structure are the main effects, but when the temperature is high, the effect of reverse transformation of martensite to austenite is obtained. It becomes the center, and the crack improvement effect appears more prominently. The former effect can be obtained even in a steel sheet containing a martensite phase such as DP steel, and both effects can be obtained in a steel containing an austenite phase.

熱処理の際の加熱速度は1℃/s以上が好ましい。加熱速度が遅いとセメンタイトが生成し、マルテンサイトからオーステナイトへの逆変態が抑制される。加熱速度は、より好ましくは10℃/s以上である。加熱速度の上限は特に限定されないが、現実的には、500℃/s程度である。 The heating rate during the heat treatment is preferably 1 ° C./s or higher. When the heating rate is slow, cementite is formed and the reverse transformation from martensite to austenite is suppressed. The heating rate is more preferably 10 ° C./s or higher. The upper limit of the heating rate is not particularly limited, but in reality, it is about 500 ° C./s.

本実施形態の熱処理は、せん断加工により強加工を受けた箇所の組織を制御することを目的としている。したがって、鋼板全体を加熱しても構わないが、強加工を受けた箇所のみを局所加熱してもよい。また、後のプレス加工で割れが生じやすい箇所があらかじめ分かっている場合は、その箇所のみを局所加熱してもよい。 The heat treatment of the present embodiment aims to control the structure of a portion that has been strongly processed by shearing. Therefore, the entire steel sheet may be heated, but only the portion that has undergone strong processing may be locally heated. Further, if a portion where cracking is likely to occur in the subsequent press working is known in advance, only that portion may be locally heated.

一般に加工組織の回復、マルテンサイトの焼戻し、逆変態によるオーステナイトの再生成は強度が低下するため、鋼板全体に熱を入れると、部品強度の観点で劣位である。また、加熱箇所が広いと生産性を下げることにもつながるため、上記の観点からは局部加熱が望ましい。 In general, recovery of the processed structure, tempering of martensite, and regeneration of austenite by reverse transformation reduce the strength. Therefore, when heat is applied to the entire steel sheet, it is inferior in terms of component strength. In addition, if the heating area is wide, the productivity can be lowered. Therefore, local heating is desirable from the above viewpoint.

加熱方法は、特に限定されるものではなく、レーザー加熱、炉加熱等、公知の方法を使用することができる。レーザー加熱により局所加熱をする場合は、加工後直ちに加熱を行えるようにレーザーを配置すれば、炉を設置することなく、また、鋼板を炉に移動することなく直ちに局所加熱を開始できるので、生産性の面から有利である。 The heating method is not particularly limited, and known methods such as laser heating and furnace heating can be used. In the case of local heating by laser heating, if the laser is arranged so that heating can be performed immediately after processing, local heating can be started immediately without installing a furnace and without moving the steel plate to the furnace. It is advantageous in terms of sexuality.

加熱後の冷却速度、冷却方法は鋼加工部品の特性には影響しないので、特に問わない。 The cooling rate and cooling method after heating do not affect the characteristics of the processed steel parts, and are not particularly limited.

本実施形態の熱処理によれば、好ましくは、強加工を受けた箇所のオーステナイト面積率が、せん断加工前のオーステナイト面積率の6割以上に回復する。 According to the heat treatment of the present embodiment, the austenite area ratio of the portion subjected to the strong processing is preferably restored to 60% or more of the austenite area ratio before the shearing process.

本実施形態の熱処理による温度の低い範囲では、回復が発生するが、これは一般的な鋼でも起こり得るので、特に対象となる鋼材は限定されず、マルテンサイト相を含む鋼板においてはこれに加えて、マルテンサイトの焼戻しの効果が加算される。 Recovery occurs in a low temperature range due to the heat treatment of the present embodiment, but this can also occur with general steel, so the target steel material is not particularly limited, and in addition to this for steel sheets containing a martensite phase. Then, the effect of tempering martensite is added.

温度の高い領域においては、前記に加え、逆変態が起こり得る。これについては、オーステナイト相を含む組織において、より起こりやすい現象であるが、一般的な鋼においても起こりうる現象であり、特に対象となる鋼材は限定されない。 In addition to the above, reverse transformation can occur in the high temperature region. This is a phenomenon that is more likely to occur in a structure containing an austenite phase, but it is also a phenomenon that can occur in general steel, and the target steel material is not particularly limited.

低温、短時間で逆変態を起こすためには、冷間でのプレス加工前の鋼材にオーステナイトが存在することが好ましい。オーステナイトが存在することにより逆変態温度が下がるので、より効果的に、組織の逆変態を起こすことが可能となる。 In order to cause reverse transformation at low temperature and in a short time, it is preferable that austenite is present in the steel material before cold press working. Since the reverse transformation temperature is lowered by the presence of austenite, it is possible to more effectively cause the reverse transformation of the tissue.

プレス加工前の鋼材のオーステナイトは面積率で5%以上あれば好ましい。10%以上であればより好ましく、15%以上であればさらに好ましい。たとえば、残留オーステナイトを5%以上含有するTRIP鋼は、本実施形態の鋼材として好適である。 The austenite of the steel material before press working is preferably 5% or more in area ratio. 10% or more is more preferable, and 15% or more is further preferable. For example, a TRIP steel containing 5% or more of retained austenite is suitable as the steel material of the present embodiment.

ここで、残留オーステナイトの面積分率は、例えば、電子線後方散乱回折(electron backscatter diffraction:EBSD)法又はX線回折法により測定することができる。X線回折法により測定する場合は、Mo−Kα線を用いて、フェライトの(111)面の回折強度(α(111))、残留オーステナイトの(200)面の回折強度(γ(200))、フェライトの(211)面の回折強度(α(211))、及び残留オーステナイトの(311)面の回折強度(γ(311))を測定し、次の式から残留オーステナイトの面積分率(fA)を算出することができる。 Here, the area fraction of retained austenite can be measured by, for example, an electron backscatter diffraction (EBSD) method or an X-ray diffraction method. When measuring by the X-ray diffraction method, the diffraction intensity of the (111) plane of ferrite (α (111)) and the diffraction intensity of the (200) plane of retained austenite (γ (200)) are measured using Mo-Kα rays. , The diffraction intensity of the (211) plane of ferrite (α (211)) and the diffraction intensity of the (311) plane of retained austenite (γ (311)) were measured, and the area fraction (fA) of retained austenite was calculated from the following equation. ) Can be calculated.

fA=(2/3){100/(0.7×α(111)/γ(200)+1)}
+(1/3){100/(0.78×α(211)/γ(311)+1)}
fA = (2/3) {100 / (0.7 × α (111) / γ (200) +1)}
+ (1/3) {100 / (0.78 x α (211) / γ (311) +1)}

本実施形態の組織の逆変態は、上述したとおり、一般的な鋼で起こりえるので、特に化学成分が限定されるものではない。以下、本実施形態において好適な鋼の成分組成の一例について説明する。 As described above, the reverse transformation of the structure of the present embodiment can occur in general steel, and therefore the chemical composition is not particularly limited. Hereinafter, an example of the composition of steel suitable for this embodiment will be described.

[C:0.050〜0.500%]
Cは、フェライト、ベイナイト、マルテンサイト、オーステナイトの含有量を調整し、本実施形態において必要なオーステナイト量を確保する。Cの含有量は、0.050%〜0.500%とすることが好ましく、0.100〜0.400%がより好ましい。
[C: 0.050 to 0.500%]
C adjusts the contents of ferrite, bainite, martensite, and austenite to secure the amount of austenite required in the present embodiment. The content of C is preferably 0.050% to 0.500%, more preferably 0.100 to 0.400%.

[Si:0.10〜3.00%]
Siは固溶強化による鋼の強度向上、延性向上、また、炭化物(セメンタイト)の生成を抑制して、オーステナイトを残留させる効果を有する。Siの含有量は、0.1〜3.00%とすることが好ましく、0.50〜2.00%がより好ましい。
[Si: 0.10 to 3.00%]
Si has the effect of improving the strength and ductility of steel by solid solution strengthening, and suppressing the formation of carbides (cementite) to retain austenite. The Si content is preferably 0.1 to 3.00%, more preferably 0.50 to 2.00%.

[Mn:1.00〜8.00%]
Mnは変態挙動を制御し、変態相の量や硬さを制御する。動的強度も考慮して、Mn含有量は1.00〜8.00%が好ましく、1.50〜3.00%がより好ましい。
[Mn: 1.00 to 8.00%]
Mn controls the transformation behavior and controls the amount and hardness of the transformation phase. Considering the dynamic strength, the Mn content is preferably 1.00 to 8.00%, more preferably 1.50 to 3.00%.

[P:0.100%以下]
Pは不純物として鋼中に含有され、粒界に偏析して鋼を脆化させる。Pの含有量は少ないほど好ましく、0.100%以下が好ましい。より好ましくは0.050%以下である。
[P: 0.100% or less]
P is contained in the steel as an impurity and segregates at the grain boundaries to embrittle the steel. The smaller the P content, the more preferable, and 0.100% or less is preferable. More preferably, it is 0.050% or less.

[S:0.010%以下]
Sは不純物として鋼中に含有され、硫化物系介在物を形成し、延性を低下させる。Sの含有量は少ないほど好ましく、0.010%以下が好ましい。より好ましくは、0.005%以下である。
[S: 0.010% or less]
S is contained in steel as an impurity to form sulfide-based inclusions and reduce ductility. The smaller the S content, the more preferable, and 0.010% or less is preferable. More preferably, it is 0.005% or less.

[Al:0.005〜2.000%]
Alは溶鋼を脱酸するために用いる。また、Siと同様にセメンタイトの生成を抑制し、オーステナイトを残留させる効果を有する。Alの含有量は、0.005〜2.000%が好ましく、0.050〜1.000%がより好ましい。
[Al: 0.005-2.000%]
Al is used to deoxidize molten steel. Further, like Si, it has the effect of suppressing the formation of cementite and retaining austenite. The Al content is preferably 0.005 to 2.000%, more preferably 0.050 to 1.000%.

[N:0.0100%以下]
Nは不純物として鋼中に含有され、延性を劣化させる。Nの含有量は少ないほど好ましく、0.0100%以下が好ましい。より好ましくは、0.0050%以下である。
[N: 0.0100% or less]
N is contained in steel as an impurity and deteriorates ductility. The smaller the N content, the more preferable, and 0.0100% or less is preferable. More preferably, it is 0.0050% or less.

[O:0.0100%以下]
Oは酸化物を形成し、伸びを劣化させる。Oの含有量は少ないほど好ましく、0.0100%以下が好ましい。より好ましくは、0.0050%以下である。
[O: 0.0100% or less]
O forms an oxide and deteriorates elongation. The smaller the O content, the more preferable, and 0.0100% or less is preferable. More preferably, it is 0.0050% or less.

[Nb:0〜0.100%]
Nbは、析出物強化、フェライト結晶粒の成長抑制による細粒強化、及び再結晶の抑制を通じた転位強化により鋼板の強度上昇に寄与するので、必要に応じて含有させてもよい。Nbは少しでも存在すれば強度の上昇に寄与する。より効果的に強度を上昇させるためには、0.005%以上含有させるのが好ましい。含有量が多すぎると、炭窒化物の析出が多くなり成形性が劣化するので、0.100%以下とするのが好ましく、0.050%以下がより好ましい。
[Nb: 0 to 0.100%]
Nb contributes to the increase in the strength of the steel sheet by strengthening the precipitate, strengthening the fine grains by suppressing the growth of ferrite crystal grains, and strengthening the dislocations by suppressing the recrystallization, and may be contained as necessary. If Nb is present even in a small amount, it contributes to an increase in strength. In order to increase the strength more effectively, it is preferably contained in an amount of 0.005% or more. If the content is too large, the precipitation of carbonitride increases and the moldability deteriorates. Therefore, the content is preferably 0.100% or less, more preferably 0.050% or less.

[Ti:0〜0.200%]
Tiは、析出物強化、フェライト結晶粒の成長抑制による細粒強化、及び再結晶の抑制を通じた転位強化により鋼板の強度上昇に寄与するので、必要に応じて含有させてもよい。Tiは少しでも存在すれば強度の上昇に寄与する。より効果的に強度を上昇させるためには、0.005%以上含有させるのが好ましい。含有量が多すぎると、炭窒化物の析出が多くなり成形性が劣化するので、0.200%以下とするのが好ましく、0.050%以下がより好ましい。
[Ti: 0 to 0.200%]
Ti contributes to the increase in the strength of the steel sheet by strengthening the precipitate, strengthening the fine grains by suppressing the growth of ferrite crystal grains, and strengthening the dislocations by suppressing the recrystallization, and thus Ti may be contained as necessary. If Ti is present even in a small amount, it contributes to an increase in strength. In order to increase the strength more effectively, it is preferably contained in an amount of 0.005% or more. If the content is too large, the precipitation of carbonitride increases and the moldability deteriorates. Therefore, the content is preferably 0.200% or less, more preferably 0.050% or less.

[Cr:0〜0.500%]
Crは強化元素であり、焼入れ性を向上するので、必要に応じて含有させてもよい。Crが少しでも存在すれば、これらの効果は得られる。より効果的に含有の効果を得るためには、含有量を0.050%以上とするのが好ましい。含有量が多すぎると製造性に悪影響をおよぼすので、0.500%以下とするのが好ましい。
[Cr: 0 to 0.500%]
Cr is a reinforcing element and improves hardenability, so it may be contained if necessary. If even a small amount of Cr is present, these effects can be obtained. In order to obtain the effect of the content more effectively, the content is preferably 0.050% or more. If the content is too large, the manufacturability is adversely affected, so the content is preferably 0.500% or less.

[Mo:0〜0.500%]
Moは強化元素であり、焼入れ性を向上するので、必要に応じて含有させてもよい。Moが少しでも存在すれば、これらの効果は得られる。より効果的に含有の効果を得るためには、含有量を0.050%以上とするのが好ましい。含有量が多すぎると製造性に悪影響をおよぼすので、0.500%以下とするのが好ましい。
[Mo: 0 to 0.500%]
Mo is a reinforcing element and improves hardenability, so it may be contained if necessary. These effects can be obtained if even a small amount of Mo is present. In order to obtain the effect of the content more effectively, the content is preferably 0.050% or more. If the content is too large, the manufacturability is adversely affected, so the content is preferably 0.500% or less.

鋼の化学組成の残部はFe及び不可避的不純物である。 The rest of the chemical composition of steel is Fe and unavoidable impurities.

表1に示す化学成分を有する鋼板A〜Hを用いて、打ち抜き加工、又は穴抜き加工を施し、加工を施した鋼板を熱処理し、加工、熱処理後の鋼板について、JIS Z 2256に準拠した穴拡げ試験、及びプレス加工を施すことによるプレス割れの評価を行った。熱処理はレーザー加熱、炉加熱の2通りで試験を行った。 Using the steel sheets A to H having the chemical components shown in Table 1, punching or punching is performed, the processed steel sheet is heat-treated, and the processed and heat-treated steel sheet has holes conforming to JIS Z 2256. An expansion test and an evaluation of press cracking by press working were performed. The heat treatment was carried out in two ways: laser heating and furnace heating.

Figure 0006958214
Figure 0006958214

表2にせん断加工、及びプレス加工前の鋼板の材質を示す。表2中のγ量はオーステナイト面積率であり、鋼板の1/4厚さの面を観察面としてX線回析を行い、bccとfccのピーク面積比から算出した。TSは引張強度、λは穴拡げ率である。本実施例では、成分組成が同じスラブから、製造方法を変えることで、異なるオーステナイト量、機械特性を有する鋼板を製造し、加工に供した。 Table 2 shows the materials of the steel sheet before shearing and pressing. The amount of γ in Table 2 is the austenite area ratio, which was calculated from the peak area ratio of bcc and fcc by performing X-ray diffraction using a surface having a thickness of 1/4 of the steel sheet as an observation surface. TS is the tensile strength and λ is the hole expansion rate. In this example, steel sheets having different amounts of austenite and mechanical properties were produced from slabs having the same composition by changing the production method, and were subjected to processing.

Figure 0006958214
Figure 0006958214

表3に、せん断加工後、レーザー加熱により、局所加熱、又は全体加熱を行った実験例を、表4に、せん断加工後、炉加熱により、局所加熱、又は全体加熱を行った実験例を示す。本発明の熱処理を施した実験例では、穴拡げ率λが増加し、プレス割れは生じないことが確認できた。 Table 3 shows an experimental example in which local heating or total heating was performed by laser heating after shearing, and Table 4 shows an experimental example in which local heating or total heating was performed by furnace heating after shearing. .. In the experimental example subjected to the heat treatment of the present invention, it was confirmed that the hole expansion rate λ increased and press cracking did not occur.

Figure 0006958214
Figure 0006958214

Figure 0006958214
Figure 0006958214

Claims (7)

鋼板にせん断加工を施し、
加工された鋼板に200〜600℃で5分以下の加熱処理を施し、
加熱処理後の鋼板をプレス加工する鋼加工部品の製造方法であって、
せん断加工前の前記鋼板の組織が、オーステナイトを面積率で5%以上含有する
ことを特徴とする鋼加工部品の製造方法。
Shear the steel sheet
The processed steel sheet is heat-treated at 200 to 600 ° C. for 5 minutes or less, and then heat-treated.
It is a manufacturing method of steel processed parts that press-processes a steel sheet after heat treatment.
A method for producing a processed steel part, wherein the structure of the steel sheet before shearing contains austenite in an area ratio of 5% or more.
前記加熱処理がせん断加工された箇所を局所的に加熱する処理であることを特徴とする請求項1に記載の鋼加工部品の製造方法。 The method for manufacturing a processed steel part according to claim 1, wherein the heat treatment is a treatment for locally heating a sheared portion. 前記局所的に加熱する処理は、加熱処理後のプレス加工において割れが生じやすい箇所を加熱することを特徴とする請求項2に記載の鋼加工部品の製造方法。 The method for manufacturing a processed steel part according to claim 2, wherein the locally heating treatment heats a portion where cracks are likely to occur in the press working after the heat treatment. 前記加熱処理が炉加熱であることを特徴とする請求項1〜3のいずれか1項に記載の鋼加工部品の製造方法。 The method for manufacturing a processed steel part according to any one of claims 1 to 3, wherein the heat treatment is furnace heating. 前記局所的に加熱する処理は、レーザーによる加熱処理であることを特徴とする請求項2又は3に記載の鋼加工部品の製造方法。 The method for manufacturing a processed steel part according to claim 2 or 3, wherein the locally heating treatment is a heat treatment using a laser. 前記せん断加工が打ち抜き加工及び/又は穴抜き加工であることを特徴とする請求項1〜5のいずれか1項に記載の鋼加工部品の製造方法。 The method for manufacturing a processed steel part according to any one of claims 1 to 5, wherein the shearing process is a punching process and / or a hole punching process. 前記鋼板の化学組成が、質量%で、
C :0.050〜0.500%、
Si:0.10〜3.00%、
Mn:1.00〜8.00%、
P :0.100%以下、
S :0.0100%以下、
Al:0.005〜2.000%、
N :0.0100%以下、
O :0.0100%以下、
Nb:0〜0.10%、
Ti:0〜0.20%、
Cr:0〜0.50%、及び
Mo:0〜0.50%
を含有し、残部がFe及び不可避的不純物である
ことを特徴とする請求項1〜のいずれか1項に記載の鋼加工部品の製造方法。
The chemical composition of the steel sheet is mass%.
C: 0.050 to 0.500%,
Si: 0.10 to 3.00%,
Mn: 1.00 to 8.00%,
P: 0.100% or less,
S: 0.0100% or less,
Al: 0.005-2.000%,
N: 0.0100% or less,
O: 0.0100% or less,
Nb: 0 to 0.10%,
Ti: 0-0.20%,
Cr: 0 to 0.50%, and Mo: 0 to 0.50%
The method for producing a processed steel part according to any one of claims 1 to 6 , wherein the method contains Fe and the balance is Fe and unavoidable impurities.
JP2017200351A 2017-10-16 2017-10-16 Manufacturing method of processed steel parts Active JP6958214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017200351A JP6958214B2 (en) 2017-10-16 2017-10-16 Manufacturing method of processed steel parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017200351A JP6958214B2 (en) 2017-10-16 2017-10-16 Manufacturing method of processed steel parts

Publications (2)

Publication Number Publication Date
JP2019073763A JP2019073763A (en) 2019-05-16
JP6958214B2 true JP6958214B2 (en) 2021-11-02

Family

ID=66543767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017200351A Active JP6958214B2 (en) 2017-10-16 2017-10-16 Manufacturing method of processed steel parts

Country Status (1)

Country Link
JP (1) JP6958214B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6624353B2 (en) * 2017-12-25 2019-12-25 Jfeスチール株式会社 Manufacturing method of press-formed product
MX2021010285A (en) * 2019-02-27 2022-01-04 Jfe Steel Corp Method for manufacturing steel sheet for cold press and method for manufacturing press component.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3993703B2 (en) * 1998-09-03 2007-10-17 新日本製鐵株式会社 Manufacturing method of thin steel sheet for processing
CN107922983B (en) * 2015-04-10 2020-07-14 纳米钢公司 Improved edge formability in metal alloys

Also Published As

Publication number Publication date
JP2019073763A (en) 2019-05-16

Similar Documents

Publication Publication Date Title
JP7240486B2 (en) Abrasion-resistant steel plate with excellent hardness and impact toughness and method for producing the same
JP5668337B2 (en) Ultra-high-strength cold-rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JP4650013B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
US7314532B2 (en) High-strength forged parts having high reduction of area and method for producing same
JP7018510B2 (en) Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
JP2020504240A (en) High hardness wear-resistant steel and method for producing the same
KR20160072099A (en) A high-hardness hot-rolled steel product, and a method of manufacturing the same
WO2007074986A1 (en) Steel wire having excellent cold heading quality and quenching property, and method for producing the same
KR20080084748A (en) Automobile high-strength electric resistance welded steel pipe with excellent low-temperature impact properties and method of manufacturing the same
JP6945628B2 (en) High-strength composite structure steel with excellent burring properties in the low temperature range and its manufacturing method
JP5521444B2 (en) High-strength cold-rolled steel sheet with excellent workability and method for producing the same
JP6989606B2 (en) High-strength steel with excellent fracture initiation and propagation resistance at low temperatures, and its manufacturing method
KR102473782B1 (en) Method for producing hot-rolled high-strength steel with excellent elongation-flange formability and edge fatigue performance
JP2011068953A (en) High-strength and high-toughness cast steel material, and method for producing the same
KR101344537B1 (en) High strength steel sheet and method of manufacturing the steel sheet
JP7471417B2 (en) High-hardness wear-resistant steel with excellent low-temperature impact toughness and manufacturing method thereof
CN112585284A (en) Sheet metal formed part made of steel and having high tensile strength, and method for producing same
JP2008266758A (en) High tensile strength steel having excellent low temperature toughness and reduced strength anisotropy, and method for producing the same
WO2017208762A1 (en) High-strength steel sheet and method for producing same
JP2017214647A (en) High strength steel sheet and manufacturing method therefor
WO2018025674A1 (en) High-strength steel plate and manufacturing method thereof
JP6958214B2 (en) Manufacturing method of processed steel parts
KR101344672B1 (en) High strength steel sheet and method of manufacturing the steel sheet
KR101524383B1 (en) High carbon hot-rolled steel sheet excellent in fine blanking performance and manufacturing method for the same
CN108368589B (en) High hardness wear resistant steel having excellent toughness and cut crack resistance and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210920

R151 Written notification of patent or utility model registration

Ref document number: 6958214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151