JP6953220B2 - Method for manufacturing polylactic acid-based stretched sheet, method for manufacturing polylactic acid-based stretched sheet, and secondary molded product - Google Patents

Method for manufacturing polylactic acid-based stretched sheet, method for manufacturing polylactic acid-based stretched sheet, and secondary molded product Download PDF

Info

Publication number
JP6953220B2
JP6953220B2 JP2017148182A JP2017148182A JP6953220B2 JP 6953220 B2 JP6953220 B2 JP 6953220B2 JP 2017148182 A JP2017148182 A JP 2017148182A JP 2017148182 A JP2017148182 A JP 2017148182A JP 6953220 B2 JP6953220 B2 JP 6953220B2
Authority
JP
Japan
Prior art keywords
polylactic acid
sheet
stretched sheet
based stretched
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017148182A
Other languages
Japanese (ja)
Other versions
JP2019026742A (en
Inventor
山崎 正裕
正裕 山崎
山田 裕文
裕文 山田
杉元 信博
信博 杉元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sundic Inc
Original Assignee
Sundic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sundic Inc filed Critical Sundic Inc
Priority to JP2017148182A priority Critical patent/JP6953220B2/en
Publication of JP2019026742A publication Critical patent/JP2019026742A/en
Application granted granted Critical
Publication of JP6953220B2 publication Critical patent/JP6953220B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

本発明は、ポリ乳酸系延伸シートの製造方法、ポリ乳酸系延伸シート、及び二次成形品の製造方法に関する。 The present invention relates to a method for producing a polylactic acid-based stretched sheet, a method for producing a polylactic acid-based stretched sheet, and a method for producing a secondary molded product.

近年、生分解性を有する各種ポリマーを含有したプラスチック製品を使用することは、環境保護の観点からも、植物由来原料の使用が石油資源節約の観点からも好ましいことが一般消費者にも認識されるようになり、工業製品にも生分解性ポリマー、植物由来ポリマーを原料とする試みが広く行なわれてきている。 In recent years, it has been recognized by general consumers that the use of plastic products containing various biodegradable polymers is preferable from the viewpoint of environmental protection and the use of plant-derived raw materials from the viewpoint of saving petroleum resources. As a result, attempts to use biodegradable polymers and plant-derived polymers as raw materials have been widely made in industrial products.

特にポリ乳酸は、植物由来かつ生分解性を有するポリマーであり、かつ、結晶性ポリマーであるポリ乳酸は延伸配向結晶化により耐熱性の付与が可能となる。例えば、特許文献1〜3等では、ポリ乳酸系延伸シート及びその製造方法、並びにポリ乳酸系延伸シートを成形してなる成形体が提案されている。 In particular, polylactic acid is a polymer derived from a plant and having biodegradability, and polylactic acid, which is a crystalline polymer, can be imparted with heat resistance by stretch-oriented crystallization. For example, Patent Documents 1 to 3 and the like propose a polylactic acid-based stretched sheet, a method for producing the same, and a molded product obtained by molding the polylactic acid-based stretched sheet.

特許文献1には、ポリ乳酸系延伸シートから、耐衝撃性、透明性および耐湿熱性に優れた二次加工品を得るために、ポリ乳酸系延伸シートの面配向度を特定の範囲に調整し、かつ、ポリ乳酸系延伸シートの結晶融解熱量ΔHmと結晶化熱量ΔHcとの関係を特定の関係、すなわち相対結晶化度を70%以上になるよう調整する技術が開示されている。 In Patent Document 1, the surface orientation of the polylactic acid-based stretched sheet is adjusted to a specific range in order to obtain a secondary processed product having excellent impact resistance, transparency and moisture heat resistance from the polylactic acid-based stretched sheet. Further, a technique for adjusting the relationship between the calorific value of crystal melting ΔHm and the calorific value of crystallization ΔHc of the polylactic acid-based stretched sheet so as to be a specific relationship, that is, the relative crystallization degree to 70% or more is disclosed.

特許文献2には、厚み斑が少なく、かつ平面性に優れ、さらに長手方向、横方向の機械特性、光学特性のばらつきが少ないポリ乳酸系樹脂フィルムを得るために、ポリ乳酸系樹脂未延伸フィルムを、縦延伸工程、横延伸工程、熱処理工程、弛緩処理工程にこの順に導くことによる二軸延伸ポリ乳酸系樹脂フィルムの製造方法において、横延伸工程と熱処理工程の間の冷却工程、熱処理工程、弛緩処理工程等の温度条件を特定の範囲に調整する技術が開示されている。 Patent Document 2 describes a polylactic resin unstretched film in order to obtain a polylactic resin film having less thickness unevenness, excellent flatness, and less variation in mechanical characteristics and optical characteristics in the longitudinal and lateral directions. In the method for producing a biaxially stretched polylactic acid resin film by in this order leading to a longitudinal stretching step, a transverse stretching step, a heat treatment step, and a relaxation treatment step, a cooling step between the transverse stretching step and the heat treatment step, a heat treatment step, A technique for adjusting temperature conditions such as a relaxation treatment step to a specific range is disclosed.

また、特許文献3には、実用的な耐衝撃性と成形性とをバランスよく兼備するとともに、耐熱性と透明性も良好なポリ乳酸系延伸シート及びそれを成形してなる成形体を得るために、ポリ乳酸系樹脂にメタクリレート系樹脂を含有させたポリ乳酸系延伸シートの、面配向度(ΔP)と配向緩和応力(ORS)の長手方向及び幅方向の平均値が特定の範囲に調整する技術が開示されている。 Further, in Patent Document 3, in order to obtain a polylactic acid-based stretched sheet having a good balance of practical impact resistance and moldability and also having good heat resistance and transparency, and a molded product obtained by molding the polylactic acid-based stretched sheet. In addition, the average values of the plane orientation (ΔP) and the orientation relaxation stress (ORS) in the longitudinal direction and the width direction of the polylactic acid-based stretched sheet containing the methacrylate-based resin in the polylactic acid-based resin are adjusted to a specific range. The technology is disclosed.

特開平09−025345号公報Japanese Unexamined Patent Publication No. 09-025345 特開2013−035263号公報Japanese Unexamined Patent Publication No. 2013-305263 特開2010−270183号公報Japanese Unexamined Patent Publication No. 2010-270183

しかしながら、特許文献1〜3等に開示された条件で得られたポリ乳酸系延伸シートからは、いずれも良好な二次成形品を得ることができないか、又は、得られる二次成形品は、透明性及び耐熱性に劣るものであり、優れた二次成形性を備えたポリ乳酸系延伸シートは開発できていない。 However, good secondary molded products cannot be obtained from the polylactic acid-based stretched sheets obtained under the conditions disclosed in Patent Documents 1 to 3 and the like, or the obtained secondary molded products are not available. A polylactic acid-based stretched sheet, which is inferior in transparency and heat resistance and has excellent secondary moldability, has not been developed.

上記実情を鑑み、本発明の課題は、透明性及び耐熱性に優れた二次成形品を成形可能なポリ乳酸系延伸シートの製造方法、その製造方法から得られたポリ乳酸系延伸シート、及び二次成形品の製造方法を提供するものである。 In view of the above circumstances, the subject of the present invention is a method for producing a polylactic acid-based stretched sheet capable of molding a secondary molded product having excellent transparency and heat resistance, a polylactic acid-based stretched sheet obtained from the manufacturing method, and a polylactic acid-based stretched sheet obtained from the manufacturing method. It provides a method for manufacturing a secondary molded product.

本発明者らは、前記課題を解決するために鋭意検討した結果、ポリ乳酸系樹脂をシート状に溶融押出した後、流れ方向(MD)及びそれに対して直交方向(TD)に、特定の延伸倍率及び温度条件で延伸し、結晶化熱処理することにより、上記課題を解決できるポリ乳酸系延伸シートの製造方法を提供できることを見出し、本発明を完成するに至った。
即ち本発明は、以下の通りのものである。
As a result of diligent studies to solve the above problems, the present inventors have melt-extruded the polylactic acid-based resin into a sheet, and then stretched the polylactic acid-based resin in a specific direction in the flow direction (MD) and the direction perpendicular to the flow direction (TD). We have found that it is possible to provide a method for producing a polylactic acid-based stretched sheet that can solve the above problems by stretching under magnification and temperature conditions and performing crystallization heat treatment, and have completed the present invention.
That is, the present invention is as follows.

[1]ポリ乳酸系樹脂をシート状に溶融押出した後、シートの流れ方向(MD)及び前記流れ方向(MD)に対して直交方向(TD)に延伸し、更に、熱処理して結晶化させるポリ乳酸系延伸シートの製造方法であって、前記直交方向(TD)の延伸倍率(XTD)が、前記流れ方向(MD)の延伸倍率(XMD)よりも大きく、前記流れ方向(MD)に延伸する延伸温度(TMD)が60〜120℃であり、前記直交方向(TD)に延伸する延伸温度(TTD)が前記延伸温度(TMD)よりも低く、前記延伸倍率(XTD)が、前記延伸倍率(XMD)を用いて、(XMD+0.)倍〜(XMD+1.)倍の範囲であり、前記流れ方向(MD)及び前記直交方向(TD)に延伸した後、更に、80℃〜120℃の範囲の温度で熱処理して結晶化させる、ポリ乳酸系延伸シートの製造方法。 [1] After melt-extruding a polylactic acid-based resin into a sheet, the sheet is stretched in a flow direction (MD) and a direction (TD) orthogonal to the flow direction (MD), and further heat-treated to crystallize. a method of manufacturing a polylactic acid stretched sheet, the stretch ratio in the perpendicular direction (TD) (X TD) is, the draw ratio (X MD) greater than the flow direction (MD), said flow direction (MD) the stretching temperature for stretching in the (T MD) is that 60 to 120 ° C., the stretching temperature for stretching in the orthogonal direction (TD) (T TD) is the stretching temperature (T MD) lower than the draw ratio (X TD ), using the draw ratio (X MD), (X MD +0. 8) times ~ (X MD +1. 4) times ranging der is, the flow direction (MD) and the perpendicular direction (TD) after stretched, further, heat-treated at a temperature in the range of 80 ° C. to 120 ° C. Ru is crystallized polylactic acid production method of the stretched sheet.

[2]前記流れ方向(MD)の延伸倍率(XMD)が1.5倍〜3.5倍であり、前記直交方向(TD)の延伸倍率(XTD)が2.倍〜4.5倍である、前記[1]に記載のポリ乳酸系延伸シートの製造方法。
[3]前記流れ方向(MD)に延伸した後、前記直交方向(TD)に延伸する、前記[1]又は[2]に記載のポリ乳酸系延伸シートの製造方法。
[2] The stretching ratio (X MD ) in the flow direction (MD) is 1.5 to 3.5 times, and the stretching ratio (X TD ) in the orthogonal direction (TD) is 2. The method for producing a polylactic acid-based stretched sheet according to the above [1], which is 3 to 4.5 times.
[3] The method for producing a polylactic acid-based stretched sheet according to the above [1] or [2], wherein the polylactic acid-based stretched sheet is stretched in the flow direction (MD) and then in the orthogonal direction (TD).

[4]前記延伸倍率(X TD )が、前記延伸倍率(X MD )を用いて、(X MD +1.0)倍〜(X MD +1.4)倍の範囲である、前記[1]〜[3]のいずれか一項に記載のポリ乳酸系延伸シートの製造方法。 [4] The draw ratio (X TD) is, by using the draw ratio (X MD), (X MD +1.0) times ~ (X MD +1.4) area by der times, the [1] The method for producing a polylactic acid-based stretched sheet according to any one of [3].

[5]前記ポリ乳酸系延伸シートの、前記直交方向(TD)に複数点測定した面内配向の複屈折の平均値が、1.0×10−2以下である、前記[1]〜[4]のいずれか一項に記載のポリ乳酸系延伸シートの製造方法。
[6]前記ポリ乳酸系延伸シートを昇温したときの結晶融解熱量ΔHm、及びこの昇温中の結晶化により発生する結晶化熱量ΔHcとしたとき、{(ΔHm−ΔHc)/ΔHm×100}で計算される相対結晶化度Wcが90%以上である、前記[1]〜[5]のいずれか一項に記載のポリ乳酸系延伸シートの製造方法。
[7]ポリ乳酸系樹脂が、L体のポリ乳酸の光学純度が90モル%以上である、前記[1]〜[6]のいずれか一項に記載のポリ乳酸系延伸シートの製造方法。
[5] The average value of birefringence of in-plane orientation measured at a plurality of points in the orthogonal direction (TD) of the polylactic acid-based stretched sheet is 1.0 × 10-2 or less. 4] The method for producing a polylactic acid-based stretched sheet according to any one of the items.
[6] When the amount of heat of crystal melting ΔHm when the temperature of the polylactic acid-based stretched sheet is raised and the amount of heat of crystallization ΔHc generated by crystallization during the temperature rise are defined as {(ΔHm−ΔHc) / ΔHm × 100} The method for producing a polylactic acid-based stretched sheet according to any one of [1] to [5] above, wherein the relative crystallization degree Wc calculated in 1) is 90% or more.
[7] The method for producing a polylactic acid-based stretched sheet according to any one of [1] to [6] above, wherein the polylactic acid-based resin has an optical purity of 90 mol% or more of L-form polylactic acid.

[8]前記[1]〜[7]のいずれか一項に記載の製造方法から得られたポリ乳酸系延伸シート。
[9]前記[8]に記載のポリ乳酸系延伸シートを、100〜120℃で二次成形する、二次成形品の製造方法。
[8] A polylactic acid-based stretched sheet obtained from the production method according to any one of the above [1] to [7].
[9] A method for producing a secondary molded product, wherein the polylactic acid-based stretched sheet according to the above [8] is secondary molded at 100 to 120 ° C.

本発明のポリ乳酸系延伸シートの製造方法により、透明性及び耐熱性に優れた二次成形品を成形可能なポリ乳酸系延伸シートを得ることができる。本発明の二次成形品の製造方法により、食品包装容器等の容器の蓋、トレー、フードパック、ブリスターパック、その他各種パック、ケース等の各種汎用の包装体の二次成形品を製造することができる。 By the method for producing a polylactic acid-based stretched sheet of the present invention, a polylactic acid-based stretched sheet capable of molding a secondary molded product having excellent transparency and heat resistance can be obtained. To manufacture secondary molded products of various general-purpose packages such as lids, trays, food packs, blister packs, other various packs, and cases of containers such as food packaging containers by the method for producing secondary molded products of the present invention. Can be done.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明は、ポリ乳酸系樹脂をシート状に溶融押出した後、シートの流れ方向(MD)及び前記流れ方向(MD)に対して直交方向(TD)に延伸し、更に、熱処理して結晶化させるポリ乳酸系延伸シートの製造方法である。 In the present invention, a polylactic acid-based resin is melt-extruded into a sheet, then stretched in a sheet flow direction (MD) and in a direction perpendicular to the flow direction (MD) (TD), and further heat-treated to crystallize. This is a method for producing a polylactic acid-based stretched sheet.

本発明で用いられるポリ乳酸系樹脂は、乳酸単量体単位を85質量%以上含有する重合体であって、乳酸単量体単位を95質量%以上含有してもよく、乳酸単量体単位を98質量%以上含有してもよい。ポリ乳酸系樹脂は、ポリ乳酸、又は乳酸と他のヒドロキシカルボン酸、脂肪族環エステル、ジカルボン酸、ジオール類との共重合体、又は、乳酸単量体単位を85質量%以上含有するこれらの重合体の組成物であってもよい。ポリ乳酸系樹脂は環境中の水分により加水分解を受け低分子化され、微生物などにより最終的には二酸化炭素と水にまで分解され得る。 The polylactic acid-based resin used in the present invention is a polymer containing 85% by mass or more of lactic acid monomer unit, and may contain 95% by mass or more of lactic acid monomer unit, and may contain 95% by mass or more of lactic acid monomer unit. May be contained in an amount of 98% by mass or more. The polylactic acid-based resin contains polylactic acid, a copolymer of lactic acid and other hydroxycarboxylic acids, aliphatic ring esters, dicarboxylic acids, diols, or a lactic acid monomer unit in an amount of 85% by mass or more. It may be a composition of a polymer. Polylactic acid-based resins are hydrolyzed by water in the environment to reduce their molecular weight, and can be finally decomposed into carbon dioxide and water by microorganisms and the like.

本発明で用いられるポリ乳酸系樹脂において、乳酸は、L体の乳酸とD体の乳酸を混合して用いることもできるが、得られる延伸シートの耐熱性に優れる点から、L体の乳酸とD体の乳酸の何れか一方の異性体からなるものであることが好ましく、具体的には、D体含有率(原料として用いる乳酸全体質量に対するD体の乳酸のモル割合)が10モル%以下又は90モル%以上であるものが好ましく、5.0モル%以下又は95モル%以上であるものがより好ましい。L体のポリ乳酸の光学純度が90モル%以上であることが更に好ましく、95モル%以上であることが特に好ましい。 In the polylactic acid-based resin used in the present invention, lactic acid can be used by mixing L-form lactic acid and D-form lactic acid, but from the viewpoint of excellent heat resistance of the obtained stretched sheet, L-form lactic acid and L-form lactic acid can be used. It is preferably composed of one of the isomers of D-form lactic acid, and specifically, the D-form content (the molar ratio of D-form lactic acid to the total mass of lactic acid used as a raw material) is 10 mol% or less. Alternatively, 90 mol% or more is preferable, and 5.0 mol% or less or 95 mol% or more is more preferable. The optical purity of the L-form polylactic acid is more preferably 90 mol% or more, and particularly preferably 95 mol% or more.

本発明で用いられるポリ乳酸系樹脂の製造方法としては、特に限定されるものではなく、種々の重合方法、例えば、乳酸からの直接重合法やラクチドを介する開環重合法等を用いることができる。また、市販のポリ乳酸系樹脂を用いることができる。さらに得られるシート及び成形体の諸物性を調整する目的で、有機および/また無機粒子、可塑剤、着色剤、顔料等をポリ乳酸系樹脂に予め添加してから後述の方法でシート化してもよい。 The method for producing the polylactic acid-based resin used in the present invention is not particularly limited, and various polymerization methods, for example, a direct polymerization method from lactic acid, a ring-opening polymerization method via lactide, and the like can be used. .. Moreover, a commercially available polylactic acid resin can be used. Further, for the purpose of adjusting various physical properties of the obtained sheet and molded product, organic and / or inorganic particles, plasticizers, colorants, pigments and the like may be added in advance to the polylactic acid-based resin and then sheeted by the method described below. good.

ポリ乳酸系樹脂をシート状に溶融押出した後、未延伸シートを二軸延伸する。この延伸は、インフレーション法、同時二軸延伸法、逐次二軸延伸法などの既存の延伸シートの製造法により行うことができるが、厚さ精度の優れた加工が可能な点で同時二軸延伸法又は逐次二軸延伸法が好ましい。同時二軸延伸法はシート面内の配向バランス制御がし易く、複屈折を小さくできる点で優れているが、本発明においては、成形性と耐熱性を両立するシートの配向状態を制御しやすいこと、また、製膜速度を高速にでき生産性に優れることから逐次二軸延伸法が好ましい。逐次二軸延伸法を行う場合、Tダイから押し出したシートを金属冷却ロール上に静電印加して密着させ、無延伸シートを得、加熱ロールの周速差を用いてシートの流れ方向(MD)に延伸を行い、次いでクリップでシート両端を把持してテンター内で流れ方向(MD)に対して直交方向(TD)に延伸し、さらにクリップで幅方向に把持した状態で熱処理を行うテンター式逐次二軸延伸法が好ましく用いられる。 After melt-extruding the polylactic acid resin into a sheet, the unstretched sheet is biaxially stretched. This stretching can be performed by existing stretching sheet manufacturing methods such as an inflation method, a simultaneous biaxial stretching method, and a sequential biaxial stretching method, but simultaneous biaxial stretching is possible in that processing with excellent thickness accuracy is possible. The method or the sequential biaxial stretching method is preferable. The simultaneous biaxial stretching method is excellent in that the orientation balance in the sheet surface can be easily controlled and the birefringence can be reduced, but in the present invention, it is easy to control the orientation state of the sheet having both moldability and heat resistance. In addition, the sequential biaxial stretching method is preferable because the film forming speed can be increased and the productivity is excellent. When the sequential biaxial stretching method is performed, the sheet extruded from the T-die is electrostatically applied onto a metal cooling roll to bring it into close contact with the metal cooling roll to obtain an unstretched sheet, and the flow direction of the sheet (MD) is obtained by using the peripheral speed difference of the heating roll. ), Then the sheet is gripped with a clip and stretched in the direction orthogonal to the flow direction (MD) (TD) in the tenter, and the heat treatment is performed with the clip gripped in the width direction. The sequential biaxial stretching method is preferably used.

ポリ乳酸系樹脂をシート状に溶融押出した後、シートの流れ方向(MD)及び前記流れ方向(MD)に対して直交方向(TD)に延伸したシートは、充分には結晶化していない状態である。結晶化していないシートは耐熱性が悪く実用性に劣るため、流れ方向(MD)及び直交方向(TD)に延伸したシートは、更に、熱処理して結晶化させる。延伸した後に熱処理して結晶化させることにより、機械的強度及び耐熱性に優れたポリ乳酸系延伸シートとすることができる。 After melt-extruding the polylactic acid resin into a sheet, the sheet stretched in the flow direction (MD) of the sheet and in the direction orthogonal to the flow direction (MD) (TD) is not sufficiently crystallized. be. Since the uncrystallized sheet has poor heat resistance and is inferior in practicality, the sheet stretched in the flow direction (MD) and the orthogonal direction (TD) is further heat-treated to crystallize. By heat-treating and crystallizing after stretching, a polylactic acid-based stretched sheet having excellent mechanical strength and heat resistance can be obtained.

本発明のポリ乳酸系延伸シートの製造方法では、前記直交方向(TD)の延伸倍率が、前記流れ方向(MD)の延伸倍率(XMD)よりも大きく、前記流れ方向(MD)に延伸する延伸温度(TMD)が60〜120℃であり、前記直交方向(TD)に延伸する延伸温度(TTD)が前記延伸温度(TMD)よりも低い。 The polylactic acid stretched sheet production method of the present invention, the stretching ratio of the perpendicular direction (TD) is, the greater than the stretch ratio in the flow direction (MD) (X MD), extending in the flow direction (MD) stretching temperature (T MD) is that 60 to 120 ° C., lower than the stretching temperature (T TD) is the stretching temperature for stretching in the orthogonal direction (TD) (T MD).

ポリ乳酸系延伸シートの二次成形性をより優れるものとするために、直交方向(TD)の延伸倍率(XTD)は、流れ方向(MD)の延伸倍率(XMD)を用いて、(XMD+0.3)倍〜(XMD+1.8)倍の範囲であり、(XMD+0.6)倍〜(XMD+1.6)倍の範囲であることがより好ましく、(XMD+0.8)倍〜(XMD+1.4)倍の範囲であることが特に好ましい。 In order to be more excellent secondary formability of polylactic acid stretched sheet, the stretch ratio in the perpendicular direction (TD) (X TD) using the stretching ratio in the flow direction (MD) (X MD), ( X MD +0.3) times ~ (X MD +1.8) in the range of times, more preferably in the range of times (X MD +0.6) times ~ (X MD +1.6), ( X MD It is particularly preferable that the range is +0.8) times to (X MD +1.4) times.

結晶性ポリマーを用いた延伸シートでは、シートの流れ方向(MD)及び/又は直交方向(TD)に延伸した後、熱処理して結晶化させることで耐熱性を付与させるが、この際、結晶化することで位相差が増幅されて、位相差の値(複屈折の値)が大きくなることがある。本発明のポリ乳酸系延伸シートの製造方法では、直交方向(TD)に延伸する延伸温度(TTD)を流れ方向(MD)に延伸する延伸温度(TMD)よりも低く設定することにより、結晶化しても位相差の値(複屈折)を低く制御できることを見出した。 In a stretched sheet using a crystalline polymer, heat resistance is imparted by stretching the sheet in the flow direction (MD) and / or the orthogonal direction (TD) and then heat-treating it to crystallize it. At this time, crystallization occurs. By doing so, the phase difference may be amplified and the phase difference value (birefringence value) may increase. The polylactic acid stretched sheet production method of the present invention, by setting lower than the stretching temperature for stretching (T MD) in the stretching temperature for stretching in the orthogonal direction (TD) (T TD) the flow direction (MD), It was found that the value of the phase difference (birefringence) can be controlled low even if it is crystallized.

流れ方向(MD)に延伸する延伸温度(TMD)は65〜110℃がより好ましく、70〜100℃が特に好ましい。 The stretching temperature for stretching in the flow direction (MD) (T MD) is more preferably 65 to 110 ° C., particularly preferably 70 to 100 ° C..

流れ方向(MD)の延伸倍率(XMD)及び直交方向(TD)の延伸倍率(XTD)は、上記の条件を充足するものであるが、その後の熱処理の結晶化を充分なものとし、機械的強度に優れ、二次成形性に優れたポリ乳酸系延伸シートとするために、特に、結晶化によるシートの白化を防止する観点から、流れ方向(MD)の延伸倍率(XMD)は1.5倍〜3.5倍であることが好ましく、1.6倍〜3.4倍であることがより好ましく、1.7倍〜3.3倍であることが特に好ましく、直交方向(TD)の延伸倍率(XTD)は1.8倍〜5.3倍であることが好ましく、2.0倍〜4.8倍であることがより好ましく、2.2倍〜4.3倍であることが特に好ましい。 Stretch ratio in the stretching ratio in the flow direction (MD) (X MD) and the perpendicular direction (TD) (X TD) is those satisfying the above conditions, the crystallization of subsequent heat treatment and sufficient, excellent mechanical strength, in order to better polylactic acid stretched sheet to the secondary formability, in particular, from the viewpoint of preventing whitening of the sheet by the crystallization, the draw ratio in the flow direction (MD) (X MD) is It is preferably 1.5 times to 3.5 times, more preferably 1.6 times to 3.4 times, particularly preferably 1.7 times to 3.3 times, and the orthogonal direction ( The draw ratio ( XTD) of TD ) is preferably 1.8 to 5.3 times, more preferably 2.0 to 4.8 times, and 2.2 to 4.3 times. Is particularly preferable.

流れ方向(MD)及び直交方向(TD)に延伸した後の熱処理は、必要な結晶化が進む条件であれば限定されない。結晶化を充分なものとするために、結晶化のための熱処理温度は、前記ポリ乳酸系樹脂のガラス転移点(Tg)+10℃以上融点(Tm)以下の範囲であることが好ましく、ガラス転移点(Tg)+20℃以上であってもよく、ガラス転移点(Tg)+30℃以上であってもよく、ガラス転移点(Tg)+40℃以上であってもよく、融点(Tm)−10°以下であってもよく、融点(Tm)−20°以下の範囲であってもよい。 The heat treatment after stretching in the flow direction (MD) and the orthogonal direction (TD) is not limited as long as the necessary crystallization proceeds. In order to ensure sufficient crystallization, the heat treatment temperature for crystallization is preferably in the range of the glass transition point (Tg) + 10 ° C. or higher and the melting point (Tm) or less of the polylactic acid-based resin, and the glass transition. The point (Tg) may be + 20 ° C. or higher, the glass transition point (Tg) may be + 30 ° C. or higher, the glass transition point (Tg) may be + 40 ° C. or higher, and the melting point (Tm) -10 ° C. It may be less than or equal to, and may be in the range of melting point (Tm) −20 ° or less.

本発明のポリ乳酸系延伸シートの製造方法において、シートの流れ方向(MD)に延伸した後、シートの流れ方向(MD)に対して直交方向(TD)に延伸し、その後、結晶化のための熱処理をするとき、結晶化のための最適な、比較的高い温度で熱処理しようとすると、結晶化熱処理ゾーンから、延伸処理ゾーに熱が流入し、シート厚さが乱れるおそれがあり、結晶化熱処理の直前の直交方向(TD)に延伸する延伸温度(TTD)を延伸温度(TMD)よりも低く、安定して設定することが難しくなることがある。そこで、ポリ乳酸系延伸シートの品質安定性の観点から、結晶化のための熱処理温度は、結晶化のための最適な温度よりも、低く設定することが好ましく、具体的な結晶化のための熱処理温度は、70℃〜130℃であることが好ましく、80℃〜120℃であることがより好ましく、90℃〜110℃であることが特に好ましい。 In the method for producing a polylactic acid-based stretched sheet of the present invention, the sheet is stretched in the flow direction (MD) of the sheet, then stretched in the direction orthogonal to the flow direction (MD) of the sheet (TD), and then for crystallization. When heat treatment is performed at a relatively high temperature, which is optimal for crystallization, heat may flow from the crystallization heat treatment zone into the stretching treatment zone, and the sheet thickness may be disturbed, resulting in crystallization. The stretching temperature (TTD ) for stretching in the orthogonal direction (TD) immediately before the heat treatment is lower than the stretching temperature (TMD ), and it may be difficult to set it stably. Therefore, from the viewpoint of quality stability of the polylactic acid-based stretched sheet, the heat treatment temperature for crystallization is preferably set lower than the optimum temperature for crystallization, and is used for specific crystallization. The heat treatment temperature is preferably 70 ° C. to 130 ° C., more preferably 80 ° C. to 120 ° C., and particularly preferably 90 ° C. to 110 ° C.

本発明の製造方法により得られるポリ乳酸系延伸シートの、シートの面内配向の複屈折は、ポリ乳酸系延伸シートが充分結晶化されているにもかかわらず小さくすることができ、直交方向(TD)に複数点測定した面内配向の複屈折の平均値を、1.0×10−2以下とすることができる。ここで、「直交方向(TD)に複数点測定した面内配向の複屈折の平均値」とは、シートの流れ方向(MD)に対して直交方向(TD)に、両端のクリップ部分を除いて均等に複数個所の測定点を設定し、それらの測定点にシート面に垂直に光を入射させて面内配向の複屈折を測定したとき、それら複数の面内配向の複屈折の平均値をいう。延伸シートの面内配向の複屈折は、シートの流れ方向(MD)では比較的均質になるのに対して、シートの流れ方向(MD)に対して直交方向(TD)の面内配向の複屈折の分布は、中心部が凹んで弧を描くような複屈折の値となるため、このような定義をする必要がある。 The birefringence of the in-plane orientation of the polylactic acid-based stretched sheet obtained by the production method of the present invention can be reduced even though the polylactic acid-based stretched sheet is sufficiently crystallized, and can be reduced in the orthogonal direction ( The average value of the birefringence of the in-plane orientation measured at a plurality of points in TD) can be 1.0 × 10-2 or less. Here, the "average value of birefringence of in-plane orientation measured at a plurality of points in the orthogonal direction (TD)" is the direction perpendicular to the sheet flow direction (MD) (TD), excluding the clip portions at both ends. When a plurality of measurement points are set evenly and light is incident on those measurement points perpendicularly to the sheet surface to measure the birefringence of the in-plane orientation, the average value of the birefringence of the multiple in-plane orientations is measured. To say. The birefringence of the in-plane orientation of the stretched sheet is relatively homogeneous in the sheet flow direction (MD), whereas the birefringence of the in-plane orientation perpendicular to the sheet flow direction (MD) (TD). Since the distribution of refraction is a value of birefringence such that the central part is recessed and draws an arc, it is necessary to make such a definition.

本発明の製造方法により得られるポリ乳酸系延伸シートを昇温したときの結晶融解熱量ΔHm、及びこの昇温中の結晶化により発生する結晶化熱量ΔHcとしたとき、{(ΔHm−ΔHc)/ΔHm×100}で計算される相対結晶化度Wcは90%以上であることが好ましく、95%以上であることがより好ましく、98%以上であることが特に好ましい。 When the heat of crystal melting ΔHm when the temperature of the polylactic acid-based stretched sheet obtained by the production method of the present invention is raised and the amount of heat of crystallization ΔHc generated by crystallization during the temperature rise are defined as {(ΔHm−ΔHc) / The relative crystallinity Wc calculated by ΔHm × 100} is preferably 90% or more, more preferably 95% or more, and particularly preferably 98% or more.

本発明の製造方法により得られるポリ乳酸系延伸シートの厚さについては、特に限定されるものではないが、成形体を二次加工する際の取り扱い容易性と、成形体としての強度及び透明性等の観点から、70〜500μmの範囲になるようにすることが好ましく、100〜300μmがより好ましい。 The thickness of the polylactic acid-based stretched sheet obtained by the production method of the present invention is not particularly limited, but is easy to handle when the molded product is secondarily processed, and the strength and transparency of the molded product. From the viewpoint of the above, it is preferable that the range is in the range of 70 to 500 μm, and more preferably 100 to 300 μm.

本発明の製造方法により得られるポリ乳酸系延伸シートを、100〜120℃で二次成形することができ、ポリ乳酸系延伸シートの面内配向の複屈折が小さいので、二次成形時にシートが均等に伸ばされることで、良質な二次成形が可能であり、熱板の接触痕もなく外観及び透明性に優れる成形品を得ることができる。 The polylactic acid-based stretched sheet obtained by the production method of the present invention can be secondarily molded at 100 to 120 ° C., and the birefringence of the in-plane orientation of the polylactic acid-based stretched sheet is small. By being stretched evenly, high-quality secondary molding is possible, and a molded product having excellent appearance and transparency can be obtained without contact marks on the hot plate.

また、本発明の製造方法により得られるポリ乳酸系延伸シートに帯電防止性や防曇性等を付与するために、その表面を界面活性剤等で被覆する場合には、少なくともポリ乳酸系延伸シートの一表面に、適当な濃度に調整した界面活性剤等の水溶液を、スクィーズロールコーター、エアーナイフコーター、ナイフコーター、スプレーコーター、グラビアロールコーター、バーコーター等の種々の方法により塗布した後、塗布した水溶液を乾燥する。また、特に被覆膜の均一性を向上させる観点からは、シート表面をコロナ処理した後、上記の方法で界面活性剤等を塗布するのが好ましい。コロナ処理の強度は、シートの表面を水との接触角が80〜30゜になるように調整するのが好ましく、より好ましくは接触角が70〜35°になるように調整する。シートの表面と水との接触角の好ましい上限は被覆膜の均一性を向上させるための値であり、好ましい接触角の下限は、シートをロール状に巻いた場合にブロッキングを防ぐための値である。 Further, when the surface of the polylactic acid-based stretched sheet obtained by the production method of the present invention is coated with a surfactant or the like in order to impart antistatic properties, anti-fog properties, etc., at least the polylactic acid-based stretched sheet is used. An aqueous solution of a surfactant or the like adjusted to an appropriate concentration is applied to one surface by various methods such as a squeeze roll coater, an air knife coater, a knife coater, a spray coater, a gravure roll coater, and a bar coater, and then applied. Dry the aqueous solution. Further, from the viewpoint of improving the uniformity of the coating film, it is preferable to apply a surfactant or the like by the above method after corona-treating the sheet surface. The strength of the corona treatment is preferably adjusted so that the contact angle of the sheet with water is 80 to 30 °, and more preferably 70 to 35 °. The preferable upper limit of the contact angle between the surface of the sheet and water is a value for improving the uniformity of the coating film, and the lower limit of the preferable contact angle is a value for preventing blocking when the sheet is rolled into a roll. Is.

本発明の製造方法により得られるポリ乳酸系延伸シートは、熱成形により成形体とすることができる。熱成形方法としては、熱板接触加熱成形法、真空成形法、真空圧空成形法、プラグアシスト成形法等が好ましく用いられる。成形体の厚みの均一性や、成形体の生産効率の観点からは熱板接触加熱成形法が特に好ましいが、特に透明性を重視する場合は間接加熱による真空成形法や真空圧空成形法を、また、深絞り成形を行う場合はプラグアシスト成形法を採用することも可能である。 The polylactic acid-based stretched sheet obtained by the production method of the present invention can be formed into a molded product by thermoforming. As the thermoforming method, a hot plate contact heat forming method, a vacuum forming method, a vacuum compressed air forming method, a plug assist forming method and the like are preferably used. The hot plate contact heat molding method is particularly preferable from the viewpoint of the uniformity of the thickness of the molded body and the production efficiency of the molded body, but when transparency is particularly important, the vacuum forming method by indirect heating or the vacuum pressure air forming method is used. Further, when performing deep drawing molding, it is also possible to adopt a plug assist molding method.

以下に実施例を用いて本発明を更に具体的に説明する。本発明はもとより、これらの実施例の範囲に限定されるべきものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples. The present invention should not be limited to the scope of these examples.

ポリ乳酸系延伸シートについて、引張強度、引張伸度、弾性率、ガラス転移点(Tg)、融点(Tm)、結晶化熱量(ΔHc)、結晶融解熱量(ΔHm)、相対結晶化度、面内配向の複屈折の平均値については、下記の方法によって測定した。 For polylactic acid-based stretched sheets, tensile strength, tensile elongation, elastic modulus, glass transition point (Tg), melting point (Tm), calorific value of crystallization (ΔHc), calorific value of crystal melting (ΔHm), relative crystallinity, in-plane The average value of the double refraction of the orientation was measured by the following method.

(1)引張試験
引張強度:株式会社島津製作所製 島津オートグラフ「AG−IS MS形」を用いて23℃50%Rhの雰囲気下で測定を行った。JIS K 7127に準じて、サンプルは測定方向に長さ175mm、幅10mm(試験片タイプ1B)に切り出し引張速度10mm/分で測定を行った。
引張伸度:株式会社島津製作所製 島津オートグラフ「AG−IS MS形」を用いて23℃50%Rhの雰囲気下で測定を行った。JIS K 7127に準じて、サンプルは測定方向に長さ175mm、幅10mm(試験片タイプ1B)に切り出し引張速度10mm/分で測定を行った。
弾性率:株式会社島津製作所製 島津オートグラフ「AG−IS MS形」を用いて23℃50%Rhの雰囲気下で測定を行った。サンプルはJIS K 7127に準じて、サンプルは測定方向に長さ200mm、幅10mm(試験片タイプ2)に切り出し引張速度10mm/分で測定を行った。
(1) Tensile test Tensile strength: Measurement was performed using Shimadzu Autograph "AG-IS MS type" manufactured by Shimadzu Corporation in an atmosphere of 23 ° C. and 50% Rh. According to JIS K 7127, the sample was cut into a length of 175 mm and a width of 10 mm (test piece type 1B) in the measurement direction and measured at a tensile speed of 10 mm / min.
Tensile elongation: Measurement was performed using a Shimadzu autograph "AG-IS MS type" manufactured by Shimadzu Corporation in an atmosphere of 23 ° C. and 50% Rh. According to JIS K 7127, the sample was cut into a length of 175 mm and a width of 10 mm (test piece type 1B) in the measurement direction and measured at a tensile speed of 10 mm / min.
Elastic modulus: Measurement was performed using a Shimadzu autograph "AG-IS MS type" manufactured by Shimadzu Corporation in an atmosphere of 23 ° C. and 50% Rh. The sample was cut out to a length of 200 mm and a width of 10 mm (test piece type 2) in the measurement direction according to JIS K 7127, and the measurement was performed at a tensile speed of 10 mm / min.

(2)転移温度測定
JIS−K7121に準じて、示差走査熱量計(株式会社島津製作所製DSC−60)により、試料約10mgを、30℃から200℃まで、昇温速度10℃/分、窒素ガス流量50ml/分の条件にて昇温した。これにより描かれたDSC曲線から、ガラス転移点(Tg)[℃]を求め、結晶融解吸熱ピークから融点(Tm)[℃]を求めた。
(2) Transition temperature measurement According to JIS-K7121, a differential scanning calorimeter (DSC-60 manufactured by Shimadzu Corporation) is used to measure about 10 mg of a sample from 30 ° C to 200 ° C, a temperature rise rate of 10 ° C / min, and nitrogen. The temperature was raised under the condition of a gas flow rate of 50 ml / min. The glass transition point (Tg) [° C.] was determined from the DSC curve drawn thereby, and the melting point (Tm) [° C.] was determined from the crystal melting endothermic peak.

(3)転移熱測定
JIS−K7122に準じて、示差走査熱量計(株式会社島津製作所製DSC−60)により、試料約10mgを、30℃から200℃まで、昇温速度10℃/分、窒素ガス流量50ml/分の条件にて昇温した。これにより描かれたDSC曲線における昇温時の結晶化発熱ピーク面積から結晶化熱量(ΔHc)[J/g]を求め、結晶融解吸熱ピーク面積から結晶融解熱量(ΔHm)[J/g]を求め、相対結晶化度を、下記の式(5)より算出した。
相対結晶化度=(ΔHm−ΔHc)×100/ΔHm[%] ・・・(5)
(3) Measurement of transition heat According to JIS-K7122, a differential scanning calorimeter (DSC-60 manufactured by Shimadzu Corporation) is used to measure about 10 mg of a sample from 30 ° C to 200 ° C at a heating rate of 10 ° C / min and nitrogen. The temperature was raised under the condition of a gas flow rate of 50 ml / min. The crystallization heat quantity (ΔHc) [J / g] is obtained from the crystallization heat generation peak area at the time of temperature rise in the DSC curve drawn thereby, and the crystal melting heat quantity (ΔHm) [J / g] is obtained from the crystal melting heat absorption peak area. The relative crystallinity was calculated from the following formula (5).
Relative crystallinity = (ΔHm−ΔHc) × 100 / ΔHm [%] ・ ・ ・ (5)

(4)複屈折
実施例1〜9、比較例1〜6のポリ乳酸系延伸シート(実施例1では、シートの流れ方向(MD)に対して直交方向(TD)の巾が560mm(クリップ部分含む))について、両端のクリップ部分約30mmを除いた残りの巾(実施例1では、500mm)を、直交方向(TD)に連続して巾35mm×長さ35mmの評価用試料を複数個切り出し、王子計測機器(株)「KOBRA-21D型」を用いて、シート面に垂直に光を入射させて、それぞれの評価用試料の面内配向の複屈折を測定し、直交方向(TD)に異なる箇所を3点、これに対して直交方向(TD)に4点、合計3×4点=12点の平均値を、「面内配向の複屈折の平均値」として求めた。
(4) Birefringence Polylactic acid-based stretched sheets of Examples 1 to 9 and Comparative Examples 1 to 6 (in Example 1, the width in the direction orthogonal to the sheet flow direction (MD) (TD) is 560 mm (clip portion). (Including))), the remaining width (500 mm in Example 1) excluding the clip portions at both ends was cut out in a plurality of evaluation samples having a width of 35 mm and a length of 35 mm continuously in the orthogonal direction (TD). , Oji Measuring Instruments Co., Ltd. "KOBRA-21D type" is used to inject light perpendicularly to the sheet surface to measure the birefringence of the in-plane orientation of each evaluation sample, and in the orthogonal direction (TD). The average value of 3 different points, 4 points in the orthogonal direction (TD), and a total of 3 × 4 points = 12 points was obtained as the “average value of birefringence of in-plane orientation”.

<ポリ乳酸系延伸シートの作製>
[実施例1]
ポリ乳酸系樹脂(ネイチャーワークス社製PLAポリマー、4032D、D体含有率約1.5%)をφ50mm径の単軸押出機にて210℃でT−ダイよりシート状に押し出した。この押し出したシートを約60℃の冷却ロールにて急冷し、未延伸シートを得た。未延伸シートの厚さは1.2mm、巾は300mmであった。
<Preparation of polylactic acid-based stretched sheet>
[Example 1]
A polylactic acid-based resin (PLA polymer manufactured by Nature Works, 4032D, D-form content of about 1.5%) was extruded into a sheet from a T-die at 210 ° C. using a single-screw extruder having a diameter of φ50 mm. The extruded sheet was rapidly cooled with a cooling roll at about 60 ° C. to obtain an unstretched sheet. The unstretched sheet had a thickness of 1.2 mm and a width of 300 mm.

得られた未延伸シートを約60℃の温調ロールと赤外線ヒーターを併用して、シート温度が80℃(実温度)となるように再加熱した後、ロール間の周速差により、シートの流れ方向(MD)に2.0倍延伸した。次いで、テンターでシートの流れ方向(MD)に対して直交方向(TD)にシート温度70℃で3.0倍延伸を行い、引き続き、110℃で38秒間熱処理し、シート厚さが200μmのポリ乳酸系延伸シート(実施例1)を得た。流れ方向(MD)にに2.0倍延伸した後の、シートの厚さは0.6mm、巾は約175mmであった。直交方向(TD)に3.0倍延伸した後の、シートの厚さは0.2mm、巾は、クリップ部を含めて約560mmであった。 The obtained unstretched sheet was reheated to a sheet temperature of 80 ° C. (actual temperature) by using a temperature control roll of about 60 ° C. and an infrared heater in combination, and then the sheet was formed by the difference in peripheral speed between the rolls. It was stretched 2.0 times in the flow direction (MD). Next, the sheet was stretched 3.0 times at a sheet temperature of 70 ° C. in a direction orthogonal to the sheet flow direction (MD) with a tenter, and then heat-treated at 110 ° C. for 38 seconds to obtain a poly sheet having a sheet thickness of 200 μm. A lactic acid-based stretched sheet (Example 1) was obtained. After stretching 2.0 times in the flow direction (MD), the thickness of the sheet was 0.6 mm and the width was about 175 mm. After stretching 3.0 times in the orthogonal direction (TD), the thickness of the sheet was 0.2 mm, and the width was about 560 mm including the clip portion.

[実施例2]
直交方向(TD)の延伸倍率を2.5倍に変更した他は実施例1と同様にして、ポリ乳酸系延伸シート(実施例2)を得た。
[Example 2]
A polylactic acid-based stretched sheet (Example 2) was obtained in the same manner as in Example 1 except that the stretching ratio in the orthogonal direction (TD) was changed to 2.5 times.

[実施例3]
直交方向(TD)の延伸倍率を3.2倍に変更した他は実施例1と同様にして、ポリ乳酸系延伸シート(実施例3)を得た。
[Example 3]
A polylactic acid-based stretched sheet (Example 3) was obtained in the same manner as in Example 1 except that the stretching ratio in the orthogonal direction (TD) was changed to 3.2 times.

[実施例4]
直交方向(TD)の延伸倍率を3.5倍に変更した他は実施例1と同様にして、ポリ乳酸系延伸シート(実施例4)を得た。
[Example 4]
A polylactic acid-based stretched sheet (Example 4) was obtained in the same manner as in Example 1 except that the stretching ratio in the orthogonal direction (TD) was changed to 3.5 times.

[実施例5]
流れ方向(MD)の延伸倍率を3.0倍、直交方向(TD)の延伸倍率を4.0倍に変更した他は実施例1と同様にして、ポリ乳酸系延伸シート(実施例5)を得た。
[Example 5]
Polylactic acid-based stretch sheet (Example 5) in the same manner as in Example 1 except that the stretch ratio in the flow direction (MD) was changed to 3.0 times and the stretch ratio in the orthogonal direction (TD) was changed to 4.0 times. Got

実施例1〜5のポリ乳酸系延伸シートについての、製造条件、面内配向の複屈折の平均値、及びシート物性の評価結果を表1に示す。 Table 1 shows the production conditions, the average value of birefringence of in-plane orientation, and the evaluation results of the sheet physical characteristics of the polylactic acid-based stretched sheets of Examples 1 to 5.

[実施例6]
使用したポリ乳酸系樹脂を、ネイチャーワークス社製PLAポリマー(2003D、D体含有率約4.5%)に変更した他は実施例1と同様にして、ポリ乳酸系延伸シート(実施例6)を得た。
[Example 6]
The polylactic acid-based stretched sheet (Example 6) was the same as in Example 1 except that the polylactic acid-based resin used was changed to a PLA polymer manufactured by Nature Works (2003D, D-form content of about 4.5%). Got

[実施例7]
使用したポリ乳酸系樹脂を、ネイチャーワークス社製PLAポリマー(2500HP、D体含有率1%以下)に変更した他は実施例1と同様にして、ポリ乳酸系延伸シート(実施例7)を得た。
[Example 7]
A polylactic acid-based stretched sheet (Example 7) was obtained in the same manner as in Example 1 except that the polylactic acid-based resin used was changed to a PLA polymer (2500 HP, D-form content of 1% or less) manufactured by Nature Works. rice field.

[比較例1]
流れ方向(MD)の延伸倍率を2.5倍、直交方向(TD)の延伸倍率を2.5倍に変更した他は実施例1と同様にして、ポリ乳酸系延伸シート(比較例1)を得た。
[Comparative Example 1]
Polylactic acid-based stretched sheet (Comparative Example 1) in the same manner as in Example 1 except that the stretching ratio in the flow direction (MD) was changed to 2.5 times and the stretching ratio in the orthogonal direction (TD) was changed to 2.5 times. Got

[比較例2]
流れ方向(MD)の延伸倍率を2.5倍、直交方向(TD)の延伸倍率を2.5倍に変更した他は実施例6と同様にして、ポリ乳酸系延伸シート(比較例2)を得た。
[Comparative Example 2]
Polylactic acid-based stretched sheet (Comparative Example 2) in the same manner as in Example 6 except that the stretching ratio in the flow direction (MD) was changed to 2.5 times and the stretching ratio in the orthogonal direction (TD) was changed to 2.5 times. Got

[比較例3]
流れ方向(MD)の延伸倍率を2.5倍、直交方向(TD)の延伸倍率を2.5倍に変更した他は実施例7と同様にして、ポリ乳酸系延伸シート(比較例3)を得た。
[Comparative Example 3]
Polylactic acid-based stretched sheet (Comparative Example 3) in the same manner as in Example 7 except that the stretching ratio in the flow direction (MD) was changed to 2.5 times and the stretching ratio in the orthogonal direction (TD) was changed to 2.5 times. Got

実施例6〜7及び比較例1〜3のポリ乳酸系延伸シートについての、製造条件、面内配向の複屈折の平均値、及びシート物性の評価結果を表2に示す。 Table 2 shows the production conditions, the average value of birefringence of in-plane orientation, and the evaluation results of the sheet physical characteristics of the polylactic acid-based stretched sheets of Examples 6 to 7 and Comparative Examples 1 to 3.

[実施例8]
流れ方向(MD)の延伸時のシート温度を90℃に変更した他は実施例1と同様にして、ポリ乳酸系延伸シート(実施例8)を得た。
[Example 8]
A polylactic acid-based stretched sheet (Example 8) was obtained in the same manner as in Example 1 except that the sheet temperature during stretching in the flow direction (MD) was changed to 90 ° C.

[実施例9]
流れ方向(MD)の延伸時のシート温度を120℃に変更した他は実施例1と同様にして、ポリ乳酸系延伸シート(実施例9)を得た。
[Example 9]
A polylactic acid-based stretched sheet (Example 9) was obtained in the same manner as in Example 1 except that the sheet temperature during stretching in the flow direction (MD) was changed to 120 ° C.

[比較例4]
流れ方向(MD)の延伸時のシート温度を60℃に変更した他は実施例1と同様にして、ポリ乳酸系延伸シート(比較例4)を得た。
[Comparative Example 4]
A polylactic acid-based stretched sheet (Comparative Example 4) was obtained in the same manner as in Example 1 except that the sheet temperature during stretching in the flow direction (MD) was changed to 60 ° C.

[比較例5]
流れ方向(MD)の延伸時のシート温度を130℃に変更した他は実施例1と同様にして、ポリ乳酸系延伸シート(比較例5)を得た。
[Comparative Example 5]
A polylactic acid-based stretched sheet (Comparative Example 5) was obtained in the same manner as in Example 1 except that the sheet temperature during stretching in the flow direction (MD) was changed to 130 ° C.

[比較例6]
流れ方向(MD)及び直交方向(TD)の延伸の後、110℃で38秒間の熱処理を、70℃で38秒間の熱処理に変更した他は実施例1と同様にして、ポリ乳酸系延伸シート(比較例6)を得た。
[Comparative Example 6]
After stretching in the flow direction (MD) and the orthogonal direction (TD), the heat treatment at 110 ° C. for 38 seconds was changed to the heat treatment at 70 ° C. for 38 seconds in the same manner as in Example 1, and the polylactic acid-based stretched sheet was obtained. (Comparative Example 6) was obtained.

実施例8〜9及び比較例4〜6のポリ乳酸系延伸シートについての、製造条件、面内配向の複屈折の平均値、及びシート物性の評価結果を表3に示す。 Table 3 shows the production conditions, the average value of birefringence of in-plane orientation, and the evaluation results of the sheet physical characteristics of the polylactic acid-based stretched sheets of Examples 8 to 9 and Comparative Examples 4 to 6.

実施例1〜9のポリ乳酸系延伸シートは面内配向の複屈折の平均値が小さいのに対して、比較例1〜5のポリ乳酸系延伸シートは面内配向の複屈折の平均値が大きかった。 The polylactic acid-based stretched sheets of Examples 1 to 9 have a small average value of birefringence of in-plane orientation, whereas the polylactic acid-based stretched sheets of Comparative Examples 1 to 5 have an average value of birefringence of in-plane orientation. It was big.

そして、実施例1〜9のポリ乳酸系延伸シートは流れ方向(MD)と直交方向(TD)とで、引張強度、引張伸度及び弾性率の異方性が小さいのに対して、比較例1〜5のポリ乳酸系延伸シートは流れ方向(MD)と直交方向(TD)とで、引張強度、引張伸度及び弾性率の異方性が大きかった。 The polylactic acid-based stretched sheets of Examples 1 to 9 have small anisotropy of tensile strength, tensile elongation and elastic modulus in the flow direction (MD) and the orthogonal direction (TD), whereas the polylactic acid-based stretched sheets are comparative examples. The polylactic acid-based stretched sheets 1 to 5 had large anisotropy of tensile strength, tensile elongation and elastic modulus in the flow direction (MD) and the orthogonal direction (TD).

実施例1、6〜7、比較例1〜3のポリ乳酸系延伸シートの相対結晶化度がいずれも100%であったのに対して、比較例6のポリ乳酸系延伸シートの相対結晶化度は32.4%であった。 The relative crystallinity of the polylactic acid-based stretched sheets of Examples 1, 6 to 7 and Comparative Examples 1 to 3 was 100%, whereas the relative crystallization of the polylactic acid-based stretched sheet of Comparative Example 6 was performed. The degree was 32.4%.

実施例1、6〜7の、比較例1〜3のポリ乳酸系延伸シートの融点(Tm)は、いずれも、148.3℃〜177.6℃の範囲にあった。実施例1、6〜7の、比較例1〜3のポリ乳酸系延伸シートのガラス転移点(Tg)は、いずれも、66.6℃〜78.6℃の範囲にあった。 The melting points (Tm) of the polylactic acid-based stretched sheets of Comparative Examples 1 to 3 of Examples 1 and 6 to 7 were all in the range of 148.3 ° C. to 177.6 ° C. The glass transition points (Tg) of the polylactic acid-based stretched sheets of Comparative Examples 1 to 3 of Examples 1 and 6 to 7 were all in the range of 66.6 ° C. to 78.6 ° C.

<二次成形品の作製>
[実施例10〜18、比較例7〜12]
(二次成形性の評価)
実施例1〜9で得られたポリ乳酸系延伸シートを、シート温度110℃に加熱軟化させ、型とシートの間を真空にし、圧縮空気圧力でシートを型に密着させて、深さ40mm、開口部150mm×100mmの容器(いちごパック)に二次成形した(実施例10〜18)。
<Manufacturing secondary molded products>
[Examples 10 to 18, Comparative Examples 7 to 12]
(Evaluation of secondary moldability)
The polylactic acid-based stretched sheet obtained in Examples 1 to 9 was heated and softened to a sheet temperature of 110 ° C., a vacuum was created between the mold and the sheet, and the sheet was brought into close contact with the mold by compressed air pressure to a depth of 40 mm. Secondary molding was performed in a container (strawberry pack) having an opening of 150 mm × 100 mm (Examples 10 to 18).

実施例1〜4、6〜9のシート厚さ200μmのポリ乳酸系延伸シートからは、底部分で約150μmの厚さのいちごパックを二次成形できた。実施例5のシート厚さ120μmのポリ乳酸系延伸シートからは、底部分で約90μmの厚さのいちごパックを二次成形できた。 From the polylactic acid-based stretched sheets having a sheet thickness of 200 μm in Examples 1 to 4 and 6 to 9, a strawberry pack having a thickness of about 150 μm could be secondarily formed at the bottom portion. From the polylactic acid-based stretched sheet having a sheet thickness of 120 μm in Example 5, a strawberry pack having a thickness of about 90 μm could be secondarily formed at the bottom portion.

実施例1、5〜8のポリ乳酸系延伸シートからは、圧空によるシート破れがなく、シートの伸びが均一となり、均一な厚みの成形品ができて、型再現性が良かった(○)。
実施例3のポリ乳酸系延伸シートからできたいちごパックは、圧空によるシート破れはないが、シートの伸びの均一性が低下し、コーナー部の型再現性が少し悪かった(○△)。
実施例2、4、9のポリ乳酸系延伸シートからできたいちごパックは、圧空によるシート破れはないが、少し不均一なシートの伸びと、少し不均一な成形品の厚みが生じた(△)。
From the polylactic acid-based stretched sheets of Examples 1 and 5 to 8, the sheet was not torn due to compressed air, the sheet stretched uniformly, and a molded product having a uniform thickness was produced, and the mold reproducibility was good (◯).
The strawberry pack made of the polylactic acid-based stretched sheet of Example 3 did not tear the sheet due to compressed air, but the uniformity of the elongation of the sheet decreased, and the mold reproducibility of the corner portion was slightly poor (○ △).
The strawberry pack made of the polylactic acid-based stretched sheets of Examples 2, 4 and 9 did not tear the sheet due to compressed air, but the sheet was slightly unevenly stretched and the thickness of the molded product was slightly uneven (Δ). ).

比較例1〜5のポリ乳酸系延伸シートからは、シートの伸びが不均一となり二次成形時の圧空によるシート破れが発生し、いちごパックを二次成形することができなかった(×:比較例7〜11)。 From the polylactic acid-based stretched sheets of Comparative Examples 1 to 5, the elongation of the sheet became non-uniform, the sheet was torn due to compressed air during the secondary molding, and the strawberry pack could not be secondary molded (×: comparison). Examples 7-11).

なお、結晶化熱処理の工程を経なかった比較例6のポリ乳酸系延伸シートでは、二次成形性の評価は良かった(○)が、白化が生じて透明性に難があった(比較例12)。 In the polylactic acid-based stretched sheet of Comparative Example 6 which did not undergo the crystallization heat treatment step, the evaluation of the secondary moldability was good (◯), but whitening occurred and the transparency was difficult (Comparative Example). 12).

同様に、実施例1〜9で得られたポリ乳酸系延伸シートを用いて、深さ30m、開口部100mm×100mm、絞り比0.3の容器を二次成形した。 Similarly, using the polylactic acid-based stretched sheet obtained in Examples 1 to 9, a container having a depth of 30 m, an opening of 100 mm × 100 mm, and a drawing ratio of 0.3 was secondarily molded.

比較例1〜5のポリ乳酸系延伸シートからは、いちごパックと同様、二次成形することができなかった。 Similar to the strawberry pack, secondary molding could not be performed from the polylactic acid-based stretched sheets of Comparative Examples 1 to 5.

比較例6のポリ乳酸系延伸シートでは、いちごパックと同様、二次成形することができたが、白化が生じて透明性に難があった。 The polylactic acid-based stretched sheet of Comparative Example 6 could be secondarily molded in the same manner as the strawberry pack, but whitening occurred and transparency was difficult.

二次成形性を次の評価基準で評価し、結果を表1〜3に示した。 The secondary moldability was evaluated according to the following evaluation criteria, and the results are shown in Tables 1 to 3.

●二次成形性の結果について
○:二次成形時の圧空によるシート破れがなく、シートの伸びが均一となり、均一な厚みの成形品ができて、型再現性がよい。
○△:二次成形時の圧空によるシート破れはないが、シートの伸びの均一性が低下しコーナー部の型再現性が少し悪い。
△:二次成形時の圧空によるシート破れはないが、シートの伸びが不均一となり成形品の厚みの均一性が少し悪い。
×:シートの伸びが不均一となり二次成形時の圧空によるシート破れが発生し、成形できない。
● Results of secondary moldability ○: There is no sheet tearing due to compressed air during secondary molding, the sheet stretches uniformly, a molded product with uniform thickness can be produced, and mold reproducibility is good.
○ △: There is no sheet tear due to compressed air during secondary molding, but the uniformity of sheet elongation is reduced and the mold reproducibility at the corners is slightly poor.
Δ: The sheet is not torn due to compressed air during secondary molding, but the elongation of the sheet is non-uniform and the thickness of the molded product is slightly poor.
X: The elongation of the sheet becomes non-uniform, and the sheet is torn due to compressed air during secondary molding, so that molding cannot be performed.

(二次成形品の耐熱性評価)
実施例1〜9及び比較例6のポリ乳酸系延伸シートから、実施例10〜18及び比較例12で得られた二次成形品(いちごパック)を、60℃に1時間放置した際の変形度合いを次の評価基準で評価し、結果を表1〜3に示した。
(Evaluation of heat resistance of secondary molded products)
Deformation of the secondary molded products (strawberry packs) obtained in Examples 10 to 18 and Comparative Example 12 from the polylactic acid-based stretched sheets of Examples 1 to 9 and Comparative Example 6 when left at 60 ° C. for 1 hour. The degree was evaluated according to the following evaluation criteria, and the results are shown in Tables 1 to 3.

●耐熱性評価について
◎:ほとんど変形がない。
×:変形し、原型をとどめていない。
××:シート破れが発生し成形できなかったため、評価できない。
● About heat resistance evaluation ◎: There is almost no deformation.
×: Deformed and does not retain its original shape.
XX: Cannot be evaluated because the sheet was torn and could not be molded.

実施例1〜9で得られたポリ乳酸系延伸シートを用いて二次成形したいちごパックは、60℃1h放置してもほとんど変形がなかったが(◎)、比較例6で得られたポリ乳酸系延伸シートを用いて二次成形したいちごパックでは、原型をとどめていないほどに変形した(×)。 The strawberry packs secondarily molded using the polylactic acid-based stretched sheets obtained in Examples 1 to 9 showed almost no deformation even when left at 60 ° C. for 1 hour (⊚), but the poly obtained in Comparative Example 6 was obtained. The strawberry pack that was secondarily molded using the lactic acid-based stretched sheet was deformed to the extent that it did not retain its original shape (x).

Figure 0006953220
Figure 0006953220

Figure 0006953220
Figure 0006953220

Figure 0006953220
Figure 0006953220

Claims (9)

ポリ乳酸系樹脂をシート状に溶融押出した後、シートの流れ方向(MD)及び前記流れ方向(MD)に対して直交方向(TD)に延伸し、更に、熱処理して結晶化させるポリ乳酸系延伸シートの製造方法であって、
前記直交方向(TD)の延伸倍率(XTD)が、前記流れ方向(MD)の延伸倍率(XMD)よりも大きく、
前記流れ方向(MD)に延伸する延伸温度(TMD)が60〜120℃であり、前記直交方向(TD)に延伸する延伸温度(TTD)が前記延伸温度(TMD)よりも低く、
前記延伸倍率(XTD)が、前記延伸倍率(XMD)を用いて、(XMD+0.)倍〜(XMD+1.)倍の範囲であり、
前記流れ方向(MD)及び前記直交方向(TD)に延伸した後、更に、80℃〜120℃の範囲の温度で熱処理して結晶化させる、ポリ乳酸系延伸シートの製造方法。
After melt-extruding a polylactic acid resin into a sheet, the polylactic acid resin is stretched in the flow direction (MD) of the sheet and in the direction orthogonal to the flow direction (MD) (TD), and further heat-treated to crystallize. A method for manufacturing a stretched sheet.
The stretching ratio (X TD ) in the orthogonal direction (TD) is larger than the stretching ratio (X MD) in the flow direction (MD).
The stretching temperature for stretching in the flow direction (MD) (T MD) is that 60 to 120 ° C., the stretching temperature for stretching in the orthogonal direction (TD) (T TD) is the stretching temperature (T MD) lower than,
The draw ratio (X TD) is, by using the draw ratio (X MD), (X MD +0. 8) times ~ (X MD +1. 4) times ranging der is,
Wherein after stretching in the flow direction (MD) and the perpendicular direction (TD), further, heat-treated at a temperature in the range of 80 ° C. to 120 ° C. Ru is crystallized polylactic acid production method of the stretched sheet.
前記流れ方向(MD)の延伸倍率(XMD)が1.5倍〜3.5倍であり、前記直交方向(TD)の延伸倍率(XTD)が2.倍〜4.5倍である、請求項1に記載のポリ乳酸系延伸シートの製造方法。 The stretching ratio (X MD ) in the flow direction (MD) is 1.5 to 3.5 times, and the stretching ratio (X TD ) in the orthogonal direction (TD) is 2. The method for producing a polylactic acid-based stretched sheet according to claim 1, which is 3 to 4.5 times. 前記流れ方向(MD)に延伸した後、前記直交方向(TD)に延伸する、請求項1又は2に記載のポリ乳酸系延伸シートの製造方法。 The method for producing a polylactic acid-based stretched sheet according to claim 1 or 2, wherein the polylactic acid-based stretched sheet is stretched in the flow direction (MD) and then in the orthogonal direction (TD). 前記延伸倍率(X TD )が、前記延伸倍率(X MD )を用いて、(X MD +1.0)倍〜(X MD +1.4)倍の範囲である、請求項1〜3のいずれか一項に記載のポリ乳酸系延伸シートの製造方法。 The draw ratio (X TD) is, by using the draw ratio (X MD), (X MD +1.0) times ~ (X MD +1.4) area by der times, more of claims 1 to 3 The method for producing a polylactic acid-based stretched sheet according to item 1. 前記ポリ乳酸系延伸シートの、前記直交方向(TD)に複数点測定した面内配向の複屈折の平均値が、1.0×10−2以下である、請求項1〜4のいずれか一項に記載のポリ乳酸系延伸シートの製造方法。 Any one of claims 1 to 4, wherein the average value of the birefringence of the in-plane orientation measured at a plurality of points in the orthogonal direction (TD) of the polylactic acid-based stretched sheet is 1.0 × 10-2 or less. The method for producing a polylactic acid-based stretched sheet according to the section. 前記ポリ乳酸系延伸シートを昇温したときの結晶融解熱量ΔHm、及びこの昇温中の結晶化により発生する結晶化熱量ΔHcとしたとき、{(ΔHm−ΔHc)/ΔHm×100}で計算される相対結晶化度Wcが90%以上である、請求項1〜5のいずれか一項に
記載のポリ乳酸系延伸シートの製造方法。
When the heat of crystal melting ΔHm when the temperature of the polylactic acid-based stretched sheet is raised and the amount of heat of crystallization ΔHc generated by crystallization during the temperature rise are taken, it is calculated as {(ΔHm−ΔHc) / ΔHm × 100}. The method for producing a polylactic acid-based stretched sheet according to any one of claims 1 to 5, wherein the relative crystallization degree Wc is 90% or more.
ポリ乳酸系樹脂が、L体のポリ乳酸の光学純度が90モル%以上である、請求項1〜6のいずれか一項に記載のポリ乳酸系延伸シートの製造方法。 The method for producing a polylactic acid-based stretched sheet according to any one of claims 1 to 6, wherein the polylactic acid-based resin has an optical purity of 90 mol% or more of L-form polylactic acid. 請求項1〜7のいずれか一項に記載の製造方法から得られたポリ乳酸系延伸シート。 A polylactic acid-based stretched sheet obtained from the production method according to any one of claims 1 to 7. 請求項8に記載のポリ乳酸系延伸シートを、100〜120℃で二次成形する、二次成形品の製造方法。 A method for producing a secondary molded product, wherein the polylactic acid-based stretched sheet according to claim 8 is secondary molded at 100 to 120 ° C.
JP2017148182A 2017-07-31 2017-07-31 Method for manufacturing polylactic acid-based stretched sheet, method for manufacturing polylactic acid-based stretched sheet, and secondary molded product Active JP6953220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017148182A JP6953220B2 (en) 2017-07-31 2017-07-31 Method for manufacturing polylactic acid-based stretched sheet, method for manufacturing polylactic acid-based stretched sheet, and secondary molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017148182A JP6953220B2 (en) 2017-07-31 2017-07-31 Method for manufacturing polylactic acid-based stretched sheet, method for manufacturing polylactic acid-based stretched sheet, and secondary molded product

Publications (2)

Publication Number Publication Date
JP2019026742A JP2019026742A (en) 2019-02-21
JP6953220B2 true JP6953220B2 (en) 2021-10-27

Family

ID=65475695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017148182A Active JP6953220B2 (en) 2017-07-31 2017-07-31 Method for manufacturing polylactic acid-based stretched sheet, method for manufacturing polylactic acid-based stretched sheet, and secondary molded product

Country Status (1)

Country Link
JP (1) JP6953220B2 (en)

Also Published As

Publication number Publication date
JP2019026742A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
US8362157B2 (en) Polylactic acid composition and molding comprising the composition
TWI429691B (en) Heat-shrinkable polyester film
JP5494484B2 (en) Polylactic acid resin composition and film
JP4243926B2 (en) Biodegradable heat shrinkable film and shrink package using the same
US3547891A (en) Heat formable polyester film
JP6953220B2 (en) Method for manufacturing polylactic acid-based stretched sheet, method for manufacturing polylactic acid-based stretched sheet, and secondary molded product
JPH07256753A (en) Heat-shrinkable polylactic film
JP2003136592A (en) Biodegradable biaxially stretched film
JP2003276080A (en) Thermoforming material of polyethylene terephthalate resin and method for producing thermoformed molding of polyethylene terephthalate resin
JP4644885B2 (en) Aliphatic polyester film
JP3563436B2 (en) Thermoformed product of polylactic acid polymer
JP2003155358A (en) Biodegradable film
JPH04308728A (en) Thermoforming polyester sheet, thermoformed article and preparation thereof
JP5153463B2 (en) Stretched polyester film for molding
JP3662197B2 (en) Polylactic acid-based thermoformed products
US10066067B2 (en) Polyester sheet
JP5021586B2 (en) Heat-resistant transparent A-PET container and method for producing the same
JP2005335309A (en) Metal vapor deposition biaxially oriented polyester film
JPH09174674A (en) Blister molding method for biaxially oriented lactic acid polymer film
JPH07329170A (en) Rolling polyester sheet, its thermal molding and manufacture thereof
JP2010270183A (en) Polylactic acid-based oriented sheet, method for manufacturing the same, and formed product obtained by forming polylactic acid-based oriented sheet
KR100932289B1 (en) Twistable Polyester Films
JP4452293B2 (en) Polylactic acid multilayer sheet for thermoforming and molded product thereof
JP3703795B2 (en) Polylactic acid-based biaxially stretched film with excellent fusing and sealing properties
JP4623265B2 (en) Biaxially stretched polyester film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210929

R150 Certificate of patent or registration of utility model

Ref document number: 6953220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150