JP2010270183A - Polylactic acid-based oriented sheet, method for manufacturing the same, and formed product obtained by forming polylactic acid-based oriented sheet - Google Patents

Polylactic acid-based oriented sheet, method for manufacturing the same, and formed product obtained by forming polylactic acid-based oriented sheet Download PDF

Info

Publication number
JP2010270183A
JP2010270183A JP2009121235A JP2009121235A JP2010270183A JP 2010270183 A JP2010270183 A JP 2010270183A JP 2009121235 A JP2009121235 A JP 2009121235A JP 2009121235 A JP2009121235 A JP 2009121235A JP 2010270183 A JP2010270183 A JP 2010270183A
Authority
JP
Japan
Prior art keywords
polylactic acid
sheet
resin
stretched sheet
methacrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009121235A
Other languages
Japanese (ja)
Inventor
Aritaka Ueda
有孝 上田
Hiroyuki Yamazaki
裕之 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAN DIC KK
Original Assignee
SAN DIC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAN DIC KK filed Critical SAN DIC KK
Priority to JP2009121235A priority Critical patent/JP2010270183A/en
Publication of JP2010270183A publication Critical patent/JP2010270183A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polylactic acid-based oriented sheet that has good heat resistance and transparency while simultaneously having well-balanced practical impact resistance and moldability, a method for manufacturing the same, and a formed product obtained by forming the polylactic acid-based oriented sheet. <P>SOLUTION: The polylactic acid-based oriented sheet is obtained by at least performing uniaxial orientation of a resin composition containing a polylactic acid-based resin (A) and a methacrylate-based resin (B). A blending ratio of the polylactic acid-based resin (A) to the methacrylate-based resin (B) in the resin composition, (A):(B) is 75:25 to 45:55 (mass ratio). Average values of surface orientation degrees (ΔP) and orientation relaxation stress (ORS) of the oriented sheet obtained in the longitudinal direction and the width direction satisfy formula (1) ΔP≥(4.6-0.072X)/1,000 and formula (2) ORS≤5.5 MPa. The formed product is obtained by forming the polylactic acid-based oriented sheet. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、耐熱性、耐衝撃性及び成形性に優れたポリ乳酸系延伸シート及びその製造方法、並びにポリ乳酸系延伸シートを成形してなる成形体に関する。   The present invention relates to a polylactic acid-based stretched sheet excellent in heat resistance, impact resistance and moldability, a method for producing the same, and a molded body obtained by molding the polylactic acid-based stretched sheet.

近年、生分解性を有する各種ポリマーを含有したプラスチック製品を使用することは、環境保護の観点からも、植物由来原料の使用が石油資源節約の観点からも好ましいことが一般消費者にも認識されるようになり、工業製品にも生分解性ポリマー、植物由来ポリマーを原料とする試みが広く行なわれてきている。   In recent years, it has been recognized by general consumers that the use of plastic products containing various biodegradable polymers is preferable from the viewpoint of environmental protection and the use of plant-derived materials from the viewpoint of saving petroleum resources. As a result, attempts to use biodegradable polymers and plant-derived polymers as raw materials have also been widely applied to industrial products.

特にポリ乳酸は、植物由来かつ生分解性を有するポリマーであり、かつ、生分解性ポリマーの中でも、比較的高い融点と強靭性及び透明性を兼ね備えている点から、実用上優れたポリマーと認識されている。
しかしながら、ポリ乳酸は汎用の合成樹脂と比較して耐熱性が不足している。そのため、ポリ乳酸の耐熱性を改良する方法として、ポリ乳酸とその他の熱可塑性樹脂を混合することが種々報告されてきた。
In particular, polylactic acid is a plant-derived and biodegradable polymer, and among biodegradable polymers, it has a relatively high melting point, toughness and transparency, and is recognized as a practically superior polymer. Has been.
However, polylactic acid is deficient in heat resistance as compared with general-purpose synthetic resins. Therefore, various methods for mixing polylactic acid and other thermoplastic resins have been reported as methods for improving the heat resistance of polylactic acid.

例えば、熱可塑性樹脂として、特定の分子量を有するポリメタクリレートを選択することによって、このポリメタクリレートとポリ乳酸とを均一に溶融混練することができ、結果として、耐熱性等を向上させたポリ乳酸含有樹脂組成物が開示されている(例えば、特許文献1参照)。
しかしながら、特許文献1に開示されているポリ乳酸含有樹脂組成物を延伸加工して得られるシートは、耐衝撃性に不足することがあり、包装体としての実用性に欠けるものであった。
For example, by selecting polymethacrylate having a specific molecular weight as a thermoplastic resin, this polymethacrylate and polylactic acid can be uniformly melt-kneaded, resulting in polylactic acid containing improved heat resistance A resin composition is disclosed (for example, see Patent Document 1).
However, a sheet obtained by stretching a polylactic acid-containing resin composition disclosed in Patent Document 1 may lack impact resistance and lack practicability as a package.

この問題点を改良するために、重量分子量が5万以上のポリ乳酸系樹脂とポリメタクリレートを配合したポリ乳酸系樹脂組成物を延伸加工してフィルムを成形した後、熱処理を行なうことによって、そのフィルムの結晶化度を上げると、そのフィルムの高温における剛性を維持できることが開示されている(例えば、特許文献2参照)。
しかしながら、この手法で得られたフィルムを、例えば、深絞り成形等の工程に供した場合には、その剛性の高さに起因して目的とする型再現性を有する成形体が得られ難く、また、その成形体は常温における耐衝撃性に不足することがあり、汎用ポリエステル製品と比較して取り扱い難い点があった。
In order to improve this problem, a polylactic acid resin composition containing a polylactic acid resin having a weight molecular weight of 50,000 or more and a polymethacrylate is stretched to form a film, and then subjected to a heat treatment. It is disclosed that when the crystallinity of a film is increased, the rigidity of the film at a high temperature can be maintained (see, for example, Patent Document 2).
However, when the film obtained by this technique is subjected to a process such as deep drawing, for example, it is difficult to obtain a molded product having the desired mold reproducibility due to its high rigidity, In addition, the molded article may have insufficient impact resistance at room temperature, and is difficult to handle as compared with general-purpose polyester products.

特開2005−171204号公報JP-A-2005-171204 特開2005−036054号公報Japanese Patent Laying-Open No. 2005-036054

上記実情を鑑みて、本発明が解決しようとする課題は、実用的な耐衝撃性と成形性とをバランスよく兼備するとともに、耐熱性と透明性も良好なポリ乳酸系延伸シート及びその製造方法、並びにそのポリ乳酸系延伸シートを成形してなる成形体を提供することである。   In view of the above circumstances, the problem to be solved by the present invention is a polylactic acid-based stretched sheet having a good balance between practical impact resistance and formability and good heat resistance and transparency, and a method for producing the same In addition, an object of the present invention is to provide a molded article obtained by molding the polylactic acid-based stretched sheet.

本発明者等は、上記の課題を解決すべく鋭意研究を重ねた結果、ポリ乳酸系樹脂とメタクリレート系樹脂とを特定割合で配合した樹脂組成物を、少なくとも1軸方向に延伸してなるシートの面配向度と配向緩和応力が特定の関係式を満たす場合に、耐熱性、耐衝撃性及び成形時の型再現性に優れるシートが得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have obtained a sheet obtained by stretching a resin composition containing a polylactic acid resin and a methacrylate resin in a specific ratio in at least one axial direction. The inventors found that a sheet having excellent heat resistance, impact resistance and mold reproducibility during molding can be obtained when the degree of plane orientation and orientation relaxation stress satisfy a specific relational expression, and the present invention has been completed.

すなわち、本発明は、ポリ乳酸系樹脂(A)とメタクリレート系樹脂(B)とを含有する樹脂組成物を少なくとも一軸延伸してなるポリ乳酸系延伸シートであって、
前記樹脂組成物における前記ポリ乳酸系樹脂(A)と前記メタクリレート系樹脂(B)との配合割合(A):(B)が75:25〜45:55(質量比)であり、得られる延伸シートの面配向度(ΔP)と配向緩和応力(ORS)の長手方向及び幅方向の平均値が、下記の式(1)及び(2)
ΔP≧(4.6−0.072X)/1000 (1)
ORS≦5.5MPa (2)
〔但し、上記の式(1)中のXは樹脂組成物中のメタクリレート系樹脂(B)の含有率(質量%)を表し、25≦X≦55である。〕
を満たすことを特徴とするポリ乳酸系延伸シート、及びこれを成形してなる成形体を提供するものである。
That is, the present invention is a polylactic acid-based stretched sheet formed by at least uniaxially stretching a resin composition containing a polylactic acid-based resin (A) and a methacrylate-based resin (B),
The blending ratio (A) :( B) of the polylactic acid resin (A) and the methacrylate resin (B) in the resin composition is 75:25 to 45:55 (mass ratio), and the resulting stretching The average values in the longitudinal direction and the width direction of the sheet orientation degree (ΔP) and orientation relaxation stress (ORS) are expressed by the following formulas (1) and (2).
ΔP ≧ (4.6-0.072X) / 1000 (1)
ORS ≦ 5.5 MPa (2)
[However, X in the above formula (1) represents the content (% by mass) of the methacrylate resin (B) in the resin composition, and 25 ≦ X ≦ 55. ]
The present invention provides a polylactic acid-based stretched sheet characterized by satisfying the above requirements, and a molded body formed by molding the same.

更に、本発明は、上記特定の性能を有するポリ乳酸系延伸シートの製造方法を提供するものである。   Furthermore, this invention provides the manufacturing method of the polylactic acid-type stretched sheet which has the said specific performance.

本発明のポリ乳酸系延伸シートは、従来のポリ乳酸系延伸シートの耐衝撃性や成形時の型再現性の問題を解決したものであり、汎用のポリエステル系延伸シートやスチレン系延伸シートと同程度の耐熱性、成形性及び強度を有するものである。従って、生分解性ポリマーを多量に含む本発明のポリ乳酸系シートを、各種汎用の包装体に使用することが可能となり、環境保護の観点から好ましい。   The polylactic acid-based stretched sheet of the present invention solves the problems of impact resistance of conventional polylactic acid-based stretched sheets and mold reproducibility during molding, and is the same as general-purpose polyester-based stretched sheets and styrene-based stretched sheets. It has a certain degree of heat resistance, moldability and strength. Therefore, the polylactic acid-based sheet of the present invention containing a large amount of biodegradable polymer can be used for various general-purpose packaging bodies, which is preferable from the viewpoint of environmental protection.

実施例及び比較例に関して、メタクリレート系樹脂含有率(質量%)と面配向度(ΔP)の関係を示すグラフである。It is a graph which shows the relationship between a methacrylate resin content rate (mass%) and a plane orientation degree ((DELTA) P) regarding an Example and a comparative example. 実施例のシートORS平均値(MPa)と成形時の突起高さ(mm)の関係を示すグラフである。It is a graph which shows the relationship between the sheet ORS average value (MPa) of an Example, and the protrusion height (mm) at the time of shaping | molding.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のポリ乳酸系延伸シートは、ポリ乳酸系樹脂(A)とメタクリレート系樹脂(B)とを含有する樹脂組成物を少なくとも一軸延伸してなるシートである。   The polylactic acid-based stretched sheet of the present invention is a sheet obtained by stretching at least uniaxially a resin composition containing a polylactic acid-based resin (A) and a methacrylate-based resin (B).

本発明で用いられるポリ乳酸系樹脂(A)は、乳酸単量体単位を85質量%以上含有する重合体であって、ポリ乳酸、又は乳酸と他のヒドロキシカルボン酸、脂肪族環エステル、ジカルボン酸、ジオール類との共重合体、又は、乳酸単量体単位を85重量%以上含有するこれらの重合体の組成物である。   The polylactic acid-based resin (A) used in the present invention is a polymer containing 85% by mass or more of lactic acid monomer units, and is polylactic acid, or lactic acid and other hydroxycarboxylic acid, aliphatic cyclic ester, dicarboxylic acid. It is a copolymer of an acid or a diol, or a composition of these polymers containing 85% by weight or more of a lactic acid monomer unit.

乳酸は、L−乳酸とD−乳酸を混合して用いることもできるが、得られる延伸シートの耐熱性に優れる点から、L−乳酸とD−乳酸の何れか一方の異性体からなるものであることが好ましく、具体的には、D体含有率(原料として用いる乳酸全体質量に対するD−乳酸のモル割合)が2.0モル%以下又は98.0モル%以上であるものが好ましい。   Lactic acid can be used by mixing L-lactic acid and D-lactic acid, but is composed of either isomer of L-lactic acid or D-lactic acid from the viewpoint of excellent heat resistance of the obtained stretched sheet. Specifically, it is preferable that the D-form content (molar ratio of D-lactic acid to the total mass of lactic acid used as a raw material) is 2.0 mol% or less or 98.0 mol% or more.

また、本発明で用いられるポリ乳酸系樹脂(A)の製造方法としては、特に限定されるものではなく、種々の重合方法、例えば、乳酸からの直接重合法やラクチドを介する開環重合法等を用いることができる。   The production method of the polylactic acid resin (A) used in the present invention is not particularly limited, and various polymerization methods such as a direct polymerization method from lactic acid or a ring-opening polymerization method via lactide, etc. Can be used.

本発明で用いられるメタクリレート系樹脂(B)は、メタクリル酸シクロヘキシル、メタクリル酸t−ブチルシクロヘキシル、メタクリル酸メチル等のメタクリル酸エステルの単独重合体、又は、これらのメタクリル酸エステルと他の単量体との共重合体である。
前記のメタクリル酸エステルと共重合可能な単量体としては、他のメタクリル酸アルキルエステル類、アクリル酸アルキルエステル類、スチレン、ビニルトルエン、α−メチルスチレン類、N−フェニルマレイミド、N−シクロヘキシルマレイミド等のマレイミド類、無水マレイン酸等の不飽和カルボン酸無水物類、アクリル酸、メタクリル酸、マレイン酸等の不飽和酸類が挙げられる。
The methacrylate resin (B) used in the present invention is a homopolymer of a methacrylic ester such as cyclohexyl methacrylate, t-butyl cyclohexyl methacrylate, or methyl methacrylate, or these methacrylic esters and other monomers. And a copolymer.
Examples of the monomer copolymerizable with the methacrylic acid ester include other methacrylic acid alkyl esters, acrylic acid alkyl esters, styrene, vinyltoluene, α-methylstyrenes, N-phenylmaleimide, and N-cyclohexylmaleimide. And unsaturated carboxylic acid anhydrides such as maleic anhydride, and unsaturated acids such as acrylic acid, methacrylic acid and maleic acid.

メタクリレート系樹脂(B)は、上述のポリ乳酸系樹脂(A)の耐熱性の不足を改良するために併用するものである点から、メタクリレート系樹脂(B)単体としての耐熱性も優れていることが好ましく、例えば、ビカット軟化温度〔ASTM D1525(加重49N、昇温速度2℃/分)に準拠して測定した値〕が105℃以上であるものが好ましい。
更に、メタクリレート系樹脂(B)の重量平均分子量(ゲルパーミュエーションクロマトグラフィーを用いたポリスチレン換算値)は、樹脂の加工性及び強度の観点から、5万〜20万の範囲であることが好ましく、7〜15万の範囲であることが更に好ましい。
Since the methacrylate resin (B) is used in combination to improve the lack of heat resistance of the polylactic acid resin (A), the methacrylate resin (B) alone has excellent heat resistance. For example, it is preferable that the Vicat softening temperature [value measured according to ASTM D1525 (weight 49 N, temperature increase rate 2 ° C./min)] be 105 ° C. or higher.
Furthermore, the weight average molecular weight (polystyrene conversion value using gel permeation chromatography) of the methacrylate resin (B) is preferably in the range of 50,000 to 200,000 from the viewpoint of processability and strength of the resin. More preferably, it is in the range of 7 to 150,000.

また、メタクリレート系樹脂(B)の製造方法としては、特に限定されるものではなく、塊状重合、溶液重合、懸濁重合等の種々の方法で得られたものを用いることができる。   Moreover, it does not specifically limit as a manufacturing method of methacrylate-type resin (B), The thing obtained by various methods, such as block polymerization, solution polymerization, suspension polymerization, can be used.

本発明では、ポリ乳酸系延伸シートは、ポリ乳酸系樹脂(A)とメタクリレート系樹脂(B)とを含有する樹脂組成物において、ポリ乳酸系樹脂(A)とメタクリレート系樹脂(B)との配合割合(A):(B)が75:25〜45:55(質量比)であることを必須とするものである。
ポリ乳酸系樹脂(A)の配合割合が75質量%を超えると、得られるポリ乳酸系延伸シートの耐熱性が実用レベルではなく、又、ポリ乳酸系樹脂(A)の配合割合が45質量%未満では、植物由来ポリマー、生分解性ポリマーとしての実用性に欠けることになる。
In the present invention, the polylactic acid-based stretched sheet is a resin composition containing a polylactic acid-based resin (A) and a methacrylate-based resin (B), and the polylactic acid-based resin (A) and the methacrylate-based resin (B). It is essential that the blending ratio (A) :( B) is 75:25 to 45:55 (mass ratio).
When the blending ratio of the polylactic acid-based resin (A) exceeds 75% by mass, the heat resistance of the obtained polylactic acid-based stretched sheet is not at a practical level, and the blending ratio of the polylactic acid-based resin (A) is 45% by mass. If it is less than that, it will lack practicality as a plant-derived polymer or biodegradable polymer.

又、本発明では、ポリ乳酸系樹脂(A)とメタクリレート系樹脂(B)とを上記の配合割合で用いるものであるが、必要に応じてその他の樹脂や各種添加剤を併用しても良い。
各種添加剤としては、例えば、帯電防止剤、酸化防止剤、紫外線吸収剤、滑剤、アンチブロッキング剤、熱安定剤等が挙げられる。
In the present invention, the polylactic acid-based resin (A) and the methacrylate-based resin (B) are used in the above blending ratio, but other resins and various additives may be used in combination as necessary. .
Examples of the various additives include an antistatic agent, an antioxidant, an ultraviolet absorber, a lubricant, an antiblocking agent, and a heat stabilizer.

本発明のポリ乳酸系延伸シートは、上記の配合割合で混合した樹脂組成物を用い、これを少なくとも一軸延伸して得られるシートである。このシートの延伸方向は、長手方向又は幅方向の何れでも良いが、製造工程上、長手方向であることが好ましい。又、得られるシートの配向度を調整するためには、このシートを長手方向と幅方向の二軸延伸することが好ましい。   The polylactic acid-based stretched sheet of the present invention is a sheet obtained by using the resin composition mixed at the above-described blending ratio and stretching it at least uniaxially. The stretching direction of the sheet may be either the longitudinal direction or the width direction, but is preferably the longitudinal direction in the manufacturing process. In order to adjust the degree of orientation of the obtained sheet, the sheet is preferably biaxially stretched in the longitudinal direction and the width direction.

本発明のポリ乳酸系延伸シートは、その面配向度(ΔP)と配向緩和応力(ORS)の長手方向及び幅方向の平均値が、下記の式(1)及び(2)
ΔP≧(4.6−0.072X)/1000 (1)
ORS≦5.5MPa (2)
〔但し、上記の式(1)中のXは樹脂組成物中のメタクリレート系樹脂(B)の含有率(質量%)を表し、25≦X≦55である。〕
を満たすことを必須とするものである。
これらの関係式を満たさないものは、延伸シートの耐衝撃性と成形性とのバランスに欠け、実用的でない。
In the polylactic acid-based stretched sheet of the present invention, the average value in the longitudinal direction and the width direction of the degree of plane orientation (ΔP) and orientation relaxation stress (ORS) is expressed by the following formulas (1) and (2).
ΔP ≧ (4.6-0.072X) / 1000 (1)
ORS ≦ 5.5 MPa (2)
[However, X in the above formula (1) represents the content (% by mass) of the methacrylate resin (B) in the resin composition, and 25 ≦ X ≦ 55. ]
It is essential to satisfy.
Those not satisfying these relational expressions lack the balance between the impact resistance and formability of the stretched sheet and are not practical.

シートの面配向度(ΔP)とは、アッベ屈折率計等で測定されるシートの屈折率により定義される数値であり、シートの長手方向の屈折率をnMD、幅方向の屈折率をnTD、厚み方向の屈折率をnZDとすると、下記の式(4)の関係式で表される。
ΔP=(nMD+nTD)/2−nZD (4)
The plane orientation degree (ΔP) of the sheet is a numerical value defined by the refractive index of the sheet measured with an Abbe refractometer or the like. The refractive index in the longitudinal direction of the sheet is nMD, the refractive index in the width direction is nTD, When the refractive index in the thickness direction is nZD, it is expressed by the following relational expression (4).
ΔP = (nMD + nTD) / 2−nZD (4)

シートが不透明である等の理由で屈折率の測定が困難な場合は、他の手法により求めることが可能であり、その手法としては、例えば、X 線、赤外分光、ラマン分光等の手法が挙げられる。特に赤外分光法のATR法は、容易にシート表面の配向の状態を測定可能であるので好ましく使用することができる。この場合、あらかじめアッベ屈折率計等により屈折率の測定可能なシートを用いて、そのシートの面配向係数と、その他の手法によって測定した面配向度との相関関係を求めておき、目的のシートの面配向係数へ換算することにより、目的のシートの面配向度を求めることができる。   If it is difficult to measure the refractive index due to the fact that the sheet is opaque, it can be obtained by other methods. Examples of such methods include X-ray, infrared spectroscopy, and Raman spectroscopy. Can be mentioned. In particular, the ATR method of infrared spectroscopy can be preferably used because the state of orientation of the sheet surface can be easily measured. In this case, using a sheet whose refractive index can be measured with an Abbe refractometer or the like, the correlation between the sheet surface orientation coefficient and the surface orientation degree measured by other methods is obtained, and the target sheet is obtained. By converting into the plane orientation coefficient, the plane orientation degree of the target sheet can be obtained.

上記の式(1)の関係式を満たさないシートは、特に耐衝撃性、強度の点で問題が生じやすくなる。   A sheet that does not satisfy the relational expression (1) is likely to cause problems particularly in terms of impact resistance and strength.

又、シートの配向緩和応力(ORS)は、ASTM D1504に準拠し、乾式加熱によりシート温度120℃において発現する応力の最大値である。
上記の式(2)の関係式を満たさないシートは、特に成形時の型再現性の点で問題が生じやすくなる。
Further, the orientation relaxation stress (ORS) of the sheet is the maximum value of the stress that develops at a sheet temperature of 120 ° C. by dry heating in accordance with ASTM D1504.
A sheet that does not satisfy the relational expression (2) is likely to cause a problem particularly in terms of mold reproducibility during molding.

これらORSの条件は、二軸延伸シートの場合、一延伸方向が満たされることで目的とするシートが得られる場合もあるが、種々の形状に比較的広い熱成形条件で成形することが容易である観点から、二延伸方向とも上記のORS条件を満たすことがより好ましい。   In the case of a biaxially stretched sheet, these ORS conditions may be that a target sheet may be obtained by satisfying one stretching direction, but it is easy to form various shapes under relatively wide thermoforming conditions. From a certain point of view, it is more preferable that the ORS condition is satisfied in the two stretching directions.

更に、ポリ乳酸系延伸シートは、下記の式(3)で表される結晶化度が16J/g以下であることが、より成形性に優れ、特に深絞り成形体への応用も可能となる点から好ましい。
結晶化度=結晶融解熱量(ΔHm)−結晶化熱量(ΔHc) (3)
Furthermore, in the polylactic acid-based stretched sheet, the crystallinity expressed by the following formula (3) is 16 J / g or less, so that the moldability is excellent, and in particular, application to a deep-drawn molded body is possible. It is preferable from the point.
Crystallinity = heat of crystal melting (ΔHm) −heat of crystallization (ΔHc) (3)

尚、上記の式(3)における結晶融解熱量及び結晶化熱量は、以下のようにして求めたものである。
すなわち、JIS−K7122に準じて、示差走査熱量計により、試料約10mgを、30℃から200℃まで、昇温速度10℃/分、窒素ガス流量50ml/分の条件にて昇温して、DSC曲線を作成し、その描かれたDSC曲線における昇温時の結晶化発熱ピーク面積から結晶化熱量(ΔHc)を求め、結晶融解吸熱ピーク面積から結晶融解熱量(ΔHm)(J/g)を求めた。
In addition, the amount of heat of crystal melting and the amount of heat of crystallization in the above formula (3) are determined as follows.
That is, according to JIS-K7122, the sample was heated by a differential scanning calorimeter from 30 ° C. to 200 ° C. under a temperature rising rate of 10 ° C./min and a nitrogen gas flow rate of 50 ml / min. A DSC curve is prepared, and the crystallization heat quantity (ΔHc) is obtained from the crystallization exothermic peak area at the time of temperature rise in the drawn DSC curve, and the crystal melting heat quantity (ΔHm) (J / g) is obtained from the crystal melting endothermic peak area. Asked.

本発明のポリ乳酸系延伸シートの厚みについては、特に限定されるものではないが、成形体を加工する際の取り扱い容易性と、成形体としての強度及び透明性等の観点から、70〜500μmの範囲になるようにすることが好ましく、100〜300μmがより好ましい。   Although it does not specifically limit about the thickness of the polylactic acid-type stretched sheet of this invention, 70-500 micrometers from viewpoints, such as the handleability at the time of processing a molded object, and the intensity | strength and transparency as a molded object. It is preferable to make it become the range of 100-300 micrometers.

本発明のポリ乳酸系延伸シートは、上記の各成分を溶媒に溶かした溶液を均一混合し、その溶液から溶媒を除去後、製膜して得ることも可能であるが、溶媒へ原料の溶解、溶媒除去等の工程が不要で、実用的な製造方法である溶融製膜法を採用することが好ましい。
溶融製膜法は、各成分を溶融混練することによりシートを製造する方法である。その溶融製膜方法については、特に制限はなく、ニーダー、ロールミル、バンバリーミキサー、単軸又は二軸押出機等の通常使用されている種々の混合機を用いて樹脂組成物を得た後、溶融混合樹脂をスリット状の口金に導き、冷却キャスティングドラム上にシート状に押出し、Tダイ法やタッチロールキャスト法等を用いてシートを得る方法等が挙げられる。これらの溶融製膜法の中でも生産性の観点から、単軸押出機又は二軸押出機を使用してシート化する方法が好ましく、混合性の点で二軸押出機を使用してシート化する方法が更に好ましい。
The polylactic acid-based stretched sheet of the present invention can be obtained by uniformly mixing a solution in which each of the above components is dissolved in a solvent, removing the solvent from the solution, and then forming a film. It is preferable to employ a melt film-forming method, which is a practical production method, without requiring a step such as solvent removal.
The melt film-forming method is a method for producing a sheet by melting and kneading each component. The melt film forming method is not particularly limited, and after obtaining a resin composition using various commonly used mixers such as a kneader, a roll mill, a Banbury mixer, a single-screw or twin-screw extruder, it is melted. Examples thereof include a method in which the mixed resin is introduced into a slit-shaped base, extruded into a sheet shape on a cooling casting drum, and a sheet is obtained using a T-die method, a touch roll casting method, or the like. Among these melt film forming methods, from the viewpoint of productivity, a method of forming a sheet using a single-screw extruder or a twin-screw extruder is preferable, and in terms of mixing properties, a sheet is formed using a twin-screw extruder. The method is further preferred.

また、樹脂の混合順序についても特に制限はなく、例えば、ポリ乳酸系樹脂(A)とメタクリレート系樹脂(B)とをドライブレンドした後、溶融混練機に供する方法や、予めポリ乳酸系樹脂(A)とメタクリレート系樹脂(B)とを溶融混練したマスターバッチを作製した後、このマスターバッチとポリ乳酸系樹脂(A)とを溶融混練した後、製膜する方法等が挙げられる。
また、必要に応じて、その他の添加剤を同時に溶融混練する方法や、予めポリ乳酸系樹脂(A)とその他の添加剤を溶融混練したマスターバッチを作製した後、このマスターバッチとポリ乳酸系樹脂(A)とメタクリレート系樹脂(B)とを溶融混練する方法を用いても良い。
Further, the mixing order of the resins is not particularly limited. For example, after the polylactic acid resin (A) and the methacrylate resin (B) are dry blended, a method of using a melt kneader or a polylactic acid resin ( Examples thereof include a method of preparing a master batch in which A) and a methacrylate resin (B) are melt-kneaded, and then melt-kneading the master batch and the polylactic acid resin (A), and then forming a film.
In addition, if necessary, a method in which other additives are melt-kneaded at the same time, or a master batch in which the polylactic acid resin (A) and other additives are melt-kneaded in advance are prepared. You may use the method of melt-kneading resin (A) and methacrylate-type resin (B).

また、各成分を溶融混練する時の温度は180℃〜260℃の範囲であることが好ましく、また、ポリ乳酸系樹脂(A)の劣化を防ぐ観点、及び、ポリ乳酸系樹脂(A)とメタクリレート系樹脂(B)の混練性の観点から、各成分を溶融混練する時の温度は200℃〜230℃の範囲であることがより好ましい。   Moreover, it is preferable that the temperature at the time of melt-kneading each component is in the range of 180 ° C. to 260 ° C., and from the viewpoint of preventing deterioration of the polylactic acid resin (A), and the polylactic acid resin (A) From the viewpoint of kneadability of the methacrylate resin (B), the temperature at which each component is melt-kneaded is more preferably in the range of 200 ° C to 230 ° C.

ポリ乳酸系延伸シートの延伸倍率は、少なくとも一方向において1.3〜8.0倍であり、好ましくは1.7〜6.0倍であり、より好ましくは1.5〜4.0倍である。
また、延伸温度は、上記の式(1)、(2)を満たすポリ乳酸系延伸シートが容易に得られる点から、70〜95℃の範囲である。
ポリ乳酸系延伸シートは、延伸後、延伸による配向が緩和するのを防ぐ観点、及び、結晶化の進行による成形性の低下を防ぐ観点から、延伸温度以下で冷却することが好ましく、20〜60℃で冷却することがより好ましい。
The draw ratio of the polylactic acid-based stretched sheet is 1.3 to 8.0 times in at least one direction, preferably 1.7 to 6.0 times, more preferably 1.5 to 4.0 times. is there.
The stretching temperature is in the range of 70 to 95 ° C. from the viewpoint that a polylactic acid-based stretched sheet that satisfies the above formulas (1) and (2) can be easily obtained.
The polylactic acid-based stretched sheet is preferably cooled below the stretching temperature from the viewpoint of preventing the orientation due to stretching from being relaxed after stretching and from the viewpoint of preventing the deterioration of formability due to the progress of crystallization. It is more preferable to cool at 0C.

ポリ乳酸系延伸シートの延伸条件の好ましい一例は、2.0〜2.5倍にロール延伸した後、2.0〜2.5倍にテンター延伸した210μmポリ乳酸系延伸シートを製造する場合、テンター延伸温度は70〜90℃であり、冷却温度は40〜60℃である。
また、延伸倍率を2.5倍から3.0倍に変更する場合、同一ORSのシートを得るには、大まかな目安として、延伸温度を2〜7℃上げるのが好ましい。
A preferable example of the stretching conditions for the polylactic acid-based stretched sheet is to produce a 210 μm polylactic acid-based stretched sheet that has been roll-stretched 2.0 to 2.5 times and then tenter-stretched 2.0 to 2.5 times. The tenter stretching temperature is 70 to 90 ° C, and the cooling temperature is 40 to 60 ° C.
Moreover, when changing a draw ratio from 2.5 times to 3.0 times, in order to obtain the same ORS sheet, it is preferable to raise the drawing temperature by 2 to 7 ° C. as a rough guide.

また、得られるポリ乳酸系延伸シートに帯電防止性や防曇性等を付与するために、その表面を界面活性剤等で被覆する場合には、少なくともポリ乳酸系延伸シートの一表面に、適当な濃度に調整した界面活性剤等の水溶液を、スクィーズロールコーター、エアーナイフコーター、ナイフコーター、スプレーコーター、グラビアロールコーター、バーコーター等の種々の方法により塗布した後、塗布した水溶液を乾燥する。また、特に被覆膜の均一性を向上させる観点からは、シート表面をコロナ処理した後、上記の方法で界面活性剤等を塗布するのが好ましい。コロナ処理の強度は、シートの表面を水との接触角が80〜30゜になるように調整するのが好ましく、より好ましくは接触角が70〜35°になるように調整する。シートの表面と水との接触角の好ましい上限は被覆膜の均一性を向上させるための値であり、好ましい接触角の下限は、シートをロール状に巻いた場合にブロッキングを防ぐための値である。   In addition, when the surface of the polylactic acid-based stretched sheet is coated with a surfactant or the like in order to impart antistatic properties or antifogging properties to the obtained polylactic acid-based stretched sheet, at least one surface of the polylactic acid-based stretched sheet is suitable An aqueous solution of a surfactant or the like adjusted to a proper concentration is applied by various methods such as a squeeze roll coater, an air knife coater, a knife coater, a spray coater, a gravure roll coater, and a bar coater, and then the applied aqueous solution is dried. In particular, from the viewpoint of improving the uniformity of the coating film, it is preferable to apply a surfactant or the like by the above method after corona treatment of the sheet surface. The strength of the corona treatment is preferably adjusted so that the contact angle with water is 80 to 30 °, more preferably 70 to 35 °. The preferred upper limit of the contact angle between the surface of the sheet and water is a value for improving the uniformity of the coating film, and the preferred lower limit of the contact angle is a value for preventing blocking when the sheet is rolled up. It is.

上記で得られたポリ乳酸系延伸シートは、熱成形により成形体とすることができる。熱成形方法としては、熱板接触加熱成形法、真空成形法、真空圧空成形法、プラグアシスト成形法等が好ましく用いられる。成形体の厚みの均一性や、成形体の生産効率の観点からは熱板接触加熱成形法が特に好ましいが、特に透明性を重視する場合は間接加熱による真空成形法や真空圧空成形法を、また、深絞り成形を行う場合はプラグアシスト成形法を採用することも可能である。
これらの成形法を用いたポリ乳酸系延伸シートの成形体の成形は、シートロールを用い連続的に行っても良いし、カット版のシートを用い1ショット毎に成形しても良い。
以下、好ましい成形体製造条件の一例を挙げる。
The polylactic acid-based stretched sheet obtained above can be formed into a molded body by thermoforming. As the thermoforming method, a hot plate contact heat forming method, a vacuum forming method, a vacuum / pressure forming method, a plug assist forming method, or the like is preferably used. The hot plate contact heating molding method is particularly preferable from the viewpoint of the uniformity of the thickness of the molded body and the production efficiency of the molded body, but when the transparency is particularly important, the vacuum molding method by indirect heating or the vacuum / pressure molding method is used. In addition, when performing deep drawing, a plug assist molding method can be employed.
The molding of the polylactic acid-based stretched sheet using these molding methods may be performed continuously using a sheet roll, or may be molded every shot using a cut plate sheet.
Hereinafter, an example of preferable molded object manufacturing conditions is given.

熱板接触加熱成形法により、本発明のポリ乳酸系延伸シートを成形する場合の好ましい熱板温度条件は、成形体の型再現性や成形サイクルの観点(下限)、及び、成形体の透明性やレインドロップの発生の観点(上限)から、熱板温度を樹脂混合物のビカット軟化温度+10〜50℃とし、より好ましくは+15〜40℃とし、更に好ましくは+20〜35℃とする。
また、加熱時間(シートを真空及び/又は圧空で熱板に接触させている時間と、これが終了しシートを金型へ伸ばすために真空及び/又は圧空になるまでの遅れ時間の合計)は、0.5〜15.0秒が好ましい。
Preferred hot plate temperature conditions for molding the polylactic acid-based stretched sheet of the present invention by hot plate contact thermoforming are the mold reproducibility and molding cycle viewpoint (lower limit) of the molded product, and the transparency of the molded product. From the viewpoint (upper limit) of occurrence of raindrops and raindrops, the hot plate temperature is set to the Vicat softening temperature of the resin mixture +10 to 50 ° C, more preferably +15 to 40 ° C, and further preferably +20 to 35 ° C.
In addition, the heating time (the time for which the sheet is brought into contact with the hot plate in vacuum and / or compressed air and the total delay time until the sheet is vacuumed and / or compressed in order to extend the sheet to the mold) 0.5-15.0 seconds are preferable.

成形体の形状は、容器の蓋、トレー、フードパック、ブリスターパック、その他各種パック、ケース等、特に制限されないが、本発明のポリ乳酸系延伸シート及びその成形体の特徴である耐熱性、成形性、成形体の透明性、耐衝撃性の観点から、特に容器の蓋が好ましく、中でも食品包装容器の蓋が特に好ましい。   The shape of the molded body is not particularly limited, such as container lids, trays, food packs, blister packs, other various packs, cases, etc., but the heat resistance and molding characteristic of the polylactic acid-based stretched sheet of the present invention and the molded body thereof From the viewpoints of properties, transparency of the molded product, and impact resistance, the lid of the container is particularly preferable, and among them, the lid of the food packaging container is particularly preferable.

本発明のポリ乳酸系延伸シートからなる成形体を食品包装容器の蓋として使用する場合、容器本体は、本発明のポリ乳酸系延伸シートから成型されたもののほか、ポリプロピレン系非発泡シート、ポリプロピレン系発泡シート、フィラー入りポリプロピレン系非発泡シート、ポリスチレン系発泡シート、ポリスチレン系非発泡無延伸シート、結晶化ポリエステル系シート、各種プラスチック積層シート、紙、パルプ、アルミ等から成形されたものも好ましく用いることができる。   When the molded body comprising the polylactic acid-based stretched sheet of the present invention is used as a lid for a food packaging container, the container body is molded from the polylactic acid-based stretched sheet of the present invention, as well as a polypropylene non-foamed sheet, a polypropylene-based It is also preferable to use a foamed sheet, a polypropylene-based non-foamed sheet with filler, a polystyrene-based foamed sheet, a polystyrene-based non-foamed unstretched sheet, a crystallized polyester-based sheet, various plastic laminated sheets, paper, pulp, aluminum, etc. Can do.

以下、実施例及び比較例により本発明を更に具体的に説明する。特に断りのない限り、「部」「%」は質量基準である。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. Unless otherwise specified, “part” and “%” are based on mass.

尚、得られたシートの配向緩和応力、面配向度、結晶化度については、下記の方法によって測定した。更に、シートの物性値として耐熱性、成形時の型再現性、耐衝撃性、植物由来度を下記によって測定し、評価した。   The orientation relaxation stress, the plane orientation degree, and the crystallinity degree of the obtained sheet were measured by the following methods. Further, the physical properties of the sheet were evaluated by measuring heat resistance, mold reproducibility at the time of molding, impact resistance and plant-derived degree as follows.

(1)配向緩和力(ORS)
ASTM D−1504に準じて、日理工業株式会社製OS測定器にて、乾式加熱によりシート温度120℃にて、シートに発現する応力の最大値を測定した。
(1) Orientation relaxation force (ORS)
In accordance with ASTM D-1504, the maximum value of the stress appearing on the sheet was measured at a sheet temperature of 120 ° C. by dry heating with an OS measuring instrument manufactured by Niri Kogyo Co., Ltd.

(2)面配向度(ΔP)
ナトリウム光源D線(波長589nm)を用いて、株式会社アタゴ製アッベ屈折計2Tにより、シートの長手方向の屈折率(nMD)、幅方向の屈折率(nTD)、厚み方向の屈折率(nZD)を測定し、下記の式(4)より面配向度(ΔP)を算出した。
ΔP=(nMD+nTD)/2−nZD (4)
(2) Degree of plane orientation (ΔP)
Using a sodium light source D-line (wavelength 589 nm), the lengthwise refractive index (nMD), the widthwise refractive index (nTD), and the thicknesswise refractive index (nZD) of Atago Co., Ltd. Abbe refractometer 2T Was measured, and the degree of plane orientation (ΔP) was calculated from the following formula (4).
ΔP = (nMD + nTD) / 2−nZD (4)

(3)結晶化度(ΔHm−ΔHc)
JIS−K7122に準じて、示差走査熱量計(株式会社島津製作所製DSC−60)により、試料約10mgを、30℃から200℃まで、昇温速度10℃/分、窒素ガス流量50ml/分の条件にて昇温した。これにより描かれたDSC曲線における昇温時の結晶化発熱ピーク面積から結晶化熱量(ΔHc)を求め、結晶融解吸熱ピーク面積から結晶融解熱量(ΔHm)(J/g)を求め、下記の式(5)より結晶化度を算出した。
結晶化度=ΔHm−ΔHc(J/g) (5)
(3) Crystallinity (ΔHm−ΔHc)
In accordance with JIS-K7122, a differential scanning calorimeter (DSC-60, manufactured by Shimadzu Corporation) was used to sample approximately 10 mg from 30 ° C. to 200 ° C., a heating rate of 10 ° C./min, and a nitrogen gas flow rate of 50 ml / min. The temperature was raised under the conditions. The heat of crystallization (ΔHc) is determined from the crystallization exothermic peak area at the time of temperature rise in the drawn DSC curve, and the heat of crystal melting (ΔHm) (J / g) is determined from the crystal melting endothermic peak area. The crystallinity was calculated from (5).
Crystallinity = ΔHm−ΔHc (J / g) (5)

(4)耐熱性
シートの耐熱性の評価は、100×100mmのシート試験片を、所定温度の熱風乾燥機中に10分間放置後、長手方向及び幅方向の収縮率を測定することにより行った。このシートの収縮率を2℃毎に測定し、長手方向と幅方向収縮率の平均値が2%に達する温度をシートの2%収縮温度(℃)として算出し、下記の基準で評価した。
(4) Heat resistance The heat resistance of the sheet was evaluated by measuring the shrinkage in the longitudinal direction and the width direction after leaving a 100 x 100 mm sheet test piece in a hot air dryer at a predetermined temperature for 10 minutes. . The shrinkage rate of the sheet was measured every 2 ° C., and the temperature at which the average value of the longitudinal direction and width direction shrinkage rates reached 2% was calculated as the 2% shrinkage temperature (° C.) of the sheet and evaluated according to the following criteria.

シートからなる成形体の耐熱性の評価は、後述する型再現性評価と同様の成形方法により、深さ27mm、開口部95mm×95mmの容器を成形し、得られた成形体を、所定温度の熱風乾燥機中に5分間放置後、外観を目視観察した。この目視観察を5℃毎に実施し、成形体がほとんど変形しない温度の上限値を成形体の耐熱温度(℃)として、下記の基準で評価した。
◎:シートの2%収縮温度(℃)、成形体の耐熱温度が、75℃以上
○:シートの2%収縮温度(℃)、成形体の耐熱温度が、60〜75℃未満
△:シートの2%収縮温度(℃)、成形体の耐熱温度が、50〜60℃未満
×:シートの2%収縮温度(℃)、成形体の耐熱温度が、0〜50℃未満
The evaluation of the heat resistance of the molded body made of a sheet was performed by molding a container having a depth of 27 mm and an opening of 95 mm × 95 mm by a molding method similar to the mold reproducibility evaluation described later. After standing in a hot air dryer for 5 minutes, the appearance was visually observed. This visual observation was performed every 5 ° C., and the upper limit of the temperature at which the molded body hardly deformed was regarded as the heat resistance temperature (° C.) of the molded body, and evaluated according to the following criteria.
A: 2% shrinkage temperature (° C.) of sheet, heat resistance temperature of molded body is 75 ° C. or more ○: 2% shrinkage temperature (° C.) of sheet, heat resistance temperature of molded body is 60 to less than 75 ° C. Δ: 2% shrinkage temperature (° C.), heat resistance temperature of molded body is less than 50 to 60 ° C. ×: 2% shrinkage temperature (° C.) of sheet, heat resistance temperature of molded body is less than 0 to 50 ° C.

(5)成形性(成形時の型再現性)
シートの成形性の評価は、直径5mmの丸穴の金型を使用して、シートの成形後に形成される突起の高さを測定し、これを突起高さ(mm)として、下記の基準で評価した。突起高さが高い程、成形時にシートが伸び易く、金型の形状を良好に再現できることを意味する。
ここで、シートの成形は、株式会社脇坂エンジニアリング製熱板圧空成形機HPT−100を用いて、熱板接触加熱成形法で、加熱時間1.2秒、成形遅れ時間1.5秒、成形時間2.0秒、加熱圧力0.1MPa、成形圧力0.4MPa、金型温度50℃にて行った。熱板温度を、シートにレインドロップと呼ばれる丸斑状の模様が発生しない上限温度とした。
◎:成形時の突起高さ(mm)が、2.0mm以上
○:成形時の突起高さ(mm)が、1.5〜2.0mm未満
△:成形時の突起高さ(mm)が、1.0〜1.5mm未満
×:成形時の突起高さ(mm)が、1.0mm未満
(5) Moldability (mold reproducibility during molding)
The sheet formability was evaluated by measuring the height of the protrusion formed after the sheet was formed using a round hole mold having a diameter of 5 mm, and using this as the protrusion height (mm), based on the following criteria: evaluated. The higher the protrusion height, the easier the sheet is stretched during molding, which means that the shape of the mold can be reproduced well.
Here, the sheet is formed by hot plate contact heating molding method using a hot plate pressure forming machine HPT-100 manufactured by Wakisaka Engineering Co., Ltd., with a heating time of 1.2 seconds, a molding delay time of 1.5 seconds, and a molding time. 2.0 seconds, heating pressure 0.1 MPa, molding pressure 0.4 MPa, mold temperature 50 ° C. The hot plate temperature was set to an upper limit temperature at which no rounded pattern called raindrop was generated on the sheet.
◎: Projection height (mm) during molding is 2.0 mm or more ○: Projection height (mm) during molding is less than 1.5 to 2.0 mm △: Projection height (mm) during molding , 1.0 to less than 1.5 mm ×: protrusion height (mm) during molding is less than 1.0 mm

(6)耐衝撃性
シートの耐衝撃性の評価は、株式会社上島製作所製デュポン衝撃試験機にて、先端半径6.5mmの半球状撃芯を用いて、JIS K7124、JIS K5400に準じて、シートの衝撃強度(J)を測定し、下記の基準で評価した。
シートからなる成形体の耐衝撃性の評価は、上述した型再現性評価と同様の成形方法により、深さ23mm、開口部169mm×112mmの天面部が平らな容器を成形し、得られた成形体天面部の衝撃強度(J)を測定し、下記の基準で評価した。
◎:衝撃強度(J)が、0.6J以上
○:衝撃強度(J)が、0.2〜0.6J未満
△:衝撃強度(J)が、0.1〜0.2J未満
×:衝撃強度(J)が、0.1J未満
(6) Impact resistance The impact resistance of the sheet was evaluated according to JIS K7124 and JIS K5400 using a hemispherical core with a tip radius of 6.5 mm using a DuPont impact tester manufactured by Ueshima Seisakusho Co., Ltd. The impact strength (J) of the sheet was measured and evaluated according to the following criteria.
Evaluation of impact resistance of a molded article made of a sheet was performed by molding a container having a flat top surface portion having a depth of 23 mm and an opening portion of 169 mm × 112 mm by the same molding method as the above-described mold reproducibility evaluation. The impact strength (J) of the body top surface was measured and evaluated according to the following criteria.
◎: Impact strength (J) is 0.6 J or more ○: Impact strength (J) is less than 0.2 to 0.6 J △: Impact strength (J) is less than 0.1 to 0.2 J ×: Impact Strength (J) is less than 0.1J

(7)植物由来度
ポリ乳酸系樹脂等の植物由来原料の含有量(質量%)を植物由来度として、下記の基準で評価した。
◎:植物由来度(質量%)が、70質量%以上
○:植物由来度(質量%)が、45〜70質量%未満
△:植物由来度(質量%)が、20〜45質量%未満
×:植物由来度(質量%)が、20質量%未満
(7) Degree of plant origin The content (mass%) of plant-derived materials such as polylactic acid resin was evaluated as the degree of plant origin according to the following criteria.
A: Degree of plant origin (mass%) is 70 mass% or more. O: Degree of plant origin (mass%) is less than 45-70 mass%. Δ: Degree of plant origin (mass%) is less than 20-45 mass%. : Degree of plant origin (mass%) is less than 20 mass%

また、ポリ乳酸系樹脂、メタクリレート系樹脂としては、以下のものを用いた。
ポリ乳酸系樹脂A1:トヨタ自動車株式会社製PLA トヨタエコプラスチックU’zS−12
ポリ乳酸系樹脂A2:NatureWorksLLC製PLA 4032D
メタクリレート系樹脂B1:旭化成ケミカルズ株式会社製PMMA デルペット80N 、ビカット軟化温度109℃
メタクリレート系樹脂B2:旭化成ケミカルズ株式会社製PMMA デルペット80NH、ビカット軟化温度109℃
Moreover, the following were used as polylactic acid-type resin and methacrylate-type resin.
Polylactic acid resin A1: PLA manufactured by Toyota Motor Corporation Toyota Eco-Plastic U'zS-12
Polylactic acid resin A2: PLA 4032D made by NatureWorks LLC
Methacrylate resin B1: PMMA Delpet 80N manufactured by Asahi Kasei Chemicals Corporation, Vicat softening temperature 109 ° C
Methacrylate resin B2: PMMA Delpet 80NH manufactured by Asahi Kasei Chemicals Corporation, Vicat softening temperature 109 ° C

[実施例1]
ポリ乳酸系樹脂(A1)とメタクリレート系樹脂(B1)を、直径30mmのスクリューを有する二軸押出機(日本製鋼所製 TEX30α−31.5BW−5V)に供給し、溶融、混練し、T−ダイよりシートを押し出して、そのシートをロールで冷却、再加熱した後、ロール群の速度差により、シートをシート流れ方向(MDとする)に2.0倍延伸した。さらに、テンターにより、シートをシート流れ方向に対して直交方向(TDとする)に2.0倍延伸して、厚みが0.18〜0.33mmのシートを得た。
ここで、延伸温度(テンター雰囲気温度)を77℃、冷却温度を51℃に設定し、表1に示す物性のシートを得た。
[Example 1]
The polylactic acid resin (A1) and the methacrylate resin (B1) are supplied to a twin screw extruder (TEX30α-31.5BW-5V manufactured by Nippon Steel Works) having a screw with a diameter of 30 mm, and melted and kneaded. After extruding the sheet from the die and cooling and reheating the sheet with a roll, the sheet was stretched 2.0 times in the sheet flow direction (MD) due to the speed difference of the roll group. Further, the sheet was stretched 2.0 times in a direction orthogonal to the sheet flow direction (referred to as TD) by a tenter to obtain a sheet having a thickness of 0.18 to 0.33 mm.
Here, the stretching temperature (tenter atmosphere temperature) was set to 77 ° C., and the cooling temperature was set to 51 ° C. to obtain sheets having physical properties shown in Table 1.

[実施例2]
延伸温度を75℃、冷却温度を55℃とした以外は実施例1と同様に製膜し、表1に示す物性のシートを得た。
[Example 2]
A sheet having physical properties shown in Table 1 was obtained in the same manner as in Example 1 except that the stretching temperature was 75 ° C and the cooling temperature was 55 ° C.

[実施例3]
ポリ乳酸系樹脂として、ポリ乳酸系樹脂A2を用いた以外は実施例2と同様に製膜し、表1に示す物性のシートを得た。
[Example 3]
A film having physical properties shown in Table 1 was obtained in the same manner as in Example 2 except that the polylactic acid resin A2 was used as the polylactic acid resin.

[実施例4]
冷却温度を70℃とした以外は実施例3と同様に製膜し、表1に示す物性のシートを得た。
[Example 4]
Except that the cooling temperature was 70 ° C., a film was formed in the same manner as in Example 3 to obtain a sheet having physical properties shown in Table 1.

[実施例5]
メタクリレート系樹脂として、メタクリレート系樹脂B2を用い、冷却温度を54℃とした以外は実施例3と同様に製膜し、表1に示す物性のシートを得た。
[Example 5]
A film having physical properties shown in Table 1 was obtained in the same manner as in Example 3 except that the methacrylate resin B2 was used as the methacrylate resin and the cooling temperature was 54 ° C.

[実施例6]
延伸温度を72℃、冷却温度を56℃とした以外は実施例3と同様に製膜し、表1に示す物性のシートを得た。
[Example 6]
A film having physical properties shown in Table 1 was obtained in the same manner as in Example 3 except that the stretching temperature was 72 ° C and the cooling temperature was 56 ° C.

[実施例7]
メタクリレート系樹脂B1の配合割合を35質量%とし、延伸温度を78℃、冷却温度を54℃とした以外は実施例2と同様に製膜し、表2に示す物性のシートを得た。
[Example 7]
A sheet having physical properties shown in Table 2 was obtained in the same manner as in Example 2 except that the blending ratio of the methacrylate resin B1 was 35% by mass, the stretching temperature was 78 ° C., and the cooling temperature was 54 ° C.

[実施例8]
メタクリレート系樹脂B1の配合割合を50質量%とし、延伸温度を80℃、冷却温度を53℃とした以外は実施例2と同様に製膜し、表2に示す物性のシートを得た。
[Example 8]
A sheet having physical properties shown in Table 2 was obtained in the same manner as in Example 2 except that the blending ratio of the methacrylate resin B1 was 50% by mass, the stretching temperature was 80 ° C., and the cooling temperature was 53 ° C.

[実施例9]
延伸温度を90℃、冷却温度を56℃としとした以外は実施例8と同様に製膜し、表2に示す物性のシートを得た。
[Example 9]
A sheet having physical properties shown in Table 2 was obtained in the same manner as in Example 8 except that the stretching temperature was 90 ° C and the cooling temperature was 56 ° C.

[実施例10]
ポリ乳酸系樹脂として、ポリ乳酸系樹脂A2を用い、冷却温度を43℃とした以外は実施例8と同様に製膜し、表22示す物性のシートを得た。
[Example 10]
A film having physical properties shown in Table 22 was obtained in the same manner as in Example 8 except that polylactic acid resin A2 was used as the polylactic acid resin and the cooling temperature was 43 ° C.

[実施例11]
シート流れ方向(MD)の延伸倍率を2.5倍とし、シート流れ方向に対して直交方向(TD)の延伸倍率を2.5倍と、冷却温度を63℃としした以外は実施例9と同様に製膜し、表2に示す物性のシートを得た。
[Example 11]
Example 9 except that the draw ratio in the sheet flow direction (MD) was 2.5 times, the draw ratio in the direction perpendicular to the sheet flow direction (TD) was 2.5 times, and the cooling temperature was 63 ° C. Films were formed in the same manner to obtain sheets having physical properties shown in Table 2.

[実施例12]
ポリ乳酸系樹脂として、ポリ乳酸系樹脂A2を用い、延伸温度を82℃とした以外は実施例11と同様に製膜し、表2に示す物性のシートを得た。
[Example 12]
A film having physical properties shown in Table 2 was obtained in the same manner as in Example 11 except that the polylactic acid resin A2 was used as the polylactic acid resin and the stretching temperature was 82 ° C.

[比較例1]
メタクリレート系樹脂を無配合とし、延伸温度を70℃とし、冷却温度を70℃とした以外は実施例1と同様に製膜し、表3に示す物性のシートを得た。得られたシートの物性は表3に示すとおり、耐熱性に劣るものであった。
[Comparative Example 1]
A sheet having physical properties shown in Table 3 was obtained in the same manner as in Example 1 except that the methacrylate resin was not blended, the stretching temperature was 70 ° C, and the cooling temperature was 70 ° C. The physical properties of the obtained sheet were inferior in heat resistance as shown in Table 3.

[比較例2]
延伸倍率を1.0×1.0倍(無延伸)とした以外は比較例1と同様に製膜し、表3に示す物性のシートを得た。得られたシートの物性は表3に示すとおり、耐熱性に劣り、配向度が低く、耐衝撃性にも劣るものであった。
[Comparative Example 2]
A sheet having physical properties shown in Table 3 was obtained in the same manner as in Comparative Example 1 except that the draw ratio was 1.0 × 1.0 (non-stretched). As shown in Table 3, the physical properties of the obtained sheet were inferior in heat resistance, low in orientation, and inferior in impact resistance.

[比較例3]
メタクリレート系樹脂B1の配合割合を15質量%とした以外は実施例2と同様に製膜し、表3に示す物性のシートを得た。得られたシートの物性は表3に示すとおり、耐熱性に劣るものであった。
[Comparative Example 3]
Except that the blending ratio of the methacrylate resin B1 was 15% by mass, a film was formed in the same manner as in Example 2 to obtain a sheet having physical properties shown in Table 3. The physical properties of the obtained sheet were inferior in heat resistance as shown in Table 3.

[比較例4]
延伸温度を85℃とし、冷却温度を53℃とした以外は実施例1と同様に製膜し、表3に示す物性のシートを得た。得られたシートの物性は表3に示すとおり、配向度が低く、耐衝撃性に劣るものであった。
[Comparative Example 4]
Except that the stretching temperature was 85 ° C. and the cooling temperature was 53 ° C., a film was formed in the same manner as in Example 1 to obtain sheets having physical properties shown in Table 3. As shown in Table 3, the physical properties of the obtained sheet were low in orientation and inferior in impact resistance.

[比較例5]
冷却温度を100℃とした以外は実施例1と同様に製膜し、表3に示す物性のシートを得た。得られたシートの物性は表3に示すとおり、結晶化度が高く、型再現性に劣るものであった。
[Comparative Example 5]
Except that the cooling temperature was 100 ° C., a film was formed in the same manner as in Example 1 to obtain a sheet having physical properties shown in Table 3. As shown in Table 3, the physical properties of the obtained sheet were high in crystallinity and inferior in mold reproducibility.

[比較例6]
冷却温度を110℃とした以外は実施例3と同様に製膜し、表3に示す物性のシートを得た。得られたシートの物性は表3に示すとおり、結晶化度が高く、型再現性に劣るものであった。この比較例6のシートは成形不可であった。
[Comparative Example 6]
Except that the cooling temperature was 110 ° C., a film was formed in the same manner as in Example 3 to obtain a sheet having physical properties shown in Table 3. As shown in Table 3, the physical properties of the obtained sheet were high in crystallinity and inferior in mold reproducibility. The sheet of Comparative Example 6 was not moldable.

[比較例7]
延伸温度を80℃とし、冷却温度を58℃とした以外は実施例6と同様に製膜し、表3に示す物性のシートを得た。得られたシートの物性は表3に示すとおり、結晶化度が高く、型再現性に劣るものであった。
[Comparative Example 7]
A film having physical properties shown in Table 3 was obtained in the same manner as in Example 6 except that the stretching temperature was 80 ° C. and the cooling temperature was 58 ° C. As shown in Table 3, the physical properties of the obtained sheet were high in crystallinity and inferior in mold reproducibility.

[比較例8]
延伸温度を83℃とし、冷却温度を58℃とした以外は実施例6と同様に製膜し、表4に示す物性のシートを得た。得られたシートの物性は表4に示すとおり、結晶化度が高く、型再現性に劣るものであった。
[Comparative Example 8]
Except that the stretching temperature was 83 ° C. and the cooling temperature was 58 ° C., a film was formed in the same manner as in Example 6 to obtain sheets having physical properties shown in Table 4. As shown in Table 4, the physical properties of the obtained sheet were high in crystallinity and inferior in mold reproducibility.

[比較例9]
冷却温度を105℃とした以外は実施例7と同様に製膜し、表4に示す物性のシートを得た。得られたシートの物性は表4に示すとおり、配向度が低く、耐衝撃性に劣るものであった。
[Comparative Example 9]
Except that the cooling temperature was 105 ° C., a film was formed in the same manner as in Example 7 to obtain a sheet having physical properties shown in Table 4. As shown in Table 4, the physical properties of the obtained sheet were low in orientation and inferior in impact resistance.

[比較例10]
延伸温度を100℃とし、冷却温度を57℃とした以外は実施例9と同様に製膜し、表4に示す物性のシートを得た。得られたシートの物性は表4に示すとおり、配向度が低く、耐衝撃性に劣るものであった。
[Comparative Example 10]
Except that the stretching temperature was 100 ° C. and the cooling temperature was 57 ° C., a film was formed in the same manner as in Example 9, and sheets having physical properties shown in Table 4 were obtained. As shown in Table 4, the physical properties of the obtained sheet were low in orientation and inferior in impact resistance.

[比較例11]
冷却温度を105℃とした以外は実施例9と同様に製膜し、表4に示す物性のシートを得た。得られたシートの物性は表4に示すとおり、配向度が低く、耐衝撃性に劣るものであった。
[Comparative Example 11]
Except that the cooling temperature was 105 ° C., a film was formed in the same manner as in Example 9 to obtain sheets having physical properties shown in Table 4. As shown in Table 4, the physical properties of the obtained sheet were low in orientation and inferior in impact resistance.

[比較例12]
冷却温度を120℃とした以外は実施例9と同様に製膜し、表4に示す物性のシートを得た。得られたシートの物性は表4に示すとおり、配向度が低く、耐衝撃性に劣るものであった。
[Comparative Example 12]
Except that the cooling temperature was 120 ° C., a film was formed in the same manner as in Example 9 to obtain a sheet having physical properties shown in Table 4. As shown in Table 4, the physical properties of the obtained sheet were low in orientation and inferior in impact resistance.

[比較例13]
延伸倍率を1.0×1.0倍(無延伸)とした以外は実施例9と同様に製膜し、表4に示す物性のシートを得た。得られたシートの物性は表4に示すとおり、配向度が低く、耐衝撃性にも劣るものであった。
[Comparative Example 13]
A sheet having physical properties shown in Table 4 was obtained in the same manner as in Example 9 except that the draw ratio was 1.0 × 1.0 (non-stretched). As shown in Table 4, the physical properties of the obtained sheet were low in degree of orientation and inferior in impact resistance.

[比較例14]
メタクリレート系樹脂B1の配合割合を75質量%とし、延伸温度を110℃とした以外は実施例9と同様に製膜し、表4に示す物性のシートを得た。得られたシートの物性は表4に示すとおり、植物由来度に劣るものであった。
[Comparative Example 14]
A sheet having physical properties shown in Table 4 was obtained in the same manner as in Example 9 except that the blending ratio of the methacrylate resin B1 was 75% by mass and the stretching temperature was 110 ° C. The physical properties of the obtained sheet were inferior in plant origin as shown in Table 4.

Figure 2010270183
Figure 2010270183

Figure 2010270183
Figure 2010270183

Figure 2010270183
Figure 2010270183

Figure 2010270183
Figure 2010270183

耐衝撃性が良好であった実施例1〜12及び耐衝撃性が不足であった比較例2〜4、比較例9〜11の、メタクリレート系樹脂含有率(質量%)と面配向度(ΔP)の関係を示すグラフを図1に示す。
図1のグラフの結果から、面配向度(ΔP)がΔP≧(4.6−0.072X)/1000を満たすシートは、耐衝撃性が良好であることが確認された。
Methacrylate-based resin content (% by mass) and degree of plane orientation (ΔP) of Examples 1 to 12 having good impact resistance and Comparative Examples 2 to 4 and Comparative Examples 9 to 11 having insufficient impact resistance A graph showing the relationship of) is shown in FIG.
From the result of the graph of FIG. 1, it was confirmed that the sheet satisfying ΔP ≧ (4.6-0.072X) / 1000 in the plane orientation degree (ΔP) has good impact resistance.

また、実施例1〜12のシートORS平均値(MPa)と成形時の突起高さ(mm)の関係を示すグラフを図2に示す。
図2のグラフの結果から、ORS(MPa)が5.5MPa以下であれば、成形時の型再現性は良好であることが確認された。
Moreover, the graph which shows the relationship between the sheet ORS average value (MPa) of Examples 1-12 and the protrusion height (mm) at the time of shaping | molding is shown in FIG.
From the results of the graph of FIG. 2, it was confirmed that when the ORS (MPa) was 5.5 MPa or less, the mold reproducibility at the time of molding was good.

本発明のポリ乳酸系延伸シートは、優れた耐熱性、耐衝撃性、成形性を有し、成形用のポリ乳酸系延伸シートとして有用であり、熱成形容器、特に成形容器蓋材として好適に使用できる。
The polylactic acid-based stretched sheet of the present invention has excellent heat resistance, impact resistance, and moldability, is useful as a polylactic acid-based stretched sheet for molding, and is suitable as a thermoformed container, particularly as a molded container lid. Can be used.

Claims (7)

ポリ乳酸系樹脂(A)とメタクリレート系樹脂(B)とを含有する樹脂組成物を少なくとも一軸延伸してなるポリ乳酸系延伸シートであって、
前記樹脂組成物における前記ポリ乳酸系樹脂(A)と前記メタクリレート系樹脂(B)との配合割合(A):(B)が75:25〜45:55(質量比)であり、得られる延伸シートの面配向度(ΔP)と配向緩和応力(ORS)の長手方向及び幅方向の平均値が、下記の式(1)及び(2)
ΔP≧(4.6−0.072X)/1000 (1)
ORS≦5.5MPa (2)
〔但し、上記の式(1)中のXは樹脂組成物中のメタクリレート系樹脂(B)の含有率(質量%)を表し、25≦X≦55である。〕
を満たすことを特徴とするポリ乳酸系延伸シート。
A polylactic acid-based stretched sheet formed by at least uniaxially stretching a resin composition containing a polylactic acid-based resin (A) and a methacrylate-based resin (B),
The blending ratio (A) :( B) of the polylactic acid resin (A) and the methacrylate resin (B) in the resin composition is 75:25 to 45:55 (mass ratio), and the resulting stretching The average values in the longitudinal direction and the width direction of the sheet orientation degree (ΔP) and orientation relaxation stress (ORS) are expressed by the following formulas (1) and (2).
ΔP ≧ (4.6-0.072X) / 1000 (1)
ORS ≦ 5.5 MPa (2)
[However, X in the above formula (1) represents the content (% by mass) of the methacrylate resin (B) in the resin composition, and 25 ≦ X ≦ 55. ]
A polylactic acid-based stretched sheet characterized by satisfying
更に、下記の式(3)で表される結晶化度が16J/g以下である請求項1記載のポリ乳酸系延伸シート。
結晶化度=結晶融解熱量(ΔHm)−結晶化熱量(ΔHc) (3)
Furthermore, the polylactic acid type | system | group stretched sheet of Claim 1 whose crystallinity degree represented by following formula (3) is 16 J / g or less.
Crystallinity = heat of crystal melting (ΔHm) −heat of crystallization (ΔHc) (3)
前記ポリ乳酸系樹脂(A)のD体含有率が2.0モル%以下又は98.0モル%以上である請求項1又は2記載のポリ乳酸系延伸シート。   The polylactic acid type | system | group stretched sheet of Claim 1 or 2 whose D body content rate of the said polylactic acid-type resin (A) is 2.0 mol% or less or 98.0 mol% or more. 前記メタクリレート系樹脂(B)のビカット軟化温度が105℃以上である請求項1〜3の何れか1項記載のポリ乳酸系延伸シート。   The polylactic acid stretched sheet according to any one of claims 1 to 3, wherein the methacrylate resin (B) has a Vicat softening temperature of 105 ° C or higher. 延伸後のシートの厚みが70〜500μmである請求項1〜4の何れか1項記載のポリ乳酸系延伸シート。   The polylactic acid-based stretched sheet according to any one of claims 1 to 4, wherein the stretched sheet has a thickness of 70 to 500 µm. 請求項1〜5の何れか1項記載のポリ乳酸系延伸シートを成形してなることを特徴とする成形体。   A molded article obtained by molding the polylactic acid-based stretched sheet according to any one of claims 1 to 5. ポリ乳酸系樹脂(A)とメタクリレート系樹脂(B)とを、それらの配合割合(A):(B)が75:25〜45:55(質量比)で混合した樹脂組成物を、少なくとも一方向において延伸倍率を1.3〜8.0倍、延伸温度を70〜95℃として延伸した後、延伸温度以下で冷却することを特徴とするポリ乳酸系延伸シートの製造方法。
At least one resin composition obtained by mixing a polylactic acid resin (A) and a methacrylate resin (B) at a blending ratio (A) :( B) of 75:25 to 45:55 (mass ratio) is used. A method for producing a polylactic acid-based stretched sheet characterized by stretching at a stretching ratio of 1.3 to 8.0 times and a stretching temperature of 70 to 95 ° C in the direction, and then cooling at a stretching temperature or lower.
JP2009121235A 2009-05-19 2009-05-19 Polylactic acid-based oriented sheet, method for manufacturing the same, and formed product obtained by forming polylactic acid-based oriented sheet Pending JP2010270183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009121235A JP2010270183A (en) 2009-05-19 2009-05-19 Polylactic acid-based oriented sheet, method for manufacturing the same, and formed product obtained by forming polylactic acid-based oriented sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009121235A JP2010270183A (en) 2009-05-19 2009-05-19 Polylactic acid-based oriented sheet, method for manufacturing the same, and formed product obtained by forming polylactic acid-based oriented sheet

Publications (1)

Publication Number Publication Date
JP2010270183A true JP2010270183A (en) 2010-12-02

Family

ID=43418473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009121235A Pending JP2010270183A (en) 2009-05-19 2009-05-19 Polylactic acid-based oriented sheet, method for manufacturing the same, and formed product obtained by forming polylactic acid-based oriented sheet

Country Status (1)

Country Link
JP (1) JP2010270183A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012093717A1 (en) * 2011-01-07 2012-07-12 三菱レイヨン株式会社 Glass-containing thermoplastic acrylic resin composition and molded article thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199788A (en) * 2005-01-19 2006-08-03 Asahi Kasei Chemicals Corp Stretched molding
JP2006259313A (en) * 2005-03-17 2006-09-28 Asahi Kasei Chemicals Corp Formed body for optical material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199788A (en) * 2005-01-19 2006-08-03 Asahi Kasei Chemicals Corp Stretched molding
JP2006259313A (en) * 2005-03-17 2006-09-28 Asahi Kasei Chemicals Corp Formed body for optical material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012093717A1 (en) * 2011-01-07 2012-07-12 三菱レイヨン株式会社 Glass-containing thermoplastic acrylic resin composition and molded article thereof
JP5954171B2 (en) * 2011-01-07 2016-07-20 三菱レイヨン株式会社 Thermoplastic acrylic resin composition containing glass and molded article thereof
US9822235B2 (en) 2011-01-07 2017-11-21 Mitsubishi Chemical Corporation Glass-containing thermoplastic acrylic resin composition and molded article thereof

Similar Documents

Publication Publication Date Title
JP2011526949A (en) Polymeric compound and method of use
JP4804179B2 (en) Polylactic acid composition and molded product comprising the composition
WO2007063864A1 (en) Polylactic acid resin multilayer sheet and molded body made of same
JP2011526950A (en) Compatibilized polypropylene and polylactic acid blends and methods for their production and use
US20080102272A1 (en) Adhesive wrapping film
TWI468457B (en) Acrylic resin film with excellent transparency and impact resistance and method of fabricating the same
JP5545732B2 (en) Resin composition and film formed by molding the same
JP2011088946A (en) Acrylic resin film
JPH06279546A (en) Stretched styrene resin sheet
JP2010270183A (en) Polylactic acid-based oriented sheet, method for manufacturing the same, and formed product obtained by forming polylactic acid-based oriented sheet
JP2010159322A (en) Recycled polyolefin resin composition and method for producing the same
JP6206701B2 (en) Styrene stretched sheet and molded product thereof
JP2011042802A (en) Polylactic acid stretched film
JP5036122B2 (en) Heat-resistant styrene resin stretched sheet
JP2007237732A (en) Biaxially drawn sheet made of impact-resistant polystyrene, and molded article made of this sheet
JP6953220B2 (en) Method for manufacturing polylactic acid-based stretched sheet, method for manufacturing polylactic acid-based stretched sheet, and secondary molded product
JPH10330602A (en) Liquid crystal polyester resin composition, injection molding product and film comprising the same
JP7384723B2 (en) Heat-resistant styrene resin compositions, non-foamed extruded sheets, foamed extruded sheets, and molded products thereof
JP2011046005A (en) Poly(lactic acid)-based heat-resistant container and method for manufacturing the same
JP7404732B2 (en) resin film
JP2002248677A (en) Polylactic acid thermoforming product
JP3498232B2 (en) AS resin-based biaxially stretched sheet and thermoformed product
TWI504671B (en) Polylactic acid composition and the molding product made therefrom
JP3735951B2 (en) Liquid crystal polyester resin composition and film
JP2024055582A (en) 3D printer filament

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130215

A131 Notification of reasons for refusal

Effective date: 20130219

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130716