JP6943972B2 - 灌流培地 - Google Patents

灌流培地 Download PDF

Info

Publication number
JP6943972B2
JP6943972B2 JP2019552965A JP2019552965A JP6943972B2 JP 6943972 B2 JP6943972 B2 JP 6943972B2 JP 2019552965 A JP2019552965 A JP 2019552965A JP 2019552965 A JP2019552965 A JP 2019552965A JP 6943972 B2 JP6943972 B2 JP 6943972B2
Authority
JP
Japan
Prior art keywords
serum
medium
potassium
cell
perfusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019552965A
Other languages
English (en)
Other versions
JP2020511978A (ja
Inventor
ワン,サマンサ
リン,ヘンリー
Original Assignee
ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング
ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング, ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング filed Critical ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング
Publication of JP2020511978A publication Critical patent/JP2020511978A/ja
Priority to JP2021146740A priority Critical patent/JP2021192628A/ja
Application granted granted Critical
Publication of JP6943972B2 publication Critical patent/JP6943972B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • C12N5/0037Serum-free medium, which may still contain naturally-sourced components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • C12N2500/10Metals; Metal chelators
    • C12N2500/12Light metals, i.e. alkali, alkaline earth, Be, Al, Mg

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

技術分野
本発明は、カリウム濃度を上昇させ、カリウムに対するナトリウムのモル比を減少させることにより、廃棄される細胞の抜き取り量を減少させ、タンパク質の生産を増加させる工程を含む、灌流細胞培地液中において異種タンパク質を発現している哺乳動物細胞を培養する方法に関する。本発明はさらに、高いカリウムイオン濃度を含み、カリウムに対するナトリウムのモル比が低い無血清灌流培地、及び、生産期の最中の灌流培養中の細胞の培養に使用するための、又は生産期の最中の細胞の抜き取り容量を減少させるための、この培地の使用に関する。
背景
典型的には3つの方法(回分培養、流加培養、及び灌流培養)が、哺乳動物細胞培養による組換えタンパク質の生産のための商業的プロセスに使用される。
灌流に基づいた方法は、新鮮な培地を添加し、同時に使用済み培地を除去することによって、回分培養法及び流加培養法を上回る改善の可能性を提供する。大規模な市販の細胞培養戦略は、60〜90×10個の細胞/mLという高い細胞密度に達する場合があり、この時点でリアクターの容量の約3分の1から半分以上がバイオマスであり得る。灌流に基づいた培養を用いると、1×10個の細胞/mLという極度の細胞密度が達成された。典型的な灌流培養は、迅速な初期細胞増殖及びバイオマスの蓄積を可能とする1日間以上続く回分培養の始動から始まり、その後、培養の増殖期及び生産期を通して細胞を保持しつつ、連続的、段階的、及び/又は断続的な新鮮な灌流培地の培養への添加、及び同時に使用済み培地の除去が行なわれる。沈降、遠心分離、又はろ過などの様々な方法を使用して、細胞を維持しつつ、使用済み培地を除去することができる。1日あたり1回分の作業容量から1日あたり多数倍の作業容量の灌流流速が使用されている。
生物学的製剤の製造のための連続的プロセシングは、伝統的な流加培養を上回る数多くの利点を有するが、多くの課題が依然として残っている。培地の改善は、灌流プロセスにおいて、より高い生細胞密度(VCD)、次により高い力価を達成した。しかしながら、これらの上昇した細胞密度は持続不可能となり、結果として、生存率の喪失及び灌流操作の短縮がもたらされ得る。増加した培地調製物、使用、保存、及び廃棄が、長期の灌培養、特に高い細胞密度を有する灌流培養を支持するのに必要であり、これはさらにはより多くの栄養分も必要とし、これらは全て、回分培養法及び流加培養法と比較して、生産費用をさらにより高くする。
カリウムイオン濃度及びナトリウムイオン濃度は、培養中の細胞にとって重要な環境因子である。内部イオン濃度は細胞によって著しく一定に保たれ、カリウム及びナトリウムは主に細胞膜を横断する膜電位に関与する。典型的にはインビボでの細胞内ナトリウムイオン濃度及びカリウムイオン濃度は、それぞれ約12mM及び139mMであり、典型的なインビボでの細胞外のナトリウムイオン濃度及びカリウムイオン濃度は、それぞれ約145mM及び4mMである。より高いカリウム濃度が、細胞増殖に対して阻害作用を有し得るという最初の観察が1970年代初期に行なわれたが、これまでこのことは、灌流細胞培養の改善のために成功裡に使用されなかった。
Orr et al.(Proc. Nat. Acad. Sci. USA (1972) 69(1): 243-247)は、114mM(Na/K=0.53)のカリウム濃度が、12%仔ウシ血清を含有しているHam F12培地、又はナトリウムがカリウムによって置換されている同等な培地を使用して、単層BHK細胞における細胞増殖を阻害することを開示している。36〜72mMのカリウム濃度は実際に細胞密度を増加させた。128mMより高いカリウム濃度を有する培養中では、細胞はすぐに集まり、プレートから脱着し、死滅した。114mMで処理された細胞において形態学的変化も報告された。この文書では、上昇したカリウム濃度が、灌流細胞培養において細胞の抜き取り量の制御に又は生産性の改善に有益であろうという示唆が全く欠けている。
日本特許公開公報第H01247097A号は、無血清培地中30mMの塩化カリウムを用いてのハイブリドーマ細胞灌流培養の処理は、抗体の生産(力価及び細胞比生産性)を増加させ、同時に、細胞増殖率及び細胞生存率を減少させたことを開示している。したがって、塩化カリウム濃度を上昇させると生存率は減少するようである。また、増加したタンパク質の生産は、低下した生存率と連関しているようである。
国際公開公報第2011/134920号は、流加培養用の、ナトリウム対カリウムのモル比が10:1から1:1であり、約8〜約12mMのカリウム濃度を含む、CHO細胞用の化学組成の規定された細胞培養培地を開示している。
Sato et al.(Cytotechnology (1989) 2: 63-67)は、無血清培地中の上昇したリン酸カリウム及びリン酸ナトリウム濃度が、ハイブリドーマ細胞におけるモノクローナル抗体の生産を刺激することを開示している。しかしながら、KClは、全く効果を及ぼさないことが示された。また、その文書には、30mMのリン酸カリウム濃度が、生存率を、特に連続培養中の生存率を大幅に減少させたことが開示されている。さらに、それは、ナトリウムをカリウムで置換することよりもむしろ、ナトリウム濃度を上昇させることにより、生産性が高められると教示している。
Suzuki et al.(Biotechnol. Prog. (1990) 6(3): 231-236)は、回分培養中の無血清RPMI 1640中のハイブリドーマ細胞培養を10〜100mMの酢酸カリウムを用いて処理することにより、増殖率に依存した抗体の生産がもたらされたことを開示している。しかしながら、この相関は比較的高い増殖率にしか適用されず、生存率は58%に低下し、このことは、酢酸ナトリウムは長期の灌流培養に適していないであろうことを示唆する。
Fong et al.(Cytotechnology (1997) 24: 47-54)は、約10mMの濃度の酢酸カリウムが、灌流培養中の細胞密度を維持しつつ又は僅かだけ増加させつつ、ハイブリドーマ細胞における抗体生産を増加させることを開示している。しかしながら、この灌流培養は、酢酸カリウムの存在下では4日間未満しか維持されず、生存率のデータは開示されていない。また、観察された効果は、モル浸透圧濃度又はアセテートの増加に起因する可能性がある。使用された培地は、100mMを超えるナトリウムを含む10%血清を有するRPMI 1640培地であり、したがって、培養は無血清培養ではなく、カリウムのモル数よりもナトリウムのモル数が過剰な状態で実施された。
Yoon et al.,(Biotechnology and Bioprocess Engineering (2007), 12: 399-403)は、高いカリウムイオン濃度(60mM以上)が、無血清培養培地を使用した反復回分培養モードにおいて、タンパク質の生産量を増加させ、CHO細胞の細胞増殖を抑制することを開示している。最大40mMまでのカリウム濃度は、細胞増殖に有意に影響を及ぼさないことが報告され、60mM又はそれ以上の濃度は、細胞生存率に影響を及ぼすことが示された。また、この文書は、ナトリウム濃度については沈黙している。
カリウム及びナトリウムは、全ての細胞培養培地に存在し、それらの濃度を変化させることは、他の添加剤を導入することよりも利点がある。なぜなら、安全性及びクリアランスに関する懸念が全くないからである。また、培養培地を開発する場合に、培地をできるだけ単純に保ち、必須化合物に限定されることが望ましい。これは不必要な化合物を回避し、モル浸透圧濃度の問題を減らす。培養培地は絶えず改変され改善されているが、廃棄物を減少させ生産性を上昇させることによって灌流培養を改善する必要性が依然としてある。
発明の概要
廃棄細胞の抜き取りを利用して、持続可能なVCDを維持し、生存率を保持することができる。連続プロセスでは、バイオリアクター内で一定した持続可能な生細胞密度を維持するために、増殖中の細胞及び培地を取り除く、細胞の「抜き取り」によって、培養培地の大部分及び従って産物が失われる。収穫可能な物質の最大1/3までが、細胞の抜き取りにより失われる可能性がある。それ故、細胞の抜き取りの使用は、細胞抜き取り液内の産物が収穫されないので、操作1回あたりの産物の収量は減少する。細胞抜き取り容量を減少させ、したがって、収穫のためにより多くの上清を保持するために、それ故、一旦、生産期において所望の生細胞密度に達したら、生存率又は比タンパク質生産性に影響を及ぼすことなく、細胞増殖を抑制することが有益である。細胞の抜き取り量を減少又は消失させることによって、タンパク質の生産は、従来の灌流法と比較して増加する。したがって、一旦、最適なVCDが得られたら細胞増殖を制御し、よって、細胞の抜き取り量を最小限にして、灌流操作1回あたりに回収される産物を増加させ、同時に細胞比生産性を増加させて、灌流プロセスを操作するためのより効率的な方法を作成することが必要である。
本発明において、Na:Kの比が1未満であるナトリウムとカリウム及び30mMを超えるカリウム濃度を含む灌流培養培地、並びに、該培地を使用した哺乳動物細胞の培養法が提供される。該培地が増殖を抑制し、生存率に負の影響を及ぼすことなく細胞比生産性(qp)を増加させることが示されている。特に、高いカリウム濃度は細胞増殖停止を誘発し、低いナトリウム濃度は灌流細胞培養中のチャイニーズハムスター卵巣(CHO)の細胞比生産性を増加させる。細胞増殖を制御し、したがって細胞の抜き取り量を最小限にすることによって、灌流操作1回あたりに回収される産物は大きく増加し、灌流プロセスを操作するためのより効率的な方法がもたらされる。これはさらに、細胞比生産性に対する正の効果によって増強される。
1つの態様では、(a)無血清培養培地中に、異種タンパク質を発現している哺乳動物細胞を接種する工程;(b)無血清灌流培地を用いての灌流によって、増殖期の最中の哺乳動物細胞を培養する工程;及び(c)30mM〜250mMの濃度のカリウムイオンを含み、カリウムイオンに対するナトリウムイオンのモル比が1未満である無血清灌流培地を用いての灌流によって、生産期の最中の哺乳動物細胞を培養する工程(ここでの工程(b)は任意である)を含む、灌流細胞培養液中に異種タンパク質を発現している哺乳動物細胞を培養する方法が提供される。
1つの関連した態様では、(a)無血清培養培地中に、異種タンパク質を発現している哺乳動物細胞を接種する工程;(b)無血清灌流培地を用いての灌流によって、増殖期の最中の哺乳動物細胞を培養する工程;及び(c)30mM〜250mMの濃度のカリウムイオンを含み、カリウムイオンに対するナトリウムイオンのモル比が1未満である無血清灌流培地を用いての灌流によって、生産期の最中の哺乳動物細胞を培養する工程(ここでの工程(b)は任意である)を含む、灌流細胞培養液中に異種タンパク質を発現している灌流細胞培養液中の細胞の抜き取り量を減少させる方法が提供される。
別の関連した態様では、(a)無血清培養培地中に、異種タンパク質を発現している哺乳動物細胞を接種する工程;(b)無血清灌流培地を用いての灌流によって、増殖期の最中の哺乳動物細胞を培養する工程;及び(c)30mM〜250mMの濃度のカリウムイオンを含み、カリウムイオンに対するナトリウムイオンのモル比が1未満である無血清灌流培地を用いての灌流によって、生産期の最中の哺乳動物細胞を培養する工程(ここでの工程(b)は任意である)を含む、異種タンパク質を発現している灌流細胞培養液中のタンパク質の生産を増加させる方法が提供される。
一旦、標的細胞密度に達したら工程(c)を開始する。したがって、10×10個の細胞/mlから約120×10個の細胞/ml又はさらにはそれよりも高い細胞密度で工程(c)を開始してもよい。好ましくは工程(c)は、少なくとも10×10個の細胞/ml、少なくとも20×10個の細胞/ml、少なくとも30×10個の細胞/ml、少なくとも40×10個の細胞/ml、又は少なくとも50×10個の細胞/mlの細胞密度で開始する。最も好ましくは工程(c)は、約30〜約50×10個の細胞/mlの細胞密度で開始する。
本発明の方法の工程(c)はさらに、細胞の抜き取りによって細胞密度を維持する工程を含み得る。本発明の方法を使用して、30mM未満の濃度のカリウムイオンを含み、カリウムに対するナトリウムのモル比が2超である同じ無血清灌流培地を使用して同じ条件下で培養された灌流細胞培養液と比較して細胞の抜き取り量は減少している。
本発明の方法のいくつかの実施態様では、カリウムイオン濃度は、約40mM〜約200mM、好ましくは約60mM〜約150mM、より好ましくは約80mM〜約100mMである。いくつかの実施態様では、カリウムに対するナトリウムのモル比は、約0.9〜0.1、約0.8〜0.2、約0.7〜0.2、好ましくは約0.6〜0.3、より好ましくは約0.5〜0.4である。
本発明によると、カリウムイオンは、1つ以上のカリウム塩として提供される。好ましい実施態様では、1つ以上のカリウム塩は、重炭酸カリウム、塩化カリウム、水酸化カリウム、L−チロシン二カリウム塩、リン酸カリウム二塩基性、リン酸カリウム一塩基性、亜セレン酸カリウム、ピルビン酸カリウム、グルタチオンカリウム、D−グルコン酸カリウム、コハク酸カリウム、及びアスコルビン酸カリウムからなる群より選択される。好ましくは、1つ以上のカリウム塩は、無血清灌流培養培地中の対応するナトリウム塩を置換している。より具体的には、1つ以上のカリウム塩は好ましくは、工程b)の無血清灌流培地中の対応するナトリウム塩を置換している。
無血清灌流培地のモル浸透圧濃度は、300〜1400mOsmol/kg、好ましくは300〜500mOsmol/kg、より好ましくは330〜450mOsmol/kg、さらにより好ましくは360〜390mOsmol/kgの範囲内であるべきである。
哺乳動物細胞は、チャイニーズハムスター卵巣(CHO)細胞、好ましくはCHO−DG44細胞、CHO−K1細胞、CHO DXB11細胞、CHO−S細胞、CHO GS欠損細胞、又はこれらのいずれかの細胞の誘導体であり得る。
無血清灌流培地は、化学組成が規定されていてもよく、かつ/又は加水分解物フリーであってもよい。好ましくは無血清灌流培地は、タンパク質フリー、又は組換え型インスリン及び/若しくはインスリン様増殖因子を除きタンパク質フリーであり、より好ましくは無血清灌流培地は、化学組成が規定され、タンパク質フリー、又は組換え型インスリン及び/若しくはインスリン様増殖因子を除きタンパク質フリーである。
さらなる態様では、治療用タンパク質を薬学的に許容される製剤へと精製及び製剤化するさらなる工程を場合により含む、本発明の方法を使用した治療用タンパク質の生産法が提供される。
別の態様では、30mM〜250mMの濃度のカリウムイオンを含み、カリウムイオンに対するナトリウムイオンのモル比が1未満である無血清灌流培地が提供される。いくつかの実施態様では、カリウムイオン濃度は、約40mM〜約200mM、好ましくは約60mM〜約150mM、より好ましくは約80mM〜約100mMである。いくつかの実施態様では、カリウムに対するナトリウムのモル比は、約0.9〜0.1、約0.8〜0.2、約0.7〜0.2、好ましくは約0.6〜0.3、より好ましくは約0.5〜0.4である。
本発明によると、カリウムイオンは、1以上のカリウム塩として提供される。好ましい実施態様では、1つ以上のカリウム塩は、重炭酸カリウム、塩化カリウム、水酸化カリウム、L−チロシン二カリウム塩、リン酸カリウム二塩基性、リン酸カリウム一塩基性、亜セレン酸カリウム、ピルビン酸カリウム、グルタチオンカリウム、D−グルコン酸カリウム、コハク酸カリウム、及びアスコルビン酸カリウムからなる群より選択される。好ましくは1つ以上のカリウム塩は、無血清灌流培養培地中の対応するナトリウム塩を置換している。
無血清灌流培地のモル浸透圧濃度は、300〜1400mOsmol/kg、好ましくは300〜500mOsmol/kg、より好ましくは330〜450mOsmol/kg、さらにより好ましくは360〜390mOsmol/kgの範囲内であるべきである。
無血清灌流培地は、化学組成が規定されていてもよく、かつ/又は加水分解物フリーであってもよい。好ましくは無血清灌流培地は、タンパク質フリー、又は組換え型インスリン及び/若しくはインスリン様増殖因子を除きタンパク質フリーであり、より好ましくは無血清灌流培地は、化学組成が規定され、タンパク質フリー、又は組換え型インスリン及び/若しくはインスリン様増殖因子を除きタンパク質フリーである。
さらに別の態様では、生産期の最中の灌流培養液中の哺乳動物細胞を培養するための、又は灌流培養液中の細胞抜き取り総容量を減少させるための、本発明の無血清灌流培地の使用が提供される。あるいは、灌流細胞培養液中のタンパク質の生産を増加させるための本発明の無血清灌流培地の使用が提供される。
総生産性に対する細胞抜き取りの効果。モノクローナル抗体mAb1を生産するCHO細胞株を、示されているような2つの異なる再循環装置を使用して、3Lのガラス製の灌流バイオリアクター中で2Lの作業容量で培養した:ATF1番及びATF2番は、ATF2装置(レプリゲン社、ウォルサム、MA州)を使用したレプリケートであり、TFFバイオリアクターは遠心ポンプ(レビトロニクス社、チューリッヒ、スイス)を使用した。収穫物(透過液)の流れ(回収産物)及びバイオリアクター内容物(リアクターの力価)の力価を毎日測定し、生産された総グラム数(生産総量)及び細胞培養終了時(29日目)の抜き取り液及びリアクターにおいて失われた産物を計算した。 ディープウェルの灌流モデルにおけるNa+/K+濃度の変化に対する細胞増殖及び生産性の応答。応答の程度は、対照条件Na=78mM、K=37mM(Na:K 2)との差の比率として表現され、ここで0.4のスコアは、示されたNa+及びK+レベルで予期される応答が、対照(Na:K 2)条件の40%である領域に相当する。累積比増殖率(SGR)(A)及び累積細胞比生産性(qp)(B)の曲線プロットが、モノクローナル抗体mAb1を生産しているCHO細胞株において試験された濃度範囲について示されている。試験された条件についての実際のデータ点は、両方の曲線プロットにおいてマーカーとして示されている。細胞培養の全時間経過における、代表的な生細胞密度(VCD)及び生存率プロットがそれぞれパネル(C)及び(D)に示されている。生細胞密度(VCD)はe5細胞/mLで示され、これは「10個の細胞/mL」の専門的な綴りである。異なる条件間の差異が経時的に生細胞密度において観察されたが、生存率は、全7日間の培養を通じて一貫して高いままであった(85%超)。 ディープウェルの灌流モデルにおけるNa+/K+濃度の変化に対する細胞増殖及び生産性の応答。応答の程度は、対照条件Na=78mM、K=37mM(Na:K 2)との差の比率として表現され、ここで0.4のスコアは、示されたNa+及びK+レベルで予期される応答が、対照(Na:K 2)条件の40%である領域に相当する。累積比増殖率(SGR)(A)及び累積細胞比生産性(qp)(B)の曲線プロットが、モノクローナル抗体mAb1を生産しているCHO細胞株において試験された濃度範囲について示されている。試験された条件についての実際のデータ点は、両方の曲線プロットにおいてマーカーとして示されている。細胞培養の全時間経過における、代表的な生細胞密度(VCD)及び生存率プロットがそれぞれパネル(C)及び(D)に示されている。生細胞密度(VCD)はe5細胞/mLで示され、これは「10個の細胞/mL」の専門的な綴りである。異なる条件間の差異が経時的に生細胞密度において観察されたが、生存率は、全7日間の培養を通じて一貫して高いままであった(85%超)。 ディープウェルの灌流モデルにおいて、様々なNa+/K+濃度を用いて処理された、モノクローナル抗体mAb1を生産しているCHO細胞株の細胞周期分析。細胞周期分析は、ヨウ化プロピジウムによる染色及びFACS分析を使用して実施された。サブG0期、G0/1期、S期、及びG2/M期の細胞及び細胞凝集物の棒グラフプロットがパネル(A)に示され、試験された濃度比Na:K 2(37mMのカリウム)及びNa:K 0.5(76mMのカリウム)についての、G0/1期:G2M期の比がパネル(B)に示されている。両側スチューデントt検定を実施して、Na:K 2に対する統計学的有意性を決定した(p<0.05;**p<0.001)。 2Lの灌流リアクターにおけるNa+/K+濃度の変化に対する細胞増殖及び生産性の応答。モノクローナル抗体mAb2を生産しているCHO−K1細胞株についての1日あたりの比生産性(qp)の代表図がパネル(A)に、1日あたりの比増殖率(SGR)の代表図がパネル(B)に、生存率の代表図がパネル(C)に、細胞抜き取り流速の代表図がパネル(D)に示されている。バイオリアクター培養液用の細胞を、標的細胞密度に達するまで同じ灌流培地(9Na+/K+)中で増殖させ、その後、Na:K 0.5培地(約76mMのK)(黒四角)に切り替えるか又はNa:K 9培地(12mMのK)(白抜きの菱形)のままとした。矢印は、培地をNa:K 9の比の培地からより低いNa:K 0.5の比の培地へと切り替えた時点(10日目)を示す。 2Lの灌流リアクターにおけるNa+/K+濃度の変化に対する細胞増殖及び生産性の応答。モノクローナル抗体mAb2を生産しているCHO−K1細胞株についての1日あたりの比生産性(qp)の代表図がパネル(A)に、1日あたりの比増殖率(SGR)の代表図がパネル(B)に、生存率の代表図がパネル(C)に、細胞抜き取り流速の代表図がパネル(D)に示されている。バイオリアクター培養液用の細胞を、標的細胞密度に達するまで同じ灌流培地(9Na+/K+)中で増殖させ、その後、Na:K 0.5培地(約76mMのK)(黒四角)に切り替えるか又はNa:K 9培地(12mMのK)(白抜きの菱形)のままとした。矢印は、培地をNa:K 9の比の培地からより低いNa:K 0.5の比の培地へと切り替えた時点(10日目)を示す。 灌流培養22日目における2Lの灌流リアクターにおけるNa+/K+濃度の変化に対する細胞増殖及び生産性の応答。バイオリアクター培養液用の細胞を、標的細胞密度に達するまで同じ灌流培地(9Na+/K+)中で増殖させ、その後、0.5Na:K培地(約76mMのK)に切り替えるか又は9Na:K培地(12mMのK)のままとした。モノクローナル抗体mAb1(CHO−DG44mAb1)、mAb2(CHO−K1mAb2)、又はmAb3(CHO−K1mAb3)を発現している3つのCHO細胞株についての、2つの異なる培地間の累積平均比生産性(qp)及び平均比増殖率(SGR)の差が代表的なプロットで示されている。平均比生産性(qp)及び平均比増殖率(SGR)は、培地の切り替え前のそれらのそれぞれの数値に対して標準化された培地の切り替え後の平均qp及び平均SGRとして表現される(すなわち、mAb1及び3について10〜22日目/0〜10日目、mAb2については12〜22日目/0〜12日目)。両側スチューデントt検定を実施して、統計学的有意性を決定した(p<0.05;**p<0.001)。
詳細な説明
一般的な実施態様「含んでいる」又は「含んでいた」は、より具体的な実施態様である「からなる」を包含する。さらに、単数形及び複数形は限定するために使用されるものではない。本明細書において使用する単数形「1つ(a)」、「1つ(an)」及び「その(the)」は、単数形のみを示すと明白に記載されていない限り、単数形及び複数形の両方を示す。
本明細書において使用する「灌流」という用語は、細胞をリアクター内に保持しつつ等容量の培地がリアクターに加えられ同時にリアクターから除去される、細胞培養バイオリアクターを維持することを指す。灌流培養はまた、連続培養と称してもよい。これは、定常的な新たな栄養分の供給源、及び細胞廃棄産物の一定した除去を提供する。灌流は一般的に、従来のバイオリアクター回分培養条件又は流加培養条件よりもはるかに高い細胞密度、したがって容量あたりのより高い生産性を到達するために使用される。分泌されたタンパク質産物は、リアクター内に細胞を保持しつつ、例えばろ過、交互タンジェンシャルフロー(ATF)、細胞沈降、超音波による分離、ハイドロサイクロン、又は当業者に公知であるか若しくはKompala及びOzturk(Cell Culture Technology for Pharmaceutical and Cell-Based Therapies, (2006), Taylor & Francis Group, LLC, pages 387-416)に記載のような任意の他の方法によって連続的に収穫され得る。哺乳動物細胞を懸濁培養液(均一な培養)中で培養しても、又は表面に付着させても、又は様々な装置に捕捉させてもよい(不均一な培養)。バイオリアクター内の作業容量を一定に維持するために、収穫速度及び細胞抜き取り(液体除去)は予め決定された灌流速度と等しくすべきである。培養は典型的には回分培養によって開始され、灌流は、細胞が依然として指数関数増殖期にあり栄養制限が起こる前である、接種から2〜3日後に開始する。
灌流に基づいた方法は、新鮮な培地を添加し、同時に使用済み培地を除去することによって、回分培養法及び流加培養法を上回る改善の可能性を提供する。大規模な市販の細胞培養戦略は、60〜90×10個の細胞/mLという高い細胞密度に達する場合があり、この時点でリアクター容量の約3分の1から半分以上がバイオマスであり得る。灌流に基づいた培養では、1×10個の細胞/mLを超える極度の細胞密度に達した。典型的な灌流培養は、迅速な初期細胞増殖及びバイオマスの蓄積を可能とする1日間以上続く回分培養の始動から始まり、その後、培養液の増殖期及び生産期を通して細胞を保持しつつ、連続的、段階的、及び/又は断続的な新鮮なフィード培地の培養液への添加、及び同時に使用済み培地の除去が行なわれる。沈降、遠心分離、又はろ過などの様々な方法を使用して、細胞を維持しつつ、使用済み培地を除去することができる。1日あたり1回分の作業容量から1日あたり多数倍の作業容量の灌流流速が使用されている。
本明細書において使用する「灌流速度」という用語は、添加及び除去される容量であり、典型的には1日あたりに測定される。灌流速度は、細胞密度及び培地に依存する。灌流速度は、栄養分の添加及び副産物の除去の適切な速度を確保しつつ、関心対象の産物の希釈、すなわち収穫物の力価を減少させるために最小限にすべきである。灌流は典型的には、細胞が依然として指数関数増殖期にある接種から2〜3日後に開始され、したがって、灌流速度は培養中に増加させ得る。灌流速度の増加は、漸増的又は連続的、すなわち、細胞密度又は栄養分の消費に基づき得る。灌流速度は典型的には、1日あたり0.5又は1容器容量(VVD)で開始され、最大約5VVDまで増加させ得る。好ましくは、灌流速度は0.5〜2VVDである。増加は、0.5〜1VVDであってもよい。灌流の連続的増加のために、バイオマスプローブを収穫ポンプと連結させてもよく、これにより灌流速度は、所望の細胞比灌流速度(CSPR)に基づきバイオマスプローブによって決定された細胞密度の一次関数として増加する。CSPRは、細胞密度あたりの灌流速度と同等であり、理想的なCSPRは、細胞株及び細胞培地に依存する。理想的なCSPRにより、最適な増殖率及び生産性がもたらされるべきである。1日あたり50〜100pL/細胞のCSPRが妥当な開始範囲であり得、これは、特定の細胞株についての最適な速度を見つけるために調整することができる。
本明細書において使用する「定常状態」という用語は、細胞密度及びバイオリアクターの環境が比較的一定のままである状況を指す。これは、細胞の抜き取り、栄養分の制限、及び/又は温度の低下によって達成され得る。殆どの灌流培養では、栄養分の供給及び老廃物の除去により一定した細胞増殖及び生産性が可能となり、一定した生細胞密度を維持するために又は細胞を定常状態に維持するために、細胞の抜き取りが必要とされる。定常状態における典型的な生細胞密度は、20〜50e6細胞/mlである。生細胞密度は、灌流速度に応じて変化し得る。より高い細胞密度は、灌流速度を増加させることによって、又は灌流に使用するための培地を最適化することによって到達し得る。非常に高い生細胞密度では、バイオリアクター内の灌流培養液は制御困難となる。
「細胞の抜き取り」及び「細胞抜き取り」という用語は同義語として使用され、バイオリアクター内で一定した持続可能な生細胞密度を維持するために、バイオリアクターから細胞及び培地を除去することを指す。一定した持続可能な生細胞密度はまた、標的細胞密度とも称され得る。この細胞抜き取りは、浸漬管及び規定の流速のペリスタルティック・ポンプを使用して実施され得る。管は正しいサイズを有するべきであり、あまりにも狭い管は細胞の凝集及び目詰まりを起こしがちであり、一方、大きすぎると細胞は沈殿する可能性がある。細胞抜き取りは、増殖速度に基づいて決定され得、したがって、生細胞密度は、連続的な様式で所望の容量まで制限することができる。あるいは、細胞は、一定の頻度で、例えば1日1回除去されてもよく、予測可能な範囲内に細胞密度を維持するために培地と交換されてもよい。理想的には、細胞抜き取り速度は、定常的な細胞密度を維持するために増殖速度に等しい。
典型的には、細胞抜き取りと共に除去された関心対象の産物は、廃棄され、それ故、収穫物は失なわれる。透過液とは違い、細胞抜き取り液は細胞を含有し、この細胞により精製前の産物の保存はより困難となり、産物の品質に対して有害な作用を及ぼす可能性がある。したがって、該細胞を、保存及び産物の精製前に連続的に除去しなればならず、これは労力がかかり、コスト的に非効率的であろう。緩徐に増殖している細胞では、細胞抜き取り量は、除去される液体の約10%であり得、急速に増殖している細胞では、細胞抜き取り量は除去される液体の約30%であり得る。したがって、細胞抜き取りを通した産物喪失は、生産された産物の合計の約30%であり得る。本明細書において使用する「透過液」は、培養容器内に保持されるために細胞から分離された収穫物を指す。
「培養液」又は「細胞培養液」という用語は同義語として使用され、細胞個体群の生存及び/又は増殖を可能とするに適した条件下で培地中に維持される細胞個体群を指す。本発明は哺乳動物細胞培養液のみに関する。哺乳動物細胞は、懸濁液中で培養されても、又は固相支持体に付着させて培養されてもよい。当業者には明らかであろうように、細胞培養液は、細胞個体群と該個体群が懸濁される培地とを含む、組合せ物を指す。
本明細書において使用する「培養する」という用語は、制御された条件下、並びに細胞の増殖及び/又は生存を支持する条件下において哺乳動物細胞が増殖又は維持されているプロセスを指す。本明細書において使用する「細胞を維持する」という用語は、「細胞を培養する」と同義語として使用される。培養はまた、培養培地中に細胞を接種する工程も指し得る。
本明細書において使用する「回分培養」という用語は、細胞を一定容量の培養培地中で短時間増殖させ、その後、全部収穫する、非連続的な方法である。回分培養法を使用して増殖させた培養液は、最大細胞密度に到達するまで細胞密度は増加し、その後、培地の成分が消費され、代謝副産物(例えば乳酸塩及びアンモニア)のレベルが蓄積するにつれて、生細胞密度は減少する。収穫は典型的には、最大細胞密度(典型的には5〜10×10個の細胞/mL、培地の処方、細胞株などに依存)に到達した時又はその直後、典型的には約3〜7日後に行なわれる。
本明細書において使用する「流加培養」という用語は、ボーラスの又は連続的なフィード培地を与えることによって、消費されたそうした培地成分を補うことによって、回分培養プロセスを改良する。流加培養の培養液は、培養プロセス全体を通して追加の栄養分を受け取るので、それらは、回分培養法と比較して、より高い細胞密度(10超〜30×10個の細胞/mL、培地の処方、細胞株などに依存)及び増加した産物の力価を達成する可能性を有する。回分培養プロセスとは異なり、フィード戦略及び培地の処方を操作して、所望の細胞密度(増殖期)を達成する細胞増殖期間を、停滞した又は緩徐な細胞増殖の期間(生産期)から区別することによって、二相性培養を作製及び維持することができる。したがって、流加培養の培養液は、回分培養の培養液と比較してより高い産物の力価を達成する可能性を有する。回分培養法と同じように、代謝副産物の蓄積により、これらが細胞培養培地内に進行的に蓄積するにつれて経時的に細胞生存率は低下し、これにより生産期の持続期間は約1.5〜3週間に制限されるだろう。流加培養の培養は不連続であり、収穫は典型的には、代謝副産物レベル又は培養の生存率が予め決定されたレベルに達した時に行なわれる。
「ポリペプチド」又は「タンパク質」という用語は本明細書において「アミノ酸残基配列」と同義語として使用され、アミノ酸のポリマーを指す。これらの用語はまた、グリコシル化、アセチル化、リン酸化、又はタンパク質プロセシングを含むがこれらに限定されない反応を通して翻訳後修飾されているタンパク質も含む。修飾及び変化、例えば他のタンパク質への融合、アミノ酸配列の置換、欠失又は挿入が、ポリペプチドの構造内に行なわれ得るが、該分子はその生物学的機能的活性を維持している。例えば、特定のアミノ酸配列置換は、ポリペプチド又はその基礎となる核酸コード配列に行なわれ得、同じ特性を有するタンパク質を得ることができる。該用語はまた、1つ以上のアミノ酸残基が、対応する天然アミノ酸の類似体又は模倣体である、アミノ酸ポリマーにも適用される。「ポリペプチド」という用語は典型的には、10を超えるアミノ酸を有する配列を指し、「ペプチド」という用語は10までのアミノ酸長を有する配列を指す。
本明細書において使用する「異種タンパク質」という用語は、宿主細胞とは異なる生物又は異なる種に由来するポリペプチドを指す。異種タンパク質は、天然ではそのタンパク質を発現していない宿主細胞に実験的に入れられた異種ポリヌクレオチドによってコードされている。異種ポリヌクレオチドはまた、導入遺伝子とも称され得る。したがって、それは、異種タンパク質をコードしている遺伝子又はオープンリーディングフレーム(ORF)であり得る。タンパク質に言及して使用される場合の「異種」という用語また、該タンパク質が、天然では互いに同じ関係でも同じ長さでも見られないアミノ酸配列を含むことも示し得る。したがって、それはまた、組換えタンパク質も含む。異種はまた、典型的には見られない哺乳動物細胞のゲノム位置に挿入されている、ポリヌクレオチド配列、例えば遺伝子若しくは導入遺伝子、又はその一部を指し得る。本発明において、異種タンパク質は好ましくは治療用タンパク質である。
「培地」、「細胞培養培地」及び「培養培地」という用語は本明細書において同義語として使用され、細胞、特に哺乳動物細胞に栄養分を与える栄養分の溶液を指す。細胞培養培地処方は、当技術分野において周知である。典型的には、細胞培養培地は、最小限の増殖及び/又は生存のために細胞に必要とされる、必須アミノ酸及び非必須アミノ酸、ビタミン、エネルギー源、脂質、及び微量元素、並びに、緩衝液、及び塩を提供する。培養培地はまた、本明細書に記載のような、ホルモン及び/又は他の増殖因子、特定のイオン(例えばナトリウム、クロライド、カルシウム、マグネシウム、及びホスフェート)、緩衝液、ビタミン、ヌクレオシド、又はヌクレオチド、微量元素(通常は非常に低い最終濃度で存在する無機化合物)、アミノ酸、脂質、及び/又はグルコース、又は他のエネルギー源を含むがこれらに限定されない、最小の比率を上回り増殖率及び/又は生存率を増強する、補助成分を含有していてもよい。特定の実施態様では、培地は、細胞の生存及び増殖のために最適なpH及び塩濃度へと有利には調合されている。本発明に記載の培地は、細胞培養開始後に添加される灌流培養培地である。特定の実施態様では、細胞培養培地は、開始栄養溶液(基礎培地又は接種培地)と細胞培養開始後に添加される任意の培養培地との混合物である。
本明細書において使用する「無血清」という用語は、動物又はヒトの血清、例えばウシ胎児血清を含有していない細胞培養培地を指す。好ましくは無血清培地は、あらゆる動物又はヒトに由来する血清から単離されたタンパク質を含まない。組成の規定された培養培地をはじめとする様々な組織培養培地が市販されており、例えば、以下の細胞培養培地のいずれか1つ又は組合せを使用することができる:とりわけRPMI−1640培地、RPMI−1641培地、ダルベッコ改変イーグル培地(DMEM)、最小必須培地イーグル、F−12K培地、Ham F12培地、イスコフ改変ダルベッコ培地、McCoy 5A培地、ライボビッツL−15培地、及び無血清培地、例えばEX−CELL(商標)300シリーズ(JRHバイオサイエンシーズ社、レネックサ、カンザス州)。このような培養培地の無血清形も市販されている。細胞培養培地に、培養する予定の細胞の必要条件及び/又は所望の細胞培養パラメーターに応じて、追加の成分又は上昇した濃度の成分、例えばアミノ酸、塩、糖、ビタミン、ホルモン、増殖因子、緩衝液、抗生物質、脂質、微量元素などを補充してもよい。
本明細書において使用する「タンパク質フリー」という用語は、タンパク質を全く含有していない細胞培養培地を指す。したがって、血清に由来する動物若しくはヒトから単離されたタンパク質、又は、組換え産生されたタンパク質、例えば哺乳動物細胞、細菌細胞、昆虫細胞、若しくは酵母細胞において生産された組換えタンパク質が欠けている。タンパク質フリー培地は、単一の組換えタンパク質、例えばインスリン又はインスリン様増殖因子を含有していてもよいが、この添加が明確に記載されている場合のみである。
本明細書において使用する「化学組成の規定された」という用語は、血清を含まず、かつ酵母、植物、又は動物に由来するタンパク質加水分解産物などの加水分解産物を全く含有していない、培養培地を指す。好ましくは化学組成の規定された培地はまた、タンパク質フリーであるか、又は、選択された組換え産生された(動物由来ではない)タンパク質、例えばインスリン若しくはインスリン様増殖因子のみを含有している。
化学組成の規定された培地は、特徴付けられた物質と精製された物質の混合物からなる。化学組成の規定された培地の一例は、例えば、インビトロジェン社(カールスバッド、CA州、米国)製のCD−CHO培地である。
本明細書において使用する「懸濁細胞」又は「非接着細胞」という用語は、液体懸濁培地中で培養される細胞に関する。CHO細胞などの接着細胞を、懸濁液中で増殖させるように適応させ得、これにより、容器又は組織培養皿の表面に付着するその能力を失う。
本明細書において使用する「バイオリアクター」という用語は、細胞培養液の増殖に有用な任意の容器を意味する。バイオリアクターは、それが細胞の培養に有用である限り、あらゆるサイズのものであり得;典型的には、バイオリアクターは、その内部で増殖させる細胞培養液の容量に適したサイズである。典型的にはバイオリアクターは少なくとも1リットルであり、2、5、10、50、100、200、250、500、1,000、1,500、2,000、2,500、5,000、8,000、10,000、12,000リットル若しくはそれ以上、又はその間の任意の容量であり得る。pH及び温度を含むがこれらに限定されない、バイオリアクターの内部条件は、培養期間中に制御され得る。当業者は、妥当な考察に基づいて本発明を実施するのに使用するのに適したバイオリアクターを知っており、それを選択することができるだろう。本発明の方法に使用される細胞培養液は、灌流培養に適した任意のバイオリアクターで増殖させることができる。
本明細書において使用する「細胞密度」は、一定容量の培養培地中の細胞数を指す。「生細胞密度」は、標準的な生存率アッセイ(例えばトリパンブルー色素排除法)によって決定されるような、一定容量の培養培地中の生細胞の数を指す。
本明細書において使用する「細胞生存率」という用語は、所与のセットの培養条件又は実験変法の下で、培養中の細胞が生存する能力を意味する。本明細書において使用する該用語はまた、特定の時点において培養液中で生存している細胞及び死滅している細胞の総数に対する、その時点で生存している細胞の割合を指す。
本明細書において使用する「力価」という用語は、一定量の培地容量中で細胞培養液によって生産される関心対象のポリペプチド又はタンパク質(これは関心対象の天然タンパク質であっても組換えタンパク質であってもよい)の総量を意味する。力価は、培地1ミリリットル(又は他の容量尺度)あたりのポリペプチド又はタンパク質のミリグラム数又はマイクログラム数の単位で表現され得る。
本明細書において使用する「収量」という用語は、一定の期間にわたる灌流培養で生産された異種タンパク質の量を指す。「総収量」は、全操作にわたる灌流培養で生産された異種タンパク質の量を指す。
本明細書において使用する「減少」、「減少した」又は「減少する」という用語は一般的に、基準レベルと比較して少なくとも10%の減少、例えば本発明の灌流培地に使用される濃度よりも低いカリウムイオンを含んでいる同じ無血清灌流培地を使用して同じ条件下で培養されている対照哺乳動物細胞培養液と比較して少なくとも約20%、又は少なくとも約30%、又は少なくとも約40%、又は少なくとも約50%、又は少なくとも約60%、又は少なくとも約70%、又は少なくとも約75%、又は少なくとも約80%、又は少なくとも約90%の減少、又は最大100%まで(100%を含む)の減少、又は10〜100%の間の任意の整数値の減少を意味する。
本明細書において使用する「増強」、「増強した」、「増加」又は「増加した」という用語は一般的に、対照細胞と比較して少なくとも10%の増加、例えば、本発明の灌流培地に使用される濃度よりも低いカリウムイオンを含んでいる同じ無血清灌流培地を使用して同じ条件下で培養されている哺乳動物細胞培養液と比較して少なくとも約20%、又は少なくとも約30%、又は少なくとも約40%、又は少なくとも約50%、又は少なくとも約75%、又は少なくとも約80%、又は少なくとも約90%、又は少なくとも約100%、又は少なくとも約200%、又は少なくとも約300%の増加、又は10〜300%の間の任意の整数値の増加を意味する。
本明細書において使用する「対照細胞培養液」又は「対照哺乳動物細胞培養液」は、灌流培地が本発明の灌流培地のカリウム濃度を有していないという以外は、比較される細胞培養液と同じである細胞であり、好ましくは対照灌流培地は、本発明の灌流培地のカリウム濃度を有さず、本発明の灌流培地のNa:Kモル比を有さない。
本明細書において使用する「哺乳動物細胞」という用語は、異種タンパク質、好ましくは治療用タンパク質、より好ましくは分泌型組換え治療用タンパク質の生産に適した細胞株である。本発明による好ましい哺乳動物細胞は、げっ歯類の細胞、例えばハムスター細胞である。哺乳動物細胞は単離された細胞又は細胞株である。哺乳動物細胞は好ましくは、形質転換された及び/又は不死化された細胞株である。それらは細胞培養での連続継代に適応し、初代の形質転換されていない細胞又は器官構造の一部である細胞を含んでいない。好ましい哺乳動物細胞は、BHK21細胞、BHK TK細胞、CHO細胞、CHO−K1細胞、CHO−S細胞、CHO−DXB11細胞(CHO−DUKX細胞又はDuxB11細胞とも称される)、及びCHO−DG44細胞、又はこのような細胞株のいずれかの誘導体/子孫である。特に好ましいのは、CHO−DG44細胞、CHO−K1細胞、及びBHK21細胞であり、さらにより好ましいのはCHO−DG44細胞及びCHO−K1細胞である。最も好ましいのはCHO−DG44細胞である。哺乳動物細胞、特にCHO−DG44細胞及びCHO−K1細胞のグルタミン合成酵素(GS)欠損誘導体も包含される。哺乳動物細胞はさらに、異種タンパク質、好ましくは組換え分泌型治療用タンパク質をコードしている1つ以上の発現カセット(群)を含んでいてもよい。哺乳動物細胞はまた、マウス細胞、例えばマウス骨髄腫細胞、例えばNS0細胞及びSP2/0細胞、又はこのような細胞株のいずれかの誘導体/子孫であってもよい。しかしながら、そうした細胞、他の哺乳動物細胞(ヒト、マウス、ラット、サル、及びげっ歯類の細胞株を含むがこれらに限定されない)の誘導体/子孫も、特にバイオ医薬品用タンパク質の生産のために本発明において使用され得る。
本明細書において使用する「増殖期」という用語は、細胞が指数関数的に増殖し、バイオリアクター内の生細胞密度が漸増している細胞培養の期間を指す。培養中の細胞は通常、標準的な増殖パターンに従って増殖する。培養液を播種した後の最初の増殖期は遅滞期であり、これは、細胞が培養環境に適応しつつあり、迅速な増殖に準備しつつある時の緩徐な増殖期である。遅滞期の後には増殖期(log期又は対数期とも称される)があり、この期間では細胞は指数関数的に増殖し、増殖培地の栄養分を消費する。生産期は、一旦標的細胞密度に達したら開始され、及び/又は収穫が開始される。典型的な標的細胞密度は、10×10個の細胞/mlから約120×10個の細胞/mlの範囲内であるが、さらにより高くてもよい。したがって、本発明による標的細胞密度は、少なくとも10×10個の細胞/ml、少なくとも20×10個の細胞/ml、少なくとも30×10個の細胞/ml、少なくとも40×10個の細胞/ml、又は少なくとも50×10個の細胞/mlである。最も好ましくは、標的細胞密度は、約30〜約50×10個の細胞/mlである。生細胞密度は灌流速度に依存し、定期的な又は連続的な細胞抜き取りを使用して一定レベルに維持され得る。
本明細書において使用する「増殖停止」という用語は、数の増加が停止した、すなわち細胞分裂が停止した細胞を指す。細胞周期は、間期及び有糸分裂期を含む。間期は3つの期間からなる:DNA複製はS期に限局される;GはM期とS期の間のギャップ期であり、一方、GはS期とM期の間のギャップ期である。M期では、核及び次いで細胞質が分裂する。増殖するための有糸分裂シグナルの非存在下、又は増殖停止を誘発する化合物の存在下では、細胞周期は停止する。細胞はそれらの細胞周期制御システムを部分的に解体し得、周期から出て、Gと呼ばれる特殊な非分裂状態に入る。
本明細書において使用する「約」という用語は、与えられた実際の数値を中心とした変化値を指し、該数値のプラス及びマイナス10%を包含する。
灌流培養を使用して細胞を培養する方法
理解するためにであって、限定するものではないが、当業者によって、タンパク質生産のための細胞培養及び培養操作は、3つの一般的な種類、すなわち、灌流培養、回分培養、及び流加培養を含み得ることが理解されるだろう。灌流培養液中には、例えば、新鮮な培養培地補助物質が培養期間中に細胞に与えられ、一方、古い培養培地は毎日除去され、産物が例えば毎日又は連続的に収穫される。灌流培養では灌流培地は毎日添加されてもよく、連続的に、すなわち液滴として又は注入液として添加されてもよい。灌流培養では、細胞が生存したままでありかつ環境条件及び培養条件が維持されている限り、細胞は、所望の限り長く培養液中に留まることができる。細胞は持続的に増殖するので、一定した生細胞密度を維持するために操作中の細胞を除去することが典型的には必要とされ、これは細胞抜き取りと称される。細胞抜き取り液は、細胞と共に除去された培養培地中に産物を含有し、これは典型的には捨てられ、したがって廃棄される。したがって、細胞を抜き取ることなく又は最小限の細胞の抜き取りしかせずに、生産期の最中の生細胞密度を維持することが有益であり、操作1回あたりの総収量を増加させる。
回分培養では、細胞をまず培地中で培養し、この培地は除去されないか、置き換えられないか、又は補充されず、すなわち、細胞に、培養操作の最中又は終了前に新たな培地を「フィード」されることはない。所望の産物は、培養操作の終了時に収穫される。
流加培養では、培養操作時間は、培養培地に1日あたり1回以上(又は連続的に)新しい培地を操作中に補充することによって延長され、すなわち、細胞に、培養期間中に新たな培地(「フィード培地」)が「フィード」される。流加培養液は、上記のような様々なフィード計画及びフィード時間、例えば、毎日、隔日、2日間毎など、1日あたり1回より多く、又は1日あたり1回以下などを含み得る。さらに、流加培養液に連続的にフィード培地をフィードされてもよい。次いで、所望の産物を、培養/生産操作終了時に収穫する。
本発明によると、哺乳動物細胞を、灌流培養で培養する。異種タンパク質生産中に、細胞を所望の生細胞密度まで増殖させ、次いで、該細胞を増殖の停止した高い生産性の状態へと切り替え、そこで該細胞はエネルギー及び基質を使用して、細胞増殖及び細胞分裂よりもむしろ関心対象の異種タンパク質を生産するという、制御システムを有することが望ましい。この目標を達成するための方法、例えば温度シフト及びアミノ酸の枯渇は常に成功するとは限らず、産物の品質に対して望ましくない影響を及ぼす可能性がある。本明細書において記載のように、生産期の最中の生細胞密度は、定期的な細胞抜き取りを実施することによって所望のレベルに維持することができる。しかしながら、これにより、関心対象の異種タンパク質は捨てられる。生産期の最中の細胞増殖停止により、細胞抜き取りの必要性が低下し、細胞をより生産的な状態に維持さえし得る。
本明細書において、(a)無血清培養培地中に、異種タンパク質を発現している哺乳動物細胞を接種する工程;(b)無血清灌流培地を用いての灌流によって、増殖期の最中の哺乳動物細胞を培養する工程;及び(c)30mM〜250mMの濃度のカリウムイオンを含み、カリウムイオンに対するナトリウムイオンのモル比が1未満である無血清灌流培地を用いての灌流によって、生産期の最中の哺乳動物細胞を培養する工程(ここでの工程(b)は任意である)を含む、灌流細胞培養液中で異種タンパク質を発現している哺乳動物細胞を培養する方法が提供される。
また、本明細書において、(a)無血清培養培地中に、異種タンパク質を発現している哺乳動物細胞を接種する工程;(b)無血清灌流培地を用いての灌流によって、増殖期の最中の哺乳動物細胞を培養する工程;及び(c)30mM〜250mMの濃度のカリウムイオンを含み、カリウムイオンに対するナトリウムイオンのモル比が1未満である無血清灌流培地を用いての灌流によって、生産期の最中の哺乳動物細胞を培養する工程(ここでの工程(b)は任意である)を含む、灌流細胞培養液中の細胞抜き取りを減少させる方法及び/又は異種タンパク質を発現している灌流細胞培養液中のタンパク質の生産を増加させる方法も提供される。
本発明によって、灌流培養液に非常に高い細胞密度を接種し、無血清培養培地中に異種タンパク質を発現している哺乳動物細胞を接種した直後又はその後まもなく灌流を開始することも包含される。さらに、無血清灌流培地を用いての灌流によって増殖期の最中に哺乳動物細胞を培養する工程(b)は任意であり得、よって、哺乳動物細胞を、生産期の最中に工程(c)に従って、30mM〜250mMの濃度のカリウムイオンを含み、カリウムイオンに対するナトリウムイオンのモル比が1未満である無血清灌流培地を用いての灌流によって直ちに培養する。
したがって、本明細書において、(a)無血清培養培地中に、異種タンパク質を発現している哺乳動物細胞を接種する工程;(b)場合により、無血清灌流培地を用いての灌流によって、増殖期の最中の哺乳動物細胞を培養する工程;及び(c)30mM〜250mMの濃度のカリウムイオンを含み、カリウムイオンに対するナトリウムイオンのモル比が1未満である無血清灌流培地を用いての灌流によって、生産期の最中の哺乳動物細胞を培養する工程を含む、異種タンパク質を発現している哺乳動物細胞を培養する方法及び/又は灌流細胞培養液中の細胞抜き取り量を減少させる方法及び/又は異種タンパク質を発現している灌流細胞培養液中のタンパク質の生産を増加させる方法も提供される。タンパク質生産の増加は、灌流操作中に又は一定期間中に増加したタンパク質産物の収量を包含する。それはまた、細胞あたりの増加した比タンパク質生産、又はその両方を包含する。
本発明の方法によると、工程(a)における哺乳動物細胞の培養は、無血清培地中に異種タンパク質を発現している哺乳動物細胞を接種することに限定され得、したがって、灌流開始前に実際の培養工程を含む必要はない。さらに、本発明の方法によると、灌流による生産期の最中の哺乳動物細胞の培養は、生産期の最中の哺乳動物細胞を灌流によって一定の生細胞密度に維持する工程を含む。
生産期は、一旦標的細胞密度に到達したら開始される。好ましくは工程(c)は、一旦標的細胞密度に到達したら開始される。それは、10×10個の細胞/mlから約120×10個の細胞/ml又はさらにはそれ以上の範囲内の細胞密度で開始され得る。好ましくは工程(c)は、少なくとも10×10個の細胞/ml、少なくとも20×10個の細胞/ml、少なくとも30×10個の細胞/ml、少なくとも40×10個の細胞/ml、又は少なくとも50×10個の細胞/mlの細胞密度で開始される。最も好ましくは工程(c)は、約30〜約50×10個の細胞/mlの細胞密度で開始される。
本発明の方法はさらに、工程(c)では細胞密度が細胞抜き取りによって維持されることを含み得る。この脈絡において言及される細胞密度は生細胞密度であり、これは当技術分野において公知である任意の方法によって決定され得る。例えば、細胞抜き取り速度を支配する計算式は、標的VCDに対応する、Incyte又はFuturaのバイオマス静電容量プローブ値(Hamilton社、Aber Instruments社)を維持することに基づき得るか、又は1日あたりの細胞数及び生存率を、オフラインで、血球計数器、Vi−Cell(ベックマンコールター社)、CedexHiRes(ロシュ社)、もしくはViacountアッセイ(EMDミリポア社のGuava EasyCyte)などの任意の細胞計数装置を介して計測し得る。本発明の方法を使用した細胞抜き取りは、対照灌流細胞培養液と比較して減少し、ここでの対照灌流細胞培養液は、本発明に記載のカリウム濃度及びナトリウムイオン対カリウムイオンの比を有さない同じ無血清灌流培地を使用して同じ条件下で培養された灌流細胞培養液である。より具体的には細胞抜き取りは、対照灌流細胞培養液と比較して減少し、ここでの対照灌流細胞培養液は、30mM未満の濃度のカリウムイオンを含みカリウムに対するナトリウムのモル比が2を超える同じ無血清灌流培地を使用して同じ条件下で培養された灌流細胞培養液である。
本発明の無血清灌流培地中の好ましいカリウムイオン濃度は、約40mM〜約200mM、好ましくは約60mM〜約150mM、より好ましくは約80mM〜約100mMである。いくつかの実施態様では、カリウムに対するナトリウムのモル比は、約0.9〜0.1、約0.8〜0.2、約0.7〜0.2、好ましくは約0.6〜0.3、より好ましくは約0.5〜0.4である。適切なカリウム濃度及びNa:K比の例は、約40mM〜約200mM及び約0.1〜0.9のNa:Kモル比、約40mM〜約200mM及び約0.2〜0.8のNa:Kモル比;約40mM〜約200mM及び約0.2〜0.7のNa:Kモル比;約40mM〜約200mM及び約0.3〜0.6のNa:Kモル比;40mM〜約200mM及び約0.4〜0.5のNa:Kモル比;約60mM〜約150mM及び約0.1〜0.9のNa:Kモル比;約60mM〜約150mM及び約0.2〜0.8のNa:Kモル比;約60mM〜約150mM及び約0.2〜0.7のNa:Kモル比;約60mM〜約150mM及び約0.3〜0.6のNa:Kモル比;約60mM〜約150mM及び約0.4〜0.5のNa:Kモル比;約80mM〜約100mM及び約0.1〜0.9のNa:Kモル比;約80mM〜約100mM及び約0.2〜0.8のNa:Kモル比;約80mM〜約100mM及び約0.2〜0.7のNa:Kモル比;約80mM〜約100mM及び約0.3〜0.6のNa:Kモル比;約80mM〜約100mM及び約0.4〜0.5のNa:Kモル比である。特に好ましいのは、約60mM〜約150mMのカリウム濃度、及び約0.6〜0.3のNa:Kモル比であり、さらにより好ましいのは、約60mM〜約150mMのカリウム濃度、及び約0.5〜0.4のNa:Kモル比であり、さらにより好ましいのは、約80mM〜約100mMのカリウム濃度、及び約0.5〜0.4のNa:Kモル比である。本発明によるカリウム濃度は、本発明によるNa:Kモル比と共に、G/G細胞周期停止をもたらす。さらに、本発明によるカリウム濃度は、本発明によるNa:Kモル比と共に、細胞比生産性(qp)の増加をもたらす。したがって、本発明による高いカリウム濃度及び結果として得られた本発明の低いナトリウム濃度は相乗作用するようである。理論によって固めたくはないが、本発明によるカリウム濃度は、G/G細胞周期停止に必要であり、ナトリウムイオンの減少及びしたがってNa:Kモル比の同時減少は、増加した細胞比生産性を促進するようである。
カリウムイオンは、1つ以上のカリウム塩として提供され得る。好ましい実施態様では、1つ以上のカリウム塩は、重炭酸カリウム、塩化カリウム、水酸化カリウム、L−チロシン二カリウム塩、リン酸カリウム二塩基性、リン酸カリウム一塩基性、亜セレン酸カリウム、ピルビン酸カリウム、グルタチオンカリウム、D−グルコン酸カリウム、コハク酸カリウム、及びアスコルビン酸カリウムからなる群より選択される。より好ましくは、カリウム塩は、重炭酸カリウム、塩化カリウム、水酸化カリウム、L−チロシン二カリウム塩、リン酸カリウム二塩基性、及びリン酸カリウム一塩基性である。好ましくは、培地のモル浸透圧濃度は、カリウム塩の添加によって変化しない。これは、ナトリウム塩を対応するカリウム塩で置換することによって成し遂げられ得る。それ故、当業者は、細胞培養培地に典型的に使用される任意のナトリウム塩が、対応するカリウム塩として使用されるのに好ましい塩であることを理解するだろう。好ましくは、カリウム塩は、工程(b)の無血清灌流培地中の対応するナトリウム塩を置換する。
本発明の無血清灌流培地中の好ましいナトリウムイオン濃度は、100mM未満、より好ましくは60mM未満、さらにより好ましくは10〜50mMである。ナトリウムイオンは、1つ以上のナトリウム塩として提供され得る。好ましい実施態様では、1つ以上のナトリウム塩は、重炭酸ナトリウム、塩化ナトリウム、水酸化ナトリウム、L−チロシン二ナトリウム塩、リン酸ナトリウム二塩基性、リン酸ナトリウム一塩基性、亜セレン酸ナトリウム、ピルビン酸ナトリウム、グルタチオンナトリウム、D−グルコン酸ナトリウム、コハク酸ナトリウム、及びアスコルビン酸ナトリウムからなる群より選択される。より好ましくは、ナトリウム塩は、重炭酸ナトリウム、塩化ナトリウム、水酸化ナトリウム、L−チロシン二ナトリウム塩、リン酸ナトリウム二塩基性、及びリン酸ナトリウム一塩基性である。
同じ理由から、増殖期の最中の増殖を可能とするために、本発明の無血清灌流培地のカリウムイオン濃度及びNa:Kモル比は、接種培地中及び増殖期の最中において回避されるべきである。したがって、工程(a)の無血清培養培地及び工程(b)の無血清灌流培地は、本発明の無血清灌流培地のカリウムイオン濃度よりも低い濃度のカリウム、及び本発明の無血清灌流培地のNa:Kモル比よりも高いNa:Kモル比を含むべきである。好ましくは、工程(a)の無血清培養培地及び工程(b)の無血清灌流培地は、30mM未満のカリウム濃度を含む。より好ましくは、工程(a)の無血清培養培地及び工程(b)の無血清灌流培地は、30mM未満のカリウム濃度、及び1を超える、好ましくは2を超えるカリウムに対するナトリウムのモル比を含む。
本発明の無血清灌流培地のモル浸透圧濃度は、300〜1400mOsmol/kg、好ましくは300〜500mOsmol/kg、より好ましくは330〜450mOsmol/kg、さらにより好ましくは360〜390mOsmol/kgの範囲内であるべきである。ここでのモル浸透圧濃度はmOsmol/kg(水)として与えられる。
本発明の無血清灌流培地及び本発明の方法に使用される無血清灌流培地は、化学組成が規定されていてもよくかつ/又は加水分解物フリーであってもよい。加水分解物フリーとは、培地が、動物、植物(大豆、ジャガイモ、コメ)、酵母、又は他の起源に由来するタンパク質加水分解物を含有していないことを意味する。典型的には、化学組成の規定された培地は、加水分解物フリーである。いずれの場合にも無血清灌流培地は、動物起源に由来する化合物、特に動物に由来する及び動物から単離されたタンパク質(これは、細胞培養液によって生産される組換えタンパク質を含まない)又はペプチドを含むべきではない。好ましくは、無血清灌流培地は、タンパク質フリー、又は組換え型インスリン及び/若しくはインスリン様増殖因子を除きタンパク質フリーである。より好ましくは無血清灌流培地は、化学組成が規定され、タンパク質フリー、又は組換え型インスリン及び/若しくはインスリン様増殖因子を除きタンパク質フリーである。これはまた、工程(a)の無血清培養培地及び工程(b)の無血清灌流培地にも適用される。
灌流培養液は典型的には、回分培養液としての接種培養液を用いて開始する。灌流は、直ちに開始しても、又は1日以上経過後に開始してもよい。典型的には、灌流は細胞培養2日目又はその後に開始する。1つの実施態様では、工程(b)の灌流は、細胞培養2日目又はその後に開始する。一旦標的細胞密度に達したら、細胞培養液中のカリウムイオン濃度を上昇させ、同時にNa:Kモル比を減少させることによって、細胞培養液中の本発明の無血清灌流培地の濃度及び比を得ることによって、増殖停止が誘導される。生産期の最中の哺乳動物細胞を、30mM〜250mMの濃度のカリウムイオンを含み、カリウムイオンに対するナトリウムイオンのモル比が1未満である無血清灌流培地を用いての灌流によって培養する。
典型的には、本発明による哺乳動物細胞培養液は、細胞培養液の連続灌流を含む。灌流速度は、灌流が開始された後に増加させ得る。典型的には、より高い灌流速度は、より高い生細胞密度を支持し、それ故、より高い標的細胞密度を可能とする。灌流速度は、1日あたり0.5容器容量以下から1日あたり5容器容量まで増加させ得る。好ましくは、灌流速度は、1日あたり0.5容器容量以下から1日あたり2容量容器まで増加させ得る。
本発明の方法はさらに、灌流細胞培養液から異種タンパク質を収穫する工程を含む。これは好ましくは、細胞保持装置によって細胞が回収された後に生産された上清である、透過液から持続的に行なわれる。流加培養と比較して灌流バイオリアクター内の細胞培養液中の産物タンパク質の産物滞留時間がより短いことに因り、プロテアーゼ、シアリダーゼ、及び他の分解性タンパク質に対する曝露は最小限となり、これにより、灌流培養液中に生産される異種タンパク質の産物の品質はより良好となり得る。
本発明の方法によると、任意の細胞灌流バイオリアクター及び細胞保持装置を灌流培養のために使用し得る。灌流のために使用されるバイオリアクターは、サイズがよりコンパクトでありかつ細胞保持装置に接続されているという以外は、回分培養/流加培養の培養液に使用されるものとあまり変わらない。バイオリアクター内に細胞を保持するための方法は主に、細胞が表面に付着して増殖しているか、又は単一細胞懸濁液若しくは細胞凝集物のいずれかで増殖しているかによって決定される。大半の哺乳動物細胞は歴史的に、表面又はマトリックスに付着させて増殖させたが(不均一な培養液)、多くの工業的哺乳動物細胞株が懸濁液中で増殖するように適応させる努力がなされてきた(均一な培養液)。主に、懸濁培養液はスケールアップが容易であるからである。したがって、本発明の方法に使用される細胞は好ましくは、懸濁液中で増殖させる。それに限定されるものではないが、懸濁液中で増殖させる細胞の例示的な保持システムは、スピンフィルター、外部ろ過、例えばタンジェンシャルフローろ過(TFF)システム、交互タンジェンシャルフロー(ATF)システム、細胞沈降(垂直沈降及び傾斜沈降)、遠心分離、超音波による分離、及びハイドロクローンである。灌流システムは、2つのカテゴリーに分類され得る(スピンフィルター、外部ろ過、及びATFなどのろ過に基づいたシステム、並びに重力沈降機、遠心分離、超音波分離装置、及びハイドロクローンなどの開放灌流システム)。ろ過に基づいたシステムは、高度の細胞保持を示し、流速により変化しない。しかしながら、フィルターが詰まる可能性があり、したがって、栽培操作の期間が制限されるか、又はフィルターを交換する必要がある。ATFシステムの一例は、レプリゲン社製のATF2システムであり、TFFシステムの一例は、遠心ポンプを使用したレビトロニクス社製のTFFシステムである。中空繊維(HF)又は平板状フィルターなどのクロスフローフィルターは、ATF及びTFFのシステムで使用され得る。具体的には、改変ポリエーテルスルホン(mPES)、ポリエーテルスルホン(PES)、又はポリスルホン(PE)から作られた中空繊維を、ATF及びTFFのシステムで使用し得る。HFの孔径は、数百kDaから15μMの範囲であり得る。開放灌流システムは詰まらず、したがって、少なくとも理論的には無限に作動することができる。しかしながら、細胞保持度は、より高い灌流速度では減少する。現在、工業的規模で使用することのできる4つのシステムが存在する(交互タンジェンシャルフィルター(ATF)、重力(特に傾斜沈降機)、タンジェンシャルフローろ過(TFF)、及び遠心分離)。不均一又は均一な培養液に適した細胞保持装置は、Kompala及びOzturk(Cell Culture Technology for Pharmaceutical and Cell-Based Therapies, (2006), Taylor & Francis Group, LLC, pages 387-416)によってより詳細に記載されている。灌流培養は真に定常状態のプロセスではなく、細胞抜き取り流がバイオリアクターから除去された場合にのみ、全細胞濃度及び生細胞濃度が定常状態に達する。
灌流バイオリアクター中のpH、溶存酸素、及び温度などの物理的パラメーターは、オンラインでモニタリングされ、リアルタイムで制御されるべきである。細胞密度、生存率、代謝物、及び産物の濃度の決定は、オフライン又はオンラインの試料採取を使用して実施され得る。灌流操作を、連続的な収穫及びフィードにより開始する場合、灌流速度は典型的には収穫流速を指し、これは所望の数値に手動で設定してもよい。例えば、バイオリアクターの重力制御はフィードポンプを活発にし得、これにより、バイオリアクター内に一定容量を維持することができる。あるいは、レベルの制御は、予め決定されたレベルを超えると培養容量をポンプで吸い出すことによって成し遂げられ得る。バイオリアクター内の灌流速度は、十分な栄養分を細胞に送達するように調整されなければならない。バイオリアクター内の細胞密度が増加するにつれて、灌流速度を増加させなければならない。
灌流速度は、例えば、細胞密度測定値、pH測定値、酸素消費量、又は代謝物の測定値を使用して制御されてもよい。細胞密度は、灌流速度の調整のために使用される最も重要な測定値である。細胞密度の測定がどのように実施されるかに応じて、灌流速度は毎日又はリアルタイムで調整され得る。いくつかのオンラインプローブが、細胞密度の推定のために開発され、当業者には公知であり、例えば静電容量プローブ、例えばIncyteのプローブ(Hamilton社)又はFuturaのプローブ(Aber instruments社)である。これらの細胞密度プローブを使用して、バイオリアクターから過剰の細胞を除去することによって、すなわち細胞抜き取りによって、細胞密度を所望の設定点に制御することもできる。したがって、細胞抜き取り量は、培養中の哺乳動物細胞の比増殖速度によって決定される。細胞抜き取り液は典型的には収穫されず、それ故、廃棄物と判断される。
さらに別の態様では、生産期の最中の灌流培養液中の哺乳動物細胞を培養するための、又は灌流培養液中の細胞抜き取り総容量を減少させるための、本発明の無血清灌流培地の使用が提供される。あるいは、灌流細胞培養液中のタンパク質生産量を増加させるための本発明の無血清灌流培地の使用が提供される。培地の使用は、本発明の方法に使用される(工程(c)の)無血清灌流培地について開示されている通りである。
本発明の方法及び使用によって生産された異種タンパク質は任意の分泌型タンパク質であり得、好ましくはそれは治療用タンパク質である。大半の治療用タンパク質は組換え治療用タンパク質であるので、それは最も好ましくは組換え治療用タンパク質である。治療用タンパク質の例は、以下に限定されるものではないが、抗体、融合タンパク質、サイトカイン、及び増殖因子である。
本発明の方法に記載の哺乳動物細胞において生産された治療用タンパク質は、抗体又は融合タンパク質、例えばFc融合タンパク質を含むがこれらに限定されない。他の分泌された組換え治療用タンパク質は、例えば、酵素、サイトカイン、リンホカイン、接着分子、その受容体及び誘導体又は断片、並びに、アゴニスト若しくはアンタゴニストとしての役目を果たし得る及び/又は治療用途若しくは診断用途を有する任意の他のポリペプチド及び骨格であり得る。
関心対象の他の組換えタンパク質は、例えば、インスリン、インスリン様増殖因子、hGH、tPA、サイトカイン、例えばインターロイキン(IL)、例えばIL−1、IL−2、IL−3、IL−4、IL−5、IL−6、IL−7、IL−8、IL−9、IL−10、IL−11、IL−12、IL−13、IL−14、IL−15、IL−16、IL−17、IL−18、インターフェロン(IFN)α、IFNβ、IFNγ、IFNω、又はIFNτ、腫瘍壊死因子(TNF)、例えばTNFα及びTNFβ、TNFγ、TRAIL;G−CSF、GM−CSF、M−CSF、MCP−1、及びVEGFであるがこれらに限定されない。また、エリスロポエチン又は任意の他のホルモン増殖因子、並びにアゴニスト若しくはアンタゴニストとしての役目を果たし得る及び/又は治療用途若しくは診断用途を有する任意の他のポリペプチドの生産が含まれる。
好ましい治療用タンパク質は、抗体又はその断片若しくはその誘導体であり、より好ましくはIgG1抗体である。したがって、本発明は、モノクローナル抗体、多重特異的抗体、又はその断片などの抗体の生産に、好ましくはモノクローナル抗体、二重特異的抗体、又はその断片の生産に有利には使用され得る。本発明の範囲内の例示的な抗体としては、抗CD2抗体、抗CD3抗体、抗CD20抗体、抗CD22抗体、抗CD30抗体、抗CD33抗体、抗CD37抗体、抗CD40抗体、抗CD44抗体、抗CD44v6抗体、抗CD49d抗体、抗CD52抗体、抗EGFR1(HER1)抗体、抗EGFR2(HER2)抗体、抗GD3抗体、抗IGF抗体、抗VEGF抗体、抗TNFα抗体、抗IL2抗体、抗IL−5R抗体、又は抗IgE抗体が挙げられるがこれらに限定されず、好ましくは抗CD20抗体、抗CD33抗体、抗CD37抗体、抗CD40抗体、抗CD44抗体、抗CD52抗体、抗HER2/neu(erbB2)抗体、抗EGFR抗体、抗IGF抗体、抗VEGF抗体、抗TNFα抗体、抗IL2抗体、及び抗IgE抗体からなる群より選択される。
抗体断片としては例えば「Fab断片」(抗原結合断片(Fragment antigen-binding)=Fab)が挙げられる。Fab断片は、両鎖の可変領域からなり、これは隣接する定常領域によって互いに保たれている。これらは、従来の抗体から、例えばパパインなどのプロテアーゼによる消化によって形成され得るが、同じようにFab断片は遺伝子工学操作によっても作製され得る。さらなる抗体断片としては、F(ab')2断片が挙げられ、これはペプシンを用いてのタンパク質分解的切断によって調製され得る。
遺伝子工学操作法を使用して、重鎖(VH)及び軽鎖(VL)の可変領域のみからなる短縮された抗体断片を生産することが可能である。これらは、Fv断片(可変断片=可変部分の断片)と称される。これらのFv断片は、定常鎖のシステインによる2本の鎖の共有結合を欠失しているので、Fv断片はしばしば安定化されている。重鎖及び軽鎖の可変領域を、例えば10〜30アミノ酸、好ましくは15アミノ酸の短いペプチド断片によって連結することが有益である。このようにして、ペプチドリンカーによって連結されたVH及びVLからなる、1本のペプチド鎖が得られる。この種の抗体タンパク質は、一本鎖Fv(scFv)として知られている。scFv抗体タンパク質の例は、当業者には公知である。
本発明による好ましい治療用抗体は、二重特異的抗体である。二重特異的抗体は典型的には、1つの分子内に標的細胞(例えば悪性B細胞)及びエフェクター細胞(例えばT細胞、NK細胞、又はマクロファージ)に対する抗原結合特異性を組み合わせている。例示的な二重特異的抗体は、以下に限定されることはないが、ディアボディズ、BiTE(二重特異的T細胞誘導抗体)フォーマット、及びDART(二重親和性再標的化抗体)フォーマットである。ディアボディフォーマットは、2本の別々のポリペプチド鎖上に、2つの抗原結合特異性を示す重鎖及び軽鎖の同族の可変ドメインを分離し、2つのポリペプチド鎖は非共有結合的に会合している。DARTフォーマットはディアボディフォーマットに基づくが、それはC末端ジスルフィド橋を通してさらなる安定化を提供する。
別の好ましい治療用タンパク質は、Fc融合タンパク質などの融合タンパク質である。したがって、本発明は、Fc融合タンパク質などの融合タンパク質の生産に有利には使用され得る。さらに、本発明に従ってタンパク質の生産を増加させる方法は、Fc融合タンパク質などの融合タンパク質の生産に有利には使用することができる。
融合タンパク質のエフェクター部分は、天然の若しくは改変された異種タンパク質の完全な配列若しくは配列の任意の部分、又は、天然の若しくは改変された異種タンパク質の完全な配列若しくは配列の任意の部分の組成物であり得る。免疫グロブリン定常ドメイン配列は、IgG1、IgG2、IgG3、IgG4、IgA1、若しくはIgA2サブタイプなどの任意の免疫グロブリンサブタイプ、又はIgA、IgE、IgD、若しくはIgMなどのクラスから得ることができる。優先的には、それらは、ヒト免疫グロブリンから、より好ましくはヒトIgGから、さらにより好ましくはヒトIgG1及びIgG2から得られる。Fc融合タンパク質の非限定的な例は、N結合型グリコシル化部位を含む重鎖免疫グロブリン定常領域のCH2ドメインに結合した、MCP1−Fc、ICAM−Fc、EPO−Fc、及びscFv断片などである。Fc融合タンパク質は、N結合型グリコシル化部位を含む重鎖免疫グロブリン定常領域のCH2ドメインを、例えば他の免疫グロブリンドメイン、酵素的に活性なタンパク質部分、又はエフェクタードメインを含む別の発現構築物に導入することによる、遺伝子工学操作アプローチによって構築されてもよい。したがって、本発明によるFc融合タンパク質は、例えばN結合型グリコシル化部位を含む重鎖免疫グロブリン定常領域のCH2ドメインに連結された、一本鎖Fv断片も含む。
さらなる態様では、治療用タンパク質を薬学的に許容される製剤へと精製及び製剤化する工程を場合によりさらに含む、本発明の方法を使用して治療用タンパク質を生産する方法が提供される。
治療用タンパク質、特に抗体、抗体断片、又はFc融合タンパク質は好ましくは、分泌ポリペプチドとして培養培地から回収/単離される。実質的に均一な治療用タンパク質の調製物を得るために、他の組換えタンパク質及び宿主細胞タンパク質から治療用タンパク質を精製することが必要である。第一工程として、細胞及び/又は粒子状細胞片を培養培地から除去する。さらに、治療用タンパク質は、例えばイムノアフィニティ又はイオン交換カラムでの分画、エタノール沈降、逆相HPLC、セファデックスクロマトグラフィー、及びシリカクロマトグラフィー、又はDEADなどの陽イオン交換樹脂クロマトグラフィーによって、混入している可溶性のタンパク質、ポリペプチド、及び核酸から精製される。哺乳動物細胞によって発現されている異種タンパク質を精製するための方法は当技術分野において公知である。
1つの実施態様では、本発明の方法を使用して発現される異種タンパク質は、異種タンパク質をコードしている異種ポリヌクレオチドを含む1つ以上の発現カセット(群)によってコードされている。異種タンパク質は、ジヒドロ葉酸還元酵素(DHFR)、グルタミン合成酵素(GS)などの増幅可能な遺伝子選択マーカーの制御下に配置され得る。増幅可能な選択マーカー遺伝子は、異種タンパク質発現カセットと同じ発現ベクター上に存在していてもよい。あるいは、増幅可能な選択マーカー遺伝子及び異種タンパク質発現カセットは、異なる発現ベクター上にあってもよいが、宿主細胞ゲノムに近接して組み込んでもよい。同時に共トランスフェクトされる2つ以上のベクターは、例えば、宿主細胞のゲノムに近接してしばしば組み込まれる。次いで、分泌型治療用タンパク質発現カセットを含有している遺伝子領域の増幅を、栽培培地に増幅剤(例えばDHFRに対してはMTX、又はGSに対してはMSX)を加えることによって媒介する。
哺乳動物細胞によって発現される異種タンパク質の十分に高い安定したレベルはまた、例えば、異種タンパク質をコードしているポリヌクレオチドの複数のコピーを発現ベクターにクローニングすることによっても達成され得る。異種タンパク質をコードしているポリヌクレオチドの複数のコピーの発現ベクターへのクローニング、及び上記のような異種タンパク質発現カセットの増幅をさらに組み合わせてもよい。
哺乳動物細胞株
本明細書において使用する哺乳動物細胞は、分泌型組換え治療用タンパク質の生産に適した哺乳動物細胞株であり、したがって、「宿主細胞」とも称され得る。本発明による好ましい哺乳動物細胞は、げっ歯類の細胞、例えばハムスター細胞である。哺乳動物細胞は単離された細胞又は細胞株である。哺乳動物細胞は好ましくは、形質転換された及び/又は不死化された細胞株である。それらは細胞培養での連続継代に適応し、初代の形質転換されていない細胞又は器官構造の一部である細胞を含んでいない。好ましい哺乳動物細胞は、BHK21細胞、BHK TK細胞、CHO細胞、CHO−K1細胞、CHO−DXB11細胞(CHO−DUKX細胞又はDuxB11細胞とも称される)、CHO−S細胞、及びCHO−DG44細胞、又はこのような細胞株のいずれかの誘導体/子孫である。特に好ましいのは、CHO細胞、例えばCHO−DG44細胞、CHO−K1細胞、及びBHK21細胞であり、さらにより好ましいのはCHO−DG44細胞及びCHO−K1細胞である。最も好ましいのはCHO−DG44細胞である。哺乳動物細胞、特にCHO−DG44細胞及びCHO−K1細胞のグルタミン合成酵素(GS)欠損誘導体も包含される。本発明の1つの実施態様では、哺乳動物細胞は、チャイニーズハムスター卵巣(CHO)細胞、好ましくはCHO−DG44細胞、CHO−K1細胞、CHO DXB11細胞、CHO−S細胞、CHO GS欠損細胞、又はその誘導体である。
哺乳動物細胞はさらに、異種タンパク質、例えば治療用タンパク質、好ましくは組換え分泌型治療用タンパク質をコードしている1つ以上の発現カセット(群)を含み得る。宿主細胞はまた、マウス細胞、例えばマウス骨髄腫細胞、例えばNS0細胞及びSP2/0細胞、又はこのような細胞株のいずれかの誘導体/子孫であり得る。本発明の趣旨において使用され得る哺乳動物細胞の非限定的な例は表1にも要約されている。しかしながら、そうした細胞、他の哺乳動物細胞(ヒト、マウス、ラット、サル、及びげっ歯類の細胞株を含むがこれらに限定されない)の誘導体/子孫も、特にバイオ医薬品用タンパク質の生産のために本発明において使用され得る。
Figure 0006943972
哺乳動物細胞は、無血清条件下で、及び場合により動物起源のあらゆるタンパク質/ペプチドを含まない培地中で確立、適応、及び完全に栽培された場合に最も好ましい。市販の培地、例えばHam F12(シグマ社、ダイゼンホーフェン、ドイツ)、RPMI−1640(シグマ社)、ダルベッコ改変イーグル培地(DMEM;シグマ社)、最小必須培地(MEM;シグマ社)、イスコフ改変ダルベッコ培地(IMDM;シグマ社)、CD−CHO(インビトロジェン社、カールズバッド、CA州)、CHO−S培地(インビトロジェン社)、無血清CHO培地(シグマ社)、及びタンパク質フリーCHO培地(シグマ社)は、例示的な適切な栄養溶液である。いずれの培地にも、必要であれば、様々な化合物を補充してもよく、その非限定的な例は、組換え型ホルモン及び/又は他の組換え型増殖因子(例えばインスリン、トランスフェリン、上皮増殖因子、インスリン様増殖因子)、塩(例えば塩化ナトリウム、カルシウム、マグネシウム、ホスフェート)、緩衝液(例えばHEPES)、ヌクレオシド(例えばアデノシン、チミジン)、グルタミン、グルコース、又は他の等価なエネルギー源、抗生物質、及び微量元素である。任意の他の必要な補助物質も、当業者には公知であろう適切な濃度で含まれていてもよい。選択遺伝子を発現している遺伝子的に改変された細胞の増殖及び選択のために、適切な選択剤が培養培地に添加される。
無血清灌流培地
別の態様では、30mM〜250mMの濃度のカリウムイオンを含み、カリウムイオンに対するナトリウムイオンのモル比が1未満である、無血清灌流培地が提供される。
いくつかの実施態様では、カリウムイオン濃度は、約40mM〜約120mM、好ましくは約60mM〜約150mM、より好ましくは約80mM〜約100mMである。いくつかの実施態様では、カリウムに対するナトリウムのモル比は、約0.9〜0.1、約0.8〜0.2、約0.7〜0.2、好ましくは約0.6〜0.3、より好ましくは約0.5〜0.4である。
本発明の無血清灌流培地中の好ましいカリウムイオン濃度は、約40mM〜約200mM、好ましくは約60mM〜約150mM、より好ましくは約80mM〜約100mMである。いくつかの実施態様では、カリウムに対するナトリウムのモル比は、約0.9〜0.1、約0.8〜0.2、約0.7〜0.2、好ましくは約0.6〜0.3、より好ましくは約0.5〜0.4である。適切なカリウム濃度及びNa:K比の例は、約40mM〜約200mM及び約0.1〜0.9のNa:Kのモル比、約40mM〜約200mM及び約0.2〜0.8のNa:Kモル比;約40mM〜約200mM及び約0.2〜0.7のNa:Kモル比;40mM〜約200mM及び約0.3〜0.6のNa:Kモル比;約40mM〜約200mM及び約0.4〜0.5のNa:Kモル比;約60mM〜約150mM及び約0.1〜0.9のNa:Kモル比;約60mM〜約150mM及び約0.2〜0.8のNa:Kモル比;約60mM〜約150mM及び約0.2〜0.7のNa:Kモル比;約60mM〜約150mM及び約0.3〜0.6のNa:Kモル比;約60mM〜約150mM及び約0.4〜0.5のNa:Kモル比;約80mM〜約100mM及び約0.1〜0.9のNa:Kモル比;約80mM〜約100mM及び約0.2〜0.8のNa:Kモル比;約80mM〜約100mM及び約0.2〜0.7のNa:Kモル比;約80mM〜約100mM及び約0.3〜0.6のNa:Kモル比;約80mM〜約100mM及び約0.4〜0.5のNa:Kモル比である。特に好ましいのは、約60mM〜約150mMのカリウム濃度、及び約0.6〜0.3のNa:Kモル比であり、さらにより好ましいのは、約60mM〜約150mMのカリウム濃度、及び約0.5〜0.4のNa:Kモル比であり、さらにより好ましいのは、約80mM〜約100mMのカリウム濃度、及び約0.5〜0.4のNa:Kモル比である。本発明によるカリウム濃度は、本発明によるNa:Kモル比と共に、G/G細胞周期停止をもたらす。さらに、本発明によるカリウム濃度は、本発明によるNa:Kモル比と共に、細胞比生産性(qp)の増加をもたらす。したがって、本発明による高いカリウム濃度及び結果として得られた本発明の低いナトリウム濃度は相乗作用するようである。理論によって固めたくはないが、本発明によるカリウム濃度は、G/G細胞周期停止に必要であり、ナトリウムイオンの減少及びしたがってNa:Kモル比の同時減少は、増加した細胞比生産性を促進するようである。
カリウムイオンは、1つ以上のカリウム塩として提供され得る。好ましい実施態様では、1つ以上のカリウム塩は、重炭酸カリウム、塩化カリウム、水酸化カリウム、L−チロシン二カリウム塩、リン酸カリウム二塩基性、リン酸カリウム一塩基性、亜セレン酸カリウム、ピルビン酸カリウム、グルタチオンカリウム、D−グルコン酸カリウム、コハク酸カリウム、及びアスコルビン酸カリウムからなる群より選択される。より好ましくは、カリウム塩は、重炭酸カリウム、塩化カリウム、水酸化カリウム、L−チロシン二カリウム塩、リン酸カリウム二塩基性、リン酸カリウム一塩基性である。好ましくは、培地のモル浸透圧濃度は、カリウム塩の添加によって変化しない。これは、ナトリウム塩を対応するカリウム塩で置換することによって成し遂げられ得る。それ故、当業者は、細胞培養培地に典型的に使用される任意のナトリウム塩が、対応するカリウム塩として使用されるのに好ましい塩であることを理解するだろう。
本発明の無血清灌流培地中の好ましいナトリウムイオン濃度は、100mM未満、より好ましくは60mM未満、さらにより好ましくは10〜50mMである。ナトリウムイオンは、1つ以上のナトリウム塩として提供され得る。好ましい実施態様では、1つ以上のナトリウム塩は、重炭酸ナトリウム、塩化ナトリウム、水酸化ナトリウム、L−チロシン二ナトリウム塩、リン酸ナトリウム二塩基性、リン酸ナトリウム一塩基性、亜セレン酸ナトリウム、ピルビン酸ナトリウム、グルタチオンナトリウム、D−グルコン酸ナトリウム、コハク酸ナトリウム、及びアスコルビン酸ナトリウムからなる群より選択される。より好ましくは、ナトリウム塩は、重炭酸ナトリウム、塩化ナトリウム、水酸化ナトリウム、L−チロシン二ナトリウム塩、リン酸ナトリウム二塩基性、リン酸ナトリウム一塩基性である。
本発明の無血清灌流培地のモル浸透圧濃度は、300〜1400mOsmol/kg、好ましくは300〜500mOsmol/kg、より好ましくは330〜450mOsmol/kg、さらにより好ましくは360〜390mOsmol/kgの範囲内であるべきである。ここでのモル浸透圧濃度はmOsmol/kg(水)として与えられる。
本発明の無血清灌流培地は、化学組成が規定されていてもよくかつ/又は加水分解物フリーであってもよい。加水分解物フリーとは、培地が、動物、植物(大豆、ジャガイモ、コメ)、酵母、又は他の起源に由来するタンパク質加水分解物を含有していないことを意味する。典型的には、化学組成の規定された培地は、加水分解物フリーである。いずれの場合にも無血清灌流培地は、動物起源に由来する化合物、特に動物に由来する及び動物から単離されたタンパク質(これは、細胞培養液によって生産される組換えタンパク質を含まない)又はペプチドを含むべきではない。好ましくは、無血清灌流培地は、タンパク質フリー、又は組換え型インスリン及び/若しくはインスリン様増殖因子を除きタンパク質フリーである。より好ましくは無血清灌流培地は、化学組成が規定され、タンパク質フリー、又は組換え型インスリン及び/若しくはインスリン様増殖因子を除きタンパク質フリーである。
さらに別の態様では、生産期の最中の灌流培養液中の哺乳動物細胞を培養するための、又は灌流培養液中の細胞抜き取り総容量を減少させるための、本発明の無血清灌流培地の使用が提供される。あるいは、灌流細胞培養液中のタンパク質生産を増加させるための本発明の無血清灌流培地の使用が提供される。培地の使用は、本発明の方法に使用される(工程(c)の)無血清灌流培地について開示されている通りである。
実施例
実施例1:全生産性に対する細胞抜き取りの効果
モノクローナル抗体を生産するCHO細胞株を、示されているような2つの異なる再循環装置を使用して、2Lの作業容量で3Lのガラス製の灌流バイオリアクター中で培養した:ATF1番及びATF2番は、ATF2装置(レプリゲン社、ウォルサム、MA州)を使用したレプリケートであり、TFFバイオリアクターは遠心ポンプ(レビトロニクス社、チューリッヒ、スイス)を使用した。使用された中空繊維は、0.2μmの孔径及び1mmの管腔内径を有するポリエーテルスルホン(PES)であった。Na:K 9の濃度比を有する灌流培地を、細胞培養の全期間において使用した。再循環速度及び灌流速度は、3つ全てのリアクター間で一定に維持した。中空繊維を横断してふるいにかけられた全ての産物を占める、収穫物(透過液)の流れ(回収産物)及びバイオリアクター内容物(リアクターの力価)の力価を毎日測定し、ここで細胞抜き取り液の力価は、バイオリアクターの力価と同一であると仮定される。細胞培養終了時(29日目)に生産された総グラム数は、以下の計算式に従って推定された:
Figure 0006943972
図1から理解され得るように、細胞抜き取り液は、定常状態の灌流プロセスにおける全産物の約30%の喪失を占め得る。
実施例2:ディープウェルの灌流モデルにおけるNa+/K+濃度の変化に対する細胞増殖及び生産性の応答
灌流用の無血清の化学組成の規定された培地を、全培地の実験のバックグラウンドとして使用した。Na+及びK+のレベルを、指定された場合には、0.3から無限大(K+は全くない)の間のNa+/K+比に到達するように変化させた。これは、培地成分である塩化ナトリウム(NaCl)、水酸化ナトリウム(NaOH)、及び重炭酸ナトリウム(NaHCO)を、それぞれのカリウム形と交換することにより達成され、これにより、表2に示されたような最終のNa濃度及びK濃度が、モル浸透圧濃度を変化させることなく以下の全ての試験された培地について得られた。培地の最終モル浸透圧濃度は、全ての条件について360〜390mosmol/kg(水)であった。モノクローナル抗体mAb1(IgG1)を生産している組換え型チャイニーズハムスター卵巣(CHO)細胞株(CHO−DG44)を使用した。解凍した接種培養液を、無血清の化学組成の規定された接種培地中で増殖させ、標的細胞密度に到達するまで振盪フラスコ中に維持した。ディープウェルプレート作業のための細胞を、Axygenの24ウェルの滅菌済ディープウェルプレート(Neta Scientific社、ハイネスポート、NJ州)に直接接種した。20e6個の細胞/mLの開始細胞密度を、ディープウェルプレートモデル作業のために使用して、高い細胞密度の灌流期を刺激し、培地の深さを試験した。振盪フラスコ培養液からこのような高い細胞密度を達成するために、必要な容量を1000rpmで5分間遠心分離にかけ、細胞ペレットを、灌流培地中に所望の密度となるまで再懸濁し、その後、ディープウェルプレートに分配した。1ウェルあたりの作業容量は3mLであった。細胞を、5.0cmの軌道直径を有するインキュベーター中で、33℃で5%CO、80%湿度、及び200rpmで増殖させた。プレートを1200rpmで5分間遠心分離にかけ、上清を除去し、1日あたり2/3容器容量(VVD)の交換率で新たな培地に細胞を再懸濁することによって、培地の交換を毎日行なった。
細胞周期の分析を、ディープウェル培養5日目に実施した。細胞を、Na:K 2(K=37mM)又はNa:K 0.5(K=76mM)のいずれかを含有している培地中で増殖させ、冷PBSでの2回の洗浄によって5日目に固定し、その後、70%エタノールに懸濁した。細胞を続いて、DNA含量についてRNase(BDバイオサイエンシーズ社)と共にヨウ化プロピジウムを用いて染色し、Guava easyCyteフローサイトメトリー(EMDミリポア社)でのフローサイトメトリーによって分析した。
Figure 0006943972
試験された濃度範囲についての累積比増殖率(SGR)及び累積細胞比生産性(qp)の曲線プロットを、図2A及びBに示す。応答の程度は、対照条件Na=78mM、K=37mM(Na:K 2)との差の比率として表現され、より暗い領域は、より低い細胞増殖又はより高い比生産性の状態を示す。点線は、示されているようなNa:K比を示す。細胞増殖及び細胞比生産性の両方がNa濃度及びK濃度に依存し、ここではより高い生産性及びより緩徐な細胞増殖が、より高いKレベルで起こる。より高いNa:K比(Na:K>2)は、1未満のNa:K比と比較して、より低い生産性及びより高い細胞増殖を示す領域を包含する。
細胞培養の全時間経過における代表的な生細胞密度(VCD)及び生存率プロットが図2C及びDに示されている。Na:K比の低下により、経時的に生細胞密度は減少し、このことはより低い比増殖率を示し(図2C)、一方、生存率は、全7日間の培養を通して一貫して高い(>85%)ままであった(図2D)。
様々なNa+/K+濃度で処理されたCHO細胞の細胞周期分析の結果を図3に示す。Na:K 2培地と比較して、Na:K 0.5培地中で培養されたCHO細胞における、サブG0期及びG0/1期における細胞の比率は増加し、一方、S期及びG2/M期の細胞の比率は減少した(図3A)。これは、Na:K 2培地と比較してNa:K 0.5培地中で培養されたCHO細胞についてのG0/1:G2/Mの比を示した、図3Bからさらにより明らかである。このことは、カリウムに対するナトリウムの比を低下させることにより、G0/1期の細胞は停止することを確認する。
実施例3:2Lの灌流リアクターにおける細胞の性能
様々なモノクローナル抗体を発現している3つのCHO細胞株を評価した。バイオリアクター培養用の細胞を、標的細胞密度に達するまで同じ灌流培地(9Na/K)中で増殖させ、その後、Na:K 0.5培地(約76mMのK)に切り替えるか又はNa:K 9培地(12mMのK)に留めるかのいずれかを行なった。全ての灌流バイオリアクターに使用される中空繊維は、0.2μmの孔径及び1mmの管腔内径を有するポリエーテルスルホン(PES)から作製された。全ての実施例で使用される再循環装置はATF2システム(レプリゲン社、ウォルサム、MA州)又は遠心ポンプ(レビトロニクス社、チューリッヒ、スイス)を使用したTFFシステムであった。2つのシステムは、2Lのスケールで相互交換可能であることが以前に実証されている。全ての研究は、2Lの作業容量で3Lのガラス製の撹拌タンクバイオリアクター(アプリコンバイオテクノロジー社、デルフト、オランダ)において実施された。最小細胞比灌流速度が、各細胞株について確立され、定常状態で0.03〜0.08nL/細胞/日の範囲であった。この灌流速度は、同じ細胞株について様々な培地条件間で同じに保たれた。生細胞密度は、Incyteプローブ(ハミルトン社、リノ、ネバダ州)を使用したオンラインフィードバックにより制御される細胞抜き取りによって経時的に一定に保たれた。この実験に使用された細胞株は、mAb1を発現しているCHO−DG44細胞(低生産細胞株の例;qp<20pg/細胞/日)、mAb2を発現しているCHO−K1細胞(中程度生産細胞株の例:20pg/細胞/日<qp<40pg/細胞/日)、及びmAb3を発現しているCHO−K1細胞(高生産細胞株の例;qp>50pg/細胞/日)であった。
さらに、グリコシル化パターン、酸性種及び塩基性種、又は高分子種及び低分子種に対する特異的効果を、3つの細胞株において分析した。3つ全ての細胞株について低下したNa:Kの比のリアクター並びに対照培地(Na:K 9)のリアクターについて、細胞培養期間中に毎日、透過液を回収した。酸性種及び塩基性種を陽イオン交換クロマトグラフィー(CEX)によって、高分子量種及び低分子量種をサイズ排除クロマトグラフィー(SEC)によって、N−グリカンを2−アミノ酸親水性相互作用液体クロマトグラフィー(HILIC)によって測定した。種の比率についてクロマトグラムを分析した。
中程度の生産株(mAb2)についての、代表的な1日あたりのqp、SGR、生存率、及び細胞抜き取り液のプロットを図4A〜Dに示す。図4Aから理解され得るように、細胞比生産性は、Na:K 9培地中に維持された対照細胞と比較して、培養培地がNa:K 0.5培地へと10日目に切り替えられた直後に増加した。同時に、比増殖率は、対照細胞と比較して、より急速にかつより低い全体的レベルへと下降した(図4B)。これはまた、一定した生細胞密度を維持するために必要とされるはるかに低い抜き取り流速(図4D)によって反映される(データは示されていない)。Na:K比の0.5への減少は、細胞生存率に全く影響を及ぼさなかった(図4C)。
Figure 0006943972
3つ全ての細胞株についての最終抜き取り総容量を表3に示す。抜き取り容量を、対照(Na/K 9の状態)に対して標準化し、Na/K 9の状態に対するNa/K 0.5の状態の比率として表現する。
灌流培養22日目における2つの異なる培地間の平均qp及びSGRの差異を、様々なモノクローナル抗体を発現しかつそれらの生産性が異なる3つの異なるCHO細胞株について図5に示す。平均qp及び平均SGRが、培地の切り替え前のそれらのそれぞれの数値に対して培地の切り替えが標準化された後の平均qp及びSGRとして表現される(すなわち、mAb1及び3については10〜22日目/0〜10日目、mAb2については12〜22日目/0〜12日目)。3つ全てのCHO細胞株は、Na/K 0.5培地への切り替え後に比増殖率の減少を示す。この効果は、CHO−DG44 mAb1及びCHO−K1 mAb2において最も顕著であり、さらにより強い効果がCHO−DG44 mAb1に認められる。低下したNa:K比を有する培地を用いたCHO−K1 mAb3(IgG4)において、低下した比増殖率の傾向も認められるが、この差異は統計学的に有意ではない。CHO−K1 mAb3細胞についての1日あたりの増殖率の評価により、より低いNa:K比へと培地を切り替えた後の増殖率は、培地切り替え前日のSGRと比較して経時的に約0.2まで低下し、一方、対照培養液中の増殖率は、培地切り替え前日のSGRと比較して22日目まで約0.6に安定に維持されていたことが判明した。試験された他の2つの細胞株と比較して、CHO−DG44 mAb3は、培地切り替えに対してより緩徐な応答時間を有するようであった。それ故、平均増殖率は、培養期間が延長されていれば、有意な差異を示したであろうことが理解できる。同時に、細胞比生産性は、低下したNa:K比を有する培地中で培養されると、3つ全ての細胞株において統計学的に有意に増加する。効果は、CHO−K1 mAb2において最も顕著であった。CHO−DG44 mAb1及びCHO−K1 mAb3の増加は、同じように僅かに顕著さの低いレベルであったが、依然として統計学的に有意であった。
グリコシル化パターン、酸性種及び塩基性種、又は高分子種及び低分子種に対する特異的効果は、試験された3つの細胞株においては観察されなかった。
上記に鑑みて、本発明はまた以下の項目にも関することが理解されるだろう。
項目
1.(a)無血清培養培地中に、異種タンパク質を発現している哺乳動物細胞を接種する工程;
(b)無血清灌流培地を用いての灌流によって、増殖期の最中の哺乳動物細胞を培養する工程;及び
(c)30mM〜250mMの濃度のカリウムイオンを含み、カリウムイオンに対するナトリウムイオンのモル比が1未満である無血清灌流培地を用いての灌流によって、生産期の最中の哺乳動物細胞を培養する工程
(ここでの工程(b)は任意である)
を含む、灌流細胞培養液中において異種タンパク質を発現している哺乳動物細胞を培養する方法。
2.(a)無血清培養培地中に、異種タンパク質を発現している哺乳動物細胞を接種する工程;
(b)無血清灌流培地を用いての灌流によって、増殖期の最中の哺乳動物細胞を培養する工程;及び
(c)30mM〜250mMの濃度のカリウムイオンを含み、カリウムイオンに対するナトリウムイオンのモル比が1未満である無血清灌流培地を用いての灌流によって、生産期の最中の哺乳動物細胞を培養する工程
(ここでの工程(b)は任意である)
を含む、異種タンパク質を発現している灌流細胞培養液中において細胞の抜き取り量を減少させる方法。
3.(a)無血清培養培地中に、異種タンパク質を発現している哺乳動物細胞を接種する工程;
(b)無血清灌流培地を用いての灌流によって、増殖期の最中の哺乳動物細胞を培養する工程;及び
(c)30mM〜250mMの濃度のカリウムイオンを含み、カリウムイオンに対するナトリウムイオンのモル比が1未満である無血清灌流培地を用いての灌流によって、生産期の最中の哺乳動物細胞を培養する工程
(ここでの工程(b)は任意である)
を含む、異種タンパク質を発現している灌流細胞培養液中においてタンパク質の生産を増加させる方法。
4.工程(c)がさらに細胞の抜き取りによって細胞密度を維持する工程を含む、項目1〜3のいずれか一項の方法。
5.細胞の抜き取りが、30mM未満の濃度のカリウムイオンを含み、カリウムに対するナトリウムのモル比が2を超え、同じ条件下で培養された同じ無血清灌流培地を使用した灌流細胞培養液と比較して減少している、項目4の方法。
6.カリウムイオン濃度が、約40mM〜約200mM、好ましくは約60mM〜約150mM、より好ましくは約80mM〜約100mMである、項目1〜5のいずれか一項の方法。
7.カリウムに対するナトリウムのモル比が、約0.9〜0.1、約0.8〜0.2、約0.7〜0.2、好ましくは約0.6〜0.3、より好ましくは約0.5〜0.4である、項目1〜6のいずれか一項の方法。
8.カリウムイオンが1つ以上のカリウム塩として提供される、項目1〜7のいずれか一項の方法。
9.1つ以上のカリウム塩が、重炭酸カリウム、塩化カリウム、水酸化カリウム、L−チロシン二カリウム塩、リン酸カリウム二塩基性、リン酸カリウム一塩基性、亜セレン酸カリウム、ピルビン酸カリウム、グルタチオンカリウム、D−グルコン酸カリウム、コハク酸カリウム、及びアスコルビン酸カリウムからなる群より選択される、項目8の方法。
10.1つ以上のカリウム塩が、無血清灌流培養液中の対応するナトリウム塩を置換している、項目9の方法。
11.カリウムイオンが、1つ以上のカリウム塩として提供され、1つ以上のカリウム塩が、工程b)の無血清灌流培地中の対応するナトリウム塩を置換する、項目10の方法。
12.哺乳動物細胞がチャイニーズハムスター卵巣(CHO)細胞である、項目1〜11のいずれか一項の方法。
13.CHO細胞が、CHO−DG44細胞、CHO−K1細胞、CHO DXB11細胞、CHO−S細胞、CHO GS欠損細胞、又はこれらの中のいずれかの細胞の誘導体である、項目12の方法。
14.工程(a)の無血清培養培地及び工程(b)の無血清灌流培地が、30mM未満のカリウムイオンを含む、項目1〜13のいずれか一項の方法。
15.工程(b)の灌流が、細胞培養2日目に又はそれ以後に開始される、項目1〜14のいずれか一項の方法。
16.灌流が連続灌流を含む、項目1〜15のいずれか一項の方法。
17.灌流速度が、灌流が開始された後に増加する、項目1〜16のいずれか一項の方法。
18.灌流速度が、1日あたり0.5容器容量以下から、1日あたり5容器容量まで増加する、項目17の方法。
19.灌流速度が、1日あたり0.5容器容量以下から、1日あたり2容器容量まで増加する、項目18の方法。
20.灌流細胞培養液から異種タンパク質を収穫する工程をさらに含む、項目1〜19のいずれか一項の方法。
21.異種タンパク質が治療用タンパク質である、項目1〜20のいずれか一項の方法。
22.治療用タンパク質が、抗体、融合タンパク質、サイトカイン、及び増殖因子からなる群より選択される、項目21の方法。
23.無血清灌流培地の化学組成が規定されている、項目1〜22のいずれか一項の方法。
24.無血清灌流培地が加水分解物フリーである、項目1〜23のいずれか一項の方法。
25.無血清灌流培地が、組換え型インスリン及び/又はインスリン様増殖因子を除いてタンパク質フリーである、項目1〜24のいずれか一項の方法。
26.無血清灌流培地が、タンパク質フリーである、項目1〜24のいずれか一項の方法。
27.工程(c)が、一旦10×10個の細胞/mLから約120×10個の細胞/mLの細胞密度に達したら開始される、項目1〜26のいずれか一項の方法。
28.培地のモル浸透圧濃度が、300〜1400mOsmol/kg、好ましくは300〜500mOsmol/kgである、項目1〜27のいずれか一項の方法。
29.項目1〜28のいずれか一項の方法を使用した治療用タンパク質を生産する方法。
30.哺乳動物細胞によって発現される異種タンパク質が治療用タンパク質であり、ここでの治療用タンパク質が薬学的に許容される製剤へと精製及び製剤化されている、項目29の方法。
31.30mM〜250mMの濃度のカリウムイオンを含み、カリウムイオンに対するナトリウムイオンのモル比が1未満である、無血清灌流培地。
32.カリウムイオン濃度が、約40mM〜約200mM、好ましくは約60mM〜約150mM、より好ましくは約80mM〜約100mMである、項目31の無血清灌流培地。
33.カリウムに対するナトリウムのモル比が、約0.9〜0.1、約0.8〜0.2、約0.7〜0.2、好ましくは約0.6〜0.3、より好ましくは約0.5〜0.4である、項目31又は32の無血清灌流培地。
34.カリウムイオンが1つ以上のカリウム塩として提供される、項目31〜33のいずれか一項の無血清灌流培地。
35.1つ以上のカリウム塩が、重炭酸カリウム、塩化カリウム、水酸化カリウム、L−チロシン二カリウム塩、リン酸カリウム二塩基性、リン酸カリウム一塩基性、亜セレン酸カリウム、ピルビン酸カリウム、グルタチオンカリウム、D−グルコン酸カリウム、コハク酸カリウム、及びアスコルビン酸カリウムからなる群より選択される、項目34の無血清灌流培地。
36.1つ以上のカリウム塩及び/又は水酸化カリウムは、無血清灌流培養培地中の対応するナトリウム塩を置換する、項目35の無血清灌流培地。
37.無血清灌流培地の化学組成が規定されている、項目31〜36のいずれか一項の無血清灌流培地。
38.無血清灌流培地が加水分解物フリーである、項目31〜37のいずれか一項の無血清灌流培地。
39.組換え型インスリン及び/又はインスリン様増殖因子を除きタンパク質フリーである、項目31〜38のいずれか一項の無血清灌流培地。
40.無血清灌流培地がタンパク質フリーである、項目31〜38のいずれか一項の無血清灌流培地。
41.培地のモル浸透圧濃度が、300〜1400mOsmol/kg、好ましくは300〜500mOsmol/kgである、項目31〜40のいずれか一項の無血清灌流培地。
42.生産期の最中の灌流培養液中の哺乳動物細胞を培養するための、項目31〜41のいずれか一項の無血清灌流培地の使用。
43.灌流培養液中の細胞抜き取り総容量を減少させるための、項目31〜41のいずれか一項の無血清灌流培地の使用。
44.灌流細胞培養液中のタンパク質の生産を増加させるための、項目31〜41のいずれか一項の無血清灌流培地の使用。
45.灌流細胞培養液中の細胞比タンパク質生産を増加させるための、項目31〜41のいずれか一項の無血清灌流培地の使用。

Claims (33)

  1. (a)無血清培養培地中に、異種タンパク質を発現している哺乳動物細胞を接種する工程;及び
    (c)30mM〜250mMの濃度のカリウムイオンを含み、カリウムイオンに対するナトリウムイオンのモル比が1未満である無血清灌流培地を用いての灌流によって、生産期の最中の哺乳動物細胞を培養する工程を含み、
    ここで、前記無血清灌流培地の浸透圧が330〜450mosmol/kg(水)である、
    灌流細胞培養液中において異種タンパク質を発現している哺乳動物細胞を培養する方法。
  2. (a)無血清培養培地中に、異種タンパク質を発現している哺乳動物細胞を接種する工程;
    (b)無血清灌流培地を用いての灌流によって、増殖期の最中の哺乳動物細胞を培養する工程;及び
    (c)30mM〜250mMの濃度のカリウムイオンを含み、カリウムイオンに対するナトリウムイオンのモル比が1未満である無血清灌流培地を用いての灌流によって、生産期の最中の哺乳動物細胞を培養する工程
    を含み、
    ここで、前記無血清灌流培地の浸透圧が330〜450mosmol/kg(水)である、
    灌流細胞培養液中において異種タンパク質を発現している哺乳動物細胞を培養する方法。
  3. 前記無血清灌流培地の浸透圧が360〜390mosmol/kg(水)である、請求項1又は2に記載の方法。
  4. 前記工程(c)がさらに細胞の抜き取りによって細胞密度を維持することを含む、請求項1〜3のいずれか一項に記載の方法。
  5. (a)無血清培養培地中に、異種タンパク質を発現している哺乳動物細胞を接種する工程;及び
    (c)30mM〜250mMの濃度のカリウムイオンを含み、カリウムイオンに対するナトリウムイオンのモル比が1未満である無血清灌流培地を用いての灌流によって、生産期の最中の哺乳動物細胞を培養し、そして細胞の抜き取りによって細胞密度を維持する工程を含み、
    ここで、前記無血清灌流培地の浸透圧が330〜450mosmol/kg(水)である、
    異種タンパク質を発現している灌流細胞培養液中において細胞の抜き取り量を減少させる方法。
  6. (a)無血清培養培地中に、異種タンパク質を発現している哺乳動物細胞を接種する工程;
    (b)無血清灌流培地を用いての灌流によって、増殖期の最中の哺乳動物細胞を培養する工程;及び
    (c)30mM〜250mMの濃度のカリウムイオンを含み、カリウムイオンに対するナトリウムイオンのモル比が1未満である無血清灌流培地を用いての灌流によって、生産期の最中の哺乳動物細胞を培養し、そして細胞の抜き取りによって細胞密度を維持する工程を含み、
    ここで、前記無血清灌流培地の浸透圧が330〜450mosmol/kg(水)である、
    異種タンパク質を発現している灌流細胞培養液中において細胞の抜き取り量を減少させる方法。
  7. 前記無血清灌流培地の浸透圧が360〜390mosmol/kg(水)である、請求項5又は6に記載の方法。
  8. (a)無血清培養培地中に、異種タンパク質を発現している哺乳動物細胞を接種する工程;及び
    (c)30mM〜250mMの濃度のカリウムイオンを含み、カリウムイオンに対するナトリウムイオンのモル比が1未満である無血清灌流培地を用いての灌流によって、生産期の最中の哺乳動物細胞を培養する工程を含み、
    ここで、前記無血清灌流培地の浸透圧が330〜450mosmol/kg(水)である、
    異種タンパク質を発現している灌流細胞培養液中においてタンパク質の生産量を増加させる方法。
  9. (a)無血清培養培地中に、異種タンパク質を発現している哺乳動物細胞を接種する工程;
    (b)無血清灌流培地を用いての灌流によって、増殖期の最中の哺乳動物細胞を培養する工程;及び
    (c)30mM〜250mMの濃度のカリウムイオンを含み、カリウムイオンに対するナトリウムイオンのモル比が1未満である無血清灌流培地を用いての灌流によって、生産期の最中の哺乳動物細胞を培養する工程を含み、
    ここで、前記無血清灌流培地の浸透圧が330〜450mosmol/kg(水)である、
    異種タンパク質を発現している灌流細胞培養液中においてタンパク質の生産量を増加させる方法。
  10. 前記無血清灌流培地の浸透圧が360〜390mosmol/kg(水)である、請求項8又は9に記載の方法。
  11. 前記工程(c)がさらに細胞の抜き取りによって細胞密度を維持すること含む、請求項8〜10のいずれか一項に記載の方法。
  12. 前記カリウムイオンが、1つ以上のカリウム塩として提供される、請求項1〜11のいずれか一項に記載の方法。
  13. 前記カリウム塩が、重炭酸カリウム、塩化カリウム、水酸化カリウム、L−チロシン二カリウム塩、リン酸カリウム二塩基性、リン酸カリウム一塩基性、亜セレン酸カリウム、ピルビン酸カリウム、グルタチオンカリウム、D−グルコン酸カリウム、コハク酸カリウム、及びアスコルビン酸カリウムからなる群より選択される、請求項12に記載の方法。
  14. 前記工程(C)の無血清灌流培地中のカリウムイオン濃度が、40mM〜200mMである、請求項1〜13のいずれか一項に記載の方法。
  15. 前記工程(C)の無血清灌流培地中のカリウムイオン濃度が、60mM〜150mMである、請求項1〜13のいずれか一項に記載の方法。
  16. 前記工程(C)の無血清灌流培地中のカリウムイオン濃度が、80mM〜100mMである、請求項1〜13のいずれか一項に記載の方法。
  17. 前記工程(C)の無血清灌流培地中のカリウムに対するナトリウムのモル比が、0.9〜0.1である、請求項1〜16のいずれか一項に記載の方法。
  18. 前記工程(C)の無血清灌流培地中のカリウムに対するナトリウムのモル比が、0.8〜0.2である、請求項1〜16のいずれか一項に記載の方法。
  19. 前記工程(C)の無血清灌流培地中のカリウムに対するナトリウムのモル比が、0.7〜0.2である、請求項1〜16のいずれか一項に記載の方法。
  20. 前記工程(C)の無血清灌流培地中のカリウムに対するナトリウムのモル比が、0.6〜0.3である、請求項1〜16のいずれか一項に記載の方法。
  21. 前記工程(C)の無血清灌流培地中のカリウムに対するナトリウムのモル比が、0.5〜0.4である、請求項1〜16のいずれか一項に記載の方法。
  22. 前記哺乳動物細胞が、げっ歯類の細胞である、請求項1〜21のいずれか一項に記載の方法。
  23. 前記げっ歯類の細胞が、チャイニーズハムスター卵巣(CHO)細胞である、請求項22に記載の方法。
  24. 前記CHO細胞が、CHO−DG44細胞、CHO−K1細胞、CHO DXB11細胞、CHO−S細胞、CHO GS欠損細胞、又はこれらの中のいずれかの細胞の誘導体である、請求項23に記載の方法。
  25. 前記異種タンパク質が、治療用タンパク質である、請求項1〜24のいずれか一項に記載の方法。
  26. 前記治療用タンパク質が、抗体、融合タンパク質、サイトカイン、及び増殖因子からなる群より選択される、請求項25に記載の方法。
  27. 請求項25又は26に記載の方法を使用して細胞の抜き取りを減少させることを含む前記治療用タンパク質を生成する方法。
  28. 30mM〜250mMの濃度のカリウムイオンを含み、カリウムイオンに対するナトリウムイオンのモル比が1未満であり、浸透圧が330〜450mosmol/kg(水)である、無血清灌流培地。
  29. 浸透圧が360〜390mosmol/kg(水)である、請求項28の無血清灌流培地。
  30. 生産期の最中の灌流培養液中の哺乳動物細胞を培養するための、請求項28又は29の無血清灌流培地の使用。
  31. 灌流培養液中の細胞の抜き取り総容量を減少させるための、請求項28又は29の無血清灌流培地の使用。
  32. 灌流細胞培養液中のタンパク質の生産を増加させるための、請求項28又は29の無血清灌流培地の使用。
  33. 灌流細胞培養液中の細胞比タンパク質生産を増加させるための、請求項28又は29の無血清灌流培地の使用。
JP2019552965A 2017-03-31 2018-03-27 灌流培地 Active JP6943972B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021146740A JP2021192628A (ja) 2017-03-31 2021-09-09 灌流培地

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762479422P 2017-03-31 2017-03-31
US62/479,422 2017-03-31
PCT/EP2018/057757 WO2018178069A1 (en) 2017-03-31 2018-03-27 Perfusion medium

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021146740A Division JP2021192628A (ja) 2017-03-31 2021-09-09 灌流培地

Publications (2)

Publication Number Publication Date
JP2020511978A JP2020511978A (ja) 2020-04-23
JP6943972B2 true JP6943972B2 (ja) 2021-10-06

Family

ID=61911547

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019552965A Active JP6943972B2 (ja) 2017-03-31 2018-03-27 灌流培地
JP2021146740A Pending JP2021192628A (ja) 2017-03-31 2021-09-09 灌流培地

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021146740A Pending JP2021192628A (ja) 2017-03-31 2021-09-09 灌流培地

Country Status (9)

Country Link
US (2) US11702628B2 (ja)
EP (1) EP3601586A1 (ja)
JP (2) JP6943972B2 (ja)
KR (1) KR102604988B1 (ja)
CN (1) CN110520538B (ja)
AU (1) AU2018241849B2 (ja)
CA (1) CA3054593A1 (ja)
SG (1) SG11201909087PA (ja)
WO (1) WO2018178069A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019229764A1 (en) * 2018-06-01 2019-12-05 Gennova Biopharmaceuticals Limited Process for production of recombinant tnk-tpa by packed-bed perfusion system
WO2020086408A1 (en) * 2018-10-26 2020-04-30 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services A high-yield perfusion-based transient gene expression bioprocess
KR102597919B1 (ko) * 2018-11-02 2023-11-06 우시 바이올로직스 아일랜드 리미티드 지속적으로 수확하고 세포 출혈없는 강화된 관류에 의한 세포 배양 과정
CN110760481B (zh) * 2019-10-30 2021-04-02 武汉科技大学 一种改良rpmi1640培养基及其应用
CN111690057B (zh) * 2020-06-24 2021-04-23 哈尔滨元亨生物药业有限公司 一种重组犬细小病毒单克隆抗体生产方法
JPWO2022203051A1 (ja) * 2021-03-25 2022-09-29
CN115651874B (zh) * 2022-11-21 2023-04-28 清华大学 一种培养嗜盐微生物的培养基和培养方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787799B2 (ja) 1988-03-30 1995-09-27 森永製菓株式会社 モノクローナル抗体生産増強法
WO1997048808A1 (en) 1996-06-19 1997-12-24 Chiron Corporation Bacterial production of interferon-beta using low levels of sodium and potassium ions
NZ575328A (en) * 2006-09-13 2012-06-29 Abbott Lab Cell culture improvements
DK2563904T3 (en) * 2010-04-26 2015-04-07 Novartis Ag Improved cell culture medium
LT2726600T (lt) 2011-07-01 2017-05-25 Amgen Inc. Žinduolių ląstelių kultūra
EA202091598A3 (ru) * 2014-12-01 2021-01-29 Эмджен Инк. Процесс контроля уровня содержания гликанов в составе

Also Published As

Publication number Publication date
CA3054593A1 (en) 2018-10-04
US20230313125A1 (en) 2023-10-05
US20200377849A1 (en) 2020-12-03
AU2018241849B2 (en) 2023-06-22
EP3601586A1 (en) 2020-02-05
CN110520538A (zh) 2019-11-29
KR102604988B1 (ko) 2023-11-24
CN110520538B (zh) 2024-02-20
AU2018241849A1 (en) 2019-09-12
SG11201909087PA (en) 2019-10-30
WO2018178069A1 (en) 2018-10-04
KR20190130028A (ko) 2019-11-20
JP2020511978A (ja) 2020-04-23
JP2021192628A (ja) 2021-12-23
US11702628B2 (en) 2023-07-18

Similar Documents

Publication Publication Date Title
JP6943972B2 (ja) 灌流培地
JP7097404B2 (ja) 哺乳類細胞培養物を回収するための方法
JP7066775B2 (ja) 糖タンパク質のグリカン含量のレベルを操作するためのプロセス
JP7117374B2 (ja) 灌流培地
CN110462054B (zh) 灌注培养基
JP2017500017A (ja) 生物薬剤フェドバッチ生産能力及び生産物品質を改善するための灌流シード培養の使用
TWI625390B (zh) 用於增加重組蛋白質之甘露糖含量之方法
JP7032438B2 (ja) 動物細胞、動物細胞の製造方法および目的タンパク質の製造方法
US20220340948A1 (en) Concentrated perfusion medium
AU2018348712B2 (en) Perfusion medium
WO2020122049A1 (ja) 動物細胞、動物細胞の製造方法および目的タンパク質の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210909

R150 Certificate of patent or registration of utility model

Ref document number: 6943972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150