JP6945467B2 - バイオガスの製造装置および製造方法 - Google Patents

バイオガスの製造装置および製造方法 Download PDF

Info

Publication number
JP6945467B2
JP6945467B2 JP2018015810A JP2018015810A JP6945467B2 JP 6945467 B2 JP6945467 B2 JP 6945467B2 JP 2018015810 A JP2018015810 A JP 2018015810A JP 2018015810 A JP2018015810 A JP 2018015810A JP 6945467 B2 JP6945467 B2 JP 6945467B2
Authority
JP
Japan
Prior art keywords
molded product
treatment liquid
metal
biogas
metal molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018015810A
Other languages
English (en)
Other versions
JP2019130489A (ja
Inventor
聖一 戸部
聖一 戸部
寛也 渡瀬
寛也 渡瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Priority to JP2018015810A priority Critical patent/JP6945467B2/ja
Publication of JP2019130489A publication Critical patent/JP2019130489A/ja
Application granted granted Critical
Publication of JP6945467B2 publication Critical patent/JP6945467B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treatment Of Sludge (AREA)

Description

本発明は、バイオガスの製造装置および製造方法に関する。
下水汚泥、し尿・浄化槽汚泥、家畜糞尿、食品製造残渣、農業残渣、バイオマスエネルギー回収残渣等の有機性廃棄物(バイオマス)や有機性廃液の処理方法として、メタン発酵が用いられる。
メタン発酵とは、嫌気条件における環境微生物群による発酵の総称である。下水汚泥や食物残渣などを密封した条件にして微生物の生育に好ましい温度で放置しておくとメタン発酵が始まり、有機分が分解する。この時、メタンと二酸化炭素が約6:4の比率となるバイオガスが生成する。メタン発酵によって生成した気体(バイオガス)からは、メタン、水素等の可燃性ガスが得られる。得られた可燃性ガスは、熱源や発電等のエネルギー源として利用される。
食品の調製のために利用された後の廃食用油の一部は回収されて精製され、家畜の飼料やバイオディーゼル、工業用油脂などとして再利用されている。回収されたにも関わらず再利用が困難と判断された廃食用油は産業廃棄物として処分されている。また植物油脂の調製の時に生成する廃棄物または廃液中にも油脂が含まれている。
油脂の大部分は炭素と水素から構成されているため、廃棄される油脂をメタン発酵の原料として利用できれば、バイオガスの大量生成を見込める。
しかしながら、油脂を含有する廃棄物を用いたメタン発酵にあっては、中間代謝物である脂肪酸が、メタン発酵菌の作用を阻害するという特有の課題がある。
特許文献1には、油脂系の廃棄物にメタン発酵処理を施してバイオガスを発生させる方法において、処理槽内に、導電性物質としてグラファイトフェルト、粒子径1mm以下のマグネタイト、硫化鉄、または活性炭を導入した実施例が記載されている。これらの実施例は、導電性物質を導入しなかった比較例、または導電性物質の代わりに発泡ウレタンを導入した比較例に比べて処理速度が増加したことが記載されている。
特開2016−203029号公報
しかし特許文献1の方法では必ずしも充分ではなく、さらなるバイオガスの生成促進が求められる。
本発明は、油脂を含有する廃棄物を含む処理液からのバイオガス生成を促進できる、バイオガスの製造装置および製造方法を目的とする。
本発明は以下の態様を有する。
[1]油脂を含有する廃棄物を含む処理液から嫌気的発酵によりバイオガスを生成する装置であって、前記処理液を収容する発酵槽を備え、前記発酵槽内の処理液と接触する位置に、金属からなり外部と通液する空隙を有する金属成形物が設けられている、バイオガス製造装置。
[2]前記金属成形物が直径0.01〜3mmの金属繊維からなる、[1]の製造装置。
[3]前記金属成形物の嵩密度が0.01〜2.0g/cmである、[1]または[2]の製造装置。
[4]前記金属成形物の空隙率が70〜99.99%である、[1]〜[3]のいずれかの製造装置。
[5]前記金属成形物が前記処理液の液面と接触する位置に設けられている、[1]〜[4]のいずれかの製造装置。
[6]前記発酵槽内の処理液を撹拌する撹拌手段をさらに備える、[1]〜[5]のいずれかの製造装置。
[7]油脂を含有する廃棄物を含む処理液から嫌気的発酵によりバイオガスを生成する方法であって、前記処理液に、金属からなり外部と通液する空隙を有する金属成形物が接触した状態で嫌気的発酵を行う、バイオガス製造方法。
[8]前記処理液に対して前記金属成形物が0.1〜50質量%である、[7]の製造方法。
[9]前記処理液に対して前記油脂が0.1〜10質量%である、[7]または[8]の製造方法。
[10]前記金属成形物に対する前記油脂の質量比を表す油脂/金属成形物が10/0.1〜1/10である、[7]〜[9]のいずれかの製造方法。
[11]前記処理液が下水汚泥を含む、[7]〜[10]のいずれかの製造方法。
本発明によれば、油脂を含有する廃棄物を含む処理液からバイオガスを生成する反応を促進して、バイオガスの生成量を増大させることができる。
本発明のバイオガス製造装置の一実施形態を示す概略構成図である。
本明細書において、蒸発残留物(TS)濃度は、下水試験方法(公益社団法人日本下水道協会、2012年版)に記載の方法で測定される、105℃蒸発残留物質量の濃度である。
本明細書において、油脂の含有量はJIS K0101に記載のヘキサン抽出物物質の定量方法に準処する方法で測定される値である。具体的には、質量を測定した試料の油分をノルマルヘキサンによって抽出して求めることができる。
例えば試料約1gを計量し、ガラス製の分液ロートに入れてノルマルヘキサン100mLを添加して懸濁して油分を抽出し、ノルマルヘキサン層をろ過する。得られたろ液をるつぼに入れて80℃で加温してノルマルヘキサンを揮発させる。るつぼの増量分より不揮発分の質量を求め、試料の質量に対する不揮発分の質量の割合を求めて油脂含有量(単位:質量%)とする。
試料の質量は、前記不揮発分の質量が5mg以上となるように適宜変更することが好ましい。
本発明のバイオガス製造装置は、油脂を含有する廃棄物(以下、「油脂含有廃棄物」ともいう。)を含む処理液から嫌気的発酵(以下、メタン発酵ともいう。)によりバイオガスを生成する装置である。
処理液はメタン発酵に必要な成分を含む液であり、少なくとも有機物と嫌気性微生物を含む。
油脂は、植物油脂、動物油脂、鉱物油およびそれらの誘導体であり、メタン発酵の発酵温度において液状であればよい。微生物の生育を抑制しにくい点で植物油脂または動物油脂が好ましい。常温で固化しにくくて取り扱いが容易な点で植物油脂を主成分とする廃食用油がより好ましい。
植物油脂としては、亜麻仁油、エゴマ油、オリーブオイル、コーン油、ごま油、こめ油、大豆油、菜種油(キャノラ油等)、の菜種油、綿実油、べに花油、パーム油等が挙げられる。
処理液に含まれる油脂は1種でもよく、2種以上でもよい。
油脂含有廃棄物は、油脂の含有量が3質量%以上の廃棄物である。
油脂含有廃棄物の油脂含有量は10質量%以上が好ましく、30質量%以上がより好ましい。100質量%でもよい。
油脂含有廃棄物として、例えば、食品製造工場や飲食店から排出される、油脂を含む廃液または廃棄物を好ましく用いることができる。
油脂含有廃棄物の具体例としては、揚げ物食品の製造を行なった後の食品残渣(天かす等)と油脂の混合物である廃食用油、工場等から排出される油脂と水分を含む乳化物、バター、ヨーグルト、牛乳などの乳製品、ラードなどの動物脂および脂を含む肉類、乳製品および動物脂を練りこんだパンなどの食品残渣などが挙げられる。
処理液は嫌気性微生物を含む。嫌気性微生物は、有機物から嫌気的発酵により最終的にメタン、二酸化炭素等が生成される過程に関与するものであり、加水分解菌、酸生成菌、水素生成菌、酢酸生成菌、メタン生成菌などが知られている。
加水分解菌としては、Acetivibrio属、Bacillus属、Cellulomonas属、Clostridium属、酸生成菌、水素生成菌、酢酸生成菌としては、Acetobacterium属、Clostridium属、Moorella属、Syntrophobacter属、メタン生成菌としては、Methanobacterium属、Methanosaeta属などが知られている。
処理液は、嫌気性細菌の菌床として、有機物をメタン発酵した発酵物を含有することが好ましい。例えば、食品残渣由来、食品工場の廃液由来、家畜糞尿由来、または下水汚泥をメタン発酵して得られる発酵物が好ましい。前記発酵物は液状の発酵物(消化液ともいう)が好ましい。
処理液は、油脂含有廃棄物のほかに、油脂の含有量が3質量%未満である他の有機物源を含んでもよい。
他の有機物源の油脂含有量は1質量%以下が好ましく、0.5質量%以下がより好ましい。ゼロでもよい。
他の有機物源は、例えば、下水汚泥、家畜糞尿、食物製造残渣、農業残渣等の廃棄物でもよく、トウモロコシや海草等の余剰収穫物でもよい。汚泥の収集・運搬のための設備が既に構築されている点から、下水汚泥が好ましい。
下水汚泥は、下水汚泥のみのメタン発酵では発酵効率(消化率)が比較的低いが、本発明を適用して油脂含有廃棄物の存在下で下水汚泥のメタン発酵を行うことにより、消化率を向上できる点でも好ましい。
処理液は、さらに、メタン発酵の分野で公知の添加剤を任意に含んでもよい。例えば、金属イオン、酸化酵素、可溶化微生物、界面活性剤等が挙げられる。
図1は、本発明のバイオガス製造装置の一実施形態を示す概略構成図である。
バイオガス製造装置1は、油脂含有廃棄物貯留槽2と、汚泥貯留槽3と、処理液を収容する発酵槽4と、消化液貯留槽5と、脱硫塔6と、バイオガスタンク7とを備えている。発酵槽4内には処理液と接触する位置に金属成形物(図示略)が設けられている。
汚泥貯留槽3、金属成形物を設ける前の発酵槽4、消化液貯留槽5、脱硫塔6、およびバイオガスタンク7は、既存の下水汚泥の処理施設を利用してもよい。
油脂含有廃棄物貯留槽2には、必要に応じて前処理された油脂含有廃棄物が貯留され、配管を介して、発酵槽4に油脂含有廃棄物を供給する。
汚泥貯留槽3には、必要に応じて前処理された下水汚泥が貯留され、配管を介して、発酵槽4に下水汚泥を供給する。
発酵槽4は温度調節手段を備え、発酵槽4内の処理液を所定の温度に保持して嫌気的発酵を行う。
発酵槽4は、発酵槽4内の処理液を撹拌する撹拌手段(図示略)を備えることが好ましい。例えば、処理液中に開口部を有するパイプを設置し、回収したバイオガスの一部を、前記パイプを介して処理液中に吹き込む方法で処理液を撹拌してもよく、発酵槽4内に撹拌翼を設置してもよい。
発酵槽4内で、処理液の嫌気的発酵が行われるとバイオガスと消化液(消化汚泥ともいう)が生じる。
発酵槽4で生じたバイオガスは、配管を介して脱硫塔6へ送られ、硫化水素等が除去された後に、バイオガスタンク7に貯留される。
脱硫塔6としては、例えば、硫酸鉄(Fe(OH))等を充填した乾式脱硫塔が用いられる。
バイオガスタンク7は、配管を介して、ガスボイラー、バイオガス発電機、燃料電池、ガス燈等のバイオガス利用設備(図示略)に接続されていてもよい。
発酵槽4内で生じた消化液は、配管を介して消化液貯留槽5へ送られ、さらに必要に応じた後処理が施される。消化液の一部は排出せずに、菌床として発酵槽4内に留まるようになっている。
発酵槽4内に設けられる金属成形物は、金属からなり外部と通液する空隙を有する成形物である。
金属成形物は、発酵槽内で嫌気的発酵が行われる際に、発酵槽内の処理液と接触するように設置される。金属成形物は処理液の液面と接触することが好ましい。また、金属成形物の全体が処理液と接触することがより好ましい。
例えば、金属成形物を、発酵槽内の処理液の液面と接触する位置に固定してもよく、処理液の液面に接触するように吊り下げてもよい。または金属成形物を、処理液中で浮遊する材質の部材と一体化して、金属成形物を処理液の液面に浮遊させてもよい。
金属成形物の材質としては、鉄、銅、黄銅、ステンレス、銀、金、アルミニウム、マグネシウム、タングステン、コバルト、亜鉛、ニッケル、黄銅、カリウム、リチウム、白金、スズ、クロム、鉛、チタン、マンガン、水銀、ニクロムまたはそれらの合金が好ましい。合金としては、スチールが挙げられる。スチールは、炭素を含む合金であり、炭素含有量は0.04〜2質量%が好ましい。
これらの中でも、材料の入手容易性、環境負荷、加工のしやすさの点から、特にスチールが好ましい。
金属成形物としては、金属繊維の成形物、貫通孔を有する金属板の成形物等が例示できる。前記貫通孔の内径は0.1〜100mmが好ましく、5〜30mmがより好ましい。
金属成形物の嵩密度は0.01〜2.0g/cmが好ましく、0.06〜0.5g/cmがより好ましく、0.1〜0.25g/cmがさらに好ましい。
金属成形物の空隙率は70〜99.99%が好ましく、95〜99.9%がより好ましく、97〜99.5%がさらに好ましい。
金属成形物の空隙率は(単位:%)は下記式(I)で求められる値である。
空隙率=(1−x/y)×100・・・(I)
[式中、xは金属成形物の嵩密度(単位:g/cm)、yは金属の密度(単位:g/cm)である。]
金属成形物は、処理液との接触面積を大きくしやすい点で金属繊維からなる成形物(以下、金属繊維成形物ともいう。)が好ましい。
金属繊維の直径は0.01〜3mmが好ましく、0.02mm〜2mmがより好ましく、0.02mm〜0.1mmがさらに好ましい。直径が前記範囲の上限値以下であると単位質量あたりの表面積(比表面積)を大きくして、処理液との接触面積をより大きくできる点で好ましい。前記範囲の下限値以上であると繊維が破断し難い。
金属繊維成形物は、繊維が絡まった塊(ウール)状でもよく、メッシュ状でもよい。
金属繊維成形物は、通液性を損なわない範囲で、金属繊維以外の材料からなる部材と一体化されていてもよい。
例えば、金属繊維以外の材料からなる芯材に金属繊維成形物を巻き付けた複合部材を発酵槽内に設置してもよく、金属製または樹脂製のフレームに金属繊維成形物を固定した構造物を発酵槽内に設置してもよい。
または、処理液中で浮遊しやすい材料からなる芯材の周りに、金属繊維成形物を固定した複合部材とすることで、金属繊維成形物を処理液の液面に浮遊させることができる。
前記芯材の比重は1.0以下が好ましく、0.001〜0.8がより好ましく、0.01〜0.5がさらに好ましい。芯材の比重が前記範囲の上限値以下であると、金属繊維成形物を処理液の液面に接触させやすい。下限値以上であると、金属繊維成形物と処理液とを充分に接触させやすい。芯材の材料としては、発泡樹脂が挙げられる。
本明細書において「比重」の基準は水(4℃)である。
前記芯材と金属繊維成形物の複合部材において、金属繊維/芯材の質量比は0.01/1〜100/1が好ましく、0.1/1〜50/1がより好ましく、0.3/1〜30/1がさらに好ましい。
次に、バイオガス製造装置1を用いたバイオガス製造方法を説明する。
消化液が残存する発酵槽4に、汚泥貯留槽3から下水汚泥を供給し、油脂含有廃棄物貯留槽2から油脂含有廃棄物を供給する。発酵槽4内の処理液は、菌床である消化液と下水汚泥と油脂含有廃棄物を含む。
発酵槽4内の処理液を所定の温度に保持し、処理液が金属成形物に接触した状態で、好ましくは処理液を撹拌しながら、処理液のメタン発酵を行う。
発酵槽4内の処理液の温度(培養温度)は、20〜70℃が好ましく、30〜60℃がより好ましく、30〜40℃または50〜60℃がさらに好ましく、30〜40℃であることが特に好ましい。
発酵槽4に供給する下水汚泥の蒸発残留物(TS)濃度は、1〜25質量%が好ましく、2〜20質量%がより好ましく、3〜15質量%がさらに好ましい。TS濃度が上記下限値以上であれば、発酵槽を大きくし過ぎる必要がない。一方、TS濃度が上記上限値以下であれば、発酵阻害が生じ難い。
発酵槽4への油脂含有廃棄物の供給量は、発酵槽4内の処理液に対して油脂(未発酵)が0.1〜10質量%の範囲内に維持されるように調整することが好ましい。前記油脂の含有量は0.5〜5質量%が好ましく、1〜3.5質量%がより好ましく、1〜3質量%がさらに好ましい。前記範囲の上限値以下であると発酵不良が生じ難い。下限値以上であると発酵効率に優れ、油脂の存在下で下水汚泥のメタン発酵を行う場合には、下水汚泥の消化率の向上効果に優れる。
発酵槽4内に設置する金属成形物の量(使用量)は、処理液に対する金属成形物の割合が0.1〜50質量%であることが好ましく、0.3〜10質量%がより好ましく、0.8〜3.5質量%がさらに好ましく、1〜3質量%が特に好ましい。上記範囲の下限値以上であると金属成形物による発酵効率向上効果に優れ、上限値以下であると処理液の流動性が損なわれ難く、発酵不良が生じ難い。
発酵槽4内の、金属成形物に対する、処理液中の油脂(未発酵)との質量比を表す、油脂/金属成形物は10/0.1〜1/10が好ましく、3/0.1〜1/3がより好ましく、1/0.1〜1/2がさらに好ましい。金属成形物の割合が前記範囲の下限値以上であると金属成形物による発酵効率向上効果に優れ、上限値以下であると金属元素に起因する発酵の抑制が生じ難い。また上限値を超えると発酵効率の向上効果が飽和しやすい。
発酵槽4における処理液のメタン発酵は、回分式培養法(バッチ生産、非連続生産)または連続培養法で行われる。
回分式培養法(バッチ生産、非連続生産)は、fill−and−drawで処理する方式であり、発酵槽4に下水汚泥と油脂含有廃棄物を供給してメタン発酵が開始した後、処理終了時まで下水汚泥または油脂含有廃棄物の追加や、発酵槽4から消化液の排出を行わない方法である。
連続培養法は、発酵槽4に下水汚泥と油脂含有廃棄物を連続的または間欠的に供給するとともに、発酵槽4内の消化液の一部を連続的または間欠的に排出し、発酵槽4内の処理液量をほぼ一定量に保持しながら処理する方法である。
発酵槽4で生成した消化液は、消化液貯留槽5で貯留される。消化液はそのまま排出してもよく、液肥等として用いることができる。または、消化液を好気処理し、汚泥脱水機で脱水処理してもよい。
発酵槽4にて生成したバイオガスは、硫化水素等の不純物ガスを含むため、脱硫塔6に送られて、これらの不純物ガスが除去される。
脱硫塔6にて不純物ガスが除去されたバイオガスは、バイオガスタンク7に送られて貯留される。バイオガスタンク7に貯留されているバイオガスは、適宜、ガスボンベ等に供給されて用いられるか、または、バイオガスタンク7に直接、接続されているバイオガス利用設備に供給されて用いられる。
本発明のバイオガス製造方法によれば、油脂を含む処理液に金属成形物を接触させた状態でメタン発酵を行うことにより、バイオガスの生成が促進され、バイオガスの生成量を増大させることができる。
具体的に、後述の実施例に示されるように、金属成形物を設けることによって、同じ処理液から生成されるバイオガスの量を増大させることができる。また、バイオガス生成促進開始日までの期間を短縮することもできる。ガス生成促進開始日までの期間が短縮されると、処理施設の稼動効率を高めることができる。
特に処理液の液面に油脂が浮遊している場合に、処理液の液面に金属成形物を接触させると油脂が乳化されやすく、油脂の消化率が向上しやすい。また、油脂と金属成形物とを接触させた状態で処理液を撹拌すると、油脂がより乳化されやすく、油脂の消化率がより向上しやすい。
以下、実施例を示して本発明を詳細に説明するが、本発明は以下の記載によって限定されるものではない。
<油脂含有廃棄物または油脂>
・キャノラ油:日清オイリオグループ社製、油脂含有量100質量%。
・天かす油:全国油脂事業共同組合連合会より入手した、天ぷらの製造を行なった後の天かすを含む廃食用油。油脂の含有量35質量%。
・乳化物:食品工場のグリストラップで生成した乳化物。キャノラ油と、食肉より抽出された油脂分と、水の混合物。油脂の含有量31質量%。
<金属繊維成形物(金属成形物)>
・スチールウール(1):日本スチールウール社製、ボンスター(登録商標)、品番:B201、等級:#0(繊維中心径0.025mm)を裁断したもの。下記の3種を用意した。
(1−a)長さ4cm、幅0.5cm、厚さ0.5cm、質量0.1g。
(1−b)長さ4cm、幅0.9cm、厚さ0.9cm、質量0.3g。
(1−c)長さ4cm、幅1.6cm、厚さ1.6cm、質量1g。
・スチールウール(2):前記スチールウール(1−a)を長さ2cmに切断して二等分したもの。1個の質量0.05g。
・スチールウール(3):日本スチールウール社製、ボンスター(登録商標)、品番:B205、等級:#1(繊維中心径0.035mm)を、長さ4cm、幅2cm、厚さ2cmに裁断したもの。1個の質量1g。
・ステンレスウール:日本スチールウール社製、品番:SW−202、等級:#M中(繊維中心径0.06mm)を裁断したもの。下記の2種を用意した。
(a)長さ4cm、幅0.6cm、厚さ0.6cm、質量0.1g。
(b)長さ4cm、幅2cm、厚さ2cm、質量1g。
・銅ウール:日本スチールウール社製、繊維中心径0.08mmの銅ウールを、長さ4cm、幅1cm、厚さ1cmに裁断したもの。1個の質量1g。
・黄銅ウール:日本スチールウール社製、繊維中心径0.08mmの黄銅ウールを、長さ4cm、幅2.5cmm、厚さ2.5cmに裁断したもの。1個の質量1g。
上記金属繊維成形物を構成する繊維の直径(カタログ値)、成形物の嵩密度(測定値)、金属材料の密度(文献値)、前記式(I)で求めた成形物の空隙率を表1に示す。
Figure 0006945467
<比較の部材>
・鉄粉:和光純薬社製、試薬、粒径0.12mm以下(0.15mmメッシュ通過品)。鉄粉の嵩密度(測定値)、鉄の密度(文献値)、前記式(I)で求めた鉄粉の空隙率を表1に示す。
・ポリウレタン発泡体:3M社製、スコッチブライト(登録商標)、品番キッチンスポンジを裁断したもの。長さ2cm、幅0.5cm、厚さ0.7cm、1個の質量0.02g、比重0.03。
・導電性発泡樹脂:カーボンが練り込まれたポリエチレン発泡体、三和化工社製、ニューペルカ(登録商標)、品番LCX−300を裁断したもの。長さ2cm、幅0.5cm、厚さ0.7cm、1個の質量0.02g。
・ポリウレタン繊維:旭化成社製、スパンデックス(登録商標)、品番60デニールの繊維束。長さ2cm、質量0.1g。
[実施例1]
下水汚泥の消化液(TS濃度1.03質量%)に、下水処理場から採取した未発酵の下水汚泥(TS濃度2.22質量%)を10容量%となるように添加したものを汚泥含有液とした。
容量100mLの透明ガラス製のバイアル瓶(胴径:約4cm、高さ12.8cm)にキャノラ油と汚泥含有液を表2に示す使用量(単位:g)で投入し処理液とした。バイアル瓶の底面から、バイアル瓶内の処理液の液面までの高さは約3cmであった。
バイアル瓶内に、スチールウール(2)を2個(合計0.1g)挿入した。スチールウール(2)は長さが2cmであるため処理液中に沈み、スチールウール(2)と処理液の液面との接触は無かった。
バイアル瓶内の気体を窒素で置換した後、バイアル瓶をゴム栓およびアルミ栓を用いて密封した。
密封したバイアル瓶を37℃で1時間保温して、膨張した窒素をシリンジで排出した。具体的には、1時間保温した直後にシリンジの針をゴム栓に刺し、バイアル瓶内の気体(窒素)の膨張した分をシリンジ内に移行させた。シリンジのピストンの移動が停止した後にシリンジの針を抜くことによって、膨張した窒素を排出した。
その後、温度を37℃に保ち、振とう幅4cm、振とう数120回/分で振とう(撹拌)を続けた。振とう開始の時点を処理開始とする。処理開始から4日または5日おきに、シリンジの針をゴム栓に刺し、ピストンの移動が停止するまでバイアル瓶内からシリンジに気体(バイオガス)を移行させた。ピストンの移動量に相当する体積を、4日間または5日間のバイオガス生成量(単位:mL)として測定した。
処理開始からの処理日数(単位:日)を横軸、処理開始からのバイオガス生成量積算値(単位:mL)を縦軸とするグラフを作成した。後述の比較例2についての同様のグラフを基準とする。バイオガス生成量積算値が基準よりも20mL以上多い値に達した処理日数を、バイオガス生成促進開始日とする。また、処理開始から75日間のバイオガス生成量積算値を、バイオガス総量(75日間)とする。結果を表に示す(以下、同様)。
[実施例2〜4]
実施例1において、金属成形物をスチールウール(1)に変更し、長さ方向が略垂直方向となるようにバイアル瓶内に挿入した。また、スチールウール(1)は、(1−a)〜(1−c)のうち表2に示す質量のものを用いた。そのほかは実施例1と同様である。
スチールウール(1)は長さが4cmであるため、静置したときに上端が処理液の液面より上方に位置し、スチールウール(1)と処理液の液面とは接触した。振とう中はスチールウール(1)全体が処理液と接触した。
[実施例5〜9]
実施例1において、金属成形物の種類と使用量を表2に示すとおりに変更し、金属成形物の長さ方向が略垂直方向となるようにバイアル瓶内に挿入した。ステンレスウールは(a)または(b)のうち表2に示す質量のものを用いた。そのほかは実施例1と同様である。いずれの例においても、静置したときに金属成形物の上端は処理液の液面より上方に位置し、金属成形物と処理液の液面とは接触した。振とう中は金属成形物全体が処理液と接触した。
[実施例10]
前記比較の部材であるポリウレタン発泡体を、長さ2cm、幅0.5cm、厚さ0.5cm、質量0.013gに切断したものを芯材とし、前記スチールウール(2)をシート状に変形させたものを前記芯材に巻き付けて複合部材(1)を作製した。複合部材の長さは2cm、金属繊維/芯材の質量比は3.8/1である。
実施例1において、スチールウール(2)を2個の代わりに、前記複合部材の2個をバイアル瓶内に挿入した。その他は実施例1と同様である。複合部材は処理液中で浮遊して液面と接触した。
[実施例11]
実施例2において、キャノラ油の使用量を表2に示すとおりに変更した。そのほかは実施例2と同様である。
[実施例12]
実施例4において、キャノラ油1gを天かす1gに変更した。そのほかは実施例4と同様である。
[実施例13]
実施例4において、キャノラ油1gを乳化物3gに変更した。そのほかは実施例4と同様である。
[比較例1]
本例は、油脂含有廃棄物、および金属成形物のいずれも使用しない比較例である。
バイアル瓶に汚泥含有液30gのみを入れた。そのほかは実施例1と同様である。
[比較例2]
本例は、金属成形物を使用しない比較例である。そのほかは実施例1と同様である。
[比較例3〜6]
実施例1において、金属成形物を使用せず、その代わりに比較の部材を表3に示す使用量で用いた。そのほかは実施例1と同様である。
比較例3では、金属成形物を使用せず、鉄粉を用いた。
比較例4〜6の部材は処理液中で浮遊し液面と接触した。
[比較例7]
本例は、実施例12において金属成形物を使用しない比較例である。そのほかは実施例12と同様である。
[比較例8]
本例は、実施例13において金属成形物を使用しない比較例である。そのほかは実施例13と同様である。
Figure 0006945467
Figure 0006945467
表2、3の結果に示されるように、金属成形物を使用した実施例1〜13は、バイオガス生成促進開始日が10日〜75日の間であり、比較例2よりもバイオガスの生成反応が促進されたことがわかる。比較例4〜6は、比較例2のバイオガス生成量積算値との差が小さくバイオガス生成促進開始日は存在しなかった。
処理液の組成が同じである実施例1〜10と比較例2とを比べると、金属成形物を使用することにより、バイオガス総量(75日間)が格段に増加した。
実施例3と比較例3を比べると、鉄粉を用いた比較例3よりも、スチールウール(1)を用いた実施例3の方が、バイオガス生成促進開始日が格段に早く、バイオガス総量(75日間)が大幅に向上した。
実施例4のバイオガス生成促進開始日である12日目に、実施例4、12、13、および比較例2、7、8のバイアル瓶内の処理液を目視で観察したところ、比較例2、7、8では油分が塊状で存在していた。一方、実施例4、12、13では油分は分散しており塊は観察されなかった。
また、処理開始から12日後に比較例3のバイアル瓶内の処理液を目視で観察したところ、油分が塊状で存在していた。
また、処理開始から75日後に比較例4〜6のバイアル瓶内の処理液を目視で観察したところ、比較の部材に油分が吸着していた。
[実施例14]
本例では、連続して処理を行った。
実施例3において、処理開始から75日目に、バイアル瓶内の処理液にキャノラ油1gを追加添加し、さらに同じ条件で保温および振とうを行なった。キャノラ油1gを追加添加してから75日間のバイオガス総量は1045mLであった。
油脂を追加して連続処理を行う場合にも、金属成形物を用いることによるバイオガスの生成促進効果が得られることが確認された。
1 バイオガス製造装置
2 油脂含有廃棄物貯留槽
3 汚泥貯留槽
4 発酵槽
5 消化液貯留槽
6 脱硫塔
7 バイオガスタンク

Claims (11)

  1. 油脂を含有する廃棄物を含む処理液から嫌気的発酵によりバイオガスを生成する装置であって、
    前記処理液を収容する発酵槽を備え、前記発酵槽内の処理液と接触する位置に、直径0.01〜3mmの金属繊維からなり外部と通液する空隙を有する金属成形物が設けられており、
    前記金属繊維の材質が、スチール、ステンレス、銅又は黄銅である、バイオガス製造装置。
  2. 前記金属成形物が、スチールウール、ステンレスウール、銅ウール又は黄銅ウールである、請求項1に記載の製造装置。
  3. 前記金属成形物の嵩密度が0.01〜2.0g/cmである、請求項1または2に記載の製造装置。
  4. 前記金属成形物の空隙率が70〜99.99%である、請求項1〜3のいずれか一項に記載の製造装置。
  5. 前記金属成形物が前記処理液の液面と接触する位置に設けられている、請求項1〜4のいずれか一項に記載の製造装置。
  6. 前記発酵槽内の処理液を撹拌する撹拌手段をさらに備える、請求項1〜5のいずれか一項に記載の製造装置。
  7. 油脂を含有する廃棄物を含む処理液から嫌気的発酵によりバイオガスを生成する方法であって、
    前記処理液に、直径0.01〜3mmの金属繊維からなり外部と通液する空隙を有する金属成形物が接触した状態で嫌気的発酵を行う工程を有し
    前記金属繊維の材質が、スチール、ステンレス、銅又は黄銅である、バイオガス製造方法。
  8. 前記処理液に対して前記金属成形物が0.1〜50質量%である、請求項7に記載の製造方法。
  9. 前記処理液に対して前記油脂が0.1〜10質量%である、請求項7または8に記載の製造方法。
  10. 前記金属成形物に対する前記油脂の質量比を表す油脂/金属成形物が10/0.1〜1/10である、請求項7〜9のいずれか一項に記載の製造方法。
  11. 前記処理液が下水汚泥を含む、請求項7〜10のいずれか一項に記載の製造方法。
JP2018015810A 2018-01-31 2018-01-31 バイオガスの製造装置および製造方法 Active JP6945467B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018015810A JP6945467B2 (ja) 2018-01-31 2018-01-31 バイオガスの製造装置および製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018015810A JP6945467B2 (ja) 2018-01-31 2018-01-31 バイオガスの製造装置および製造方法

Publications (2)

Publication Number Publication Date
JP2019130489A JP2019130489A (ja) 2019-08-08
JP6945467B2 true JP6945467B2 (ja) 2021-10-06

Family

ID=67547040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018015810A Active JP6945467B2 (ja) 2018-01-31 2018-01-31 バイオガスの製造装置および製造方法

Country Status (1)

Country Link
JP (1) JP6945467B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879555A (en) * 1997-02-21 1999-03-09 Mockba Corporation Electrochemical treatment of materials
JP3852334B2 (ja) * 2001-12-25 2006-11-29 石川島播磨重工業株式会社 有機性廃棄物消化用微生物担体の製造方法
JP2003190985A (ja) * 2001-12-26 2003-07-08 Ishikawajima Harima Heavy Ind Co Ltd 嫌気性消化用微生物担体とその製造方法
CN102120675B (zh) * 2011-01-25 2012-11-07 大连理工大学 一种零价铁两相厌氧反应器
JP6637671B2 (ja) * 2015-04-15 2020-01-29 水ing株式会社 有機性廃棄物の処理装置

Also Published As

Publication number Publication date
JP2019130489A (ja) 2019-08-08

Similar Documents

Publication Publication Date Title
Ohimain et al. A review of biogas production from palm oil mill effluents using different configurations of bioreactors
CN101999516B (zh) 一种餐厨垃圾制备生物蛋白饲料的方法
Kuczman et al. Food waste anaerobic digestion of a popular restaurant in Southern Brazil
Elsamadony et al. Potential of biohydrogen production from organic fraction of municipal solid waste (OFMSW) using pilot-scale dry anaerobic reactor
Barik et al. Potential reuse of kitchen food waste
CN103074381A (zh) 餐厨垃圾高效分选厌氧发酵资源化处理的方法
JP3617528B1 (ja) バイオマス処理方法
JP6637671B2 (ja) 有機性廃棄物の処理装置
JP4408328B2 (ja) 有機性排水の処理方法及び装置
CN101574701A (zh) 餐厨废物的处理方法及系统
Zhang et al. Lipid accumulation from Trichosporon oleaginosus with co-fermentation of washed wastewater sludge and crude glycerol
CN104445513A (zh) 一种吸附餐厨废水中油脂的秸秆处理方法
CN105601070A (zh) 有机废物厌氧消化-微生物电解耦合反应系统及其方法
Ojewumi et al. Co-digestion of cow dung with organic kitchen waste to produce biogas using Pseudomonas aeruginosa
JP6011126B2 (ja) 油脂製造方法及び油脂製造装置
JP5880217B2 (ja) 油脂含有排水の処理方法
Nutiu Anaerobic purification installation with production of biogas and liquid fertilizers
JP6945467B2 (ja) バイオガスの製造装置および製造方法
CN201552171U (zh) 移动式有机废弃物资源再生处理系统
Nalo et al. Anaerobic digestion of municipal solid waste: a critical analysis
WO2016103949A1 (ja) 油脂含有排水の処理方法及び処理装置
Kuusik et al. Anaerobic co-digestion of sewage sludge with fish farming waste
JP2016007574A (ja) 嫌気性生物処理装置および嫌気性生物処理方法
KR20140073802A (ko) 신속한 처리를 위한 음식물쓰레기 발효처리장치 및 발효처리방법
Alvarado-Lassman et al. Biogas production from the mechanically pretreated, liquid fraction of sorted organic municipal solid wastes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210914

R150 Certificate of patent or registration of utility model

Ref document number: 6945467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350