JP6951175B2 - Sliding member for compressor - Google Patents

Sliding member for compressor Download PDF

Info

Publication number
JP6951175B2
JP6951175B2 JP2017184051A JP2017184051A JP6951175B2 JP 6951175 B2 JP6951175 B2 JP 6951175B2 JP 2017184051 A JP2017184051 A JP 2017184051A JP 2017184051 A JP2017184051 A JP 2017184051A JP 6951175 B2 JP6951175 B2 JP 6951175B2
Authority
JP
Japan
Prior art keywords
layer
electroless nickel
sliding member
mass
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017184051A
Other languages
Japanese (ja)
Other versions
JP2019060259A (en
Inventor
弘之 鈴木
弘之 鈴木
冨島 一樹
一樹 冨島
貴晃 土屋
貴晃 土屋
長谷川 隆夫
隆夫 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Japan Co Ltd
Original Assignee
Valeo Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Japan Co Ltd filed Critical Valeo Japan Co Ltd
Priority to JP2017184051A priority Critical patent/JP6951175B2/en
Priority to EP18196195.4A priority patent/EP3460096A1/en
Publication of JP2019060259A publication Critical patent/JP2019060259A/en
Application granted granted Critical
Publication of JP6951175B2 publication Critical patent/JP6951175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本開示は、自動車用空調のベーン型圧縮機等の圧縮機の摺動部材に関し、ベーン等の摺動部材のコストダウンを目的として、該摺動部材にニッケル低リンメッキを施したものである。 The present disclosure relates to a sliding member of a compressor such as a vane type compressor for an automobile air conditioner, in which the sliding member is nickel-low phosphorus plated for the purpose of reducing the cost of the sliding member such as a vane.

ベーン型圧縮機は、例えば、カムリングと、このカムリング内に回転可能に収容され、駆動軸に固定されたロータと、このロータに設けられた複数のベーン溝に挿入されるベーンと、カムリングの一方の端面に固定されるフロントサイド部材と他方の端面に固定されるリアサイド部材とを有して構成される。駆動軸は、軸受を介してフロントサイド部材及びリアサイド部材に回転可能に支持されており、例えば、フロントサイド部材には、作動流体(冷媒ガス)の吸入口とこの吸入口が連通する吸入室(低圧室)が形成され、リアサイド部材には、作動流体の吐出口とこの吐出口が連通する吐出室(高圧室)が形成されている(特許文献1の図1〜図8を参照。)。 The vane type compressor is, for example, one of a cam ring, a rotor rotatably housed in the cam ring and fixed to a drive shaft, a vane inserted into a plurality of vane grooves provided in the rotor, and a cam ring. It is configured to have a front side member fixed to the end face of the vehicle and a rear side member fixed to the other end surface. The drive shaft is rotatably supported by the front side member and the rear side member via a bearing. For example, the front side member has a suction chamber (for example, a suction chamber in which a suction port for working fluid (refrigerant gas) and the suction port communicate with each other. A low-pressure chamber) is formed, and a discharge chamber (high-pressure chamber) in which a working fluid discharge port and the discharge port communicate with each other is formed in the rear side member (see FIGS. 1 to 8 of Patent Document 1).

ベーン型圧縮機のアルミベーンは、アルミ材同士の摺動を避けるため、また耐摩耗のための硬度及び衝撃に対する靭性が求められるため、ニッケルリン系の硬質メッキが施されるのが一般的である(例えば、特許文献2〜4を参照。)。 Aluminum vanes of vane type compressors are generally nickel-phosphorus hard-plated because they are required to have hardness for wear resistance and toughness against impact in order to avoid sliding between aluminum materials. (See, for example, Patent Documents 2-4.).

国際公開WO2008/026496号公報International Publication WO2008 / 026496 特開平8-158058号公報Japanese Unexamined Patent Publication No. 8-158058 特開2003‐161259号公報Japanese Unexamined Patent Publication No. 2003-161259 特開2003‐184743号公報Japanese Unexamined Patent Publication No. 2003-184743

Ni‐P系メッキは、熱処理を施すと硬度が上昇するが、その反面、メッキの靭性が低下する問題があった。そこで、硬度と靭性の両方を満足させるために、例えば特許文献2又は特許文献3の技術のようにホウ素を配合したNi−P−B系メッキ、または、例えば特許文献4の技術のようにコバルトを配合したNi−Co‐P系メッキが使用されている。しかし、これらのメッキは高価なものとなっている。 The hardness of Ni-P-based plating increases when it is heat-treated, but on the other hand, there is a problem that the toughness of the plating decreases. Therefore, in order to satisfy both hardness and toughness, for example, Ni-P-B-based plating containing boron as in the technique of Patent Document 2 or Patent Document 3, or cobalt as in the technique of Patent Document 4, for example. Ni-Co-P plating containing the above is used. However, these platings are expensive.

また、メッキした後のベーン表面にNi粒が付着し、これを削除するための後工程が発生し、更にコストが掛かるケースがある。 In addition, there are cases where Ni particles adhere to the surface of the vane after plating, and a post-process for removing the Ni particles is required, which further increases the cost.

そこで本開示の目的は、摺動部分にメッキ皮膜を施した圧縮機用摺動部材において、メッキ皮膜の硬度と靭性の両方が良好であり、Ni粒の付着が抑制され、かつ、メッキ皮膜が安価な圧縮機用摺動部材を提供することである。 Therefore, an object of the present disclosure is that, in a sliding member for a compressor in which a plating film is applied to a sliding portion, both the hardness and toughness of the plating film are good, the adhesion of Ni particles is suppressed, and the plating film is formed. It is to provide an inexpensive sliding member for a compressor.

本発明者らは、無電解ニッケル低リンメッキ層において、非熱処理層とし、かつ、Niの結晶子を含ませ、その結晶子径を8〜11nmとすることにとって、メッキ皮膜の硬度と靭性の両方が良好になることを見出し、本発明の課題を解決した。すなわち、本発明に係る圧縮機用摺動部材は、アルミニウム合金からなる母材の表面に、リンを含む無電解ニッケルメッキ層が形成された圧縮機用の摺動部材において、前記無電解ニッケルメッキ層のリン(P)の含有率が1.08質量%以上1.89質量%以下であり、ホウ素(B)の含有率が0質量%以上0.01質量%以下であり、かつ、コバルト(Co)の含有率が0質量%以上0.01質量%以下であり、前記無電解ニッケルメッキ層は非熱処理層であり、前記無電解ニッケルメッキ層はNiの結晶子を含んでおり、X線回折法によって測定した前記結晶子の結晶子径が8〜11nmであり、前記無電解ニッケルメッキ層のビッカース硬度が、652Hv以上750Hv以下であり、前記無電解ニッケルメッキ層スクラッチ強度が、98N以上であることを特徴とする。 The present inventors consider that the electroless nickel low-phosphorus plating layer is a non-heat-treated layer and contains Ni crystallites, and the crystallite diameter thereof is 8 to 11 nm, so that both the hardness and toughness of the plating film are both. It was found that the above was improved, and the problem of the present invention was solved. That is, the sliding member for a compressor according to the present invention is the sliding member for a compressor in which an electroless nickel plating layer containing phosphorus is formed on the surface of a base material made of an aluminum alloy, and the electroless nickel plating is performed. The phosphorus (P) content of the layer is 1.08 % by mass or more and 1.89 % by mass or less, the boron (B) content is 0% by mass or more and 0.01% by mass or less, and cobalt ( The content of Co) is 0% by mass or more and 0.01% by mass or less, the electroless nickel plating layer is a non-heat-treated layer, the electroless nickel plating layer contains Ni crystals, and X-rays are emitted. crystallite size of the crystallites measured by diffractometry Ri 8~11nm der, the Vickers hardness of the electroless nickel plating layer is not more than than 652Hv 750 Hv, the electroless nickel plating layer scratch strength, than 98N It is characterized by being.

本発明に係る圧縮機用摺動部材では、前記無電解ニッケルメッキ層が、ホウ素(B)及びコバルト(Co)を含有していないことが好ましい。本構成によれば使用するメッキ液を安価とすることができる。 In the sliding member for a compressor according to the present invention, it is preferable that the electroless nickel plating layer does not contain boron (B) and cobalt (Co). According to this configuration, the plating solution used can be inexpensive.

本発明に係る圧縮機用摺動部材では、前記無電解ニッケルメッキ層は、バレルメッキ層であることが好ましい。本構成によれば、Ni粒の堆積が防止され、部材の平滑性が向上する。 In the sliding member for a compressor according to the present invention, the electroless nickel plating layer is preferably a barrel plating layer. According to this configuration, the accumulation of Ni particles is prevented and the smoothness of the member is improved.

本発明に係る圧縮機用摺動部材では、前記母材と前記無電解ニッケルメッキ層との間に下地層を有し、該下地層は、リン(P)を6.0〜11.0質量%含有する無電解ニッケルメッキ層であり、かつ、非熱処理層であることが好ましい。本構成によれば、下地層が中リンタイプのメッキ層であるため、母材との密着性が良好であり、平滑性が向上する。 The sliding member for a compressor according to the present invention has a base layer between the base material and the electroless nickel plating layer, and the base layer contains phosphorus (P) in an amount of 6.0 to 11.0 mass. It is preferably an electroless nickel-plated layer containing%, and a non-heat-treated layer. According to this configuration, since the base layer is a medium phosphorus type plating layer, the adhesion to the base material is good and the smoothness is improved.

本発明に係る圧縮機用摺動部材では、前記下地層が、ホウ素(B)及びコバルト(Co)を含有していないことが好ましい。本構成によれば使用するメッキ液を安価とすることができる。 In the sliding member for a compressor according to the present invention, it is preferable that the base layer does not contain boron (B) and cobalt (Co). According to this configuration, the plating solution used can be inexpensive.

本発明に係る圧縮機用摺動部材では、前記母材の表面に形成された前記無電解ニッケルメッキ層の膜厚、又は、前記母材の表面に形成された前記下地層及び前記無電解ニッケルメッキ層の合計の膜厚が、15〜30μmであることが好ましい。本構成によれば使用するベーンに最適なメッキ皮膜の膜厚となる。 In the sliding member for a compressor according to the present invention, the film thickness of the electroless nickel plating layer formed on the surface of the base material, or the base layer and the electroless nickel formed on the surface of the base material. The total film thickness of the plating layers is preferably 15 to 30 μm. According to this configuration, the film thickness of the plating film is optimum for the vane to be used.

本発明に係る圧縮機用摺動部材では、前記無電解ニッケルメッキ層は、セラミック微粒子が層中に分散していない非分散型メッキ膜であることが好ましい。メッキ皮膜の硬度及びスクラッチ強度を高めることができる。 In the sliding member for a compressor according to the present invention, the electroless nickel plating layer is preferably a non-dispersion type plating film in which ceramic fine particles are not dispersed in the layer. The hardness and scratch strength of the plating film can be increased.

本開示によれば、摺動部分にメッキ皮膜を施した圧縮機用摺動部材において、メッキ皮膜の硬度と靭性の両方が満たされ、Ni粒の付着が抑制され、かつ、メッキ皮膜が安価な圧縮機用摺動部材を提供することができる。 According to the present disclosure, in a sliding member for a compressor in which a plating film is applied to a sliding portion, both the hardness and toughness of the plating film are satisfied, adhesion of Ni particles is suppressed, and the plating film is inexpensive. A sliding member for a compressor can be provided.

実施例における無電解ニッケルメッキ層のリン含有量とニッケルの結晶子径との関係を示す。The relationship between the phosphorus content of the electroless nickel-plated layer and the nickel crystallite diameter in the examples is shown. 実施例における無電解ニッケルメッキ層のニッケルの結晶子径と硬さのとの関係を示す。The relationship between the nickel crystallite diameter and the hardness of the electroless nickel-plated layer in the examples is shown. 実施例における無電解ニッケルメッキ層のニッケルの結晶子径とスクラッチ強度との関係を示す。The relationship between the nickel crystallite diameter and the scratch strength of the electroless nickel plating layer in the examples is shown. 本実施形態に係る摺動部材を構成するベーンを備えるベーン型圧縮機の構成例を示す断面図である。It is sectional drawing which shows the structural example of the vane type compressor provided with the vane which comprises the sliding member which concerns on this embodiment. 図4のA−A線で切断した断面図である。It is sectional drawing cut along the line AA of FIG.

以下、添付の図面を参照して本発明の一態様を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。本発明の効果を奏する限り、種々の形態変更をしてもよい。 Hereinafter, one aspect of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In addition, the components having the same reference numerals in the present specification and the drawings shall indicate the same components. Various morphological changes may be made as long as the effects of the present invention are exhibited.

まず、圧縮機用摺動部材について説明する。圧縮機としては、ベーン型圧縮機、斜板式圧縮機などがある。図4及び図5に、一例としてベーン型圧縮機の構成を示す。このベーン型圧縮機は、カムリング1と、このカムリング内に回転可能に収容され、駆動軸2に固定されたロータ3と、このロータ3に設けられた複数のベーン溝4に挿入されるベーン5と、カムリング1のリア側端面に固定されるリアサイド部材6と、カムリング1のフロント側端面及び外周面を包囲し、前記リアサイド部材6に嵌合するシェル部材7とを有して構成されている。駆動軸2は、シェル部材7及びリアサイド部材6に軸受を介して回転可能に支持されている。シェル部材7には、作動流体(冷媒ガス)の吸入口8とこの吸入口8に連通する吸入室(低圧室)9が形成され、リアサイド部材6には、作動流体の吐出口10とこの吐出口10に連通する吐出室(高圧室)11が形成されている。カムリング1の内周面とロータ3の外周面との間には圧縮空間12が画成され、この圧縮空間12はベーン5によって仕切られて複数の圧縮室13が形成され、各圧縮室の容積はロータ3の回転によって変化するようになっている。 First, a sliding member for a compressor will be described. Examples of the compressor include a vane type compressor and a swash plate type compressor. 4 and 5 show the configuration of a vane type compressor as an example. This vane type compressor includes a cam ring 1, a rotor 3 rotatably housed in the cam ring and fixed to a drive shaft 2, and a vane 5 inserted into a plurality of vane grooves 4 provided in the rotor 3. A rear side member 6 fixed to the rear end surface of the cam ring 1 and a shell member 7 surrounding the front end surface and the outer peripheral surface of the cam ring 1 and fitting to the rear side member 6 are provided. .. The drive shaft 2 is rotatably supported by the shell member 7 and the rear side member 6 via bearings. The shell member 7 is formed with a suction port 8 for working fluid (refrigerant gas) and a suction chamber (low pressure chamber) 9 communicating with the suction port 8, and the rear side member 6 has a discharge port 10 for working fluid and its discharge. A discharge chamber (high pressure chamber) 11 communicating with the outlet 10 is formed. A compression space 12 is defined between the inner peripheral surface of the cam ring 1 and the outer peripheral surface of the rotor 3, and the compression space 12 is partitioned by the vane 5 to form a plurality of compression chambers 13, and the volume of each compression chamber is increased. Is changed by the rotation of the rotor 3.

ベーン圧縮機において、ロータ3の回転中に、ベーン5の先端面とカムリング1の内周面、ベーン5の両側面とリアサイド部材6及びシェル部材7の内側面、ベーン5の表裏両面とベーン溝4の内側面とがそれぞれ摺動する。したがって、ベーン5には高硬度および耐摩耗性が要求されるのみならず、ロータ3,カムリング1あるいはリアサイド部材6、シェル部材との間に異物が入り込んでベーン5の表面に掻き疵が生じた場合でも、ベーン5の表面に形成されるメッキ層が剥離しないことが強く要求される。ベーン5の母材が軽量化等の目的でアルミニウムを主成分とする材料から形成される場合に、このベーン5の母材の表面にメッキ皮膜が形成されれば、上記硬度および耐剥離性の要求を共に良好に満たすことができる。また、ベーン圧縮機のカムリング1,リアサイド部材6、シェル部材7,ロータ3等を摺動材と考えることもでき、その表面にメッキ皮膜を形成して硬度および耐摩耗性の要求を満たすこともできる。 In the vane compressor, during rotation of the rotor 3, the tip surface of the vane 5 and the inner peripheral surface of the cam ring 1, both side surfaces of the vane 5 and the inner surface of the rear side member 6 and the shell member 7, the front and back surfaces of the vane 5 and the vane groove. The inner surface of 4 slides on each other. Therefore, not only high hardness and wear resistance are required for the vane 5, but also foreign matter enters between the rotor 3, the cam ring 1, the rear side member 6, and the shell member, causing scratches on the surface of the vane 5. Even in this case, it is strongly required that the plating layer formed on the surface of the vane 5 does not peel off. When the base material of the vane 5 is formed from a material containing aluminum as a main component for the purpose of weight reduction or the like, if a plating film is formed on the surface of the base material of the vane 5, the hardness and peeling resistance are as described above. Both requirements can be met well. Further, the cam ring 1, rear side member 6, shell member 7, rotor 3, etc. of the vane compressor can be considered as sliding materials, and a plating film can be formed on the surface thereof to satisfy the requirements for hardness and wear resistance. can.

斜板式圧縮機の場合においても同様に、部材同士が摺動する箇所にメッキ皮膜を形成して硬度および耐摩耗性の要求を満たすこともできる。 Similarly, in the case of a swash plate compressor, a plating film can be formed at a portion where the members slide to meet the requirements for hardness and wear resistance.

摺動部材の材質は、例えばアルミニウム系合金である。アルミニウム系合金としては、例えば、2000系、4000系、5000系、6000系、7000系等のアルミニウム系合金、または、ADC10、ADC12、ADC14、A390等の高シリコン含有アルミニウム合金である。本実施形態では、摺動部材の材質はアルミニウム系合金であることが好ましい。 The material of the sliding member is, for example, an aluminum alloy. Examples of the aluminum alloy include aluminum alloys such as 2000 series, 4000 series, 5000 series, 6000 series, and 7000 series, and high silicon-containing aluminum alloys such as ADC10, ADC12, ADC14, and A390. In the present embodiment, the material of the sliding member is preferably an aluminum alloy.

つぎにメッキ皮膜(メッキ層ともいう。)を形成した圧縮機用摺動部材について説明する。本実施形態に係る圧縮機用摺動部材では、少なくとも、摺動する箇所に無電解ニッケルメッキ層を形成している。すなわち、本実施形態に係る圧縮機用摺動部材は、アルミニウム合金からなる母材の表面に、リンを含む無電解ニッケルメッキ層が形成された圧縮機用の摺動部材において、前記無電解ニッケルメッキ層のリン(P)の含有率が1.0質量%以上2.0質量%以下であり、ホウ素(B)の含有率が0質量%以上0.01質量%以下であり、かつ、コバルト(Co)の含有率が0質量%以上0.01質量%以下であり、前記無電解ニッケルメッキ層は非熱処理層であり、前記無電解ニッケルメッキ層はNiの結晶子を含んでおり、X線回折法によって測定した前記結晶子の結晶子径が8〜11nmである。 Next, a sliding member for a compressor on which a plating film (also referred to as a plating layer) is formed will be described. In the compressor sliding member according to the present embodiment, an electroless nickel plating layer is formed at least at the sliding portion. That is, the sliding member for a compressor according to the present embodiment is the sliding member for a compressor in which an electroless nickel plating layer containing phosphorus is formed on the surface of a base material made of an aluminum alloy. The phosphorus (P) content of the plating layer is 1.0% by mass or more and 2.0% by mass or less, the boron (B) content is 0% by mass or more and 0.01% by mass or less, and cobalt. The content of (Co) is 0% by mass or more and 0.01% by mass or less, the electroless nickel plating layer is a non-heat-treated layer, and the electroless nickel plating layer contains Ni crystallites. The crystallite diameter of the crystallites measured by the linear diffraction method is 8 to 11 nm.

本実施形態では、ニッケルイオン供給源としての硫酸ニッケル、塩化ニッケルなどのニッケル塩と還元剤としての次亜リン酸ナトリウムなどのリン化合物を含む無電解メッキ浴を用いて析出形成させる。メッキ浴中のニッケル塩及びリン化合物の比率は、メッキ皮膜の組成に応じて適宜調整する。メッキ浴には、メッキ液の分解防止及びメッキ析出の抑制のための安定剤、水酸化ナトリウム、アンモニア水等のpH調整剤、酢酸ナトリウムやクエン酸ナトリウムなどの有機酸を含む錯化剤、クエン酸ナトリウム等の緩衝剤を添加することができる。メッキ皮膜の形成は、母材の被メッキ表面をメッキ浴に一定時間浸漬することで形成することができる。メッキ浴の温度は、浴の安定性と析出速度等を考慮して決められるが、例えば60〜95℃、好ましくは70〜90℃の範囲とすることが適当である。また、メッキ浴への浸漬時間を調整することで、メッキ皮膜の膜厚みを適宜調整することができる。 In the present embodiment, precipitation is formed using a electroless plating bath containing a nickel salt such as nickel sulfate or nickel chloride as a nickel ion supply source and a phosphorus compound such as sodium hypophosphite as a reducing agent. The ratio of the nickel salt and the phosphorus compound in the plating bath is appropriately adjusted according to the composition of the plating film. The plating bath contains a stabilizer for preventing decomposition of the plating solution and suppressing precipitation of the plating, a pH adjuster such as sodium hydroxide and aqueous ammonia, a complexing agent containing an organic acid such as sodium acetate and sodium citrate, and citrate. A buffer such as sodium citrate can be added. The plating film can be formed by immersing the surface to be plated of the base material in a plating bath for a certain period of time. The temperature of the plating bath is determined in consideration of the stability of the bath, the deposition rate, and the like, but it is appropriate to set the temperature in the range of, for example, 60 to 95 ° C, preferably 70 to 90 ° C. Further, the film thickness of the plating film can be appropriately adjusted by adjusting the immersion time in the plating bath.

無電解ニッケルメッキ層のリン(P)の含有率は1.0質量%以上2.0質量%以下である。一般的に、リンの含有率が8〜10質量%のニッケルメッキ皮膜は「中リン」タイプに属し、また、リンの含有率が10〜11質量%のニッケルメッキ皮膜は「中高リン」タイプに属する。これらのタイプを含む、リンの含有率が8〜11質量%のニッケルメッキ皮膜は、メッキ浴の使いやすさ、メッキ膜の析出速度の速さ、皮膜の付まわりの良さが優れているため、汎用性が高いとされている。本実施形態では、リン(P)の含有率を1.0質量%以上2.0質量%以下とし、上記の「中リン」タイプ、「中高リン」タイプに対して、「低リン」タイプのメッキ膜に属する。リン(P)の含有率を1.0質量%未満にすると、無電解ニッケルメッキ層を形成できなくなるか、あるいは成膜速度が遅くなる。リン(P)の含有率を2.0質量%超にすると、所望のNiの結晶子が得られない。「低リン」タイプのニッケルメッキ層を形成するためのメッキ液は、その特性上、Ni粒が発生し辛く、Ni粒を除くための後工程の削除が可能である。 The phosphorus (P) content of the electroless nickel-plated layer is 1.0% by mass or more and 2.0% by mass or less. Generally, a nickel-plated film having a phosphorus content of 8 to 10% by mass belongs to the "medium phosphorus" type, and a nickel-plated film having a phosphorus content of 10 to 11% by mass belongs to the "medium-high phosphorus" type. Belongs. Nickel plating films with a phosphorus content of 8 to 11% by mass, including these types, are excellent in ease of use of the plating bath, high precipitation rate of the plating film, and good adhesion of the film. It is said to be highly versatile. In the present embodiment, the phosphorus (P) content is 1.0% by mass or more and 2.0% by mass or less, and the "low phosphorus" type is compared with the above "medium phosphorus" type and "medium high phosphorus" type. It belongs to the plating film. If the phosphorus (P) content is less than 1.0% by mass, the electroless nickel plating layer cannot be formed or the film forming rate becomes slow. When the phosphorus (P) content exceeds 2.0% by mass, the desired Ni crystallites cannot be obtained. Due to the characteristics of the plating solution for forming the "low phosphorus" type nickel plating layer, it is difficult for Ni particles to be generated, and it is possible to remove the post-process for removing the Ni particles.

無電解ニッケルメッキ層のホウ素(B)の含有率は0質量%以上0.01質量%以下であり、ホウ素(B)を含有していないことが好ましい。メッキ液には、実質的にホウ素成分を配合しないことが好ましい。ホウ素を配合しないので、メッキ液を安価とすることができる。 The content of boron (B) in the electroless nickel plating layer is 0% by mass or more and 0.01% by mass or less, and it is preferable that boron (B) is not contained. It is preferable that the plating solution does not contain a boron component substantially. Since boron is not blended, the plating solution can be inexpensive.

無電解ニッケルメッキ層のコバルト(Co)の含有率は0質量%以上0.01質量%以下であり、コバルト(Co)を含有していないことが好ましい。メッキ液には、実質的にコバルト成分を配合しないことが好ましい。コバルト成分を配合しないので、メッキ液を安価とすることができる。 The content of cobalt (Co) in the electroless nickel-plated layer is 0% by mass or more and 0.01% by mass or less, and it is preferable that cobalt (Co) is not contained. It is preferable that the plating solution does not contain a cobalt component substantially. Since the cobalt component is not blended, the plating solution can be inexpensive.

無電解ニッケルメッキ層は非熱処理層とする。非熱処理層とすることで、メッキ層の靱性を高くすることができ、また、母材硬度が低下しない。 The electroless nickel plating layer is a non-heat treatment layer. By using the non-heat-treated layer, the toughness of the plating layer can be increased, and the hardness of the base material does not decrease.

無電解ニッケルメッキ層はNiの結晶子を含んでおり、X線回折法によって測定した結晶子の結晶子径が8〜11nmである。結晶子のサイズをこの範囲にすることで、熱処理無しで必要上充分な硬度が得られる。すなわち、無電解ニッケルメッキ層のビッカース硬度を650Hv以上750Hv以下とすることができる。無電解ニッケルメッキ層のビッカース硬度の上限は、700Hvであってもよい。結晶子の結晶子径が8nm未満であると、メッキ皮膜が高硬度とならず、例えばビッカース硬度が650Hvを下回ってしまう。結晶子の結晶子径が11nmを超える場合は、成膜速度が遅くなり、皮膜の形成が困難である。 The electroless nickel-plated layer contains Ni crystals, and the crystallite diameter of the crystals measured by the X-ray diffraction method is 8 to 11 nm. By setting the crystallite size in this range, necessary and sufficient hardness can be obtained without heat treatment. That is, the Vickers hardness of the electroless nickel plating layer can be set to 650 Hv or more and 750 Hv or less. The upper limit of the Vickers hardness of the electroless nickel-plated layer may be 700 Hv. If the crystallite diameter of the crystallite is less than 8 nm, the plating film does not have a high hardness, and for example, the Vickers hardness falls below 650 Hv. When the crystallite diameter of the crystallite exceeds 11 nm, the film forming rate becomes slow and it is difficult to form a film.

無電解ニッケルメッキ層は、セラミック微粒子が層中に分散していない非分散型メッキ膜であることが好ましい。セラミック微粒子が層中に分散した分散型メッキ膜は、高い硬度が得られる。しかし、スクラッチ強度が弱くなる傾向があるため、本実施形態では、コンポジットの効果を使わずに、硬度とスクラッチ強度を満たすことが好ましい。また、メッキ層がセラミック微粒子を含まないため、摺動する際に相手の部材へのアタックが無い。 The electroless nickel plating layer is preferably a non-dispersion type plating film in which ceramic fine particles are not dispersed in the layer. A dispersed plating film in which ceramic fine particles are dispersed in a layer can obtain high hardness. However, since the scratch strength tends to be weak, in the present embodiment, it is preferable to satisfy the hardness and the scratch strength without using the effect of the composite. Further, since the plating layer does not contain ceramic fine particles, there is no attack on the mating member when sliding.

無電解ニッケルメッキ層は、バレルメッキ層であることが好ましい。バレル方式でのメッキ工法と組み合わせることで、Ni粒の堆積が防止され、部材の平滑性が向上する。 The electroless nickel plating layer is preferably a barrel plating layer. By combining with the barrel plating method, the accumulation of Ni particles is prevented and the smoothness of the member is improved.

本実施形態に係る圧縮機用摺動部材は、母材と無電解ニッケルメッキ層との間に下地層を有し、下地層は、リン(P)を6.0〜11.0質量%含有する無電解ニッケルメッキ層であり、かつ、非熱処理層であることが好ましい。下地層として、中〜中高リンタイプの無電解ニッケルメッキ層を設けることで、母材との密着性を高めることができ、また、メッキ皮膜の平滑性を向上させることができる。さらに下地層を設けることで、Ni粒の発生を抑制し、Ni粒の除去工程を省くことができる。下地層のリン(P)は、好ましくは6.5〜10.5質量%、また、より好ましくは7.0〜10.0質量%とする。下地層のリン(P)が6.0〜11.0質量%の範囲において無電解ニッケルメッキとして最も安定した成膜反応性と平滑性が得られる。これに対し6.0質量%未満、または11.0質量%を超えると、反応性の低下、あるいは副反応の増加等による異常粒成長等が生じやすくなり平滑性低下等の問題がある。下地層は非熱処理層とする。非熱処理層とすることで、メッキ層の靱性を高くすることができ、また、母材硬度が低下しない。 The sliding member for a compressor according to the present embodiment has a base layer between a base material and an electroless nickel plating layer, and the base layer contains 6.0 to 11.0% by mass of phosphorus (P). It is preferably an electroless nickel-plated layer and a non-heat-treated layer. By providing a medium to medium to high phosphorus type electroless nickel plating layer as the base layer, the adhesion to the base material can be improved and the smoothness of the plating film can be improved. Further, by providing the base layer, it is possible to suppress the generation of Ni particles and omit the step of removing the Ni particles. The phosphorus (P) in the base layer is preferably 6.5 to 10.5% by mass, and more preferably 7.0 to 10.0% by mass. The most stable film-forming reactivity and smoothness of electroless nickel plating can be obtained in the range of 6.0 to 11.0% by mass of phosphorus (P) in the base layer. On the other hand, if it is less than 6.0% by mass or more than 11.0% by mass, abnormal grain growth or the like is likely to occur due to a decrease in reactivity or an increase in side reactions, and there is a problem such as a decrease in smoothness. The base layer is a non-heat-treated layer. By using the non-heat-treated layer, the toughness of the plating layer can be increased, and the hardness of the base material does not decrease.

下地層はホウ素(B)及びコバルト(Co)を含有していないことが好ましい。無電解ニッケルメッキ層と同様に、下地層用メッキ液を安価にすることができる。 The underlying layer preferably does not contain boron (B) and cobalt (Co). Similar to the electroless nickel plating layer, the plating solution for the base layer can be inexpensive.

本実施形態に係る圧縮機用摺動部材では、母材の表面に形成された無電解ニッケルメッキ層の膜厚が15〜30μmであることが好ましく、18〜25μmであることがより好ましい。膜厚を15〜30μmとすることで耐摩耗のための実質的な硬度及び衝撃に対する靭性を満たすことができる。膜厚が15μm未満であると硬度及び靭性の両方が満たされない場合があり、膜厚が30μmを超えると、膜が剥離しやすくなるおそれがあるとともに、生産性が低下するおそれがある。 In the sliding member for a compressor according to the present embodiment, the film thickness of the electroless nickel plating layer formed on the surface of the base material is preferably 15 to 30 μm, more preferably 18 to 25 μm. By setting the film thickness to 15 to 30 μm, it is possible to satisfy the substantial hardness for wear resistance and the toughness against impact. If the film thickness is less than 15 μm, both hardness and toughness may not be satisfied, and if the film thickness exceeds 30 μm, the film may be easily peeled off and the productivity may be lowered.

本実施形態に係る圧縮機用摺動部材では、母材の表面に形成された下地層及び無電解ニッケルメッキ層の合計の膜厚が15〜30μmであることが好ましく、18〜25μmであることがより好ましい。合計の膜厚を15〜30μmとすることで耐摩耗のための硬度及び衝撃に対する靭性を満たすことができる。合計の膜厚が15μm未満であると硬度及び靭性の両方が満たされない場合があり、合計の膜厚が30μmを超えると、膜が剥離しやすくなるおそれがあるとともに、生産性及び経済性が低下するおそれがある。また、母材の表面に形成された下地層は、1〜15μm、また、より好ましくは3〜10μmであることが好ましい。下地層の上に形成する無電解ニッケルメッキ層は、15〜25μmであることが好ましい。 In the sliding member for a compressor according to the present embodiment, the total film thickness of the base layer and the electroless nickel plating layer formed on the surface of the base material is preferably 15 to 30 μm, preferably 18 to 25 μm. Is more preferable. By setting the total film thickness to 15 to 30 μm, the hardness for wear resistance and the toughness against impact can be satisfied. If the total film thickness is less than 15 μm, both hardness and toughness may not be satisfied, and if the total film thickness exceeds 30 μm, the film may be easily peeled off, and productivity and economy are reduced. There is a risk of The base layer formed on the surface of the base material is preferably 1 to 15 μm, more preferably 3 to 10 μm. The electroless nickel-plated layer formed on the base layer is preferably 15 to 25 μm.

次に、実施例を挙げて本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

試料1〜9に示すサンプルを作製した。表1に示したメッキ浴の中に、高シリコン系アルミニウム合金(Al−10.5〜20質量%Si)でできたベーンを浸漬して無電解ニッケルメッキ層を形成し、次いで水洗いした。膜厚は表1に示した膜厚になるように、浸漬時間で調整した。下地層を有するメッキ皮膜を形成する場合には、まず、ベーンを下地層用メッキ浴に浸漬して下地層を形成し、次いで水洗いた。さらに無電解ニッケルメッキ層用メッキ浴に浸漬して下地層の上に無電解ニッケルメッキ層を形成し、次いで水洗した。 The samples shown in Samples 1 to 9 were prepared. A vane made of a high silicon aluminum alloy (Al-10.5 to 20% by mass Si) was immersed in the plating bath shown in Table 1 to form an electroless nickel plating layer, and then washed with water. The film thickness was adjusted by the immersion time so as to have the film thickness shown in Table 1. When forming a plating film having a base layer, first, the vane was immersed in a plating bath for a base layer to form a base layer, and then washed with water. Further, it was immersed in a plating bath for an electroless nickel plating layer to form an electroless nickel plating layer on the base layer, and then washed with water.

表1に、試料1〜9の結果を示した。 Table 1 shows the results of Samples 1-9.

Figure 0006951175
Figure 0006951175

[層の組成]
無電解ニッケルメッキ層及び下地層の組成は、蛍光X線分析法によって求めた。
[結晶子径]
無電解ニッケルメッキ層のニッケルの結晶子径は、X線回折法によって求めた。
[膜厚]
膜厚は、切断面からの光学顕微鏡を用いた拡大観察による計測によって求めた。
[硬さ]
無電解ニッケルメッキ層の硬さ、または下地層を有する無電解ニッケルメッキ層の硬さは、マイクロビッカース硬度計(JIS Z 2244−2009)によって求めた。
[スクラッチ強度]
無電解ニッケルメッキ層、または下地層を有する無電解ニッケルメッキ層についてスクラッチ試験を行った。スクラッチ試験は、新東科学社製荷重変動型摩擦摩耗システムHHS3000を用いて、測定用圧子として頂角120°、先端の曲率半径0.2mmの円錐状のダイヤモンド製先端部を備える圧子を使用し、メッキ皮膜表面を垂直方向に10mmの長さの範囲を0Nから98Nまで比例的に徐々に増加させながら掃引し形成されたスクラッチ痕において最初にクラックが確認された位置の荷重を掃引距離から求めスクラッチ強度とした。
[Layer composition]
The compositions of the electroless nickel plating layer and the base layer were determined by fluorescent X-ray analysis.
[Crystalline diameter]
The nickel crystallite diameter of the electroless nickel plating layer was determined by an X-ray diffraction method.
[Film thickness]
The film thickness was determined by measuring from the cut surface by magnified observation using an optical microscope.
[Hardness]
The hardness of the electroless nickel plating layer or the hardness of the electroless nickel plating layer having the underlying layer was determined by a Micro Vickers hardness tester (JIS Z 2244-2009).
[Scratch strength]
A scratch test was performed on the electroless nickel-plated layer or the electroless nickel-plated layer having a base layer. For the scratch test, a load-variable friction and wear system HHS3000 manufactured by Shinto Kagaku Co., Ltd. was used, and an indenter having a conical diamond tip with an apex angle of 120 ° and a radius of curvature of 0.2 mm was used as a measuring indenter. The load at the position where cracks were first confirmed in the scratch marks formed by sweeping the surface of the plating film in the vertical direction while gradually increasing the range of length of 10 mm from 0N to 98N was obtained from the sweep distance. The scratch strength was used.

図1に無電解ニッケルメッキ層のリン含有量とニッケルの結晶子径との関係を示す。図2に無電解ニッケルメッキ層のニッケルの結晶子径と硬さのとの関係を示す。図3に無電解ニッケルメッキ層のニッケルの結晶子径とスクラッチ強度との関係を示す。 FIG. 1 shows the relationship between the phosphorus content of the electroless nickel plating layer and the crystallite diameter of nickel. FIG. 2 shows the relationship between the nickel crystallite diameter and the hardness of the electroless nickel plating layer. FIG. 3 shows the relationship between the nickel crystallite diameter of the electroless nickel plating layer and the scratch strength.

図1に示すように、実施例のサンプルは、いずれもニッケルの結晶子径が8〜11nmの範囲内にある。図2に示すように、ニッケルの結晶子径が8〜11nmの範囲内にある実施例は、いずれもビッカース硬度が650Hv以上であった。図2において、ニッケルの結晶子径が5.1nmである比較例(試料番号7)のビッカース硬度が692Hvであるが、高硬度が得られたのは無電解ニッケルメッキ層中にセラミック粒子を分散させたことによる複合効果のためである。試料番号7以外の比較例は、セラミック粒子を分散させておらず、ビッカース硬度は650Hv未満であった。図3に示すように、ニッケルの結晶子径が8〜11nmの範囲内にある実施例は、いずれもスクラッチ強度が98N以上であった。図3において、ニッケルの結晶子径が5.1nmである比較例(試料番号7)のスクラッチ強度は18.0Nと小さかった。試料番号7の比較例は、図2に示すようにビッカース硬度が高かったがスクラッチ強度が小さく、両者を両立させることができなかった。 As shown in FIG. 1, all of the samples of the examples have nickel crystallite diameters in the range of 8 to 11 nm. As shown in FIG. 2, in all the examples in which the nickel crystallite diameter was in the range of 8 to 11 nm, the Vickers hardness was 650 Hv or more. In FIG. 2, the Vickers hardness of Comparative Example (Sample No. 7) in which the nickel crystallite diameter is 5.1 nm is 692 Hv, but the high hardness is obtained by dispersing the ceramic particles in the electroless nickel plating layer. This is because of the combined effect of making it. In the comparative examples other than sample number 7, the ceramic particles were not dispersed, and the Vickers hardness was less than 650 Hv. As shown in FIG. 3, in each of the examples in which the nickel crystallite diameter was in the range of 8 to 11 nm, the scratch strength was 98 N or more. In FIG. 3, the scratch strength of Comparative Example (Sample No. 7) in which the nickel crystallite diameter was 5.1 nm was as small as 18.0 N. In the comparative example of sample number 7, as shown in FIG. 2, the Vickers hardness was high, but the scratch strength was low, and both could not be compatible.

実施例において、Ni粒の付着が抑制されていた。 In the examples, the adhesion of Ni particles was suppressed.

1 カムリング
1a フランジ部
2 駆動軸
3 ロータ
4 ベーン溝
5 ベーン
6 リアサイド部材
7 シェル部材
6a,7a サイドブロック部
6b,7b ヘッド部
8 吸入口
9 低圧室
10 吐出口
11 高圧室
11a 第1高圧室
11b 第2高圧室
12 圧縮空間
13 圧縮室
15 吐出弁収容室
17 通孔
1 Cam ring 1a Flange part 2 Drive shaft 3 Rotor 4 Vane groove 5 Vane 6 Rear side member 7 Shell members 6a, 7a Side block parts 6b, 7b Head part 8 Suction port 9 Low pressure chamber 10 Discharge port 11 High pressure chamber 11a First high pressure chamber 11b 2nd high pressure chamber 12 Compression space 13 Compression chamber 15 Discharge valve accommodation chamber 17 Through hole

Claims (7)

アルミニウム合金からなる母材の表面に、リンを含む無電解ニッケルメッキ層が形成された圧縮機用の摺動部材において、
前記無電解ニッケルメッキ層のリン(P)の含有率が1.08質量%以上1.89質量%以下であり、ホウ素(B)の含有率が0質量%以上0.01質量%以下であり、かつ、コバルト(Co)の含有率が0質量%以上0.01質量%以下であり、
前記無電解ニッケルメッキ層は非熱処理層であり、
前記無電解ニッケルメッキ層はNiの結晶子を含んでおり、X線回折法によって測定した前記結晶子の結晶子径が8〜11nmであり、
前記無電解ニッケルメッキ層のビッカース硬度が、652Hv以上750Hv以下であり、
前記無電解ニッケルメッキ層スクラッチ強度が、98N以上であることを特徴とする圧縮機用摺動部材。
In a sliding member for a compressor in which an electroless nickel plating layer containing phosphorus is formed on the surface of a base material made of an aluminum alloy.
The phosphorus (P) content of the electroless nickel plating layer is 1.08 % by mass or more and 1.89 % by mass or less, and the boron (B) content is 0% by mass or more and 0.01% by mass or less. Moreover, the content of cobalt (Co) is 0% by mass or more and 0.01% by mass or less.
The electroless nickel plating layer is a non-heat treatment layer.
The electroless nickel plating layer includes a crystallite of Ni, crystallite diameter of the crystallite measured by X-ray diffractometry Ri 8~11nm der,
The Vickers hardness of the electroless nickel-plated layer is 652 Hv or more and 750 Hv or less.
A sliding member for a compressor , wherein the electroless nickel-plated layer has a scratch strength of 98 N or more.
前記無電解ニッケルメッキ層が、ホウ素(B)及びコバルト(Co)を含有していないことを特徴とする請求項に記載の圧縮機用摺動部材。 The sliding member for a compressor according to claim 1 , wherein the electroless nickel-plated layer does not contain boron (B) and cobalt (Co). 前記無電解ニッケルメッキ層は、バレルメッキ層であることを特徴とする請求項1又は2に記載の圧縮機用摺動部材。 The sliding member for a compressor according to claim 1 or 2 , wherein the electroless nickel-plated layer is a barrel-plated layer. 前記母材と前記無電解ニッケルメッキ層との間に下地層を有し、
該下地層は、リン(P)を6.0〜11.0質量%含有する無電解ニッケルメッキ層であり、かつ、非熱処理層であることを特徴とする請求項1〜のいずれか一つに記載の圧縮機用摺動部材。
An underlayer is provided between the base material and the electroless nickel plating layer.
Any one of claims 1 to 3 , wherein the base layer is an electroless nickel-plated layer containing 6.0 to 11.0% by mass of phosphorus (P) and is a non-heat-treated layer. The sliding member for a compressor described in 1.
前記下地層が、ホウ素(B)及びコバルト(Co)を含有していないことを特徴とする請求項に記載の圧縮機用摺動部材。 The sliding member for a compressor according to claim 4 , wherein the base layer does not contain boron (B) and cobalt (Co). 前記母材の表面に形成された前記無電解ニッケルメッキ層の膜厚、又は、前記母材の表面に形成された前記下地層及び前記無電解ニッケルメッキ層の合計の膜厚が、15〜30μmであることを特徴とする請求項1〜のいずれか一つに記載の圧縮機用摺動部材。 The film thickness of the electroless nickel plating layer formed on the surface of the base material, or the total film thickness of the base layer and the electroless nickel plating layer formed on the surface of the base material is 15 to 30 μm. The sliding member for a compressor according to any one of claims 1 to 5 , wherein the sliding member for a compressor is characterized by the above. 前記無電解ニッケルメッキ層は、セラミック微粒子が層中に分散していない非分散型メッキ膜であることを特徴とする請求項1〜のいずれか一つに記載の圧縮機用摺動部材。 The sliding member for a compressor according to any one of claims 1 to 6 , wherein the electroless nickel plating layer is a non-dispersion type plating film in which ceramic fine particles are not dispersed in the layer.
JP2017184051A 2017-09-25 2017-09-25 Sliding member for compressor Active JP6951175B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017184051A JP6951175B2 (en) 2017-09-25 2017-09-25 Sliding member for compressor
EP18196195.4A EP3460096A1 (en) 2017-09-25 2018-09-24 Sliding member for compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017184051A JP6951175B2 (en) 2017-09-25 2017-09-25 Sliding member for compressor

Publications (2)

Publication Number Publication Date
JP2019060259A JP2019060259A (en) 2019-04-18
JP6951175B2 true JP6951175B2 (en) 2021-10-20

Family

ID=63683029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017184051A Active JP6951175B2 (en) 2017-09-25 2017-09-25 Sliding member for compressor

Country Status (2)

Country Link
EP (1) EP3460096A1 (en)
JP (1) JP6951175B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023088435A (en) 2021-12-15 2023-06-27 サンデン株式会社 SLIDE MEMBER ELECTROLESS Ni-P PLATING COATING AND METHOD FOR MANUFACTURING THE SAME
CN117926233B (en) * 2024-03-21 2024-06-25 山东天瑞重工有限公司 Nickel-phosphorus plating solution for 7075 aluminum alloy double-layer chemical plating and preparation method of 7075 aluminum alloy with chemical plating layer on surface

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3027515B2 (en) 1994-11-29 2000-04-04 日本カニゼン株式会社 Ni-PB-based electroless plating film and mechanical parts using this film
JP3066798B2 (en) * 1996-09-20 2000-07-17 大豊工業株式会社 Surface treatment method for sliding members
WO1998031849A1 (en) * 1997-01-20 1998-07-23 Taiho Kogyo Co., Ltd. Sliding member, method of treating surface of the sliding member and rotary compressor vane
JPH1172042A (en) * 1997-08-29 1999-03-16 Unisia Jecs Corp Piston of internal combustion engine
JP2003161259A (en) * 2001-11-22 2003-06-06 Toyota Industries Corp Sliding material for compressor
JP2003184743A (en) 2001-12-12 2003-07-03 Toyota Industries Corp Shoe for swash plate type compressor and swash type compressor provided therewith
WO2008026496A1 (en) 2006-08-29 2008-03-06 Valeo Thermal Systems Japan Corporation Movable vane compressor

Also Published As

Publication number Publication date
JP2019060259A (en) 2019-04-18
EP3460096A1 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
JP6951175B2 (en) Sliding member for compressor
EP2940350A1 (en) Cylinder and piston ring assembly
EP3663430B1 (en) Sliding member and piston ring
CN101900108A (en) Sliding member for compressor
WO2014157688A1 (en) Coated cutting tool and method for producing same
US9873850B2 (en) Arc PVD coating with enhanced reducing friction and reducing wear properties
US11866830B2 (en) Abrasive tip coating
CN113862613A (en) Amorphous gradient structure superhard DLC (diamond-like carbon) cutter coating and preparation method thereof and cutter
JP2014214341A (en) Electroless composite plating film, sliding movement part and rolling movement part formed with the same, and mold
EP1083246B1 (en) Conversion coating of tin with cobalt and bismuth for aluminum sliding surfaces
WO2023112630A1 (en) Electroless ni-p plating film for sliding member and manufacturing method therefor
EP3460095B1 (en) Sliding member
CN209083559U (en) A kind of rotor-type compressor and air conditioner
JP2003013163A (en) Sliding member made from powder aluminum alloy, and combination of cylinder and piston ring
JP2001280497A (en) Combination of cylinder made of aluminum alloy and piston ring
JP6499949B2 (en) piston ring
JP2697768B2 (en) Vane type compressor
US6136454A (en) Cobalt-tin alloy coating on aluminum by chemical conversion
JP3408366B2 (en) Sliding member for compressor
JP6142862B2 (en) Sliding structure
JP6416066B2 (en) piston ring
WO2015115153A1 (en) Piston ring
JP4910226B2 (en) Covered sliding parts
JP4332632B2 (en) Gas compressor
JP2020180326A (en) Eutectoid plating solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210924

R150 Certificate of patent or registration of utility model

Ref document number: 6951175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250