JP6945123B2 - Heat-melt transfer type ink ribbon - Google Patents

Heat-melt transfer type ink ribbon Download PDF

Info

Publication number
JP6945123B2
JP6945123B2 JP2017233800A JP2017233800A JP6945123B2 JP 6945123 B2 JP6945123 B2 JP 6945123B2 JP 2017233800 A JP2017233800 A JP 2017233800A JP 2017233800 A JP2017233800 A JP 2017233800A JP 6945123 B2 JP6945123 B2 JP 6945123B2
Authority
JP
Japan
Prior art keywords
heat
transfer control
control layer
layer
density polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017233800A
Other languages
Japanese (ja)
Other versions
JP2019093696A (en
Inventor
堀 芳行
芳行 堀
慎太郎 小島
慎太郎 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dynic Corp
Original Assignee
Dynic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynic Corp filed Critical Dynic Corp
Priority to JP2017233800A priority Critical patent/JP6945123B2/en
Publication of JP2019093696A publication Critical patent/JP2019093696A/en
Application granted granted Critical
Publication of JP6945123B2 publication Critical patent/JP6945123B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)

Description

本発明は、高温環境下における環境保存性能と印字品質に優れた熱溶融転写型インクリボンに関する。 The present invention relates to a heat-melt transfer type ink ribbon having excellent environmental storage performance and print quality in a high temperature environment.

基材フィルム上に少なくとも顔料等の着色剤と各種ワックスや樹脂などのバインダーを含有するインク層を設けた熱溶融転写型インクリボンは、熱転写プリンタに装填して用いられ、工場や物流倉庫などで各種伝票類や製品タグや物流管理用ラベルなどに文字情報やバーコードを印字する用途等で幅広く利用されている。 A heat-melt transfer type ink ribbon in which an ink layer containing at least a colorant such as a pigment and a binder such as various waxes and resins is provided on a base film is loaded into a heat transfer printer and used in factories and distribution warehouses. It is widely used for printing character information and bar codes on various slips, product tags, distribution management labels, and the like.

熱転写プリンタは、レーザープリンタの様なオフィス用プリンタと比較してプリンタ自体の大きさがコンパクトである為に持ち運びが容易であり、さらに単純な構造で出来ている為に故障しにくいなどの理由から、様々な環境下での利用が想定されている。例えば寒冷地域や冬場の空調の効いていない場所などの気温の低い環境下や、熱帯地域や夏場の空調の効いていない場所などの気温が高い環境下などで実際に使用されることがある。 Compared to office printers such as laser printers, thermal transfer printers are easy to carry because the size of the printer itself is compact, and because they have a simple structure, they are less likely to break down. , It is expected to be used in various environments. For example, it may actually be used in a low temperature environment such as a cold area or a place where the air conditioning is not effective in winter, or in a high temperature environment such as a tropical area or a place where the air conditioning is not effective in summer.

このような中でも特に気温が高い環境下においては、熱溶融転写型インクリボンを巻きの状態で長時間保管しているだけでも、外気温の熱と巻きの圧力の影響でインク層と耐熱滑性層が接着してしまうブロッキング現象が発生したり、インク層や転写制御層が軟化・変形することによって印字品質が低下したりするなどの環境保存性能の問題が発生することがあった。 Even under these circumstances, especially in a high temperature environment, even if the heat-melt transfer type ink ribbon is stored for a long time in a wound state, the ink layer and heat-resistant slipperiness are affected by the heat of the outside temperature and the winding pressure. Problems with environmental preservation performance such as a blocking phenomenon in which the layers adhere to each other and a deterioration in print quality due to softening and deformation of the ink layer and the transfer control layer may occur.

また熱転写プリンタに熱溶融転写型インクリボンを装填して連続印字を行うと、印字の際に発生した熱がサーマルヘッドに蓄熱し、その熱が原因で面状剥離と言われる印字品質の問題が発生することがあったが、この面状剥離の現象は気温が高い環境下においてより発生し易い傾向があった。 In addition, when a thermal transfer type ink ribbon is loaded into a thermal transfer printer and continuous printing is performed, the heat generated during printing is stored in the thermal head, and the heat causes a problem of print quality called planar peeling. Although it sometimes occurred, this phenomenon of planar peeling tended to occur more easily in a high temperature environment.

面状剥離について説明すると、面状剥離は図2に示されるように、本来形成予定であった印字画像部分7aの被印字媒体6の搬送方向の反対側に鱗片状に不均一に形成された印字画像部分7bの事を指し、印字画像部分7aが被印字媒体6に対してしっかり転写して接着しているのに対し、面状剥離した部分7bは被印字媒体6に対して通常は接着していない。この面状剥離が発生すると、文字情報などの印字においては外観上見た目が悪いだけでなくその状態が酷い場合には文字を認識出来なくなり、バーコードなどの印字においてはバーコードの読み取り不良が発生するなどの印字品質上の不具合が発生するだけでなく、面状剥離した部分が取れて飛散する事によって被印字媒体や周囲環境を汚染するなどの問題も発生する。 Explaining the planar peeling, as shown in FIG. 2, the planar peeling was formed unevenly in a scaly shape on the opposite side of the printed image portion 7a to be printed in the transport direction, which was originally planned to be formed. It refers to the printed image portion 7b, and while the printed image portion 7a is firmly transferred and adhered to the printed medium 6, the surface-peeled portion 7b is normally adhered to the printed medium 6. Not done. When this surface peeling occurs, not only the appearance is bad in printing character information, but also the characters cannot be recognized when the condition is terrible, and the barcode reading failure occurs in the printing of barcodes. Not only does this cause problems with print quality, but it also causes problems such as contaminating the printed medium and the surrounding environment due to the peeled-out portion being removed and scattered.

熱転写プリンタによって行われる通常の印字の仕組みを説明すると、図3に示すように被印字媒体6と熱溶融転写型インクリボン1は熱転写プリンタのサーマルヘッド8とプラテンロール9の間に挟まれて圧着された状態で熱転写プリンタにセットされる。印字の際にはサーマルヘッド8によって印字画像形成する部分の転写制御層4とインク層5が加熱されて軟化・溶融し、それらが被印字媒体6の表層部に対して浸み込んだり濡れたりした後に冷却されてある程度固化したタイミングで熱溶融転写型インクリボン1と被印字媒体6が剥離される事によって被印字媒体6に転写制御層4とインク層5からなる印字画像が転写形成される。 Explaining the normal printing mechanism performed by the thermal transfer printer, as shown in FIG. 3, the printing medium 6 and the thermal melt transfer type ink ribbon 1 are sandwiched between the thermal head 8 and the platen roll 9 of the thermal transfer printer and crimped. It is set in the thermal transfer printer in the state where it is set. At the time of printing, the transfer control layer 4 and the ink layer 5 of the portion where the printed image is formed by the thermal head 8 are heated to soften and melt, and they permeate or get wet with respect to the surface layer portion of the printing medium 6. After that, the heat-melt transfer type ink ribbon 1 and the printing medium 6 are peeled off at the timing when the ink ribbon 1 and the printing medium 6 are cooled and solidified to some extent, so that a printed image composed of the transfer control layer 4 and the ink layer 5 is transferred and formed on the printing medium 6. ..

正常な印字の際には、図3のA−B間の転写制御層4とインク層5だけがサーマルヘッド8によって過熱されて軟化・溶融し、最も接着力が弱くなる転写制御層4と基材フィルム2との界面付近で層間剥離が発生して図3のA−B間の転写制御層4とインク層5だけが被印字媒体6に転写され、つまりは図3の7aの部分の本来形成予定であった印字画像部分だけが形成される。 During normal printing, only the transfer control layer 4 and the ink layer 5 between AB in FIG. 3 are overheated by the thermal head 8 to soften and melt, and the transfer control layer 4 and the base have the weakest adhesive force. Delamination occurs near the interface with the material film 2, and only the transfer control layer 4 and the ink layer 5 between AB in FIG. 3 are transferred to the printing medium 6, that is, the original portion 7a in FIG. 3 Only the printed image portion that was planned to be formed is formed.

しかしながら面状剥離が発生する印字の際には、サーマルヘッド8が図3のA−B間でしか加熱をしていないにも関わらず、何らかの原因で印字の際にサーマルヘッド8にたくさん蓄積された熱によって、少なくとも図3のB−C間の基材フィルム2に近い側の転写制御層4の一部が軟化・溶融されてしまうがインク層5の最外層までは軟化・溶融されないという状態になり、熱溶融転写型インクリボン1と被印字媒体6を剥離する際にAからBの間の軟化・溶融したインク層5と転写制御層4が固化した本来形成予定の印字画像部分である印字画像7aに引っ張られる形で図3のB−C間の転写制御層4とインク層5の一部が面状剥離部分である印字画像7bとして転写される。この印字画像7bの部分は、印字画像7aの部分に無理やり引っ張られる形で転写されており、図3のB−C間の転写制御層4やインク層5は機械的に無理やり破断されている為にその破断面は図2に示すように非常に不均一に形成されており、またこの部分のインク層5は軟化・溶融されなかった為に被転写媒体6に対して転写はしているもの接着していない。このように面状剥離した印字画像7bは、本来印字形成を意図された部分ではない上に被転写媒体6に対して接着もしていないので、上述したような印字品質の問題や汚染の問題を引き起こす。 However, in the case of printing in which surface peeling occurs, a large amount of the thermal head 8 is accumulated in the thermal head 8 during printing even though the thermal head 8 is heated only between A and B in FIG. At least a part of the transfer control layer 4 on the side close to the base film 2 between BC and BC in FIG. 3 is softened and melted by the heat generated, but the outermost layer of the ink layer 5 is not softened and melted. This is the originally planned print image portion in which the softened / melted ink layer 5 and the transfer control layer 4 between A and B are solidified when the heat-melt transfer type ink ribbon 1 and the print medium 6 are peeled off. A part of the transfer control layer 4 and the ink layer 5 between BC and BC in FIG. 3 is transferred as a printed image 7b which is a planar peeling portion while being pulled by the printed image 7a. The portion of the printed image 7b is transferred to the portion of the printed image 7a in a form of being forcibly pulled, and the transfer control layer 4 and the ink layer 5 between BC in FIG. 3 are mechanically forcibly broken. The fracture surface is formed very non-uniformly as shown in FIG. 2, and the ink layer 5 in this portion is not softened or melted, so that the ink layer 5 is transferred to the transfer medium 6. Not glued. Since the printed image 7b that has been stripped from the surface in this way is not a portion originally intended for print formation and is not adhered to the transfer medium 6, the problems of print quality and contamination as described above can be solved. cause.

前述したような問題を改善する為に、例えば特許文献1には、支持体上に着色材、熱溶融性物質、熱可塑性物質、界面活性剤を含有する色材層を塗設してなる感熱転写記録媒体において、全ての構成素材が40℃以上の融点を有することによって、転写感度の低下がなく、ブロッキング耐性に優れ、高温環境下においても良好な印字品質を示す事が可能であることが記載されている。 In order to improve the above-mentioned problems, for example, Patent Document 1 has a feeling that a coloring material layer containing a coloring material, a heat-meltable substance, a thermoplastic substance, and a surfactant is applied on a support. In the thermal transfer recording medium, since all the constituent materials have a melting point of 40 ° C. or higher, the transfer sensitivity does not decrease, the blocking resistance is excellent, and it is possible to show good print quality even in a high temperature environment. Have been described.

また特許文献2には、熱転写記録媒体におけるプライマー層をワックスとそのワックスに非相溶な熱可塑性樹脂とから構成し、さらには熱可塑性樹脂がサーマルヘッドの余熱によって溶融しないような樹脂を使用する事によって、記録画像の面状剥離を防止し、記録画像に高い耐擦過性を付与することが可能であることが記載されている。 Further, Patent Document 2 uses a resin in which the primer layer in the thermal transfer recording medium is composed of wax and a thermoplastic resin incompatible with the wax, and the thermoplastic resin is not melted by the residual heat of the thermal head. It is described that it is possible to prevent the surface peeling of the recorded image and impart high scratch resistance to the recorded image.

しかしながら、特許文献1に示されるような熱溶融転写型インクリボンでは、例えば構成素材の融点を45℃にしたとしても融点より少し低い温度から構成素材は融解し始める事などから実際には気温が40℃の環境下での環境保存においてもブロッキング現象や印字品質の低下などの発生を確実に防止することが出来ない場合があり、そのような熱溶融転写型インクリボンは当然ながら気温50℃の環境下での環境保存においてはほとんどブロッキング現象等を防ぐことが出来なかった。 However, in the heat-melt transfer type ink ribbon as shown in Patent Document 1, for example, even if the melting point of the constituent material is set to 45 ° C., the constituent material starts to melt from a temperature slightly lower than the melting point, so that the actual temperature is actually high. Even when stored in an environment of 40 ° C, it may not be possible to reliably prevent the occurrence of blocking phenomenon and deterioration of print quality, and such a heat-melt transfer type ink ribbon naturally has a temperature of 50 ° C. In the environment preservation under the environment, it was almost impossible to prevent the blocking phenomenon and the like.

また特許文献2に示されるような熱溶融転写型インクリボンを用いれば、気温25℃程度の常温環境下においては印字の際のサーマルヘッド蓄熱による印字画像の面状剥離を防止することに効果があったが、気温40℃の高温環境下においてはサーマルヘッドの蓄熱温度がより高くなった事が原因で、プライマー層に用いるワックスの添加量と融点の条件によっては印字画像の面状剥離を効果的に防止することが出来ない事があった。またこのようにプライマー層が互いに非相溶な原料同士から構成され、さらに接着剤となる熱可塑性樹脂の融点又は軟化点が非常に高い場合には、印字の際にプライマー層と基材フィルムの接着力があまり低下せず比較的強いままである為に、面状剥離は発生しにくいものの、本来形成しようとしていた印字画像がカスレたり細線などが転写しにくい等の転写性の不具合などの別の印字品質の問題が発生し易い傾向があった。 Further, if a heat-melt transfer type ink ribbon as shown in Patent Document 2 is used, it is effective in preventing surface peeling of the printed image due to heat storage of the thermal head during printing in a normal temperature environment of about 25 ° C. However, due to the higher heat storage temperature of the thermal head in a high temperature environment of 40 ° C, the surface peeling of the printed image is effective depending on the amount of wax added to the primer layer and the melting point conditions. There were some things that could not be prevented. Further, when the primer layer is composed of raw materials that are incompatible with each other and the melting point or softening point of the thermoplastic resin as an adhesive is very high, the primer layer and the base film are used during printing. Since the adhesive strength does not decrease so much and remains relatively strong, planar peeling is unlikely to occur, but there are other problems such as transferability problems such as blurring of the printed image that was originally intended to be formed and difficulty in transferring fine lines. Print quality problems tended to occur.

特開昭63−3995号公報Japanese Unexamined Patent Publication No. 63-3995 特開2003−182254号公報Japanese Unexamined Patent Publication No. 2003-182254

本発明はこのような状況に鑑みてなされたものであり、高温環境下における環境保存性能に優れ、さらに高温環境下において印字を行った場合に印字画像に面状剥離が発生し難い印字品質に優れた熱溶融転写型インクリボンを提供する事が主たる課題である。 The present invention has been made in view of such a situation, and has excellent environmental storage performance in a high temperature environment, and further, when printing is performed in a high temperature environment, the printed image is less likely to have surface peeling. The main task is to provide an excellent heat-melt transfer type ink ribbon.

本発明が解決しようとする一つ目の課題は、高温環境下における環境保存性能に優れている熱溶融転写型インクリボンを提供することである。この課題を解決する為に本発明者が検討した結果、インク層に少なくとも着色材とガラス転移点50℃以上110℃以下の熱可塑性樹脂を含有させる事によって、少なくとも気温50℃における環境保存ではインク層自体の軟化・変形がほとんど起こらない事が分かった。次に本発明者が転写制御層について検討した結果、転写制御層に高密度ポリエチレンワックスの微粒子を50質量%以上含有させ、さらにその高密度ポリエチレンワックスの中でも可能な限り高い温度で融解を開始する物だけを選別した結果、高密度ポリエチレンワックスの示差走査熱量測定法によって測定した融解ピーク温度(JIS K7121(図4のTpm))を110℃以上135℃以下に限定し、さらに融解ピーク温度と補外融解開始温度(JIS K7121(図4のTim))の温度差を10.0℃以内に限定することによって、気温50℃の環境保存試験において転写制御層自体の軟化・変形が全く起こらない事が分かった。本発明者は、上述したようなインク層と転写制御層を組み合わせて用いることによって、少なくとも気温50℃の高温環境下において保存を行っても、ブロッキング現象やインク層と転写制御層の軟化・変形による印字品質の低下がほとんど発生しないような高温環境下における環境保存性能に優れた熱溶融転写型インクリボンを得ることが出来ることを見出した。The first problem to be solved by the present invention is to provide a heat-melt transfer type ink ribbon having excellent environmental preservation performance in a high temperature environment. As a result of studies by the present inventor in order to solve this problem, by incorporating at least a coloring material and a thermoplastic resin having a glass transition point of 50 ° C. or higher and 110 ° C. or lower in the ink layer, the ink can be stored in an environment at least at a temperature of 50 ° C. It was found that the layer itself hardly softened or deformed. Next, as a result of examining the transfer control layer by the present inventor, the transfer control layer contains 50% by mass or more of fine particles of high-density polyethylene wax, and further, melting is started at the highest possible temperature among the high-density polyethylene wax. as a result of selecting only objects, and limited to a differential scanning calorimetry melting peak temperature measured by the measuring method (JIS K7121 (T pm in Figure 4)) 135 ℃ 110 ℃ or more of high density polyethylene wax, and further melting peak temperature by limiting the temperature difference between the extrapolated initial melting temperature (JIS K7121 (T im in FIG. 4)) within 10.0 ° C., occur softening and deformation of the transfer control layer itself in the environment storage test at the temperature 50 ° C. at all I found that there wasn't. By using the ink layer and the transfer control layer in combination as described above, the present inventor causes a blocking phenomenon and softening / deformation of the ink layer and the transfer control layer even if the ink layer and the transfer control layer are stored in a high temperature environment of at least 50 ° C. It has been found that it is possible to obtain a heat-melt transfer type ink ribbon having excellent environmental preservation performance in a high temperature environment in which the print quality is hardly deteriorated due to the above.

本発明が解決しようとする二つ目の課題は、高温環境下において印字を行っても印字画像に面状剥離が発生し難い印字品質に優れた熱溶融転写型インクリボンを提供する事である。この課題を解決する為に本発明者が検討した結果、転写制御層に示差走査熱量測定法によって測定した融解ピーク温度が110℃以上135℃以下で且つ融解ピーク温度と補外融解開始温度の温度差が10.0℃以内である高密度ポリエチレンワックスからなる微粒子を50質量%以上含有させる事によって、気温40℃の高温環境下において連続印字を行った時に図3のB−C間において蓄熱したサーマルヘッドの温度が60℃まで上昇しても、転写制御層に含有させた高密度ポリエチレンワックスからなる微粒子が全く軟化・溶融しない為に、転写制御層と基材フィルムの界面の接着力が全く低下せず、結果的に面状剥離の発生を防止する事見出した。また本発明者は高密度ポリエチレンワックスからなる微粒子を使用する事によって、サーマルヘッドで正常に加熱融解された部分と加熱融解されなかった部分において転写制御層の状態変化が非常に大きくなった結果、転写制御層の箔切れ性が大きく向上することなどが原因で、面状剥離がより起こり難くなる事を見出した。 A second problem to be solved by the present invention is to provide a heat-melt transfer type ink ribbon having excellent print quality in which surface peeling is unlikely to occur in a printed image even when printing is performed in a high temperature environment. .. As a result of examination by the present inventor in order to solve this problem, the melting peak temperature measured by the differential scanning calorific value measurement method on the transfer control layer is 110 ° C. or higher and 135 ° C. or lower, and the melting peak temperature and the external melting start temperature. By containing 50% by mass or more of fine particles made of high-density polyethylene wax having a difference of 10.0 ° C. or less, heat was stored between BC in FIG. 3 when continuous printing was performed in a high temperature environment of 40 ° C. Even if the temperature of the thermal head rises to 60 ° C, the fine particles made of high-density polyethylene wax contained in the transfer control layer do not soften or melt at all, so the adhesive force between the transfer control layer and the base film is completely strong. It was found that the temperature did not decrease, and as a result, the occurrence of planar peeling was prevented. Further, the present inventor used fine particles made of high-density polyethylene wax, and as a result, the state change of the transfer control layer became very large between the portion normally heated and melted by the thermal head and the portion not heated and melted. It has been found that planar peeling is less likely to occur due to the fact that the foil breakability of the transfer control layer is greatly improved.

以上のように本発明者が全ての課題を解決する為に検討を行った結果、基材フィルムの一方の面に耐熱滑性層を設け、他方の面に転写制御層とインク層を順次積層して設けた熱溶融転写型インクリボンであって、インク層が少なくとも着色材とガラス転移点50℃以上110℃以下の熱可塑性樹脂を含有してなり、転写制御層が示差走査熱量測定法によって測定した融解ピーク温度が110℃以上135℃以下で且つ融解ピーク温度と補外融解開始温度の温度差が10.0℃以内である高密度ポリエチレンワックスからなる微粒子を50質量%以上含有してなる熱溶融転写型インクリボンを発明するに至った。 As a result of studies by the present inventor to solve all the problems as described above, a heat-resistant slippery layer is provided on one surface of the base film, and a transfer control layer and an ink layer are sequentially laminated on the other surface. The heat-melt transfer type ink ribbon provided in the above, wherein the ink layer contains at least a coloring material and a thermoplastic resin having a glass transition point of 50 ° C. or higher and 110 ° C. or lower, and the transfer control layer is formed by a differential scanning calorific value measurement method. It contains 50% by mass or more of fine particles made of high-density polyethylene wax whose measured melting peak temperature is 110 ° C. or higher and 135 ° C. or lower, and the temperature difference between the melting peak temperature and the external melting start temperature is 10.0 ° C. or lower. He has invented the heat-melt transfer type ink ribbon.

本発明の熱溶融転写型インクリボンを用いれば、高温環境下において保存を行ってもブロッキング現象や印字品質の低下などの環境保存性能の問題が発生し難く、高温環境下において印字を行っても印字画像に面状剥離などの印字品質の問題も発生し難い。 If the heat-melt transfer type ink ribbon of the present invention is used, problems of environmental storage performance such as blocking phenomenon and deterioration of print quality are unlikely to occur even if the ink ribbon is stored in a high temperature environment, and even if printing is performed in a high temperature environment. Print quality problems such as surface peeling are unlikely to occur in the printed image.

本発明の熱溶融転写型インクリボンの実施形態の一例を示す模式的断面図。FIG. 6 is a schematic cross-sectional view showing an example of an embodiment of the heat-melt transfer type ink ribbon of the present invention. 面状剥離について説明する為の印字画像の模式的平面図。A schematic plan view of a printed image for explaining surface peeling. 面状剥離の発生原理について説明する為の熱転写プリンタのサーマルヘッド周辺部の模式的断面図。A schematic cross-sectional view of the peripheral portion of the thermal head of a thermal transfer printer for explaining the principle of occurrence of planar peeling. 示差走査熱量計によって測定したDSC曲線の溶融ピークについての説明図。Explanatory drawing about the melting peak of a DSC curve measured by a differential scanning calorimeter.

本発明の熱溶融転写型インクリボン1は、基本的に図1に示すように基材フィルム2の一方の面に耐熱滑性層3を設け、他方の面に転写制御層4とインク層5を順次積層して設けた構造をしている。 The heat-melt transfer type ink ribbon 1 of the present invention basically has a heat-resistant slippery layer 3 provided on one surface of the base film 2 as shown in FIG. 1, and a transfer control layer 4 and an ink layer 5 on the other surface. Has a structure in which the above are sequentially laminated.

<<熱溶融転写型インクリボンの各構成体>>
次に本発明における熱溶融転写型インクリボンの各構成体についての詳細を下記に示す。
<< Each component of the heat-melt transfer type ink ribbon >>
Next, details of each component of the heat-melt transfer type ink ribbon in the present invention are shown below.

<基材フィルム>
本発明に使用される基材フィルムとしては、ある程度の耐熱性と強度を有するものであれば特に限定される事はなく、従来公知の材料を適宜選択して用いる事が出来る。このような耐熱性を有した基材フィルムとしては、ポリエチレンテレフタレートフィルム(PET)、ポリプロピレンフィルム、ポリスチレンフィルム、ポリイミドフィルム、ポリアミドフィルム、ポリカーボネートフィルム、ポリ塩化ビニルフィルム等が挙げられるが、ポリエチレンテレフタレートフィルムを使用する事が最も好ましい。基材フィルムの厚みは特に限定はされないが、強度・耐熱性・熱伝導性が適切になるように材料に応じて適宜考慮し、2μm以上12μm以下であれば良いが、熱伝導性が良好であるという理由から3μm以上6μm以下がより好ましい。
<Base film>
The base film used in the present invention is not particularly limited as long as it has a certain degree of heat resistance and strength, and conventionally known materials can be appropriately selected and used. Examples of the base film having such heat resistance include polyethylene terephthalate film (PET), polypropylene film, polystyrene film, polyimide film, polyamide film, polycarbonate film, polyvinyl chloride film and the like. It is most preferable to use it. The thickness of the base film is not particularly limited, but it may be 2 μm or more and 12 μm or less, considering appropriate consideration according to the material so that the strength, heat resistance, and thermal conductivity are appropriate, but the thermal conductivity is good. It is more preferably 3 μm or more and 6 μm or less for the reason that there is.

<耐熱性滑性層>
本発明の熱溶融転写型インクリボンは、印字の際のサーマルヘッドの熱によって、基材フィルムが破断したり、基材フィルムがサーマルヘッドに融着したり、基材フィルムにシワが発生したり、基材フィルムとサーマルヘッド間の滑り性が悪化するスティッキング現象が発生する事を防止する為に、基材フィルムの一方の面に各種シリコン変性樹脂、フッ素系樹脂、ニトロセルロース系樹脂、ポリイミド系樹脂などの公知の各種耐熱性樹脂を主原料とし、その他副原料として接着性樹脂や架橋剤や滑剤や各種有機無機フィラーを適宜混合したものなどからなる耐熱滑性層を設ける。
<Heat-resistant slippery layer>
In the heat-melt transfer type ink ribbon of the present invention, the base film may be broken, the base film may be fused to the thermal head, or the base film may be wrinkled due to the heat of the thermal head during printing. In order to prevent the sticking phenomenon that the slipperiness between the base film and the thermal head deteriorates, various silicon-modified resins, fluorine-based resins, nitrocellulose-based resins, and polyimide-based resins are used on one surface of the base film. A heat-resistant slippery layer is provided in which various known heat-resistant resins such as resins are used as a main raw material, and an adhesive resin, a cross-linking agent, a lubricant, and various organic-inorganic fillers are appropriately mixed as other auxiliary raw materials.

耐熱滑性層の乾燥後の塗布量は特に限定されず、使用状況やプリンタの種類などに応じて0.01g/m以上0.50g/m以下の範囲から適宜選択して決定すれば良いが、コスト面や性能の安定性の理由から0.05g/m以上0.40g/m以下の範囲がより好ましい。耐熱滑性層の乾燥後の塗布量が0.01g/m未満になると期待される耐熱性の効果が得られなくなり、逆に耐熱滑性層の乾燥後の塗布量が0.5g/m以上になると印字の際の感度が悪化したり、箔落ちなどの問題が発生したりする傾向にある。The amount of the heat-resistant slippery layer applied after drying is not particularly limited, and can be appropriately selected and determined from the range of 0.01 g / m 2 or more and 0.50 g / m 2 or less according to the usage conditions and the type of printer. good, and more preferred range for reasons of stability of cost and performance 0.05 g / m 2 or more 0.40 g / m 2 or less. If the amount of the heat-resistant slippery layer applied after drying is less than 0.01 g / m 2 , the expected effect of heat resistance cannot be obtained, and conversely, the amount of the heat-resistant slippery layer applied after drying is 0.5 g / m. If it is 2 or more, the sensitivity at the time of printing tends to deteriorate, and problems such as foil dropping tend to occur.

<転写制御層>
本発明では、基材フィルムとインク層の間に、基材フィルムとインク層の間の剥離力及び印字のキレ等を制御する為の転写制御層を設ける。本発明の転写制御層は通常の転写制御層の役割に加えて、高温環境下における環境保存性能に悪影響を与えず、さらに高温環境下における印字の際に面状剥離の発生を抑制するような性能を満たす転写制御層である必要がある。
<Transfer control layer>
In the present invention, a transfer control layer is provided between the base film and the ink layer to control the peeling force between the base film and the ink layer, the sharpness of printing, and the like. In addition to the role of a normal transfer control layer, the transfer control layer of the present invention does not adversely affect the environmental storage performance in a high temperature environment, and further suppresses the occurrence of planar peeling during printing in a high temperature environment. It needs to be a transfer control layer that satisfies the performance.

本発明者が前述した性能を満足させる為に転写制御層に使用する剥離性を付与する為の熱融解性物質を検討した結果、比較的高融点であり且つ融解ピークの幅が狭く、融解時の基材フィルムとの離型性が非常に良くて、さらに融解時にインク層と混ざり合い難いような熱融解性物質が好ましい事が分かった。この様な熱融解性物質をさらに精査した結果、高密度ポリエチレンワックスを転写制御層に添加する事が最も好ましい事が分かった。 As a result of examining a heat-meltable substance used for the transfer control layer to impart peelability in order to satisfy the above-mentioned performance, the present inventor has a relatively high melting point and a narrow melting peak width, and at the time of melting. It was found that a heat-meltable substance having very good releasability from the base film and which is difficult to mix with the ink layer at the time of melting is preferable. As a result of further scrutiny of such a heat-meltable substance, it was found that it is most preferable to add a high-density polyethylene wax to the transfer control layer.

さらに本発明者が転写制御層に使用する高密度ポリエチレンワックスについて検討を続けた結果、高密度ポリエチレンワックスの示差走査熱量測定法によって測定した融解ピーク温度が110℃以上135℃以下、より好ましくは120℃以上130℃以下であって、且つ融解ピーク温度と補外融解開始温度の温度差が10.0℃以内、さらに好ましくは6.0以内、最も好ましくは4.0℃以内であるような高密度ポリエチレンワックスを選択して転写制御層に使用する事によって、60℃の熱を転写制御層に加えても高密度ポリエチレンワックスが全く融解しない為に、高温環境下において転写制御層自体が軟化・変形する事を防止すると同時に高温環境下における印字の際の面状剥離の発生も防止する効果がある事を見出した。 Further, as a result of the present invention continuing to study the high-density polyethylene wax used for the transfer control layer, the melting peak temperature measured by the differential scanning calorimetry of the high-density polyethylene wax is 110 ° C. or higher and 135 ° C. or lower, more preferably 120 ° C. High temperature of ° C. or higher and 130 ° C. or lower, and the temperature difference between the melting peak temperature and the external melting start temperature is within 10.0 ° C., more preferably within 6.0 ° C., and most preferably within 4.0 ° C. By selecting the density polyethylene wax and using it for the transfer control layer, the transfer control layer itself softens in a high temperature environment because the high density polyethylene wax does not melt at all even if heat of 60 ° C. is applied to the transfer control layer. It has been found that it has the effect of preventing deformation and at the same time preventing the occurrence of surface peeling during printing in a high temperature environment.

転写制御層に使用する高密度ポリエチレンワックスの融解ピーク温度が前記範囲下限の110℃を下回るか、もしくは高密度ポリエチレンワックスの融解ピーク温度と補外融解開始温度の温度差が10.0℃を超えると、高密度ポリエチレンワックスが熱を吸収し始めて僅かながら軟化・溶融が始まりだすと考えられる図4のDSC曲線の融解ピークのaにおける温度が60℃より小さくなる事が多くなる傾向があり、その事が原因で高密度ポリエチレンワックスが60℃より低い温度でも部分的に軟化・溶融し始めるようになり、その結果として高温環境下において転写制御層が軟化・変形して環境保存性能が悪化し易くなったり、高温環境下における印字の際に面状剥離が発生し易くなったりするようになる。逆に高密度ポリエチレンワックスの融解ピーク温度が前記範囲上限の135℃を超えると、印字の際の熱量や融点付近での溶融粘度が急激に高くなる事が原因で印字感度や印字の転写性が悪くなる傾向があり、特に低温環境下において印字カスレなどの問題等が発生し易くなる。 The melting peak temperature of the high-density polyethylene wax used for the transfer control layer is below the lower limit of 110 ° C., or the temperature difference between the melting peak temperature of the high-density polyethylene wax and the external melting start temperature exceeds 10.0 ° C. Then, the temperature at the melting peak a of the DSC curve in FIG. 4, which is considered to start absorbing heat and softening / melting slightly, tends to be lower than 60 ° C. As a result, the high-density polyethylene wax begins to partially soften and melt even at temperatures lower than 60 ° C, and as a result, the transfer control layer softens and deforms in a high-temperature environment, and the environmental preservation performance tends to deteriorate. In addition, surface peeling is likely to occur during printing in a high temperature environment. On the contrary, when the melting peak temperature of the high-density polyethylene wax exceeds 135 ° C., which is the upper limit of the above range, the heat quantity at the time of printing and the melting viscosity near the melting point suddenly increase, so that the printing sensitivity and the transferability of printing become high. It tends to be worse, and problems such as print blurring are likely to occur especially in a low temperature environment.

さらに本発明の転写制御層に使用するのに適した高密度ポリエチレンワックスの示差走査熱量測定法によって測定された融解ピークの特徴についてさらに検討を行ったところ、融解ピークがシングルピークでありその融解ピークの幅が狭ければ狭いほど高温環境下における環境保存性能の悪化の防止や高温環境下における面状剥離の防止に効果があり、その融解ピークの幅は、少なくとも補外融解終了温度(JIS K7121(図4のTem))と補外融解開始温度(図4のTim)の温度差が15℃以内である事が好ましく、10℃以内がより好ましく、8℃以内である事が最も好ましい事が分かった。Further studies were conducted on the characteristics of the melting peaks measured by the differential scanning calorimetry of high-density polyethylene wax suitable for use in the transfer control layer of the present invention. As a result, the melting peaks were single peaks and the melting peaks were found. The narrower the width, the more effective it is to prevent deterioration of environmental storage performance in a high temperature environment and to prevent planar peeling in a high temperature environment, and the width of the melting peak is at least the supplementary melting end temperature (JIS K7121). it is preferable temperature difference (Fig. 4 T em)) and extrapolated initial melting temperature (T im in FIG. 4) is within 15 ° C., more preferably within 10 ° C., it is most preferably within 8 ° C. I found out.

さらに本発明の転写制御層に使用するのに適した高密度ポリエチレンワックスの示差走査熱量測定法によって測定された融解ピークの特徴について検討を行ったところ、高密度ポリエチレンワックスの示差走査熱量測定法によって測定した融解熱量(JIS K7122)が150J/g以上300J/g以下、より好ましくは180J/g以上280J/g以下である事が好ましい事が分かった。高密度ポリエチレンワックスの融解熱量が前記範囲内であれば、僅かな熱量によって転写制御層の融解が発生し難い為に高温環境下における印字の際の面状剥離の防止に効果がある事が分かった。 Furthermore, when the characteristics of the melting peak measured by the differential scanning calorimetry method of the high-density polyethylene wax suitable for use in the transfer control layer of the present invention were examined, the differential scanning calorimetry method of the high-density polyethylene wax was used. It was found that the measured heat of fusion (JIS K7122) is preferably 150 J / g or more and 300 J / g or less, more preferably 180 J / g or more and 280 J / g or less. It was found that if the amount of heat of fusion of the high-density polyethylene wax is within the above range, the transfer control layer is unlikely to be melted by a small amount of heat, so that it is effective in preventing surface peeling during printing in a high temperature environment. rice field.

さらに本発明の転写制御層に使用するのに適した高密度ポリエチレンワックスについて検討した所、高密度ポリエチレンワックスのGPC法よって測定したスチレン換算の重量平均分子量(Mw)が4000以上50000以下である事が好ましく、さらには10000以上40000以下である事がより好ましい事が分かった。重量平均分子量が前記範囲の高密度ポリエチレンワックスを本発明の転写制御層に用いれば、低分子量成分の影響が少なく、比較的高分子量の直鎖状高密度ポリエチレンワックスを主成分として構成される為に、高密度ポリエチレンワックスの融解ピーク温度が高く、融解ピークの幅が狭く、融解ピークの60℃未満の低温側において吸熱がほとんど見られないので、高温環境下における環境保存性能悪化の防止や高温環境下における面状剥離の防止に効果があり、さらには融解時の溶融粘度が他の低分子量ワックスと比べて比較的高いのでインク層と転写制御層が混ざり難く、針入度も非常に低いので印字画像の耐擦過性が向上する傾向がある。転写制御層に使用する高密度ポリエチレンワックスの重量平均分子量が前記範囲の下限を下回ると、低分子量成分の影響が大きくなる事が原因で、融解ピーク温度が低くなり、融解ピークの幅が広くなり、融解ピークの60℃未満の低温側においても吸熱が発生し易くなる傾向がある為に、高温環境下において環境保存性能が悪化したり高温環境下において面状剥離が発生し易くなったりする傾向があり、さらには溶融粘度が低くなりインク層と転写制御層が混ざり易くなる上に針入度も高くなるので、印字画像の耐擦過性が低下する傾向がある。また逆に転写制御層に使用する高密度ポリエチレンワックスの重量平均分子量が前記範囲の上限を超えていくと、徐々に融点付近での溶融粘度が高くなり次第に流動性を示さなくなっていくために転写制御層に使用しても転写不良の問題が発生しやすくなる傾向がある。 Further, as a result of examining a high-density polyethylene wax suitable for use in the transfer control layer of the present invention, the styrene-equivalent weight average molecular weight (Mw) measured by the GPC method of the high-density polyethylene wax is 4000 or more and 50,000 or less. Is preferable, and more preferably 10,000 or more and 40,000 or less. If a high-density polyethylene wax having a weight average molecular weight in the above range is used for the transfer control layer of the present invention, it is less affected by low molecular weight components and is composed mainly of a relatively high-molecular-weight linear high-density polyethylene wax. In addition, the melting peak temperature of the high-density polyethylene wax is high, the width of the melting peak is narrow, and almost no heat absorption is observed on the low temperature side of the melting peak below 60 ° C. It is effective in preventing planar peeling in the environment, and since the melt viscosity at the time of melting is relatively high compared to other low molecular weight waxes, it is difficult for the ink layer and transfer control layer to mix, and the degree of needle insertion is also very low. Therefore, the scratch resistance of the printed image tends to be improved. When the weight average molecular weight of the high-density polyethylene wax used for the transfer control layer is lower than the lower limit of the above range, the melting peak temperature becomes low and the melting peak width becomes wide due to the large influence of the low molecular weight component. Since heat absorption tends to occur even on the low temperature side of the melting peak of less than 60 ° C, the environmental preservation performance tends to deteriorate in a high temperature environment and planar peeling tends to occur in a high temperature environment. Further, the melt viscosity is lowered, the ink layer and the transfer control layer are easily mixed, and the degree of needle insertion is also increased, so that the scratch resistance of the printed image tends to be lowered. On the contrary, when the weight average molecular weight of the high-density polyethylene wax used for the transfer control layer exceeds the upper limit of the above range, the melt viscosity near the melting point gradually increases and the fluidity gradually disappears. Even if it is used as a control layer, the problem of transfer failure tends to occur easily.

さらに本発明の転写制御層に使用するのに適した高密度ポリエチレンワックスについて検討した所、高密度ポリエチレンワックスの密度が960kg/m以上、より好ましくは970kg/m以上であるものを使用する事が好ましい事が分かった。高密度ポリエチレンワックスの密度が上記範囲の物を転写制御層に使用すれば、示差走査熱量測定法によって測定したDSC曲線の融解ピークの幅が狭く、融解ピークの60℃より低い低温側に吸熱が見られないために高温環境下における環境保存性能悪化の防止や高温環境下における面状剥離の防止に効果があり、さらには針入度が高くなるので印字画像の耐擦過性も向上する。Further, as a result of examining a high-density polyethylene wax suitable for use in the transfer control layer of the present invention, a high-density polyethylene wax having a density of 960 kg / m 3 or more, more preferably 970 kg / m 3 or more is used. It turns out that things are preferable. If a high-density polyethylene wax having a density in the above range is used for the transfer control layer, the width of the melting peak of the DSC curve measured by the differential scanning calorimetry method is narrow, and heat absorption is absorbed on the low temperature side of the melting peak lower than 60 ° C. Since it is not seen, it is effective in preventing deterioration of environmental storage performance in a high temperature environment and preventing planar peeling in a high temperature environment, and further, since the degree of needle insertion is increased, the scratch resistance of the printed image is also improved.

本発明の転写制御層に使用する高密度ポリエチレンワックスは、微粒子状に加工された状態で用いられる。高密度ポリエチレンワックスを転写制御層中に微粒子状で分散させて添加する事によって、印字の際の熱によって微粒子が融解した部分と微粒子が融解しなかった部分との構造的な差異が大きくなる事が原因で、印字の際のインク層や転写制御層の箔切れ性が非常に良好になった結果、面状剥離現象が起こり難くなるようになった。 The high-density polyethylene wax used for the transfer control layer of the present invention is used in a state of being processed into fine particles. By adding high-density polyethylene wax in the form of fine particles dispersed in the transfer control layer, the structural difference between the portion where the fine particles are melted by the heat during printing and the portion where the fine particles are not melted becomes large. As a result, the foil breakability of the ink layer and the transfer control layer during printing has become very good, and as a result, the surface peeling phenomenon has become less likely to occur.

転写制御層に添加する高密度ポリエチレンワックスからなる微粒子の粒子径は特に限定はされないがレーザー回折・散乱法によって測定した粒子の体積基準のメジアン径D50が3.0μm以上13.0μm以下である事が好ましく、さらに好ましくは5.0μm以上11.0μm以下である事がより好ましい。高密度ポリエチレンワックスからなる微粒子のレーザー回折・散乱法によって測定した体積基準のメジアン径D50が前記範囲内であれば印字の際のインク層や転写制御層の箔切れ性が良好で、面状剥離現象が発生し難い。Particle size volume-based median diameter D 50 of the particles as measured by is not particularly limited is a laser diffraction scattering method of fine particles is 3.0μm or more 13.0μm or less made of high density polyethylene wax is added to the transfer control layer This is more preferable, and more preferably 5.0 μm or more and 11.0 μm or less. If the volume-based median diameter D 50 measured by the laser diffraction / scattering method of fine particles made of high-density polyethylene wax is within the above range, the foil breakability of the ink layer and transfer control layer during printing is good, and the surface shape Peeling phenomenon is unlikely to occur.

上述したような本発明の転写制御層に使用する高密度ポリエチレンワックスからなる微粒子は、少なくとも転写制御層の50質量%以上添加する事が好ましく、70質量%以上添加する事がより好ましく、80質量%以上添加する事が最も好ましく、最大で100質量%添加しても良い。高密度ポリエチレンワックスからなる微粒子の添加量が上記範囲内であれば高温環境下における環境保存性能悪化の防止や高温環境下における印字の際の面状剥離の防止などの期待した効果が発現するようになる。 The fine particles made of high-density polyethylene wax used for the transfer control layer of the present invention as described above are preferably added at least 50% by mass or more, more preferably 70% by mass or more, and 80% by mass. It is most preferable to add% or more, and 100% by mass may be added at the maximum. If the amount of fine particles made of high-density polyethylene wax is within the above range, the expected effects such as prevention of deterioration of environmental storage performance in a high temperature environment and prevention of surface peeling during printing in a high temperature environment will be exhibited. become.

本発明の転写制御層は、熱融解性物質である高密度ポリエチレンワックスだけで構成されても良いが、転写制御層の基材フィルムに対する接着力が弱い為に、熱溶融転写型インクリボンを熱転写プリンタにセットする際などに基材フィルムから転写制御層やインク層が取れてしまう所謂フレーキング現象が発生し易くなったり、印字の際に面状剥離現象も発生し易くなったりする傾向がある。その為に必要に応じて転写制御層に熱可塑性の接着性を有した樹脂を添加する事が好ましい。 The transfer control layer of the present invention may be composed of only high-density polyethylene wax which is a heat-meltable substance, but since the adhesion of the transfer control layer to the base film is weak, the heat-melt transfer type ink ribbon is thermally transferred. The so-called flaking phenomenon in which the transfer control layer and the ink layer are removed from the base film when setting in a printer tends to occur, and the planar peeling phenomenon also tends to occur during printing. .. Therefore, it is preferable to add a resin having thermoplastic adhesiveness to the transfer control layer as needed.

本発明の転写制御層に添加する熱可塑性接着樹脂は特に限定はされず各種公知の熱可塑性接着性樹脂を使用する事が可能であるが、好ましくはオレフィン系共重合体樹脂を添加する事が好ましい。この様なオレフィン形共重合体樹脂としては、例えばエチレン−メチル(メタ)アクリレート共重合体樹脂・エチレン−エチル(メタ)アクリレート共重合体樹脂・エチレン−プロピル(メタ)アクリレート共重合体・エチレン−ブチル(メタ)アクリレート共重合体・プロピレン−メチル(メタ)アクリレート共重合体・プロピレン−エチル(メタ)アクリレート共重合体・プロピレン−プロピル(メタ)アクリレート共重合体・プロピレン−ブチル(メタ)アクリレート共重合体などのα−オレフィン−アルキル(メタ)アクリレート共重合体樹脂や、エチレン−酢酸ビニル共重合体樹脂・プロピレン−酢酸ビニル共重合体樹脂などのα−オレフィン−酢酸ビニル共重合体樹脂や、エチレン−(メタ)アタリルアミド共重合体・プロピレン(メタ)アクリルアミド共重合体などのα−オレフィン−(メタ)アクリルアミド共重合体などの各種オレフィン系共重合体樹脂や、それらの共重合体樹脂を無水マレイン酸などの各種カルボン酸で変性した例えばαオレフィン−アルキル(メタ)アクリレート−無水マレイン酸3元共重合体・αオレフィン−酢酸ビニル−無水マレイン酸3元共重合体・αオレフィン−(メタ)アクリルアミド−無水マレイン酸3元共重合体などの各種オレフィン系3元共重合体などが挙げられるがこれらに限定されない。前述したオレフィン系共重合体のうち、本発明の転写制御層に添加するのに最も好ましいのはエチレンを主骨格とするエチレン系共重合体樹脂である。 The thermoplastic adhesive resin added to the transfer control layer of the present invention is not particularly limited, and various known thermoplastic adhesive resins can be used, but it is preferable to add an olefin copolymer resin. preferable. Examples of such an olefin-type copolymer resin include ethylene-methyl (meth) acrylate copolymer resin, ethylene-ethyl (meth) acrylate copolymer resin, ethylene-propyl (meth) acrylate copolymer resin, and ethylene-. Butyl (meth) acrylate copolymer, propylene-methyl (meth) acrylate copolymer, propylene-ethyl (meth) acrylate copolymer, propylene-propyl (meth) acrylate copolymer, propylene-butyl (meth) acrylate Α-Olefin-alkyl (meth) acrylate copolymer resin such as polymer, α-olefin-vinyl acetate copolymer resin such as ethylene-vinyl acetate copolymer resin / propylene-vinyl acetate copolymer resin, Various olefin-based copolymer resins such as ethylene- (meth) atarylamide copolymer and α-olefin- (meth) acrylamide copolymer such as propylene (meth) acrylamide copolymer and their copolymer resins are anhydrous. For example, α-olefin-alkyl (meth) acrylate-maleic anhydride ternary copolymer, α-olefin-vinyl acetate-maleic anhydride ternary copolymer, α-olefin- (meth) modified with various carboxylic acids such as maleic acid. Examples thereof include, but are not limited to, various olefin-based ternary copolymers such as acrylamide-maleic anhydride ternary copolymer. Among the above-mentioned olefin-based copolymers, the most preferable one to be added to the transfer control layer of the present invention is an ethylene-based copolymer resin having ethylene as a main skeleton.

高密度ポリエチレンワックスからなる微粒子と上記のようなオレフィン系共重合体樹脂の溶剤溶解物等を混合して作成した塗料を基材フィルム上に塗布・乾燥して転写制御層を作成した際に、転写制御層は高密度ポリエチレンワックスからなる微粒子が島でオレフィン系共重合体樹脂が海の海島構造になるが、印字の際にサーマルヘッドから転写制御層に熱が加えられて転写制御層が融解すると、オレフィン系共重合体樹脂と高密度ポリエチレンワックスが融解時に混ざり合い易い性質である為に熱が加えられた部分は均一な混合物になり、その結果として熱が加えられる前に比べて基材フィルムに対する接着性が大幅に低下する為に転写が非常にスムーズに行われるのと同時に、熱で融解された部分と融解されなかった部分の基材フィルムに対する接着力の差異が大きくなる為に面状剥離も発生し難くなる。よって本発明に用いられる熱可塑性接着樹脂は高密度ポリエチレンワックスと融解時に相溶性のあるような樹脂を選択して使用する事が好ましい。 When a paint prepared by mixing fine particles made of high-density polyethylene wax and a solvent solution of an olefin-based copolymer resin as described above is applied and dried on a base film to prepare a transfer control layer, In the transfer control layer, fine particles made of high-density polyethylene wax are islands, and the olefin-based copolymer resin has a sea-island structure in the sea. During printing, heat is applied from the thermal head to the transfer control layer to melt the transfer control layer. Then, since the olefin-based copolymer resin and the high-density polyethylene wax are easily mixed at the time of melting, the portion to which the heat is applied becomes a uniform mixture, and as a result, the base material is compared with that before the heat is applied. The transfer is very smooth because the adhesiveness to the film is significantly reduced, and at the same time, the difference in adhesive strength between the heat-melted part and the unmelted part to the base film becomes large. State peeling is less likely to occur. Therefore, as the thermoplastic adhesive resin used in the present invention, it is preferable to select and use a resin that is compatible with the high-density polyethylene wax at the time of melting.

本発明者が転写制御層に添加する熱可塑性接着樹脂の熱的特性について検討を行ったところ、熱可塑性接着樹脂の融解ピーク温度は少なくとも60℃以上150℃以下である事が好ましく、より好ましくは65℃以上130℃以下である事が好ましい事が分かった。熱可塑性接着樹脂の融解ピーク温度が前記範囲であれば、印字感度が適切で高温環境下における環境保存性能や高温環境下における面状剥離現象に対して悪影響を与えない。 When the present inventor examined the thermal properties of the thermoplastic adhesive resin added to the transfer control layer, the melting peak temperature of the thermoplastic adhesive resin is preferably at least 60 ° C. or higher and 150 ° C. or lower, more preferably. It was found that it is preferable that the temperature is 65 ° C. or higher and 130 ° C. or lower. When the melting peak temperature of the thermoplastic adhesive resin is within the above range, the printing sensitivity is appropriate and does not adversely affect the environmental storage performance in a high temperature environment and the planar peeling phenomenon in a high temperature environment.

さらに本発明者が転写制御層に添加する熱可塑性接着樹脂の熱的特性について検討を行ったところ、熱可塑性接着樹脂のガラス転移点(Tg)は特に限定はされないが−20℃以下である事が好ましく、より好ましくは−30℃以下である事が好ましい事が分かった。なお本発明におけるガラス転移点とは示差走査熱量測定法によって測定した中間点ガラス転移温度(JIS K7121)の事を意味する。熱可塑性接着樹脂のガラス転移点が前記範囲にあれば、低温環境下においても柔軟性を失わない為にフレーキング現象などが発生せず、低温印字の際にも樹脂の状態が変化しない為に印字品質の変化が発生しない。 Furthermore, when the present inventor examined the thermal properties of the thermoplastic adhesive resin added to the transfer control layer, the glass transition point (Tg) of the thermoplastic adhesive resin was not particularly limited, but was -20 ° C or lower. It was found that the temperature is preferably −30 ° C. or lower, more preferably −30 ° C. or lower. The glass transition point in the present invention means the intermediate point glass transition temperature (JIS K7121) measured by the differential scanning calorimetry method. If the glass transition point of the thermoplastic adhesive resin is within the above range, the flaking phenomenon does not occur because the flexibility is not lost even in a low temperature environment, and the state of the resin does not change even during low temperature printing. There is no change in print quality.

上述したようなガラス転移点が0℃以下の熱可塑性接着樹脂はガラス転移点が低い為に、高温環境下において加圧した状態で長時間保存するとその性質上どうしても変形してしまうので通常であればそのまま転写制御層に添加すると高温環境下における環境保存試験において転写制御層が変形してしまい、その結果としてブロッキング現象や印字品質の低下などの問題が発生につながる恐れがある。しかしながら熱可塑性接着樹脂の溶剤溶解物等に前述したような高密度ポリエチレンワックスからなる微粒子を混合して作成した塗料を用いて転写制御層を作成することによって、転写制御層が海島構造になり、さらに島部分の高密度ポリエチレンワックスからなる微粒子を海部分である熱可塑性接着樹脂の塗膜より突起させる事により、高温環境下で圧力を加えられても高密度ポリエチレンワックス粒子が全く軟化・変形しないので、その結果として転写制御層自体の軟化・変形が全く起こらない様にする事が可能となった。 Since the above-mentioned thermoplastic adhesive resin having a glass transition point of 0 ° C. or less has a low glass transition point, if it is stored for a long time under pressure in a high temperature environment, it will inevitably be deformed due to its nature. For example, if it is added to the transfer control layer as it is, the transfer control layer will be deformed in the environmental preservation test in a high temperature environment, and as a result, problems such as blocking phenomenon and deterioration of print quality may occur. However, by creating a transfer control layer using a paint prepared by mixing fine particles made of high-density polyethylene wax as described above with a solvent solution of a thermoplastic adhesive resin or the like, the transfer control layer becomes a sea-island structure. Furthermore, by projecting fine particles of high-density polyethylene wax on the islands from the coating of the thermoplastic adhesive resin on the sea, the high-density polyethylene wax particles do not soften or deform at all even when pressure is applied in a high-temperature environment. Therefore, as a result, it has become possible to prevent the transfer control layer itself from being softened or deformed at all.

本発明の転写制御層に添加する熱可塑性接着樹脂の添加量は特に限定はされないが、転写制御層の1質量%以上30質量%以下である事が好ましく、より好ましくは5質量%以上20質量%以下である事が好ましい。熱可塑性接着樹脂の添加量が前記範囲であれば、印字の転写性や高温環境下における環境保存性能や高温環境下における面状剥離現象に対して悪影響を与えず且つ基材フィルムと転写制御層間及びインク層と転写制御層間の密着性を向上させることによりフレーキング現象を防止し、面状剥離現象の発生防止にも一定の効果を発揮する。熱可塑性接着樹脂が上記範囲の上限を超えて転写制御層に添加されると、転写制御層と基材フィルム間の接着力が大きくなりすぎて印字の転写性が悪化し、さらには熱可塑性接着樹脂からなる塗膜の厚みが高密度ポリエチレンワックスからなる微粒子の粒子径よりも大きくなる事が原因で高温環境下における環境保存性能が悪化する傾向があった。 The amount of the thermoplastic adhesive resin added to the transfer control layer of the present invention is not particularly limited, but is preferably 1% by mass or more and 30% by mass or less, and more preferably 5% by mass or more and 20% by mass of the transfer control layer. It is preferably% or less. When the amount of the thermoplastic adhesive resin added is within the above range, the transferability of printing, the environmental storage performance in a high temperature environment, and the planar peeling phenomenon in a high temperature environment are not adversely affected, and the substrate film and the transfer control layer are not adversely affected. In addition, by improving the adhesion between the ink layer and the transfer control layer, the flaking phenomenon is prevented, and a certain effect is exhibited in preventing the occurrence of the planar peeling phenomenon. When the thermoplastic adhesive resin is added to the transfer control layer in excess of the upper limit of the above range, the adhesive force between the transfer control layer and the base film becomes too large, the transferability of printing deteriorates, and further, thermoplastic adhesion occurs. Since the thickness of the coating film made of resin is larger than the particle size of the fine particles made of high-density polyethylene wax, the environmental preservation performance in a high-temperature environment tends to deteriorate.

本発明の転写制御層には上述した高密度ポリエチレンワックスからなる微粒子や熱可塑性接着樹脂の他に、各種公知の有機・無機のフィラーや各種ワックスや各種熱可塑性樹脂や界面活性剤や帯電防止剤等の各種機能添加剤を必要に応じて適宜添加しても構わない。 In the transfer control layer of the present invention, in addition to the above-mentioned fine particles made of high-density polyethylene wax and the thermoplastic adhesive resin, various known organic / inorganic fillers, various waxes, various thermoplastic resins, surfactants and antistatic agents Various functional additives such as the above may be appropriately added as needed.

本発明の転写制御層の乾燥後の塗布量は特に限定されず、0.1g/m以上2.0g/m以下の範囲から適宜選択すればよいが、印字感度や転写性を考慮して0.2g/m以上1.0g/m以下の範囲から選択する事がより好ましい。転写制御層の乾燥後の塗布量が0.1g/m未満だと転写制御層と基材フィルムの界面で剥離が適切に行うことが出来ずに転写不良が発生する傾向があり、逆に転写制御層の乾燥後の塗布量が2.0g/mを超えると、印字の際に感度不足になったり、印字物に転移する転写制御層の成分が多くなることにより印字画像の耐擦過性が低下したりする傾向がある。The amount of the transfer control layer of the present invention applied after drying is not particularly limited and may be appropriately selected from the range of 0.1 g / m 2 or more and 2.0 g / m 2 or less, but in consideration of print sensitivity and transferability. It is more preferable to select from the range of 0.2 g / m 2 or more and 1.0 g / m 2 or less. If the coating amount of the transfer control layer after drying is less than 0.1 g / m 2 , the transfer control layer and the base film cannot be properly peeled off at the interface, and transfer defects tend to occur. If the coating amount of the transfer control layer after drying exceeds 2.0 g / m 2 , the sensitivity becomes insufficient during printing, and the components of the transfer control layer transferred to the printed matter increase, resulting in scratch resistance of the printed image. It tends to be less sexual.

<インク層>
本発明では、転写制御層の上に、少なくともカーボンブラックなどの各種公知の有機・無機顔料や染料などの着色剤と熱可塑性樹脂などのバインダー成分からなるインク層を設ける。着色剤の添加量は特に限定はされないが、使用状況に応じてインク層の全質量比率の10質量%以上50質量%以下、より好ましくは20質量%以上30質量%以下の範囲から適宜選択する事が好ましい。添加量が10質量%未満であると、印字物の印字濃度が十分でなく、50質量%を超えると印字の転写性に悪影響する傾向がある。
<Ink layer>
In the present invention, an ink layer composed of at least various known organic / inorganic pigments such as carbon black, a colorant such as a dye, and a binder component such as a thermoplastic resin is provided on the transfer control layer. The amount of the colorant added is not particularly limited, but is appropriately selected from the range of 10% by mass or more and 50% by mass or less, more preferably 20% by mass or more and 30% by mass or less of the total mass ratio of the ink layer, depending on the usage situation. Things are preferable. If the addition amount is less than 10% by mass, the print density of the printed matter is not sufficient, and if it exceeds 50% by mass, the transferability of the print tends to be adversely affected.

本発明のインク層に使用されるバインダー成分の主構成体について本発明者が検討した結果、インク層のバインダー成分の主構成体としてガラス転移点が50℃以上110℃以下、より好ましくは60℃以上100℃以下の熱可塑性樹脂を使用することが好ましい。熱可塑性樹脂のガラス転移点が50℃以上110℃以下であれば、少なくとも50℃の高温環境下において軟化・変形しないので環境保存性能に悪影響を与えない。逆にインク層に使用する熱可塑性樹脂のガラス転移点が50℃未満になると、50℃の高温環境下において軟化・変形し始める傾向がある為に、ブロッキング現象の発生やインク層の軟化・変形による印字品質の大幅な低下が見られる傾向がある。またインク層に使用する熱可塑性樹脂のガラス転移点が110℃を超えると、印字の際にインク層が溶融する為に必要な熱量が高くなるだけでなく、熱可塑性樹脂の溶融粘度が高くなる事が原因で、印字カスレや転写不良などの印字品質の問題が発生し易くなる傾向がある。 As a result of the present invention examining the main constituent of the binder component used in the ink layer of the present invention, the glass transition point is 50 ° C. or higher and 110 ° C. or lower, more preferably 60 ° C. as the main constituent of the binder component of the ink layer. It is preferable to use a thermoplastic resin having a temperature of 100 ° C. or lower. When the glass transition point of the thermoplastic resin is 50 ° C. or higher and 110 ° C. or lower, it does not soften or deform in a high temperature environment of at least 50 ° C., so that the environmental storage performance is not adversely affected. On the contrary, when the glass transition point of the thermoplastic resin used for the ink layer is less than 50 ° C, it tends to soften and deform in a high temperature environment of 50 ° C, so that a blocking phenomenon occurs and the ink layer softens and deforms. There is a tendency for a significant decrease in print quality due to this. When the glass transition point of the thermoplastic resin used for the ink layer exceeds 110 ° C., not only the amount of heat required for the ink layer to melt during printing increases, but also the melt viscosity of the thermoplastic resin increases. As a result, problems with print quality such as print blurring and transfer defects tend to occur easily.

本発明のインク層に使用される前記熱可塑性樹脂の軟化点(環球法)は特に限定はされないが60℃以上190℃以下である事が好ましく、さらには70℃以上170℃以下である事がより好ましい。熱可塑性樹脂の軟化点が前記範囲であれば、高温環境下における環境保存性能に優れ、高温環境下における印字の際に面状剥離現象が発生し難く、印字の際に印字カスレや転写不良が発生せず適切な印字が行うことが可能である。通常はガラス転移点が50℃以上の熱可塑性樹脂を選択するとその熱可塑性樹脂の軟化点はほぼ全てが60℃以上となるが、逆に軟化点が60℃以上の熱可塑性樹脂を選択してもその熱可塑性樹脂のガラス転移点は全て50℃以上になるわけではなく50℃未満や場合によっては0℃より低くなる樹脂も多く存在する。つまりは熱可塑性樹脂のガラス転移点が環境保存試験時の環境温度より高ければ、熱可塑性樹脂の軟化点は環境温度よりも高いので軟化せず、ガラス転移点も環境温度より高いので体積変化に伴う変形や性状変化も起こらないので、ブロッキング現象やインク層の軟化・変形による印字品質の低下なども発生しないが、逆に熱可塑性樹脂の軟化点を環境温度より高くしてもガラス転移点が環境温度より低くなった場合には、熱可塑性樹脂の体積変化による変形や性状変化によってブロッキング現象やインク層の軟化・変形による印字品質の低下などが発生したりするようになる。よって本発明においてはインク層の熱可塑性樹脂の熱的特性を限定する為の要素としてガラス転移点を用いる事とした。 The softening point (ring ball method) of the thermoplastic resin used for the ink layer of the present invention is not particularly limited, but is preferably 60 ° C. or higher and 190 ° C. or lower, and further 70 ° C. or higher and 170 ° C. or lower. More preferred. When the softening point of the thermoplastic resin is within the above range, the environmental storage performance in a high temperature environment is excellent, the planar peeling phenomenon is unlikely to occur during printing in a high temperature environment, and printing blurring and transfer defects occur during printing. Appropriate printing can be performed without occurring. Normally, when a thermoplastic resin having a glass transition point of 50 ° C. or higher is selected, almost all the softening points of the thermoplastic resin are 60 ° C. or higher, but conversely, a thermoplastic resin having a softening point of 60 ° C. or higher is selected. However, not all the glass transition points of the thermoplastic resin are 50 ° C. or higher, and there are many resins whose temperature is lower than 50 ° C. or lower than 0 ° C. in some cases. In other words, if the glass transition point of the thermoplastic resin is higher than the environmental temperature at the time of the environmental preservation test, the softening point of the thermoplastic resin is higher than the environmental temperature and does not soften, and the glass transition point is also higher than the environmental temperature, so the volume changes. Since the accompanying deformation and property change do not occur, the blocking phenomenon and deterioration of print quality due to softening and deformation of the ink layer do not occur, but conversely, even if the softening point of the thermoplastic resin is higher than the environmental temperature, the glass transition point will occur. When the temperature becomes lower than the ambient temperature, the thermoplastic resin may be deformed due to volume change or property change, resulting in a blocking phenomenon or deterioration of print quality due to softening / deformation of the ink layer. Therefore, in the present invention, the glass transition point is used as an element for limiting the thermal characteristics of the thermoplastic resin of the ink layer.

本発明のインク層に使用される熱可塑性樹脂としては、ポリエステル系樹脂、ポリアミド系樹脂、ポリスチレン系樹脂、スチレンアクリル系樹脂、アクリル系樹脂及びそれらの変性物やそれらの共重合体などの数平均分子量(Mn)3000以上の比較的高分子量の熱可塑性樹脂や、クマロン系樹脂、ロジン系樹脂、ケトン系樹脂、スチレン炭化水素系樹脂、テルペン系樹脂、テルペンフェノール系樹脂、石油系樹脂、脂肪族系炭化水素樹脂、芳香族系炭化水素樹脂及びそれらの変性物などの所謂粘着付与樹脂と呼ばれる数平均分子量(Mn)3000未満の比較的低分子量の熱可塑性樹脂などが挙げられるがこれらに限定されるわけではない。前記熱可塑性樹脂は、単独もしくは複数を混合して使用しても良いが、より好ましくは数平均分子量3000以上の比較的高分子量の熱可塑性樹脂と数平均分子量3000未満の比較的低分子量の熱可塑性樹脂、さらに好ましくは数平均分子量5000以上の比較的高分子量の熱可塑性樹脂と数平均分子量3000未満の比較的低分子量の熱可塑性樹脂を混合して使用することが好ましい。 The thermoplastic resin used for the ink layer of the present invention includes polyester resin, polyamide resin, polystyrene resin, styrene acrylic resin, acrylic resin, modified products thereof, and copolymers thereof. Relatively high molecular weight thermoplastic resin with a molecular weight (Mn) of 3000 or more, kumaron resin, rosin resin, ketone resin, styrene hydrocarbon resin, terpene resin, terpene phenol resin, petroleum resin, aliphatic Examples thereof include so-called tackifier resins having a number average molecular weight (Mn) of less than 3000, such as based hydrocarbon resins, aromatic hydrocarbon resins, and modified products thereof, but are limited to these. Not that. The thermoplastic resin may be used alone or in combination of two or more, but more preferably, a relatively high molecular weight thermoplastic resin having a number average molecular weight of 3000 or more and a relatively low molecular weight heat having a number average molecular weight of less than 3000 are used. It is preferable to use a plastic resin, more preferably a relatively high molecular weight thermoplastic resin having a number average molecular weight of 5000 or more and a relatively low molecular weight thermoplastic resin having a number average molecular weight of less than 3000.

数平均分子量が3000以上の比較的高分子量の熱可塑性樹脂をインク層の配合に添加すると、インク層の塗膜強度が向上し、印字画像の耐擦過性や耐薬品性を向上させる事が可能であるが、それらの熱可塑性樹脂の数平均分子量が高くなればなるほどインク層の塗膜強度が上がると同時にインク層の溶融粘度も高くなる傾向があるので、印字の際の被印字媒体への接着性やインク層の箔切れ性が悪化する傾向があり、その結果として印字画像の転写性や印字画像の精細性が低下する傾向がある。この様な比較的高分子量の熱可塑性樹脂の数平均分子量の上限は、印字の際の被印字媒体へのインク層の接着性や転写性及び印字画像のキレ性など関係から100000以下である事が好ましく、50000以下である事がより好ましく、30000以下である事が最も好ましい。 When a relatively high molecular weight thermoplastic resin having a number average molecular weight of 3000 or more is added to the composition of the ink layer, the coating strength of the ink layer is improved, and it is possible to improve the scratch resistance and chemical resistance of the printed image. However, as the number average molecular weight of these thermoplastic resins increases, the coating strength of the ink layer tends to increase and at the same time the melt viscosity of the ink layer tends to increase. The adhesiveness and the foil breakability of the ink layer tend to deteriorate, and as a result, the transferability of the printed image and the fineness of the printed image tend to deteriorate. The upper limit of the number average molecular weight of such a relatively high molecular weight thermoplastic resin is 100,000 or less due to the adhesiveness and transferability of the ink layer to the printing medium at the time of printing and the sharpness of the printed image. Is preferable, and it is more preferably 50,000 or less, and most preferably 30,000 or less.

数平均分子量が3000未満の熱可塑性樹脂をインク層に添加するとインク層の溶融粘度が低下し、印字の際の被印字媒体への接着性やインク相の箔切れ性が大きく向上する傾向があるので、印字画像の転写性や印字画像の精細性が大きく向上するが、その一方で印字画像の耐擦過性や耐薬品性が大きく低下する傾向がある。この様な比較的低分子量の熱可塑性樹脂の数平均分子量の下限は特に限定はされないが、この様な熱可塑性樹脂の数平均分子量は少なくとも300以上であり、通常は500以上である。 When a thermoplastic resin having a number average molecular weight of less than 3000 is added to the ink layer, the melt viscosity of the ink layer decreases, and the adhesiveness to the printing medium during printing and the foil breakability of the ink phase tend to be greatly improved. Therefore, the transferability of the printed image and the fineness of the printed image are greatly improved, but on the other hand, the scratch resistance and the chemical resistance of the printed image tend to be greatly reduced. The lower limit of the number average molecular weight of such a relatively low molecular weight thermoplastic resin is not particularly limited, but the number average molecular weight of such a thermoplastic resin is at least 300 or more, and usually 500 or more.

本発明者がさらにインク層に使用する前記熱可塑性樹脂について検討を行った結果、数平均分子量5000以上30000以下の熱可塑性ポリエステル系樹脂と数平均分子量300以上3000未満の熱可塑性樹脂を混合して使用することが最も好ましい事が分かった。数平均分子量が300以上3000未満の範囲の熱可塑性樹脂は特に限定はされないが、より好ましくはケトン系樹脂、スチレン炭化水素系樹脂、テルペンフェノール系樹脂、などを使用することが好ましい。また数平均分子量5000以上30000以下の熱可塑性ポリエステル系樹脂と数平均分子量300以上3000未満の熱可塑性樹脂の混合比率は特に限定はされないが、数平均分子量5000以上30000以下の熱可塑性ポリエステル系樹脂と数平均分子量300以上3000未満の熱可塑性樹脂の混合比率は質量比で7/3〜3/7の範囲であれば好ましい。インク層に前記熱可塑性樹脂同士の混合物を使用することによって、印字の際のインク層の被印字媒体に対する接着性や転写性が良好で、インク層の箔切れ性が良好になり印字画像の精細性に優れ、さらには印字画像の耐擦過性等の性能に優れた性能バランスの良いインク層が得られる事が分かった。 As a result of further study on the thermoplastic resin used for the ink layer by the present inventor, a thermoplastic polyester resin having a number average molecular weight of 5000 or more and 30,000 or less and a thermoplastic resin having a number average molecular weight of 300 or more and less than 3000 are mixed. It turned out to be the most preferable to use. The thermoplastic resin having a number average molecular weight in the range of 300 or more and less than 3000 is not particularly limited, but more preferably a ketone resin, a styrene hydrocarbon resin, a terpene phenol resin, or the like is used. The mixing ratio of the thermoplastic polyester resin having a number average molecular weight of 5000 or more and 30,000 or less and the thermoplastic resin having a number average molecular weight of 300 or more and less than 3000 is not particularly limited, but the thermoplastic polyester resin having a number average molecular weight of 5000 or more and 30,000 or less is used. The mixing ratio of the thermoplastic resin having a number average molecular weight of 300 or more and less than 3000 is preferably in the range of 7/3 to 3/7 in terms of mass ratio. By using a mixture of the thermoplastic resins in the ink layer, the adhesiveness and transferability of the ink layer to the printing medium at the time of printing are good, the foil breakability of the ink layer is good, and the fineness of the printed image is improved. It was found that an ink layer with excellent performance balance, which is excellent in performance and also excellent in performance such as scratch resistance of printed images, can be obtained.

本発明のインク層に使用する前記熱可塑性樹脂の添加量は特に限定はされないが、インク層の30質量%以上90質量%以下であれば良く、より好ましくは60質量%以上80質量%以下である事が好ましい。熱可塑性樹脂のインク層中の添加量が前記範囲内であれば、印字の際のインク層の被印字媒体に対する接着性や転写性及び印字画像の精細性及び耐擦過性などが適切であり、さらにはインク層の高温環境下における環境保存性能に与える熱可塑性樹脂の影響力が充分にある為に熱可塑性樹脂の性状をほとんどそのままインク層へ反映させる事が可能となる。 The amount of the thermoplastic resin added to the ink layer of the present invention is not particularly limited, but may be 30% by mass or more and 90% by mass or less of the ink layer, and more preferably 60% by mass or more and 80% by mass or less. It is preferable that there is. When the amount of the thermoplastic resin added to the ink layer is within the above range, the adhesiveness and transferability of the ink layer to the printing medium at the time of printing, the fineness of the printed image, and the scratch resistance are appropriate. Furthermore, since the thermoplastic resin has a sufficient influence on the environmental preservation performance of the ink layer in a high temperature environment, it is possible to reflect the properties of the thermoplastic resin in the ink layer almost as it is.

本発明のインク層には、副原料として、インク層の箔切れ性や印字感度や耐ブロッキング性を向上させるために、ワックス類をインク層に少量添加しても良い。ワックスの例としては、カルナウバワックス、モンタン酸ワックス、パラフィンワックス、マイクロクリスタリンワックス、フィッシャートロプシュスワックス、ポリエチレンワックス等が挙げられるが、特にこれに限定されるわけではない。またその他の副原料として各種公知の界面活性剤や無機及び有機フィラーを適宜必要に応じてインク層に少量添加して、着色剤の分散性、インクの箔切れ性、インク層の溶融粘度等の改良及び調整を行っても良い。 In the ink layer of the present invention, a small amount of wax may be added to the ink layer as an auxiliary raw material in order to improve the foil breakability, printing sensitivity and blocking resistance of the ink layer. Examples of the wax include, but are not limited to, carnauba wax, montanic acid wax, paraffin wax, microcrystalline wax, Fishertropus wax, polyethylene wax and the like. Further, as other auxiliary raw materials, various known surfactants, inorganic and organic fillers are appropriately added to the ink layer as necessary to adjust the dispersibility of the colorant, the foil breakability of the ink, the melt viscosity of the ink layer, and the like. Improvements and adjustments may be made.

本発明のインク層の乾燥後の塗布量は特に限定はされず、0.3g/m以上3.0g/m以下の範囲より要求品質に応じて適宜選択すれば良いが、コスト面や性能安定性の面から0.5g/m以上2.0g/m以下の範囲から適宜選択する事がより好ましい。インク層の乾燥後の塗布量が0.3g/m未満であると充分な印字濃度及び耐擦過性が得られない傾向があり、逆に塗布量が3.0g/mを超えると印字感度と箔切れ性が悪化する傾向がある。The coating amount of the ink layer of the present invention after drying is not particularly limited, and may be appropriately selected from the range of 0.3 g / m 2 or more and 3.0 g / m 2 or less according to the required quality, but in terms of cost and From the viewpoint of performance stability, it is more preferable to appropriately select from the range of 0.5 g / m 2 or more and 2.0 g / m 2 or less. If the coating amount of the ink layer after drying is less than 0.3 g / m 2 , sufficient print density and scratch resistance tend not to be obtained, and conversely, if the coating amount exceeds 3.0 g / m 2 , printing is performed. Sensitivity and foil breakability tend to deteriorate.

次に実施例を挙げて本発明について具体的に説明する。 Next, the present invention will be specifically described with reference to examples.

<基材フィルム及び耐熱滑性層の形成方法>
グラビア塗装機にて、厚み4.5μmのポリエチレンテレフタレートフィルム(PETフィルム)の片面に下記に示す耐熱滑性層用塗料をグラビア塗装機にて塗布し、乾燥して塗布量0.2g/mの耐熱滑性層を形成した。本発明の以後の実施例及び比較例は全て前記耐熱性基材フィルム及び耐熱滑性層を用いる。
(耐熱滑性層用塗料配合)
原料成分 質量%
・シリコン変性ポリエステルポリウレタン系樹脂の
メチルエチルケトン/トルエン=1/1溶剤溶解液(固形分15%) 25.0
・メチルエチルケトン 60.0
・トルエン 15.0
上記耐熱滑性層用塗料は、容器にメチルエチルケトンとトルエンの混合溶媒とシリコン変性ポリエステルポリウレタン系樹脂をメチルエチルケトンとトルエンの質量比率が1:1の溶媒に溶かした溶解液をそれぞれ上記配合に従って計量投入し、ディゾルバー等で攪拌混合する事によって作成される。上述した耐熱滑性層用塗料の作成方法や耐熱滑性層の塗布方法は一例でありこれに限定されず、各種公知の方法が使用可能である。
<Method of forming base film and heat-resistant slippery layer>
Using a gravure coating machine, apply the following heat-resistant slip layer paint to one side of a polyethylene terephthalate film (PET film) with a thickness of 4.5 μm using a gravure coating machine, dry it, and apply 0.2 g / m 2 A heat-resistant slippery layer was formed. Subsequent examples and comparative examples of the present invention all use the heat-resistant base film and the heat-resistant slippery layer.
(Contains paint for heat-resistant slippery layer)
Raw material component mass%
-Silicone-modified polyester polyurethane resin methyl ethyl ketone / toluene = 1/1 solvent solution (solid content 15%) 25.0
・ Methyl ethyl ketone 60.0
・ Toluene 15.0
For the above heat-resistant slip layer coating material, a solution prepared by dissolving a mixed solvent of methyl ethyl ketone and toluene and a silicon-modified polyester polyurethane resin in a solvent having a mass ratio of methyl ethyl ketone and toluene of 1: 1 is weighed and charged according to the above formulation. , Is created by stirring and mixing with a dissolver or the like. The above-mentioned method for producing the heat-resistant slip layer paint and the method for applying the heat-resistant slip layer are examples, and the present invention is not limited to this, and various known methods can be used.

<転写制御層の形成方法>
本発明の実施例・比較例の転写制御層に使用する各熱融解性物質の性状の詳細を表1に示す。
<Method of forming the transfer control layer>
Table 1 shows the details of the properties of each heat-meltable substance used for the transfer control layer of Examples and Comparative Examples of the present invention.

Figure 0006945123
Figure 0006945123

前記耐熱滑性層を塗布形成したPETフィルムの反対側の面に下記に示す転写制御層用塗料をグラビア塗装機にて塗布し、乾燥して塗布量0.5g/mの転写制御層を形成した。下記転写制御層用塗料配合中の熱融解性物質として上記表1の各熱融解性物質を用いて本発明の各実施例・比較例に使用される各転写制御層用塗料を作成した。なお転写制御層用塗料配合中の各原料別の配合比率の詳細は下記表3に示す。The following coating material for transfer control layer is applied to the opposite surface of the PET film coated with the heat-resistant slippery layer with a gravure coating machine, and dried to obtain a transfer control layer having a coating amount of 0.5 g / m 2. Formed. Using each of the heat-meltable substances in Table 1 above as the heat-meltable substance in the following transfer control layer paint formulation, each transfer control layer paint used in each of the Examples and Comparative Examples of the present invention was prepared. The details of the mixing ratio of each raw material in the coating for the transfer control layer are shown in Table 3 below.

(転写制御層用塗料配合)
成分 質量部
・熱融解性物質のトルエン分散液(固形分10%) 85.0
・エチレン酢酸ビニル樹脂「Tg:−30℃、融解ピーク温度:60℃、
VA:33%」のトルエン溶解液(固形分10%) 15.0
転写制御層用塗料の作成方法としては、まず初めに密閉可能で攪拌と加熱が出来る容器の中にトルエンと熱融解性物質を計量投入して容器を密閉した後に攪拌しながら加熱することによって熱融解性物質をトルエンに完全に溶解させた後に、それらを攪拌しながら30℃以下まで徐々に冷却していく事によって熱融解性物質の微粒子がトルエン中に分散された固形分10%の熱融解性物質のトルエン分散液を作成する。次に密閉可能で攪拌と加熱が出来る容器の中にトルエンとエチレン酢酸ビニル樹脂を計量投入した後に、それらを攪拌しながら加熱してエチレン酢酸ビニル樹脂をトルエンに完全に溶解させた後に30℃以下に冷却し、固形分10%のエチレン酢酸ビニル樹脂のトルエン溶解液を作成する。最後に容器に上記配合に従って熱融解性物質のトルエン分散液とエチレン酢酸ビニル樹脂のトルエン溶解液を計量投入し、ディゾルバーで攪拌混合した後に、ビーズミルで分散しながら熱融解性物質の微粒子のレーザー回折・散乱法によって測定した体積基準のメジアン径D50を5.0〜11.0μmの範囲になるように調整することによって転写制御層用塗料が完成する。なお、前述した転写制御層用塗料配合において熱融解性物質を2種類以上塗料配合に使用する場合には、それぞれの熱融解性物質ごとに熱融解性物質のトルエン分散液をそれぞれ別々に作成し、ビーズミルの分散前にそれらを混合して使用すればよい。上述した転写制御層用塗料の作成方法や転写制御層の塗布方法は一例でありこれに限定されず、各種公知の方法が使用可能である。
(Mixed paint for transfer control layer)
Ingredients Toluene dispersion of heat-meltable substance by mass (solid content 10%) 85.0
-Ethylene vinyl acetate resin "Tg: -30 ° C, melting peak temperature: 60 ° C,
VA: 33% "toluene solution (solid content 10%) 15.0
As a method for producing a coating material for a transfer control layer, first, toluene and a heat-meltable substance are put into a container that can be sealed and can be stirred and heated, and the container is sealed and then heated while stirring. After the meltable substance is completely dissolved in toluene, the fine particles of the heat-meltable substance are dispersed in toluene by gradually cooling to 30 ° C. or lower while stirring them, thereby thermally melting the solid content of 10%. Prepare a toluene dispersion of the sex substance. Next, after weighing toluene and ethylene vinyl acetate resin into a container that can be sealed and can be stirred and heated, heat them while stirring to completely dissolve the ethylene vinyl acetate resin in toluene, and then 30 ° C or lower. To prepare a toluene solution of ethylene vinyl acetate resin having a solid content of 10%. Finally, the toluene dispersion of the heat-meltable substance and the toluene solution of the ethylene vinyl acetate resin are weighed and mixed in a container according to the above formulation, and after stirring and mixing with a dissolver, laser diffraction of fine particles of the heat-meltable substance while dispersing with a bead mill. -The coating for the transfer control layer is completed by adjusting the volume-based median diameter D 50 measured by the scattering method so as to be in the range of 5.0 to 11.0 μm. When two or more types of heat-meltable substances are used in the paint formulation for the transfer control layer described above, a toluene dispersion liquid of the heat-meltable substances is separately prepared for each heat-meltable substance. , They may be mixed and used before the bead mill is dispersed. The method for producing the coating material for the transfer control layer and the method for applying the transfer control layer described above are examples, and the present invention is not limited to this, and various known methods can be used.

<インク層の形成方法>
(インク層)
本発明の実施例・比較例のインク層に使用する熱可塑性樹脂の性状の詳細を表2に示す。
<Method of forming ink layer>
(Ink layer)
Table 2 shows the details of the properties of the thermoplastic resin used for the ink layers of Examples and Comparative Examples of the present invention.

Figure 0006945123
Figure 0006945123

前記転写制御層の上に下記に示すインク層用塗料をグラビア塗装機にて塗布し、乾燥して塗布量1.2g/mのインク層を形成した。下記インク層用塗料配合中の熱可塑性樹脂として上記表2の各熱可塑性樹脂を用いて本発明の各実施例・比較例に使用される各インク層用塗料を作成した。なおインク層用塗料配合中の各原料別の配合比率の詳細は下記表3に示す。The following ink layer paint was applied onto the transfer control layer with a gravure coating machine and dried to form an ink layer having a coating amount of 1.2 g / m 2. Using each of the thermoplastic resins in Table 2 above as the thermoplastic resin in the following ink layer paint formulation, the paint for each ink layer used in each of the Examples and Comparative Examples of the present invention was prepared. The details of the blending ratio of each raw material in the blending of the ink layer paint are shown in Table 3 below.

(インク層用塗料配合)
成分 質量部
・熱可塑性樹脂 14.0
・カーボンブラック 6.0
・トルエン 40.0
・メチルエチルケトン 40.0
上記インク装用塗料の作成方法としては、密閉可能で攪拌と加熱が出来る容器の中にトルエンとメチルエチルケトンと熱可塑性樹脂を計量投入した後に、それらを攪拌しながら加熱して熱可塑性樹脂を溶剤に完全に溶解させた後に、その溶液を30℃以下に冷却した後にカーボンブラックをさらに計量投入してよく攪拌混合した後に、ビーズミルによって分散してカーボンブラックを発色させる事によって完成する。なお前記インク層用塗料配合において熱可塑性樹脂を2種類以上混合して使用してもよい。上述したインク層用塗料の作成方法やインク層の塗布方法は一例でありこれに限定されず、各種公知の方法が使用可能である。
(Mixed paint for ink layer)
Ingredients by mass, thermoplastic resin 14.0
・ Carbon black 6.0
・ Toluene 40.0
・ Methyl ethyl ketone 40.0
As a method for producing the above ink mounting paint, after weighing toluene, methyl ethyl ketone and thermoplastic resin into a container that can be sealed and can be stirred and heated, the thermoplastic resin is completely dissolved in the solvent by heating while stirring them. After dissolving in, the solution is cooled to 30 ° C. or lower, carbon black is further weighed and mixed well, and then dispersed by a bead mill to develop the color of carbon black. Two or more types of thermoplastic resins may be mixed and used in the ink layer paint formulation. The method for producing the ink layer paint and the method for applying the ink layer described above are examples, and the method is not limited to this, and various known methods can be used.

<印字試験条件>
表3の実施例及び比較例に示す熱溶融転写型インクリボンを用いて下記の条件により各種印字試験を行った。なお気温25℃の室温環境下において下記印字試験条件で、実施例・比較例の熱溶融転写型インクリボンを用いて印字を行ったところ、印字エネルギーが適切で、印字カスレ、細線などの転写不良、印字の面状剥離等の問題はほとんど発生しなかった。
プリンタ: ZEBRA110XiIV (セブラ社製)
印字解像度: 300dpi
印字速度: 2inch/sec
印字濃度: 14/20
被印字媒体: PETラベル
<Printing test conditions>
Various printing tests were performed under the following conditions using the heat-melt transfer type ink ribbons shown in Examples and Comparative Examples in Table 3. When printing was performed using the heat-melt transfer type ink ribbons of Examples and Comparative Examples under the following printing test conditions in a room temperature environment of 25 ° C., the printing energy was appropriate, and transfer defects such as print blurring and fine lines were defective. , Problems such as surface peeling of printing hardly occurred.
Printer: ZEBRA110XiIV (manufactured by Sebra)
Print resolution: 300 dpi
Printing speed: 2 inch / sec
Print density: 14/20
Printable medium: PET label

<高温環境下の印字における印字画像の面状剥離の評価>
気温を40℃に設定した恒温槽の中に、印字試験に使用するプリンタ、被印字媒体、印字に使用する熱溶融転写型インクリボンを1時間静置した後に、前述した印字試験の条件で印字を連続して1分間行い、最後の印字画像から10枚前までの印字画像を目視で確認し下記に示す条件で評価した。
A・・・印字画像に面状剥離が全く発生していない。
B・・・印字画像の一部に僅かに面状剥離が発生している。
C・・・印字画像の一部に面状剥離がはっきり発生していた。
D・・・印字画像のほぼ全面に酷い面状剥離が発生していた。
<Evaluation of surface peeling of printed images in printing in a high temperature environment>
The printer used for the printing test, the printing medium, and the heat-melt transfer type ink ribbon used for printing are allowed to stand for 1 hour in a constant temperature bath in which the temperature is set to 40 ° C., and then printing is performed under the above-mentioned printing test conditions. Was continuously performed for 1 minute, and the printed images from the last printed image to 10 sheets before were visually confirmed and evaluated under the conditions shown below.
A ... No surface peeling has occurred in the printed image.
B ... Slightly planar peeling occurs in a part of the printed image.
C ... Surface peeling was clearly generated in a part of the printed image.
D ... Severe planar peeling occurred on almost the entire surface of the printed image.

<低温環境下の印字における印字感度の評価>
気温を5℃に設定した恒温槽の中に、印字試験に使用するプリンタ、被印字媒体、印字に使用する熱溶融転写型インクリボンを1時間静置した後に、前述した印字試験の条件で印字をラベルに対して10回行い、その10枚の印字画像を目視で確認し下記に示す条件で評価した。
A・・・印字カスレは全く発生しない。
B・・・印字カスレが一部に僅かながら発生する。
C・・・印字カスレがほぼ全面に明確に発生する。
D・・・印字カスレが酷く印字がほとんど転写していない。
<Evaluation of printing sensitivity in printing in a low temperature environment>
The printer used for the printing test, the printing medium, and the heat-melt transfer type ink ribbon used for printing are allowed to stand for 1 hour in a constant temperature bath in which the temperature is set to 5 ° C., and then printing is performed under the above-mentioned printing test conditions. Was performed 10 times on the label, and the printed images of the 10 sheets were visually confirmed and evaluated under the conditions shown below.
A ... No print blurring occurs.
B ... A slight amount of print blurring occurs.
C ... Printing blur is clearly generated on almost the entire surface.
D ... The print blurring is severe and the print is hardly transferred.

<耐擦過性の評価>
気温25℃の室温環境下において前述した印字試験条件で印字を行った印字画像に、直径1cmのABS製樹脂球を500gの点荷重で当てて、毎秒1往復の速度で30回往復した後の印字画像の状態を目視して下記に示す条件で評価した。
A・・・印字画像の欠けがなく、印字画像の変形もない。
B・・・印字画像の欠けはないが、印字画像に僅かに変形が見られる。
C・・・印字画像の欠けが僅かに見られ、印字画像の変形も明確に見られる。
D・・・印字画像の欠けと変形が共に明確に見られる。
<Evaluation of scratch resistance>
After applying an ABS resin ball with a diameter of 1 cm to a printed image printed under the above-mentioned printing test conditions in a room temperature environment of 25 ° C. with a point load of 500 g, and reciprocating 30 times at a speed of 1 reciprocation per second. The state of the printed image was visually evaluated and evaluated under the conditions shown below.
A ... There is no chipping of the printed image, and there is no deformation of the printed image.
B ... The printed image is not chipped, but the printed image is slightly deformed.
C ... The printed image is slightly chipped, and the printed image is clearly deformed.
D ... Both chipping and deformation of the printed image are clearly seen.

<耐ブロッキング性(環境保存性能)>
耐ブロッキング性の評価には、熱溶融転写型インクリボンの原反を所定のサイズにスリットした物を紙コアに巻付けてロール状に加工したリボンサンプル(巾60mm、長さ300m、インク面内巻)を作成し、そのリボンサンプルを気温50℃湿度80%RHの雰囲気中に96時間保存した後に気温25℃の室温環境下において24時間冷却し、そのリボンサンプルの巻きを解した時のブロッキングの状態を目視して以下に示す条件で評価した。
A・・・ブロッキングが全く見られない。
B・・・リボンサンプルの紙コア付近で僅かにブロッキングが見られる。
C・・・リボンサンプルの巻きの途中から紙コア付近までの間で部分的にブロッキングが見られる。
D・・・リボンサンプルの全面にブロッキングが見られる。
<Blocking resistance (environmental storage performance)>
To evaluate the blocking resistance, a ribbon sample (width 60 mm, length 300 m, in-plane) obtained by wrapping a paper core with the original fabric of a heat-melt transfer type ink ribbon slit to a predetermined size and processing it into a roll shape. The ribbon sample is stored in an atmosphere of 50 ° C. and 80% humidity for 96 hours, then cooled in a room temperature environment of 25 ° C. for 24 hours, and the ribbon sample is unwound and blocked. The condition of the above was visually evaluated and evaluated under the conditions shown below.
A ... No blocking is seen.
B ... Slight blocking is seen near the paper core of the ribbon sample.
C ... Blocking is partially observed from the middle of winding the ribbon sample to the vicinity of the paper core.
D ... Blocking is seen on the entire surface of the ribbon sample.

<環境保存試験前後の印字品質の変化(環境保存性能)>
環境保存試験前後の印字品質の変化の評価には、熱溶融転写型インクリボンの原反を所定のサイズにスリットした物を紙コアに巻付けてロール状に加工したリボンサンプル(巾60mm、長さ300m、インク面内巻)を作成し、そのリボンサンプルを気温50℃湿度80%RHの雰囲気中に96時間保存した後に、さらに気温25℃の室温環境下において24時間静置冷却した後に、気温25℃の室温環境下において前述した記印字試験条件で印字を行った際の印字の状態を目視して以下に示す条件で評価した。
A・・・環境保存試験前後において印字品質に全く変化がない。
B・・・環境保存試験後において、印字カスレ、転写不良、面状剥離現象などの印字品質が環境保存試験前と比べて僅かであるが悪化している。
C・・・環境保存試験後において、印字カスレ、転写不良、面状剥離現象などの印字品質が環境保存試験前と比べて明確に悪化している。
D・・・環境保存試験後において、印字カスレ、転写不良、面状剥離現象などの印字品質が環境保存試験前と比べて非常に悪化している。
<Changes in print quality before and after the environmental preservation test (environmental preservation performance)>
To evaluate the change in print quality before and after the environmental preservation test, a ribbon sample (width 60 mm, length 60 mm, length) made by wrapping a paper core with the original fabric of a heat-melt transfer type ink ribbon slit to a predetermined size and processing it into a roll shape. After preparing a 300 m ink in-plane winding) and storing the ribbon sample in an atmosphere of a temperature of 50 ° C. and a humidity of 80% RH for 96 hours, and then allowing it to stand and cool for 24 hours in a room temperature environment of a temperature of 25 ° C. The printing state when printing was performed under the above-mentioned printing test conditions in a room temperature environment of 25 ° C. was visually evaluated under the following conditions.
A ... There is no change in print quality before and after the environmental preservation test.
B ... After the environmental preservation test, the print quality such as print blurring, transfer failure, and surface peeling phenomenon is slightly worse than that before the environmental preservation test.
C ... After the environmental preservation test, the print quality such as print blurring, transfer failure, and surface peeling phenomenon is clearly deteriorated as compared with that before the environmental preservation test.
D ... After the environmental preservation test, the print quality such as print blurring, transfer failure, and surface peeling phenomenon is significantly deteriorated as compared with that before the environmental preservation test.

各種実施例及び比較例の熱溶融転写型インクリボンを作成し、実施例比較例の各塗料配合の詳細と前述した各種評価を行った結果を下記表3に示す。 The heat-melt transfer type ink ribbons of various examples and comparative examples were prepared, and the details of each paint formulation of the comparative examples and the results of the above-mentioned various evaluations are shown in Table 3 below.

Figure 0006945123
Figure 0006945123

表3の結果より、実施例1〜実施例7の熱溶融転写型インクリボンのように、インク層が少なくとも着色材とガラス転移点50℃以上110℃以下の熱可塑性樹脂を含有してなり、転写制御層が示差走査熱量測定法によって測定した融解ピーク温度が110℃以上135℃以下で且つ融解ピーク温度と補外融解開始温度の温度差が10.0℃以内である高密度ポリエチレンワックスからなる微粒子を50質量%以上含有してなる熱溶融転写型インクリボンを用いると、高温環境下において環境保存試験を行ってもブロッキング現象の発生や印字品質の低下がほとんど見られず、さらには高温環境下において印字を行っても面状剥離現象がほとんど発生していない。一方で、比較例1〜比較例5の様に融解ピーク温度が110℃以下もしくは融解ピーク温度と補外融解開始温度の温度差が10.0℃を超える様な熱融解性物質を転写制御層に使用した場合には、ややブロッキング現象が発生し易くなる傾向がある事に加えて、特に高温環境下で環境保存試験を行った後に転写制御層が軟化・変形する事が原因で印字カスレや転写不良といった印字品質の低下が顕著に発生し、さらには高温環境下での印字の際に面状剥離現象の発生も明確に見られるようになった。また比較例6のように転写制御層に融解ピーク温度が110℃以上135℃以下で且つ融解ピーク温度と補外融解開始温度の温度差が10.0℃以内である高密度ポリエチレンワックスからなる微粒子を添加しても、その添加量が転写制御層の50質量%未満になると高温環境下における環境保存性能が悪化したり、高温環境下における印字の際に面状剥離が発生したりするようになった。さらに比較例7のようにガラス転移点が50℃未満の熱可塑性樹脂をインク層のバインダー成分の主構成体として使用すると、高温環境下における環境保存性能が急激に悪化した。 From the results in Table 3, the ink layer contains at least a coloring material and a thermoplastic resin having a glass transition point of 50 ° C. or higher and 110 ° C. or lower, as in the heat-melt transfer type ink ribbons of Examples 1 to 7. The transfer control layer is made of high-density polyethylene wax in which the melting peak temperature measured by the differential scanning calorimetry method is 110 ° C. or higher and 135 ° C. or lower, and the temperature difference between the melting peak temperature and the external melting start temperature is within 10.0 ° C. When a heat-melt transfer type ink ribbon containing 50% by mass or more of fine particles is used, no blocking phenomenon or deterioration of print quality is observed even when an environmental preservation test is performed in a high temperature environment, and further, a high temperature environment is observed. Even if printing is performed below, the surface peeling phenomenon hardly occurs. On the other hand, as in Comparative Examples 1 to 5, a heat-meltable substance having a melting peak temperature of 110 ° C. or lower or a temperature difference between the melting peak temperature and the external melting start temperature exceeding 10.0 ° C. is transferred to the transfer control layer. When used in Deterioration of print quality such as transfer failure has occurred remarkably, and further, the occurrence of planar peeling phenomenon has been clearly observed when printing in a high temperature environment. Further, as in Comparative Example 6, fine particles made of high-density polyethylene wax having a melting peak temperature of 110 ° C. or higher and 135 ° C. or lower and a temperature difference between the melting peak temperature and the external melting start temperature of 10.0 ° C. or lower are formed in the transfer control layer. Even if is added, if the amount added is less than 50% by mass of the transfer control layer, the environmental storage performance in a high temperature environment deteriorates, and surface peeling occurs during printing in a high temperature environment. became. Further, when a thermoplastic resin having a glass transition point of less than 50 ° C. was used as the main constituent of the binder component of the ink layer as in Comparative Example 7, the environmental storage performance in a high temperature environment was sharply deteriorated.

本発明の熱溶融転写型インクリボンは、各種伝票類や製品タグや物流管理用ラベルなどに文字情報やバーコードを印字する一般的な用途等に使用出来るだけでなく、特に高温環境下において使用する可能性が高いサーマルプリンタ用の熱溶融転写型インクリボンとして利用が可能である。 The heat-melt transfer type ink ribbon of the present invention can be used not only for general purposes such as printing character information and barcodes on various slips, product tags, distribution management labels, etc., but also especially in a high temperature environment. It can be used as a heat-melt transfer type ink ribbon for thermal printers, which is highly likely to be used.

1;熱溶融転写型インクリボン
2;基材フィルム
3;耐熱滑性層
4;転写制御層
5;インク層
6;被印字媒体
7a;印字画像(本来形成予定であった印字画像部分)
7b;印字画像(面状剥離した部分)
8;サーマルヘッド
9;プラテンロール
10;融解ピーク(DSC曲線)
Tpm;融解ピーク温度
Tim;補外融解開始温度
Tem;補外融解終了温度
1; Heat-melt transfer type ink ribbon 2; Base film 3; Heat-resistant slippery layer 4; Transfer control layer 5; Ink layer 6; Printed medium 7a; Printed image (printed image portion originally planned to be formed)
7b; Printed image (part where the surface is peeled off)
8; thermal head 9; platen roll 10; melting peak (DSC curve)
Tpm; melting peak temperature Tim; extrapolation melting start temperature Tem; extrapolation melting end temperature

Claims (6)

基材フィルムの一方の面に耐熱滑性層を設け、他方の面に転写制御層とインク層を順次積層して設けた熱溶融転写型インクリボンであって、インク層が少なくとも着色材とガラス転移点50℃以上110℃以下の熱可塑性樹脂を含有してなり、転写制御層が示差走査熱量測定法によって測定した融解ピーク温度が110℃以上135℃以下で且つ融解ピーク温度と補外融解開始温度の温度差が10.0℃以内である高密度ポリエチレンワックスからなる微粒子を50質量%以上含有してなる熱溶融転写型インクリボン。 A heat-melt transfer type ink ribbon in which a heat-resistant slippery layer is provided on one surface of a base film and a transfer control layer and an ink layer are sequentially laminated on the other surface. The ink layer is at least a coloring material and glass. It contains a thermoplastic resin with a transition point of 50 ° C. or higher and 110 ° C. or lower, and the melting peak temperature measured by the transfer control layer by differential scanning calorimetry is 110 ° C. or higher and 135 ° C. or lower, and the melting peak temperature and external melting start. A heat-melt transfer type ink ribbon containing 50% by mass or more of fine particles made of high-density polyethylene wax having a temperature difference of 10.0 ° C. or less. 高密度ポリエチレンワックスのGPC法によって測定したスチレン換算の重量平均分子量が4000以上50000以下である請求項1に記載の熱溶融転写型インクリボン。 The heat-melt transfer type ink ribbon according to claim 1, wherein the styrene-equivalent weight average molecular weight measured by the GPC method of the high-density polyethylene wax is 4000 or more and 50,000 or less. 高密度ポリエチレンワックスからなる微粒子のレーザー回折・散乱法によって測定した体積基準のメジアン径D50が3.0μm以上13.0μm以下である請求項1又は請求項2に記載の熱溶融転写型インクリボン。The heat-melt transfer type ink ribbon according to claim 1 or 2, wherein the volume-based median diameter D 50 measured by a laser diffraction / scattering method of fine particles made of high-density polyethylene wax is 3.0 μm or more and 13.0 μm or less. .. 熱可塑性樹脂が数平均分子量5000以上30000以下の熱可塑性ポリエステル系樹脂と数平均分子量300以上3000未満の熱可塑性樹脂の混合物である請求項1〜3のいずれかに記載の熱溶融転写型インクリボン。 The heat-melt transfer type ink ribbon according to any one of claims 1 to 3, wherein the thermoplastic resin is a mixture of a thermoplastic polyester resin having a number average molecular weight of 5000 or more and 30,000 or less and a thermoplastic resin having a number average molecular weight of 300 or more and less than 3000. .. 高密度ポリエチレンワックスの示差走査熱量測定法によって測定した融解熱量が150J/g以上300J/g以下である請求項1〜4のいずれかに記載の熱溶融転写型インクリボン。 The heat-melt transfer type ink ribbon according to any one of claims 1 to 4, wherein the heat of fusion measured by the differential scanning calorimetry of the high-density polyethylene wax is 150 J / g or more and 300 J / g or less. 高密度ポリエチレンワックスの密度が960kg/m以上である請求項1〜5のいずれかに記載の熱溶融転写型インクリボン。The heat-melt transfer type ink ribbon according to any one of claims 1 to 5, wherein the density of the high-density polyethylene wax is 960 kg / m 3 or more.
JP2017233800A 2017-11-17 2017-11-17 Heat-melt transfer type ink ribbon Active JP6945123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017233800A JP6945123B2 (en) 2017-11-17 2017-11-17 Heat-melt transfer type ink ribbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017233800A JP6945123B2 (en) 2017-11-17 2017-11-17 Heat-melt transfer type ink ribbon

Publications (2)

Publication Number Publication Date
JP2019093696A JP2019093696A (en) 2019-06-20
JP6945123B2 true JP6945123B2 (en) 2021-10-06

Family

ID=66972517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017233800A Active JP6945123B2 (en) 2017-11-17 2017-11-17 Heat-melt transfer type ink ribbon

Country Status (1)

Country Link
JP (1) JP6945123B2 (en)

Also Published As

Publication number Publication date
JP2019093696A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
JP5984117B2 (en) Thermal transfer sheet
JP6945123B2 (en) Heat-melt transfer type ink ribbon
JP6152526B2 (en) Melt transfer type ink ribbon
US7494699B2 (en) Low energy thermal transfer recording medium and method
JP3818760B2 (en) Thermal transfer recording medium
WO2018105491A1 (en) Protective layer transfer sheet and method for manufacturing same
JP4485990B2 (en) Thermal transfer recording medium, thermal transfer recording method, and recording medium
JP4069191B2 (en) Transfer foil and transfer image forming method
JP2016196175A (en) Hot-melt transfer type ink ribbon
JP2001138646A (en) Heat transfer recording medium
JPH05177954A (en) Thermal transfer recording medium
JP2023069973A (en) Thermofusible transfer type ink ribbon
JP2001191652A (en) Thermal transfer medium
JP4263833B2 (en) Thermal transfer medium
JP4897317B2 (en) Thermal transfer recording medium, method for producing the same, and thermal transfer recording method
JPH04259595A (en) Thermal transfer recording medium
JP4307353B2 (en) Thermal transfer recording medium and thermal transfer recording method
JPH11321116A (en) Thermal transfer recording medium
JP2000141923A (en) Thermal transfer ercording medium and its manufacture
JP2014136390A (en) Heat-sensitive transfer medium
JP4827777B2 (en) Thermal transfer recording medium
JP2006347057A (en) Thermal transfer medium
JP2019001056A (en) Protective layer transfer sheet
JP2000318328A (en) Thermal transfer recording medium and its manufacture
JPH06286336A (en) Heat transfer recording medium

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180626

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210818

R150 Certificate of patent or registration of utility model

Ref document number: 6945123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150