JP6951427B2 - 短絡回路故障からネットワークを保護しながら、当該ネットワーク内でdc電流を送信することができる装置を制御する方法 - Google Patents

短絡回路故障からネットワークを保護しながら、当該ネットワーク内でdc電流を送信することができる装置を制御する方法 Download PDF

Info

Publication number
JP6951427B2
JP6951427B2 JP2019511948A JP2019511948A JP6951427B2 JP 6951427 B2 JP6951427 B2 JP 6951427B2 JP 2019511948 A JP2019511948 A JP 2019511948A JP 2019511948 A JP2019511948 A JP 2019511948A JP 6951427 B2 JP6951427 B2 JP 6951427B2
Authority
JP
Japan
Prior art keywords
line
transmission line
circuit
safety system
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019511948A
Other languages
English (en)
Other versions
JP2019527017A (ja
Inventor
ジャイナバ ルーム
ジャイナバ ルーム
アルベルト ベルティナート
アルベルト ベルティナート
バートランド レゾン
バートランド レゾン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite Grenoble Alpes
Original Assignee
Universite Grenoble Alpes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Grenoble Alpes filed Critical Universite Grenoble Alpes
Publication of JP2019527017A publication Critical patent/JP2019527017A/ja
Application granted granted Critical
Publication of JP6951427B2 publication Critical patent/JP6951427B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/28Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus
    • H02H3/30Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus using pilot wires or other signalling channel
    • H02H3/305Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus using pilot wires or other signalling channel involving current comparison
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/268Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured for dc systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/28Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured for meshed systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/125Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for rectifiers
    • H02H7/1255Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for rectifiers responsive to internal faults, e.g. by monitoring ripple in output voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Inverter Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)

Description

本発明の分野は、当分野において高電圧直流(HVDC)ネットワークとしても知られている伝送ネットワーク内での電気、特に直流の伝送に関する。
再生可能エネルギー源は、電力網に電力を供給するために電気を発生させることを可能にする。再生可能エネルギー源は、一般に、消費ゾーンから遠く離れているため、エネルギー損失を最小限に抑えながら非常に長い距離にわたって電気を伝送できる新しい伝送ネットワークを開発する必要がある。特に、これらの新しいネットワークは、既存の交流ネットワークに接続される高電圧直流送電ネットワークであってもよい。このようなネットワークは、ネットワークの制約をサポートするための特定の機能とインテリジェンスとを統合している。
これらの機能のうちの1つは、ネットワークに故障が発生した場合のネットワークの安全性の管理である。この目的のためには、一般的な停電を回避するためにできるだけ早く故障を特定できることが必要である。これに関して、様々な保護戦略が開発されてきた。
国際公開第2013/131782号パンフレットは、その端部に遮断器を備えた一群の送電線を備えたネットワークを備える装置を制御するための1つの可能性のある戦略を詳細に開示している。当該ネットワークは、ネットワークに電流を供給することができる変換ステーションにリンクされている。故障が発生した場合、間違った電流(faulty current)がそれぞれの遮断器の電流遮断能力を超えないようにするために、故障が検出されるとすぐにすべての遮断器が開く。その結果、遮断器は高速でなければならず、場合によっては、故障によって電流が過度に急速に増加する可能性があり、遮断器の遮断容量(breaking capacity)を超えたために、遮断器の全部又は一部が開くことができない可能性がある。さらに、故障が検出されるとすぐに開くように構成されている遮断器に故障が発生した場合、故障を正しく特定できないという危険性がある。
国際公開第2012/123015号パンフレットは、同じ送信ネットワーク内のゾーンを保護するために電流制限器を使用する送信ネットワークを開示しており、故障が発生した場合は、他のゾーンで故障が伝播するのを防ぐため、ゾーン全体が切り離される。
2003年1月にLianxiang Tangによって発表された論文“Control and Protection of Multi-terminal DC Transmission Systems Based on Voltage-Source Converters”は、遮断器を変換器の出力に配置し、高速スイッチをラインの両端に配置するという戦略を紹介している。検出されると、全ての遮断器が開き、開かれる高速スイッチを通る電流がゼロであるとき、故障したラインを絶縁するために当該スイッチが開かれる。さらに、高速スイッチを用いて、故障したラインを切り離すためにすべての遮断器を開く必要があるため、少なくとも1つの遮断器を開くことができなかった場合、戦略の期間はより長くなってしまう。
したがって、ネットワークの保護を改善するために、既存の装置、特にその制御を改善する必要があることが理解される。
国際公開第2013/131782号 国際公開第2012/123015号
本発明の目的は、ネットワークの安全性を向上させるためにその構成要素を適切に制御することに関連する特定の装置である。
この目的は、互いにリンクされた送電線のグループを含む直流送電ネットワークを備える送電のための装置を制御する方法によって達成される。それぞれの前記送電線は、前記送電線の両端に配置されたペアのライン遮断器を備える。前記装置は、交流を直流に変換するための、それぞれが安全システムと関連するN個の変換ステーションを備え、それぞれの前記変換ステーションは、送電線のグループにリンクされており、短絡電流の最大の寄与と関連している。より詳しくは、それぞれの前記安全システムは、関連する変換ステーションの前記短絡電流の最大の寄与に対応する直流を遮断することができ、前記ライン遮断器はそれぞれ、前記変換ステーションの前記短絡電流の最大の寄与の最大値に対応する直流を遮断することができる遮断容量を有する。さらに、前記方法は、前記送電線のうちの1つに短絡故障が発生した後において、以下のステップを備える。
−開かれるそれぞれの前記安全システムについて、開かれた前記安全システムに関連する前記変換ステーションから発生する、送電線のグループを通る電流の流れへの寄与が、除去されるように、少なくともN−1個の安全システムを開くステップ
−故障した前記送電線を特定するために前記短絡故障を発見するステップ
−前記発見するステップにおいて故障した前記送電線を特定した後に、故障した前記送電線のライン遮断器を開くことによって故障した前記送電線を絶縁するステップ
特に、本方法は、それぞれの前記安全システムについて、それぞれの前記安全システムの前記短絡故障のトリガを検出するステップと、前記安全システムで前記短絡故障が検出された後、前記安全システムにオープン指令信号を送信するステップと、を備える。
好ましくは、本方法は、それぞれの前記ライン遮断器における前記短絡故障を検出するステップを備え、前記発見するステップは、前記ペアの前記ライン遮断器における前記短絡故障が検出された後、同一の前記送電線上にある前記ライン遮断器の前記ペアのそれぞれについて、前記ペアの前記ライン遮断器間の前記短絡故障の有無をチェックするステップを備える。当該チェックするステップにおいて、故障した前記送電線における前記短絡故障の存在が検出された後にのみ、故障した前記送電線を絶縁するステップが実施される。
故障した前記送電線を絶縁する前記ステップは、故障した前記送電線の2つのライン遮断器のそれぞれの少なくとも1つの物理的特徴を監視するステップを備え、2つの前記ライン遮断器のそれぞれは、その近傍で監視された前記物理的特徴が基準閾値を下回るとすぐに、特に互いに独立して開くことがより有利である。
1つの実施の形態によれば、前記短絡故障の発生後、N−1個の前記安全システムのみが開き、閉じたままの前記安全システムは故障状態にあると見なされる。
本方法は、故障状態の前記安全システムの故障を検出するステップと、次いで、故障状態にある前記安全システムに関連する前記変換ステーションと前記送電線の前記グループとの間の電気的接続を切断するステップと、を備えていてもよい。
特に、前記絶縁するステップにおいて、2つの前記ライン遮断器のうちの少なくとも1つを開くことが、前記電流が2つの前記ライン遮断器をまだ流れている間に実施される。
好ましくは、それぞれの前記安全システムは、前記変換ステーションに統合された前記安全システムと、前記安全システムに関連付けられた前記変換ステーションを前記グループの前記送電線にリンクする電気リンク上に配置された独立した遮断器と、から選択される。
特に、本方法は、故障した前記送電線を絶縁するステップの後に実施されるネットワークを復元するステップを備えていてもよい。前記復元するステップは、前記開くステップの間に開かれたそれぞれの前記安全システムを閉じることを備える。特に、前記復元するステップの間及びその後において、故障した前記送電線の前記ライン遮断器は開かれたままであり、故障した前記送電線の前記短絡故障が他の前記グループの前記送電線から電気的に分離される。
本発明はまた、以下を備える送電のための装置に関する:
・送電線の両端に配置されたペアのライン遮断器を備えた当該送電線であって互いにリンクされた前記送電線のグループを備える直流送電ネットワーク;
・交流を直流に変換するための、それぞれが安全システムと関連するN個の変換ステーションであって、それぞれが前記グループの前記送電線にリンクされており、短絡電流の最大の寄与と関連している前記変換ステーション、
そして:
・それぞれの前記安全システムは、関連する前記変換ステーションの前記短絡電流の最大の寄与に対応する直流を遮断することができ;
・前記ライン遮断器はそれぞれ、前記変換ステーションの前記短絡電流の最大の寄与の最大値に対応する直流を遮断することができる遮断容量を有し;
・前記装置は、前記送電線の前記グループから発生する短絡故障が前記安全システムにおいて検出されたときに、それぞれの前記安全システムにオープン指令信号を送信するように構成され;
・前記装置は、前記ライン遮断器のそれぞれの前記ペアについて、前記ペアの前記ライン遮断器の間に前記短絡故障が存在するとき、及び、前記ペアの前記ライン遮断器において前記短絡故障が検出されたときに、オープン指令信号を前記ペアの前記ライン遮断器に送信するように構成されている。
装置は、説明されたような制御方法を実施するためのソフトウェア及びハードウェア要素を備えていてもよい。
本発明は、非限定的な例として図面を参照してのみ提供される以下の説明によって、さらに理解されるであろう。
図1は、1つの特定の実施の形態に係る直流電流の送電を可能にする装置を示す図である。 図2は、ネットワーク内で短絡故障が発生した場合に短絡電流に対する変換ステーションの寄与を算出することを可能にする装置の構成要素を示す図である。 図3は、装置を制御する方法の特定の実施の形態の様々なステップを概略的に示す図である。 図4は、安全システムに関連する保護モジュールを示す図である。 図5は、ライン遮断器に関連する保護素子を示す図である。 図6は、図1の装置の変形例を示す図である。 図7は、送電線において短絡故障が発生した際に、装置において生じる事象を示す時系列を示す図である。 図8は、送電線がデルタ状に配置されている装置の特定の例を示す図である。 図9は、第1の場合に、送電線における短絡故障の発生後に図8に示す変換ステーションの直接側の電流を示す図である。 図10は、第1の場合に、送電線における短絡故障の発生後に図8に示す装置の故障した送電線のライン遮断器を通る電流を示す。 図11は、第2の場合に、送電線における短絡故障の発生後に図8に示す変換ステーションの直接側の電流を示す図である。 図12は、第2の場合に、短絡故障の発生後に図8に示す装置の故障した送電線のライン遮断器を通る電流を示す。
これらの全ての図において、特に規定されない限り、同じ参照符号は同じ要素を示すために使用される。
特に、以下の説明は、特定の装置に関連する方法の実施を提案するという点で従来技術と異なり、特に、安全システムにおいて故障をサポートすることを可能にし、故障した送電線を見つけて絶縁して、交流を直流に変換するための変換ステーションからネットワークへの電流の流入を阻止することを意図する。
図1は、互いにリンクされた送電線4のグループ2を含む直流送電ネットワーク3(特にHVDCネットワーク)を含む送電のための装置1を示し、これらの送電線4が互いにリンクされることによって、これらの送電線4は直流を流すことができ、特に、グループ2の送電線4は直流を流すことができる。それぞれの送電線4は、当該送電線4の両端に配置されたペアのライン遮断器5a、5bを備えている。言い換えれば、送電線4の各端部はライン遮断器を備えている。装置はさらに、それぞれが安全システム7に関連する交流を直流に変換するためのN個の変換ステーション6を含む。したがって、変換ステーション6にそれぞれ関連するN個の安全システム7がある。それぞれの変換ステーション6は、グループ2の送電線4にリンクされ、それぞれの変換ステーション6は、短絡電流の最大の寄与に関連付けられている。当該最大の寄与は、設計要素であり、言い換えれば、それぞれの変換ステーション6は、短絡電流の最大の寄与を有するように設計されている。この短絡電流の最大の寄与は、当該変換ステーション6がネットワーク3に流入させることができる直流の寄与に対応する。この場合、グループ2は、N個の変換ステーション6にリンクされ、特に変換ステーション6の直流側にリンクされる。特に、それぞれの安全システム7は、当該安全システム7に関連する変換ステーション6がグループ2の送電線4を通る電流の流れに寄与することを許可する閉じられた状態と、当該安全システム7に関連する変換ステーション6がグループ2の送電線4を通る電流の流れに寄与することを許可しない開かれた状態とを備える。したがって、それぞれの安全システム7は、特に変換ステーション6の直流側に配置されている。図1の特定の例は、互いにリンクされた7つの送電線4と、ネットワークのグループ2の送電線4を通る電流の流れに寄与する5つの変換ステーション6とを備えるネットワーク3を示すが、もちろん、図1の図は一例にすぎず、送電線間の接続のトポグラフィはネットワークの所望の機能に応じて適合させることができる。
上記に基づいて、N個の変換ステーション6又はN個の安全システム7に言及するとき、Nは整数であり、その値は2又は3以上であることが理解される。変換ステーション6の総数は、所望の送電機能、特にこれらの変換ステーションにリンクされた交流源の領域分散の関数として適合されてもよい。
本明細書では、送電線4は、電力が当該送電線4の両端間で伝送されることを可能にすることができる任意の送電素子によって形成することができる。このような送電素子は、例えば、水中ケーブル、地下ケーブル、さらに、架空送電線であってもよい。
グループ2内では、少なくとも2つの送電線4が、特にバスバー8によって互いに直接リンクされてもよく、また、少なくとも2つの送電線4が、少なくとも1つの他の送電線によって互いに間接的にリンクされてもよい。これは、本質的に図1に示されている。特に、送電線4のグループ2において、「互いにリンクされた送電線」は、グループ2のそれぞれの送電線4は、バスバー8によって、特にその端部を介して、そのグループの少なくとも1つの他の送電線4に直接リンクされており、同じバスバー8は、2以上の送電線4を相互に直接リンクするために用いられてもよいことを意味すると理解される。さらに、それぞれの変換ステーション6は、特に変換ステーション6の直流側で、電気接続リンク9、該当する場合には当該変換ステーション6に関連する安全システム7を備え得る接続リンク9によって、対応するバスバー8に電気的にリンクされてもよい。
本明細書では、遮断器(例えば、ライン遮断器5a、5b、又は適用可能であれば、以下に見られるような安全システム7)は、直流の流通又は直流の通流の遮断を選択的に可能にするシステムであり、直流遮断器を参照する。より具体的には、遮断器は、直流の流通を可能にするときに閉じられる、遮断器の閉状態と称され、また、直流の流通を遮断するときに開かれる、遮断器の開状態と称される。遮断器は、閉状態から開状態へ、又はその逆に切り替えることができる設定値によって制御することができる。本明細書で定義されるように、遮断器は遮断容量を有し、遮断容量は遮断器を通る電流の最大値として定義され、遮断容量に基づいて遮断器は閉状態から開状態に切り替わることができる。したがって、遮断器の遮断容量は、当該遮断器の電流を遮断する容量に対応する。言い換えれば、一般に、遮断容量に関連する電流よりも大きい電流が遮断器を通るとき、関連する保護(以下に説明されるリレー)が測定された電流が流れる限り、開くための設定値を遮断器に送らないため遮断器は開かない。すなわち、遮断器を流れる電流は遮断容量よりも大きい。さもないと、遮断器を損傷したり、遮断器が破壊されないように内部保護を開始したりする危険性があるからである。この分野では、遮断器は「直流遮断器」(DCCB)としても知られている。
ライン遮断器5a、5bにおいて、同じ送電線のライン遮断器5a、5bが閉じた状態にあるとき、ライン遮断器5a、5bは当該送電線の両端間で当該送電線を通って直流電流が流れることを可能にし、同じ送電線のライン遮断器5a、5bが開状態にあるとき、当該送電線の両端間の電流の流通は遮断される:当該送電線は、当該送電線の両端間で直流を流通する機能をもはや提供しないため、グループ2内の他の送電線から絶縁されていると言える。さらに、1つの送電線に対して1つのライン遮断器のみが開いているとき、送電線を絶縁することなく電力の伝送が遮断される:送電線を遮断するためには、これら2つのライン遮断器を開かれていなくてはならない。
本明細書では、交流を直流に変換するための変換ステーション6は、例えば、交流電気ネットワーク又は風力発電所等の交流源10から生じる交流を、直流送電ネットワークに直流を流入させることを目的として直流に変換することができる。変換ステーション6は直流遮断機能を有しても有さなくてもよく、この点は以下にさらに詳細に説明される。グループ2の送電線4を通る電流の流れに対する変換ステーション6の寄与は、生産/消費のバランスとネットワークの安定性を提供するため、変換ステーション6を介して、グループ2の送電線4から電流を引き出す、又は、グループ2の送電線4に電流を流入させることであり、これは、変換ステーション6内の制御機能によって実施され得る。
本明細書では、変換ステーション6の寄与に言及するとき、変換ステーション6がリンクされているグループ2の送電線4を通る直流の流れに対する変換ステーション6の寄与を含む。さらに、安全システム7と変換ステーション6との関連は、特に、グループ2の送電線4を通る前に、変換ステーション6から発生しグループ2内の電流の流れに寄与する直流が、当該安全システム7を通って流れることである。
好ましくは、それぞれの安全システム7は、当該安全システム7に関連する変換ステーション6の短絡電流の最大の寄与に対応する直流を遮断するように構成されている/遮断することができる。この点において、安全システム7は、選択的に、ネットワークのグループ2の送電線4と変換ステーション6との間の直流の流れを許可又は当該直流の流れ遮断することができる。前述のとおり、装置の構造は、それぞれの安全システム7が開いているとき、当該安全システム7が接続されている1つの変換ステーション6からグループ2の送電線4を通る電流の流れへの寄与を排除することを可能にする。安全システム7は、遮断器、特に前述のタイプの遮断器、であってもよく、又は、変換ステーション6の機能に統合されてもよい。安全システム7が遮断器である場合、安全システム7は、グループ2の送電線4と変換ステーション6との間に挿入され、変換ステーション6の寄与分は、当該遮断器の閉状態において、当該安全システム7を通って流れる。安全システム7を形成する遮断器が開状態であるとき、グループ2を通る電流の流れに関連する変換ステーション6の寄与は、取り除かれる。図1は、この場合を特に示しており、安全システム7は全て遮断器によって形成されている。

変換ステーション6の短絡電流の最大の寄与は、その端子に短絡電流故障が発生した時に流入させる電流に対応し、したがって、このことは、変換ステーション6がリンクされるグループ2の送電線4から独立しているが、変換ステーション6及び変換ステーション6がリンクされている交流ネットワークの特徴に依存する。この短絡電流の寄与は最大であるため、グループ2の送電線4内で発生するいかなる短絡故障に対しても、当該短絡電流の最大の寄与を超える電流が当該変換ステーション6によって供給されることは有り得ない。関連する変換ステーションの最大の寄与に対応する、安全システム7を通る電流を遮断することができる(すなわち、遮断するように構成される)ようにそれぞれの安全システム7を設計することにより、直流ネットワークの短絡故障に関係なく、グループ2の送電線4内の不良電流の除去に対する変換ステーション6の寄与が可能になる。この点において、ネットワークのグループ2の送電線4(すなわち、グループ2の送電線4の内/上)に短絡故障がある場合、この短絡故障は、この安全システム7が故障状態にない限り、グループ2内の短絡故障に関係なく開くように設計されている安全システム7によって検出され得る。本明細書では、短絡故障は、送電線における短絡を引き起こす送電線上の異常(次に、挙げる故障した送電線)に対応する。したがって、当該異常は、電気的絶縁の中断等の電気的絶縁故障、又は、例えば接地用アイソレータの誤った閉鎖等の人為的エラーである。
本明細書では、安全システム7又はライン遮断器5a、5bにおいて短絡故障が検出された場合、間違った電流(faulty current)が安全システム7又はライン遮断器5a、5bを通って流れ、1つ又は複数の近い物理量を測定することによって、この間違った電流が実際に安全システム7を通過するのか、それともライン遮断器5a、5bを通過するのかを確定することができる。
ライン遮断器5a、5b及び安全システム7のいずれもが開いていない故障の発生の定常状態期間の間、及び、故障が発生した後の数m秒の遷移期間の後、変換ステーション6がモジュラーマルチレベル変換器(MMC)であるとき短絡寄与電流
Figure 0006951427
とも呼ばれる、短絡故障の抵抗Rへの変換ステーション6の寄与は、以下によって決定することができる。
Figure 0006951427
Figure 0006951427
ここで、「・」は、単純な乗算を表し、図2を参照すると、交流側(ゾーンZ1)で電気的に発生することと、直流側(ゾーンZ2)で電気的に発生することとが分けられている。ゾーンZ1及びZ2は、それらを互いにリンクする変換ステーション6によって分けられている。Vacは交流電源の電圧であり、mは上記の式において交流側の変圧器の変換比を表し、LarmはMMC変換器の各アームのインダクタンスであり、Rは短絡故障の抵抗である。Rdcは当該変換ステーションと短絡故障との間に位置するネットワーク部分の等価抵抗に対応し、Ldcは関連する変換ステーションと短絡故障との間に位置するネットワークの部分のインダクタンスに対応し(この場合、定常状態が研究されているため考慮されない)、Lacは交流ネットワークの等価インダクタンスに対応し、Lは高調波をフィルタリングするためのインダクタンスに対応し(無視できる)、Lは二次側にもたらされる変圧器のインダクタンスに対応し、Racは交流ネットワークの等価抵抗に対応し、ωは2・π・fに等しく、fはネットワークの公称周波数であり、πはナンバーPiに対応する。したがって、一般に、保護は高速でなければならず、定常状態期間には決して到達しないため、上述したように、一般に、安全システム7を開くための設定値は、上述の遷移期間中に送られることになる。その結果、最大電流が遷移期間中に到達すること、及び、
Figure 0006951427
を知ることにより、遷移期間中に発生する最大故障電流を推定することができ、当該推定値を基準として使用することができ、当該推定値は約20kAである。
上述のように、可能性が低くても、安全システム7のうちの1つが故障する可能性があり、送電線4内(すなわち、送電線4上)で短絡故障が発生した場合にネットワークのグループ2の送電線4を通る電流の流れをできるだけ速やかに回復するために、当該故障を補償する必要がある。実際に、安全システム7が故障した場合には、当該システムは、ネットワーク3を通る、より具体的にはグループの送電線4を通る電流の流れに関連する変換ステーションの寄与を継続して許可する。
この点において、ライン遮断器5a、5bはそれぞれ、変換ステーション6の短絡電流の最大の寄与の最大値に対応する直流を遮断することができる、すなわち遮断する、遮断容量を有する。この場合、1つの安全システム7のみが当該安全システム7において短絡故障が検出されても開かないように故障している場合、ライン遮断器5a、5bは、単一の変換ステーション6が依然として短絡故障を供給している際、グループ2の送電線4に残っている電流を補償するように設計されているため、短絡故障を含む送電線4を隔離するために、当該送電線4のライン遮断器5a、5bが開くことができる。そのため、安全システム7を保護するために交流側の可能な安全素子11(図1)が開くのを待つ必要はない。
装置の管理を改善するため、特に直流送電ネットワークを通る電流の流れをより迅速に回復させるため、上述した装置1の特定のアーキテクチャは、以下に示す、ネットワーク3内の短絡故障、特に、送電線4(故障した送電線4)の2つのライン遮断器5a、5b間のグループ2の当該送電線4上の短絡故障の検出時に実施される方法のステップと関連付けられる。「装置を制御する」という用語は、この装置の制御及び監視、並びに記載されている安全システム又はライン遮断器等のこの装置の構成要素の動作に関して行われる決定である。したがって、本方法は、送電線4のうちの1つ、特に送電線4の2つのライン遮断器5a、5bの間で短絡故障、特に抵抗Rが発生した後に、次のステップを含む(図3)。
−開かれるそれぞれの安全システム7について、開かれた安全システム7に関連する変換ステーション6から発生する、グループ2の送電線4を通る電流の流れへの寄与が、当該グループ内(次に、グループ内の電流の流れへの全てまたは一部の変換ステーションの将来の回復を含む過渡的劣化モードへの移行がある)において除去されるように、少なくともN−1個の安全システム7を開くステップE1
−故障した送電線4を特定するために短絡故障を発見するステップE2
−特にステップE2において故障した送電線4を特定した後に、故障した当該送電線4のライン遮断器5a、5bを開くことによって故障した送電線(4)を絶縁するステップE3
上述のことから、本方法は、短絡故障の発生前に、N個の変換ステーション6がグループ2の送電線4を通る電流の流れに寄与する公称動作期間を含むことが理解される。この公称動作期間では、安全システム7は全て閉状態にあり、グループ2の互いにリンクされている送電線4のライン遮断器は、特に全て、閉状態にある。短絡故障の発生に続いて、方法は、劣化動作期間に切り替わり、その間にステップE1、E2、E3が実施される。
当然ながら、本方法は、故障した送電線4を切り離すステップE3の後に実施されるネットワークを復元するステップE4も含むことができる。この復元ステップE4は、開くステップE1において開かれた、それぞれの安全システム7、特に少なくともN−1の安全システム7を閉じることを含む。特に、復元ステップE4の間及びその後において、故障した送電線4のライン遮断器5a、5bは開いたままであり、これにより、故障した当該送電線4の短絡故障は、特に故障した送電線4がその後修理されるまで、グループ2の他の送電線4から電気的に分離されている。この点において、修理、すなわち故障した送電線からの短絡故障の除去に続いて、絶縁された送電線のライン遮断器を再び閉じることができ、これにより、当該送電線は再び直流の伝送に関与することができる。したがって、修復ステップE4の完了時に、本方法は新しい公称動作期間に戻り、劣化動作期間中に開かれるそれぞれの安全システム7は閉じた状態になり、劣化動作期間の終わりに閉状態のままであるライン遮断器5a、5bだけが閉状態になり、劣化動作期間の終わりに開状態のままであるライン遮断器5a、5bは開状態のままである。
特に、短絡故障の発生の結果は、当該短絡故障を検出するステップE100であり、少なくともN−1個の安全システム7を開くステップE1、故障した送電線4を発見するステップE2、及び、絶縁するステップE3を実施させる。実際には、短絡故障は送電線4のグループ2を伝播し、その結果、当該故障短絡は、グループ2の送電線4にリンクされた、それぞれのライン遮断器5a、5b及びそれぞれの安全システム7において検出可能である。上述のように、安全システム7上の短絡故障の検出は、安全システムを流れる電流を表す安全システムの近傍の1つ以上の物理量を測定することによって実現され得るものであり、短絡電流が安全システムを通って流れるかどうかを知るのは容易である。
より具体的には、本方法は、それぞれの安全システム7について、それぞれの安全システム7の短絡故障のトリガ、特に抵抗Rを検出するステップE5と、安全システム7で短絡故障が検出された後、ステップE1を実施するために、安全システム7にオープン指令信号を送信するステップE6と、を備えていてもよい。特に、本方法では、短絡故障が安全システム7上で検出されるとすぐに当該システムを開く命令が提供される。
上述のように、2つの場合の間で区別がなされ得る。第1の理想的な場合では、N個の安全システム7が開き(開くステップE1においてN個の安全システム7が開き得る)、したがって、安全システム7によって提供されるグループ2の送電線4の切断安全性とは関係なく、ライン遮断器5a、5bにおいて故障が検出された後、ライン遮断器5a、5bは、グループ2の故障した送電線4を絶縁する機能を提供でき、当該機能は別個のシステムと並列化されているため、装置の全般的な安全性及び故障した送電線4の絶縁時間が改善される。さらに、この場合、安全システム7を開く目的は送電線4のグループを流れる電流の値を、遮断器5a、5bを開くことができるレベルにまで下げることであるため、超高速ライン遮断器5a、5bを使用する必要はない。実際、この第1の場合において、短絡故障の存在は、故障した送電線のライン遮断器5a、5bを通って流れる電流をそれぞれの遮断容量よりも大きいレベルまで増加させる可能性があり、安全システム7を開くことは、当該ライン遮断器5a、5bを開くことができる値まで当該電流を下げることができる。第2の場合では、短絡故障、特に抵抗Rfの発生に続いてN−1個の安全システム7のみが開き、閉じたままである安全システム7は故障状態にあると見なされる。この第2の場合には、たとえグループ2の送電線4が1つの変換ステーション6によって依然として電流を供給されていても、それは電流の流れに対する寄与がライン遮断器の遮断容量よりも低くなるため、ライン遮断器5A、5bは開くことができ、記載されたような装置及び制御のアーキテクチャは、短絡故障を含む送電線4の完全に安全な絶縁を可能にする。
一般に、故障状態にある安全システム7は、装置の危険性を表すため、使用し続けてはならない。安全システム7は、当該安全システム7において短絡故障が検出され、特に、開くための設定値が送信されているにもかかわらず、開かない場合に故障状態にあると見なされる。この点において、関連する変換ステーション6は絶縁される必要がある。したがって、本方法は、故障状態にある安全システム7の故障を検出するステップE7と、故障状態にある当該安全システム7に関連する変換ステーション6との間の電気的接続を切断するステップE8とを備えていてもよい。切断ステップE8の後、例えば復元を開始することを目的として、故障状態にある安全システム7の検査を要求するために、監視ユニットにメッセージを送ることができる。例えば、安全システム7の故障を検出するために、安全システム7を流れる電流を監視することができ(当該安全システム7は変換ステーション6とグループ2との間に挿入されている)、開くための設定値が安全システム7に送信された後、及び、推定された開時間の経過後、当該監視された電流が短絡故障電流に対応する場合、当該システムは故障していると見なすことができる。
特に、図4に示されるように、それぞれの安全システム7は、例えば、当該安全システム7において、電流測定素子101を介して電流を監視することができるとともに電圧測定素子102を介して電圧を監視することができる電圧保護モジュール100と関連付けられ得る。電流測定素子101及び電圧測定素子102からのデータを入力として受け取るモジュール100上のリレー103によって短絡故障が検出されることを可能にするのは、この保護モジュール100である。次に、リレー103は、短絡電流を検出すると、当該リレー103に関連する安全システム7にオープン指令信号を送信するように構成される。図4は、変換ステーション6とグループ2の送電線4との間に配置された遮断器型安全システム7と関連して使用することができる保護モジュール100を示しており、保護モジュール100は、電流測定素子101及び/又は電圧測定素子102にリンクされたリレー103を備える。特に、電圧情報及び電流情報は相補的であり、故障は電流のみから、電圧のみから、又は電圧と電流から測定することができ、故障の種類に応じて、例えば、故障抵抗がゼロであれば短絡電流だけで十分であり、故障抵抗が非常に高いなら(R>>)、電圧で十分である。さらに、保護モジュール100は、安全システム7と送電線のグループ2との間に配置されたアイソレータ104を備えていてもよく、当該アイソレータ104は、故障した安全システム7に関連する変換ステーション6と送電線のグループ2との間の電気的接続を切断することができる。アイソレータ104を開くための命令は、リレー103から発生することができ、リレー103は、特に、開くための設定値の送信に続いて、電流測定素子101を介して電流を監視し、前述のステップE7及びE8を実施するように構成される。測定素子101及び102のデータ、並びに、安全システム及びアイソレータ104を開くための命令はローカルデータである。リレー103は、「コミュニケーションデータ」を使用することによって外部と通信することもでき、当該コミュニケーションデータは、例えば、安全システムに対して検出された故障状態の送信とすることができる。リレー103はまた、通信手段、例えば光ファイバを介して他の安全システムに関連する他のリレー103と通信することができる。したがって、用途に応じて、モジュールにおける測定又は計算されたデータなどから、例えば故障状態の送信を組み立て直すために、リレー103間で情報を交換することが可能である。通信手段は、光ファイバ以外の、専用の導体、又は、無線通信を実装してもよい。
前述のように、送電線4上において、短絡故障、特に抵抗Rが発生する場合、当該短絡故障はネットワークの全ての送電線内に伝播し、グループ2の送電線4にリンクされた安全システム7によって検出される。一般に、短絡故障によって、故障を含む送電線に一定量の電流が流れ、故障を含む送電線4のライン遮断器5a、5bを通って流れる電流は、当該ライン遮断器5a、5bの遮断容量を超え、当該ライン遮断器5a、5bは開くことができない。この点において、安全システム7の機能は、障害を含む送電線4を絶縁するため、安全システム7の機能は、故障を含む送電線4のライン遮断器5a、5bを通って流れる電流が当該ライン遮断器5a、5bを開くことができる閾値を下回るように、変換ステーション6の寄与を取り除くことである。ライン遮断器5a、5bに関して、それらの機能は、故障が同じ送電線4の2つのライン遮断器5a、5bの間に位置する場合にのみ開くことができないことが好ましい。
前述のすべてから、ライン遮断器5a、5bを開くことを開始する前に、さらに、ライン遮断器5a、5bが開かれる前に、ライン遮断器5a、5bの間の故障の存在のチェック、及び、ライン遮断器5a、5bを通って流れる電流が所定の閾値を下回るかどうかを決定するためのチェックが行われることがこのましいため、同一の送電線4上にあるライン遮断器5a、5bは、それらの短絡故障が検出された場合に、即時又は瞬間的に開かないように動作する。従って、短絡故障が位置していたラインのライン遮断器5a、5bのみが開状態であり、他のライン遮断器5a、5bは閉状態のままであり、当該戦略によれば、故障していない他のライン遮断器がすでに復旧の準備ができているため、ネットワークの復旧速度を上げることができる。
より具体的には、本方法(図3)は、それぞれのライン遮断器5a、5bにおける、特に抵抗Rの短絡故障を検出するステップE9を含み、発見するステップE2は、ペアのライン遮断器5a、5bで短絡故障が検出された後、同一の送電線4上にあるライン遮断器5a、5bのペアのそれぞれについて、当該ペアの当該ライン遮断器5a、5b間の短絡故障Rの存在をチェックするステップE2−1を備える。続いて、故障した送電線4を絶縁するステップE3は、チェックするステップE2−1において故障した当該送電線4上に短絡故障の存在が検出された後にのみ実施され、この場合、遮断器間に故障が存在した遮断器のみが開かれる。上述したように、ライン遮断器の短絡故障の検出は、ライン遮断器を流れる電流を表すライン遮断器の近傍の1つ以上の物理量を測定することによって実施され得る。そして、短絡電流がライン遮断器を通って流れるかどうかを知ることは容易である。換言すれば、これは、例えば、それぞれのライン遮断器5a、5b(図5)を保護素子1000と関連付けることによって実施することができ、例えば、ライン遮断器5a、5bにおいて、電流測定素子1001を介して電流を監視し、電圧測定素子1002を介して電圧を監視することができる。保護素子1000のリレー1003によって、電流測定素子1001及び電圧想定素子1002からのデータを入力として(「ローカルデータ」の使用によって)短絡故障が検出されることを可能にするのは、この保護素子1000である。さらに、同じ送電線のライン遮断器5a、5bに関連する2つの保護素子1000のリレー1003は、一緒に短絡故障の存在をチェックする目的で、それらのローカルデータを比較するために(「コミュニケーションデータ」を使用して)互いに通信することができる。例えば、同じ送電線4の2つのライン遮断器上の故障に向かって同じ方向に流れる電流の存在は、短絡故障の存在と同化することができる。言い換えれば、同じ送電線の2つのライン遮断器における当該送電線の内側に向かって流れる電流の存在は、短絡故障の存在と同化することができる。ライン遮断器5a、5bに関連する2つの保護素子から生じるデータの比較を可能にするために、送電線4は、例えば、当該送電線4のライン遮断器5a、5bと関連する2つの保護素子1000のリレー1003を連結する光ファイバなどの通信素子を含むことができる。上述の比較対象のデータは必ずしも測定データでなくてもよく、例えば、バイナリー信号が関係していてもよい。そして、リレー1003は、光ファイバなどの通信手段を介して情報を交換することができる。1つの実施の形態によれば、インダクタを送電線の各端部に追加することができ、この場合、故障を電圧測定に基づいて特定することができる。しかしながら、この解決策は、送電線がケーブルである場合、及び、故障が低い抵抗を有する場合にのみ機能する。2つの遮断器間に短絡故障が存在するかどうかを、データの比較から推測するために、同じ送電線の2つの遮断器に関するデータを比較することは、当業者に知られている概念であり、ここでは詳細には説明しない。同じ送電線4の2つのライン遮断器5a、5b間の短絡故障Rの存在のチェックが肯定的であるとき、以下にさらに詳細に見られるように、当該ライン遮断器5a、5を通って流れる電流が当該ライン遮断器5a、5のそれぞれの遮断容量より小さいとき、当該ライン遮断器5a、5を開くことを要求するため、関連するリレー1003は、当該ライン遮断器5a、5bに制御信号を送信することができる。したがって、リレー1003は、前述の発見するステップE2及び絶縁するステップE3を実施するように構成される。図5に示されるローカルデータは、素子1001及び素子1002によって測定されたデータ、並びに、関連するライン遮断器5a、5bに送られる設定値に対応する。
上述したように、ライン遮断器5a、5bは遮断容量を有する。さらに、遮断器、特にライン遮断器は、電流がまだ流れている間、及び、この電流が当該遮断器の遮断容量に対応する基準閾値を下回るときに開くことができる。この点に関して、故障した送電線4を絶縁するステップE3は、好ましくは、故障した当該送電線の2つのライン遮断器5a、5bのそれぞれにおける少なくとも1つの物理的特徴を監視するステップE3−1を備え、ライン遮断器5a、5bは、監視されている当該物理的特徴が基準閾値を下回るとすぐに、特に互いに独立して開く。もちろん、監視するステップ及び開くステップは、ライン遮断器5a、5bの間の短絡故障の存在の特定の後に、同じ送電線のライン遮断器5a、5bに対してのみ実施される。監視される当該物理的特徴は、ライン遮断器5a、5bを通る電流であってもよく、基準閾値は、当該遮断器の遮断容量に関連する電流閾値であってもよい。典型的には、機械的な遮断器5a、5bを使用する場合には、基準閾値は20kAであり、その結果、当該遮断器5a、5bを流れる電流が20kA未満に降下するとすぐに、遮断器は開くための設定値を受け取ることができる。この点に関して、特に抵抗Rの短絡故障が基準閾値を超える電流の増加を引き起こす場合、N−1個の安全システム7の開放により、短絡故障を含む送電線4の一部を形成する遮断器5a、5b上に、電流の降下を生じさせることができる。したがって、できるだけ早く、特に電流が依然として故障した送電線4のライン遮断器を通って流れているときに、故障した送電線4を絶縁することが可能である。故障が存在する送電線がグループ2の他の送電線4から電気的に絶縁されているグループ2の送電線4を通る電流の流れを回復することは、短絡故障が特定された送電線がグループ2の他の送電線から迅速に絶縁されたときよりもさらに速くなる。したがって、絶縁するステップE3は、2つのライン遮断器5a、5bのうちの少なくとも1つ、特に両方を、当該ライン遮断器5a、5bにまだ電流が流れている間に、開くことが好ましい。
前述のように、安全システム7は、変換ステーション6に一体化されてもされなくてもよい。図1に示される例では、安全システム7はすべて変換ステーション6とは異なり、特に、機械的な遮断器、好ましくは、ライン遮断器5a、5bと同一の機械的な遮断器によって形成される。一方、図6は、変換ステーションとは異なる安全システム7aと、変換ステーション6に統合された安全システム7bとを備える装置を示す。安全システム7aは、遮断器、好ましくはライン遮断器5a、5bと同一の遮断器であり、安全システム7bは、変換ステーションの機能、すなわち遮断容量を有する。既知の遮断容量を有する変換ステーション6は、フルブリッジMMC(Modular Multilevel Converter)としても知られるブリッジモジュラーマルチレベル変換器、又は、フルブリッジ変換器であってもよい。変換ステーション6が統合された遮断容量を有していないとき、当該変換ステーション6は、ハーフブリッジMMCとしても知られているハーフブリッジマルチレベルモジュラー変換器であってもよい。さらに別の代替例(図示せず)では、N個の安全システム7が対応する変換ステーションに統合されてもよい。換言すれば、それぞれの安全システム7は、変換ステーション6に統合された安全システム7と、当該安全システム7に関連付けられた変換ステーション6をグループ2の送電線4にリンクする電気リンク上に配置された独立した遮断器と、から選択されてもよい。
前述した内容から、本発明は、送電のための装置にも関し、当該装置において、それぞれの安全システム7が、当該安全システム7に関連する変換ステーション6の短絡電流の最大の寄与に対応する直流を遮断する、すなわち遮断することができ、ライン遮断器5a、5bはそれぞれ、変換ステーション6の短絡電流の最大の寄与の最大値に対応する直流を遮断する、すなわち遮断することができる遮断容量を有する。装置は、グループ2の送電線4から生じる短絡故障(特に、グループ2の2つのライン遮断器5a、5bの間の送電線4に位置する短絡故障)が検出された際に、それぞれの安全システム7にオープン指令信号を送信するように構成される。最後に、装置は、ライン遮断器5a、5bのそれぞれのペアについて、当該ペアのライン遮断器5a、5bの間に短絡故障が存在するとき、及び、当該ペアのライン遮断器5a、5bにおいて短絡故障が検出されたときに、オープン指令信号を当該ペアのライン遮断器5a、5bに送信するように構成されている。装置は前述の方法を実施するためのソフトウェア及びハードウェア要素を備えていてもよい。
図7は、上記の第1の場合及び第2の場合における装置を制御するための戦略に関連するタイミングチャート(timing diagram)を示す。時刻t0において、ネットワーク3のグループ2の送電線4で短絡故障が発生した。時刻t0と時刻t1との間に、特に、安全システム7、ライン遮断器5a、5bに関連する保護モジュール及び保護要素によって、安全システム7とライン遮断器5a、5bとに故障が検出される。時刻t1と時刻t2の間に、送電線の保護素子1000は、短絡故障を含む送電線を発見して特定する機能を提供する。同時に、時刻t1と時刻t3との間に、安全システム7(少なくともそれらのうちのN−1個)が開き、これにより、ネットワーク3のグループ2の送電線4を通る短絡電流が減少する。この場合では、時刻t3より前において、電流は高すぎて短絡故障を含む当該送電線を絶縁することができないと考えられる。時刻t3と時刻t4の間に、故障した送電線4は、グループ2の他の送電線4から絶縁され、当該絶縁処理の終わりにおいて、時刻t4と時刻t5の間に、電力はネットワーク3内で復元される。このタイミングチャートに示されるように、本方法のステップの実施は、短絡故障の伝播時間及び装置の構成要素の反応時間に依存する。この点に関して、復元するステップE4は、故障した送電線を絶縁することによって装置が安定化されたとされる基準時間に従って引き起こされ得る。典型的には、復元するステップE4は、それぞれの安全システム7について、時間的な閾値で当該安全システム7が開かれてからの経過時間を監視するステップを含み、監視した時間が当該時間的な閾値に達した場合に、閉じるための設定値が当該安全システム7に送られ、安全システム7は、関連する変換ステーション6がグループ2の送電線4を通る電流の流れに再び寄与させるために閉じる。経過時間を監視する当該ステップは、保護モジュール100のリレー103によって実施されてもよく、このリレー103は、開くための設定値を対応する安全システム7に送信するときにタイマーを始動させる。このタイマーが時間的な閾値の値に達すると、リレー103は、自動的に閉じるための設定値を関連する安全システム7に送信する。あるいは、例えば、安全システムの状態の局所的なチェックを含む、先行するシーケンスの適切な動作の効果的な検出の後に設定値送信が実行されるという意味で、より大規模な全体的な監視が実施されてもよい。
本明細書において、グループ2の送電線4は、特に、例えば、正極(positive pole)又は負極(negative pole)などの電極(electric pole)を構成してもよい。したがって、装置は、複数のグループの送電線を備えていてもよく、送電線のそれぞれのグループは電極と関連付けられ、それぞれが対応する安全システムと関連付けられるN個の対応する変換ステーションと関連付けられる集合体(assembly)を形成してもよい。当該分野では、さまざまなグループの送電線が、直流送電ネットワークと呼ばれる全体を形成する。上述した方法はそれぞれの電極について実施されてもよく、換言すれば、本明細書で前述したことは全て送電線の1つのグループに関するものであるが、より一般的には、装置の送電線の異なるグループに適用されてもよい。
保護シーケンスの特定の例について、図8を参照しながら、本方法の範囲内で提案された戦略に関して、以下、説明する。図8において、装置は、3本の送電線を含む送電線のグループを備え、それぞれの送電線は、この例では、3つの端子「N1」、「N2、「N3」を備えるデルタ状に配置されたケーブル「ライン13」、「ライン12」、「ライン23」を備える。この例では、送電線(ライン)のグループは、正極に関連付けられた送電線のグループである。それぞれの端末N1、N2、N3は、遮断器タイプの安全システムC_dc、C_dc、C_dcによって交流−直流変換ステーションMMC、MMC、MMCにリンクされている。送電線「ライン12」は、ライン遮断器L_dc12、L_dc21を備え、送電線「ライン13」は、ライン遮断器L_dc13、L_dc31を備え、送電線「ライン23」は、ライン遮断器L_dc32、L_dc23を備える。図8において、符号AC1、AC2、AC3は交流電源を表し、符号ac、ac、acは交流遮断器を示す。時刻t=0では、短絡遮断器の低インピーダンス故障(R=10mΩ)が、遮断器L_dc12とL_dc21との間の送電線「ライン12」に加えられる。短絡故障に関連する故障電流は、送電線に沿ってネットワーク内を伝播し、変換ステーションMMC、MMC、MMCの直流側に到達する。遮断器に関連する保護モジュール(図示せず)によって故障が検出された場合、符号C_dc、C_dc、C_dcによって示される遮断器が、適切な設定値を受信して開く。図9は、時間の関数として、それぞれの安全システムC_dc、C_dc、C_dcを流れる電流の値を公称電流で割った値に対応する、pu(per unit)で示す電流の変化を正確に示しており、15m秒後には、変換ステーションMMC、MMC、MMCは、送電線のグループ2を通る電流の流れにもはや寄与することができていない。したがって、安全システムC_dc、C_dc、C_dcは開いており、これは上述の第1の場合に対応する。同時に、ライン遮断器L_dc12、L_dc21、L_dc13、L_dc31、L_dc32、L_dc23に関連付けられた保護素子(図示せず)は故障を検出し、故障のある送電線を見つけるためのプロセスを開始する。当該プロセスが開始されると、送電線を流れる電流は、故障した送電線に隣接する送電線の放電に関連する寄与及び変換ステーションの寄与の増加のために、ライン遮断器の遮断容量を超える可能性がある。故障した送電線が発見されたとき、すなわち、同じ送電線のライン遮断器を保護するための素子(この場合、L_dc12及びL_dc21)がライン遮断器間の故障の存在を知っているとき、これらの送電線を通る電流は監視され、ライン遮断器を通る電流がそれらの図10に示す遮断容量(この場合は2puに関連する遮断容量)に関連する電流値を下回るとすぐに、当該ライン遮断器を開くための設定値が送られ、2つのライン遮断器L_dc12、L_dc21を流れる電流(pu単位)が時間の関数として提供される。時刻tから15m秒後すぐに当該ライン遮断器を開くための設定値が送信され、時刻tから30m秒後すぐに故障が分離される(図10に示す「実効的なオープン」)。したがって、この詳細な場合では、30m秒後に安全システムC_dc、C_dc、C_dcを閉じることで、送電線のグループから絶縁された送電線を除いた電流の流れを回復することができる。この例では、安全システムに故障は発生していない。
第2の場合に対応する実施形態の変形例では、安全システムC_dcは、故障しているとし、当該安全システムC_dcにおける短絡故障が検出されても開かないとする。したがって、安全システムC_dc及びC_dcは、安全システムC_dcのみが電源AC1からの電流を送電線のグループに供給し続けるように、通常通りに開く。図11は、時間の関数として、様々な安全システムC_dc、C_dc及びC_dcにおける電流(puで示す)の変化を正確に示している。時刻約30m秒において、短絡故障を含む送電線を絶縁することにより、交流電源AC1(図8)から発生する故障電流をキャンセルすることができる。図12は、当該変動において、ライン遮断器L_dc12及びL_dc21を通る電流(puで示す)の変化を示し、時刻10m秒から時刻20m秒の間に、開くための設定値がライン遮断器L_dc12及びL_dc21に送られ、ライン遮断器L_dc12及びL_dc21が実効的に開くのは時刻30m秒であり(図12)、時刻30m秒においてライン遮断器L_dc12及びL_dc21が実効的に開くことによって、時刻30m秒から時刻40m秒の間に、変換ステーションMMCを流れる電流は低下する(図11)。この変形例では、全ての安全システムが動作して開く場合と比べて、追加の時間は10m秒程度であり、これは所望の用途において許容できるものである。
図7と組み合わされる特定の例及びその変形例によれば、本方法のステップを実施するために予想される期間は一般に以下の通りである。
− 時刻tから時刻tまでの期間は、すべての安全システムとすべてのライン遮断器で故障が検出される所要時間であり、0.2m秒から2m秒である。
− 時刻tから時刻tまでの期間は、故障が発生した送電線を特定する所要時間であり、1m秒から10m秒である。
− 時刻tから時刻tまでの期間は、故障した送電線のライン遮断器の電流が閾値を下回って開くまでの所要時間であり、15m秒から20m秒である。
− 時刻tから時刻tまでの期間は、故障のある送電線の絶縁が有効になるまでの所要時間であり、15m秒から20m秒である。
− 時刻tから時刻tまでの期間は、ネットワークの電力を復元するための所要時間であり、75m秒から125m秒である。
全体として、故障の発生からネットワークの復元まで、105.2m秒から167m秒かかるが、これらの時間はネットワークの復旧に適していると考えられる。
好ましくは、安全システム7及びライン遮断器5a、5bはすべて同じ遮断容量を有し、特に、安全システム7及びライン遮断器5a、5bはすべて20kAに等しい遮断容量を有する機械的遮断器としてもよい。
安全システム7及び/又はライン遮断器5a、5bが開状態から閉状態に切り替わらなければならないとき、これは、挿入前抵抗(PIR;Pre−Insertion Resistances)としても知られる挿入抵抗を使用することによって実施されてもよい。
本発明は、前述のように多くの利点を含み、特に、以下の利点を有する。
−電流が流れている間にライン遮断器が開くことができるため、送電線のグループを通る電流がゼロになるのを待つ必要がなく、故障した送電線を絶縁するためのシーケンスを迅速化することができる。
−安全システムの1つが故障した場合でも、ライン遮断器は、交流側の遮断器が開く(これは、電力が復元するまでの時間を許容できないレベルにまで増加させる)のを待たずに、故障した送電線を送電線のグループから絶縁することができるため、装置のロバスト性は維持される。
−遮断器及び安全システムに機械式遮断器を用いることにより、短絡故障に対する装置のロバスト性を維持しながら、安価な技術を使用することができるという利点を有する。
−提案された戦略は、ライン遮断器を、ライン遮断器と直列にリンクされたインダクタ、又は、例えば、超伝導限流器(superconducting limiter)等の他の種類の限流器のような限流装置に接続することを回避することを可能にする。
−ライン遮断器を用いることにより、必要に応じて装置に機能を追加することができる。例えば、装置の通常の動作条件において送電線を絶縁するために、ライン遮断器をネットワークマネージャの要求に応じてスイッチとして用いることができる。すなわち、送電線のグループに短絡故障が存在しない場合であっても、通常の動作中にネットワークを再構成することが可能になる。
−さらに、高い故障抵抗Rを有する故障の場合であって、変換器の故障電流への寄与が、安全システム7による故障検出限界を下回り、送電線の短絡電流はライン遮断器の遮断容量を下回る場合であっても、ライン遮断器を開くように指令することができる。

Claims (10)

  1. 互いにリンクされた送電線(4)のグループ(2)を備える直流送電ネットワーク(3)を備える送電のための装置(1)の制御方法であって、それぞれの前記送電線(4)は、前記送電線(4)の両端に配置されたペアのライン遮断器(5a、5b)を備え、前記装置は、交流を直流に変換するためのN個の変換ステーション(6)を備え、それぞれの安全システム(7)は、前記変換ステーション(6)の直流側にリンクされ、前記送電線(4)と前記変換ステーション(6)との間に配置されており、それぞれの前記変換ステーション(6)は、前記送電線(4)の前記グループ(2)にリンクされており、前記変換ステーション(6)によって供給され、前記安全システム(7)を通って前記変換ステーション(6)から前記グループ(2)の前記送電線(4)へ流れる、最大の短絡電流に対応する直流と関連しており、
    それぞれの前記安全システム(7)は、当該安全システム(7)にリンクしている前記変換ステーション(6)からの前記最大の短絡電流に対応する直流を遮断することができ、前記ライン遮断器(5a、5b)はそれぞれ、前記変換ステーション(6)の前記最大の短絡電流に対応する直流を遮断することができる遮断容量を有することを特徴とし、
    前記方法は、前記送電線(4)のうちの1つに短絡故障が発生した後において、以下のステップを備えることを特徴とする方法。
    ・開かれるそれぞれの前記安全システム(7)について、開かれた前記安全システム(7)にリンクされた前記変換ステーション(6)から発生する、前記グループ(2)の前記送電線(4)を通る前記最大の短絡電流に対応する電流が、除去されるように、全ての前記安全システム(7)にオープン指令信号を送信するとともに、閉じたままの前記安全システム(7)は故障状態にあるとみなすステップ(E1)
    ・故障した前記送電線を特定するために前記短絡故障を発見するステップ(E2)
    ・前記発見するステップ(E2)において故障した前記送電線(4)を特定した後に、故障した前記送電線(4)の前記ライン遮断器(5a、5b)を開くことによって故障した前記送電線(4)を絶縁するステップ(E3)
  2. それぞれの前記安全システム(7)について、それぞれの前記安全システム(7)の前記短絡故障のトリガを検出するステップ(E5)と、
    前記安全システム(7)で前記短絡故障が検出された後、前記安全システム(7)にオープン指令信号を送信するステップ(E6)と、を備えることを特徴とする請求項1に記載の方法。
  3. それぞれの前記ライン遮断器(5a、5b)における前記短絡故障を検出するステップ(E9)を備え、
    前記発見するステップ(E2)は、前記ペアの前記ライン遮断器(5a、5b)における前記短絡故障が検出された後、同一の前記送電線(4)上にある前記ライン遮断器(5a、5b)の前記ペアのそれぞれについて、
    ・前記ペアの前記ライン遮断器(5a、5b)間の前記短絡故障の有無をチェックするステップ(E2−1)
    を備え、
    前記チェックするステップ(E2−1)において、故障した前記送電線(4)における前記短絡故障の存在が検出された後にのみ、故障した前記送電線(4)を絶縁するステップ(E3)が実施される、ことを特徴とする請求項1又は2に記載の方法。
  4. 故障した前記送電線を絶縁する前記ステップ(E3)は、故障した前記送電線(4)の2つの前記ライン遮断器(5a、5b)のそれぞれの少なくとも1つの物理的特徴を監視するステップ(E3−1)を備え、2つの前記ライン遮断器(5a、5b)のそれぞれは、その近傍で監視された前記物理的特徴が基準閾値を下回るとすぐに、特に互いに独立して開く、ことを特徴とする請求項1乃至3のいずれか一項に記載の方法。
  5. 故障状態の前記安全システム(7)の故障を検出するステップ(E7)と、
    次いで、故障状態にある前記安全システム(7)にリンクされた前記変換ステーション(6)と前記送電線(4)の前記グループ(2)との間の電気的接続を切断するステップ(E8)と、
    を備えることを特徴とする請求項1乃至4のいずれか一項に記載の方法。
  6. 前記絶縁するステップ(E3)において、2つの前記ライン遮断器(5a、5b)のうちの少なくとも1つを開くことが、前記電流が2つの前記ライン遮断器(5a、5b)をまだ流れている間に実施される、請求項1乃至5のいずれか一項に記載の方法。
  7. それぞれの前記安全システム(7)は、前記変換ステーション(6)に統合された前記安全システム(7)と、前記安全システム(7)にリンクされた前記変換ステーション(6)を前記グループ(2)の前記送電線(4)にリンクする電気リンク上に配置された独立した遮断器と、から選択される、ことを特徴とする請求項1乃至6のいずれか一項に記載の方法。
  8. 故障した前記送電線(4)を絶縁するステップ(E3)の後に実施されるネットワークを復元するステップ(E4)を備え、前記復元するステップ(E4)は、前記開くステップ(E1)の間に開かれたそれぞれの前記安全システム(7)を閉じることを備え、特に、前記復元するステップ(E4)の間及びその後において、故障した前記送電線(4)の前記ライン遮断器(5a、5b)は開かれたままであり、故障した前記送電線(4)の前記短絡故障が他の前記グループ(2)の前記送電線(4)から電気的に分離されることを特徴とする請求項1乃至7のいずれか一項に記載の方法。
  9. ・送電線(4)の両端に配置されたペアのライン遮断器(5a、5b)を備えた前記送電線(4)であって互いにリンクされた前記送電線(4)のグループ(2)を備える直流送電ネットワーク(3)と;
    ・交流を直流に変換するためのN個の変換ステーション(6)であって、それぞれの安全システム(7)が、前記変換ステーション(6)の直流側にリンクされ、前記送電線(4)と前記変換ステーション(6)との間に配置されており、それぞれの前記変換ステーション(6)が前記送電線(4)の前記グループ(2)にリンクされており、前記変換ステーション(6)によって供給され、前記安全システム(7)を通って前記変換ステーション(6)から前記グループ(2)の前記送電線(4)へ流れる、最大の短絡電流に対応する直流と関連している前記変換ステーション(6)と、
    を備える送電のための装置であって、
    ・それぞれの前記安全システム(7)は、当該安全システム(7)にリンクしている前記変換ステーション(6)からの前記最大の短絡電流に対応する直流を遮断することができ;
    ・前記ライン遮断器(5a、5b)はそれぞれ、前記変換ステーション(6)の前記最大の短絡電流に対応する直流を遮断することができる遮断容量を有し;
    ・前記装置は、前記送電線(4)の前記グループ(2)から発生する短絡故障が前記安全システム(7)において検出されたときに、全ての前記安全システム(7)にオープン指令信号を送信するとともに、閉じたままの前記安全システム(7)は故障状態にあるとみなすように構成され;
    ・前記装置は、前記ライン遮断器(5a、5b)のそれぞれの前記ペアについて、前記ペアの前記ライン遮断器(5a、5b)の間に前記短絡故障が存在するとき、及び、前記ペアの前記ライン遮断器(5a、5b)において前記短絡故障が検出されたときに、オープン指令信号を前記ペアの前記ライン遮断器(5a、5b)に送信するように構成されている、
    ことを特徴とする送電のための装置。
  10. 請求項1乃至8のいずれか一項に記載の方法を実施するためのソフトウェア及びハードウェア要素を備えることを特徴とする請求項9に記載の装置。
JP2019511948A 2016-09-02 2017-08-30 短絡回路故障からネットワークを保護しながら、当該ネットワーク内でdc電流を送信することができる装置を制御する方法 Active JP6951427B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1658165 2016-09-02
FR1658165A FR3055751B1 (fr) 2016-09-02 2016-09-02 Procede de pilotage d’une installation permettant le transport de courant continu dans un reseau tout en protegeant ledit reseau vis a vis d’un defaut de court-circuit
PCT/FR2017/052306 WO2018042126A1 (fr) 2016-09-02 2017-08-30 Procédé de pilotage d'une installation permettant le transport de courant continu dans un réseau tout en protégeant ledit réseau vis à vis d'un défaut de court-circuit

Publications (2)

Publication Number Publication Date
JP2019527017A JP2019527017A (ja) 2019-09-19
JP6951427B2 true JP6951427B2 (ja) 2021-10-20

Family

ID=58009876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019511948A Active JP6951427B2 (ja) 2016-09-02 2017-08-30 短絡回路故障からネットワークを保護しながら、当該ネットワーク内でdc電流を送信することができる装置を制御する方法

Country Status (9)

Country Link
US (1) US11005261B2 (ja)
EP (1) EP3507877B1 (ja)
JP (1) JP6951427B2 (ja)
KR (1) KR102230508B1 (ja)
CN (1) CN110024245B (ja)
DK (1) DK3507877T3 (ja)
FR (1) FR3055751B1 (ja)
HR (1) HRP20220547T1 (ja)
WO (1) WO2018042126A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108923401B (zh) * 2018-08-27 2019-11-29 广东电网有限责任公司 一种超导限流器故障电阻和限流电流的计算方法及装置
EP3683911B1 (en) * 2019-01-15 2022-09-21 Mitsubishi Electric R & D Centre Europe B.V. Fault protection method for an hvdc grid
US11132890B2 (en) 2019-05-15 2021-09-28 Johnson Controls Fire Protection LP Fault isolation locality
US11108223B2 (en) * 2019-05-15 2021-08-31 Johnson Controls Fire Protection LP Abnormal impedance fault isolation
CN110707658A (zh) * 2019-10-18 2020-01-17 中国电力科学研究院有限公司 防止直流连续换相失败的交流线路重合闸方法及系统
US11176806B1 (en) 2019-12-06 2021-11-16 Johnson Controls Fire Protection LP Erratic short-circuit detection
EP3859984B1 (en) * 2020-01-30 2023-05-17 Nokia Solutions and Networks Oy Melt with reverse power feed
CN113270871B (zh) * 2020-02-17 2023-01-20 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 基于配电网n-1安全评估的柔性互联装置容量配置优化方法
FR3111747A1 (fr) * 2020-06-22 2021-12-24 Centralesupelec Procédé d’isolation d’un conducteur d’une ligne de transmission de puissance haute tension continue
CN112072619A (zh) * 2020-08-21 2020-12-11 天津大学 双极直流电网站内单相接地故障的自适应重合闸方法
CN113708355B (zh) * 2021-08-16 2024-02-06 深圳供电局有限公司 抑制直流滤波电容冲击的电路及装置
CN115642936B (zh) * 2022-10-14 2024-06-18 杭州芯象半导体科技有限公司 通信装置、通信方法和通信系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833825B1 (ja) * 1969-05-22 1973-10-17
CH583467A5 (ja) * 1974-11-22 1976-12-31 Sprecher & Schuh Ag
JPS58130727A (ja) * 1982-01-26 1983-08-04 東京電力株式会社 直流多端子送電系統の制御方式
JPS5937840A (ja) * 1982-08-26 1984-03-01 関西電力株式会社 直流送電線の送電方式
JPH06243768A (ja) * 1993-02-19 1994-09-02 Sanyo Electric Co Ltd リレーの故障検出装置
JP3157691B2 (ja) * 1994-11-25 2001-04-16 東海旅客鉄道株式会社 き電設備の保護装置
JP2006014456A (ja) * 2004-06-24 2006-01-12 Hitachi Ltd 直流多端子配電システム
WO2012000545A1 (en) * 2010-06-30 2012-01-05 Abb Technology Ag An hvdc transmission system, an hvdc station and a method of operating an hvdc station
US9197068B2 (en) * 2010-09-30 2015-11-24 Abb Research Ltd. Coordinated control of multi-terminal HVDC systems
CN103403991B (zh) 2011-03-11 2017-02-01 Abb 技术有限公司 Dc电网和限制dc电网中故障的影响的方法
ES2552857T3 (es) * 2012-02-29 2015-12-02 Abb Technology Ltd Un sistema de alimentación de corriente continua con capacidades de protección del sistema
GB2501057B (en) * 2012-03-05 2014-09-17 Alstom Technology Ltd Method of fault clearance
JP2014112984A (ja) * 2012-12-05 2014-06-19 Hitachi Ltd 直流送電制御システム。
CN104767188A (zh) * 2015-04-17 2015-07-08 华北电力大学(保定) 直流双极短路故障下风电直流微网的电流差动保护方法
CN104993472A (zh) * 2015-08-07 2015-10-21 国网浙江省电力公司电力科学研究院 Mmc-hvdc系统及其直流侧隔离装置和隔离方法
CN105896488B (zh) * 2016-04-29 2018-08-24 浙江大学 一种基于组合式高压直流断路器的柔性直流电网的短路故障处理方法

Also Published As

Publication number Publication date
US11005261B2 (en) 2021-05-11
FR3055751A1 (fr) 2018-03-09
EP3507877A1 (fr) 2019-07-10
FR3055751B1 (fr) 2018-09-21
WO2018042126A1 (fr) 2018-03-08
KR20190071682A (ko) 2019-06-24
EP3507877B1 (fr) 2022-02-09
HRP20220547T1 (hr) 2022-12-09
JP2019527017A (ja) 2019-09-19
KR102230508B1 (ko) 2021-03-19
CN110024245B (zh) 2021-06-04
DK3507877T3 (da) 2022-04-11
CN110024245A (zh) 2019-07-16
US20190199089A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6951427B2 (ja) 短絡回路故障からネットワークを保護しながら、当該ネットワーク内でdc電流を送信することができる装置を制御する方法
US10693293B2 (en) Fault protection in converter-based DC distribution systems
US8305782B2 (en) Redundant current valve control in a high voltage power transmission system
CN102067421B (zh) 用于高压电力系统的电力设备
CN107534296B (zh) 双极dc电力传输结构
US10310003B2 (en) Fault location in DC networks
CN107124911B (zh) 一种清除hvdc电力网络中的故障的方法
JP2019537701A (ja) 高信頼性の配電ネットワーク故障の検出方法、装置及び記憶媒体
US20190305669A1 (en) Voltage source converter
KR20140135795A (ko) 고장 제거 방법
US10951034B2 (en) Protection for an HVDC network
CN105680424B (zh) 柔性直流输电系统的架空线路暂时性故障的保护方法
Loume et al. A multi-vendor protection strategy for HVDC grids based on low-speed DC circuit breakers
CN105633917A (zh) 一种基于统一潮流控制器的故障处理方法及系统
CN109361197A (zh) 一种过流保护装置及方法
Monadi et al. A communication-assisted protection for MVDC distribution systems with distributed generation
JP2020068621A (ja) 交直変換所の保護制御装置、直流送電システムの保護制御システム、並びに交直変換所の保護制御方法
CN113726000B (zh) 供电设备及其供电方法
CN111668814B (zh) 母线故障切除方法、装置、计算机设备和存储介质
CN113285477B (zh) 一种抑制直流输电系统换相失败方法及装置
CN216082973U (zh) 一种电流接地选线电路
OA19338A (en) Method for controlling an installation allowing Dc current to be transmitted in a network while protecting said network from a short circuit fault.
CN116780477A (zh) 变流器直流短路保护系统、方法、计算机设备和计算机可读存储介质
CN115065030A (zh) 一种电力系统及电力系统异频量保护方法
CN111725790A (zh) 一种多端直流输电系统的100Hz保护控制方法和装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200811

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210924

R150 Certificate of patent or registration of utility model

Ref document number: 6951427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250