JP6943264B2 - A method for collecting inclusions and / or precipitates in a metal sample, a method for analyzing inclusions and / or precipitates in a metal sample, and an electrolytic solution. - Google Patents

A method for collecting inclusions and / or precipitates in a metal sample, a method for analyzing inclusions and / or precipitates in a metal sample, and an electrolytic solution. Download PDF

Info

Publication number
JP6943264B2
JP6943264B2 JP2019048016A JP2019048016A JP6943264B2 JP 6943264 B2 JP6943264 B2 JP 6943264B2 JP 2019048016 A JP2019048016 A JP 2019048016A JP 2019048016 A JP2019048016 A JP 2019048016A JP 6943264 B2 JP6943264 B2 JP 6943264B2
Authority
JP
Japan
Prior art keywords
inclusions
electrolytic solution
precipitates
metal sample
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019048016A
Other languages
Japanese (ja)
Other versions
JP2020148696A (en
Inventor
智治 石田
智治 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2019048016A priority Critical patent/JP6943264B2/en
Publication of JP2020148696A publication Critical patent/JP2020148696A/en
Application granted granted Critical
Publication of JP6943264B2 publication Critical patent/JP6943264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、金属材料、とくに鉄鋼材料中に存在する介在物および/または析出物を捕集する方法、および、捕集した介在物および/または析出物分析する方法、ならびに、捕集時に用いる電解液に関する。特に、通常の電解抽出操作では抽出することの難しい化学的に不安定な介在物および/または析出物の含有量を捕集する捕集方法、および、その含有量を定量することができる分析方法、ならびに捕集時に用いる電解液に関する。 The present invention relates to a method for collecting inclusions and / or precipitates present in a metal material, particularly a steel material, a method for analyzing the collected inclusions and / or precipitates, and electrolysis used at the time of collection. Regarding liquid. In particular, a collection method for collecting the content of chemically unstable inclusions and / or precipitates that are difficult to extract by a normal electrolytic extraction operation, and an analysis method capable of quantifying the content. , And the electrolytic solution used at the time of collection.

鉄鋼材料中に存在する介在物および/または析出物(炭化物、窒化物、硫化物、酸化物等)は、その存在形態、化学組成、粒径や量により、鉄鋼材料の品質特性に多大な影響をおよぼす。そのため、介在物および/または析出物の量を把握することは、鉄鋼製品の出荷管理や品質特性評価または製造プロセスの改善を行う上できわめて重要である。 The inclusions and / or precipitates (carbides, nitrides, sulfides, oxides, etc.) present in the steel material have a great influence on the quality characteristics of the steel material depending on their existence form, chemical composition, particle size and amount. Affect. Therefore, it is extremely important to know the amount of inclusions and / or precipitates in order to control the shipment of steel products, evaluate quality characteristics, or improve the manufacturing process.

介在物および/または析出物の定量を行うためには、鉄鋼材料中の鉄マトリックスから介在物および/または析出物を抽出分離する必要がある。近年の精錬技術および熱処理技術の進歩によって、鉄鋼材料中に含まれる介在物および/または析出物の種類は多様化し、さらに鉄鋼材料の清浄性向上にともなって微細かつ微量化してきている。そのため、介在物および/または析出物の抽出分離方法には、多様な化学組成の析出物や介在物を、分解や溶解させることなく鉄鋼材料中に存在したままの状態を保って抽出分離することが求められている。 In order to quantify inclusions and / or precipitates, it is necessary to extract and separate inclusions and / or precipitates from the iron matrix in the steel material. Due to recent advances in refining technology and heat treatment technology, the types of inclusions and / or precipitates contained in steel materials have diversified, and have become finer and smaller as the cleanliness of steel materials has improved. Therefore, the method for extracting and separating precipitates and / or precipitates is to extract and separate precipitates and inclusions having various chemical compositions while maintaining their presence in the steel material without decomposition or dissolution. Is required.

介在物および/または析出物を抽出する方法として、非水溶媒系電解液中で電解を行う方法が一般的である。非水溶媒系電解液として、塩化リチウムやテトラメチルアンモニウムクロライドなどの支持電解質を含むアルコールを溶媒とする電解液が用いられる。その代表的な電解液としては、例えば10%アセチルアセトン−1%テトラメチルアンモニウムクロライド−メタノール(以下、AA系電解液)、4%サリチル酸メチル−1%サリチル酸−1%テトラメチルアンモニウムクロライド−メタノール(以下、MS系電解液)、10%無水マレイン酸−2%テトラメチルアンモニウムクロライド−メタノール(以下、MA系電解液)などが非特許文献1に記載されており、この中でもAA系電解液が汎用的に広く用いられている。 As a method for extracting inclusions and / or precipitates, a method of performing electrolysis in a non-aqueous solvent-based electrolytic solution is common. As the non-aqueous solvent-based electrolytic solution, an electrolytic solution using an alcohol containing a supporting electrolyte such as lithium chloride or tetramethylammonium chloride as a solvent is used. As a typical electrolytic solution, for example, 10% acetylacetone-1% tetramethylammonium chloride-methanol (hereinafter, AA-based electrolytic solution), 4% methyl salicylate-1% salicylate-1% tetramethylammonium chloride-methanol (hereinafter, hereinafter). , MS-based electrolyte), 10% maleic anhydride-2% tetramethylammonium chloride-methanol (hereinafter, MA-based electrolyte), etc. are described in Non-Patent Document 1, and among them, AA-based electrolyte is general-purpose. Widely used in.

しかしながら、非水溶媒系電解液中で電解を行う方法は、介在物および/または析出物が電解中に溶解したり分解することにより、正しく抽出できない場合がある。このような化学的に不安定な介在物および/または析出物の例として、CaO、CaS、MnSなどがある。 However, the method of performing electrolysis in a non-aqueous solvent-based electrolytic solution may not be able to extract correctly because inclusions and / or precipitates dissolve or decompose during the electrolysis. Examples of such chemically unstable inclusions and / or precipitates include CaO, CaS, MnS and the like.

ところで、CaOやCaSといったCa系介在物がアルコール溶媒中に僅かに含まれる水分により溶解することが知られている。このため、非特許文献2では、無水メタノールを用い、Ar雰囲気のグローブボックス内で抽出操作を行うことによりCaO系の介在物の分析を行う方法が提案されている。 By the way, it is known that Ca-based inclusions such as CaO and CaS are dissolved by a small amount of water contained in an alcohol solvent. Therefore, Non-Patent Document 2 proposes a method of analyzing CaO-based inclusions by performing an extraction operation in a glove box in an Ar atmosphere using anhydrous methanol.

一方、特許文献1は、非水溶媒系電解液中の成分のうち、鉄イオンと錯体形成する目的で含有させる有機化合物(アセチルアセトン、テトラメチルアンモニウムクロライド)が過剰に存在すると、化学的に不安定な介在物および/または析出物が溶解することに着目し、有機化合物の含有量を少なくした電解液で電解抽出する方法を開示している。 On the other hand, Patent Document 1 is chemically unstable when an excess of organic compounds (acetylacetone, tetramethylammonium chloride) contained for the purpose of forming a complex with iron ions among the components in the non-aqueous solvent type electrolytic solution is present. Focusing on the dissolution of various inclusions and / or precipitates, a method for electrolytic extraction with an electrolytic solution having a reduced content of organic compounds is disclosed.

特開2004−301605号公報Japanese Unexamined Patent Publication No. 2004-301605

鉄と鋼、76(1990)483.Iron and Steel, 76 (1990) 483. 鉄と鋼、82(1996)1017.Iron and Steel, 82 (1996) 1017.

特許文献1の方法では、電解液中の水分量に着目していないため、Ca系介在物を抽出する場合には有効な対策とはなり得ない。また、非特許文献1の方法は、グローブボックス内での抽出操作であるため、作業負荷が大きくしかも設備が必要であるなど汎用性にも乏しい。 Since the method of Patent Document 1 does not pay attention to the amount of water in the electrolytic solution, it cannot be an effective measure when extracting Ca-based inclusions. Further, since the method of Non-Patent Document 1 is an extraction operation in a glove box, the work load is large and equipment is required, and the versatility is poor.

本発明は、上記事情に鑑みてなされたものであり、金属試料中の化学的に不安定な介在物および/または析出物を溶解させることなく捕集し分析する方法、および、金属試料中の化学的に不安定な介在物および/または析出物を溶解させることなく捕集することが可能な電解液を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a method for collecting and analyzing chemically unstable inclusions and / or precipitates in a metal sample without dissolving them, and in a metal sample. It is an object of the present invention to provide an electrolytic solution capable of collecting chemically unstable inclusions and / or precipitates without dissolving them.

本発明者は、電解抽出操作において介在物および/または析出物を溶解させることなく抽出する方法を検討した。上述したように、Ca系介在物が電解操作中に電解液中に溶解するのは、電解液が非水溶媒系電解液であっても、メタノール溶媒中に僅かに含まれる水分が原因であることが報告されている。そこでこの水分の影響を低減するために、非特許文献2に記載されている方法に準拠して、脱水処理したメタノール(脱水メタノールと称する)とグローブボックスを利用する方法を検討した。 The present inventor investigated a method for extracting inclusions and / or precipitates without dissolving them in an electrolytic extraction operation. As described above, the Ca-based inclusions are dissolved in the electrolytic solution during the electrolytic operation because of the slight amount of water contained in the methanol solvent even if the electrolytic solution is a non-aqueous solvent-based electrolytic solution. Has been reported. Therefore, in order to reduce the influence of this moisture, a method of using dehydrated methanol (referred to as dehydrated methanol) and a glove box was examined in accordance with the method described in Non-Patent Document 2.

まず初めに、表1に示す組成の鋼材30mm×40mmを2枚採取し、表面を研削しアセトンで洗浄して試験片とした。電解液は10%AA系電解液とし、一方は脱水処理をしない通常メタノールを用いて電解液を作製し、大気雰囲気で電解操作を行った(条件A)。他方は脱水メタノールを用いて電解液を作製し、Ar雰囲気の簡易グローブボックス内で電解操作を行った(条件B)。電解条件は、いずれも定電流電解とした。電解終了後、条件A、Bいずれの場合も、直ちに試験片を電解液から取出し、別途準備した清浄なメタノール中に浸漬し超音波振とうさせることにより試験片表面に付着している介在物および/または析出物を剥離してメタノール中に介在物および/または析出物を抽出させた後、試験片を取り出し重量減少量を測定した。介在物および/または析出物を抽出したメタノールおよび電解後の電解液をフィルタでろ過し、捕集された抽出残渣に含まれるCa系介在物としてのCa量の分析を3回実施し、Ca量(平均値)および標準偏差を分析した。分析結果(Ca量の平均値、標準偏差σおよび相対誤差C.V.)を表2に示す。 First, two steel materials having the composition shown in Table 1 having a composition of 30 mm × 40 mm were sampled, the surface was ground and washed with acetone to prepare a test piece. The electrolytic solution was a 10% AA-based electrolytic solution, and one of them was prepared using normal methanol which was not dehydrated, and the electrolytic solution was subjected to an electrolytic operation in an atmospheric atmosphere (condition A). On the other hand, an electrolytic solution was prepared using dehydrated methanol, and an electrolytic operation was performed in a simple glove box in an Ar atmosphere (condition B). The electrolysis conditions were constant current electrolysis. After the completion of electrolysis, under both conditions A and B, the test piece was immediately taken out from the electrolytic solution, immersed in clean methanol prepared separately, and ultrasonically shaken to cause inclusions adhering to the surface of the test piece and After peeling off the / or precipitate to extract inclusions and / or precipitate in methanol, the test piece was taken out and the weight loss was measured. The methanol from which inclusions and / or precipitates were extracted and the electrolytic solution after electrolysis were filtered with a filter, and the amount of Ca as Ca-based inclusions contained in the collected extraction residue was analyzed three times. (Mean value) and standard deviation were analyzed. The analysis results (mean value of Ca amount, standard deviation σ and relative error CV) are shown in Table 2.

Figure 0006943264
Figure 0006943264

Figure 0006943264
Figure 0006943264

条件Bの結果の方が、Ca系介在物の定量値が高くなっている。すなわち、条件Bでは、水分の排除による溶損の低減を行った効果があるものの繰り返しの分析精度が悪く、定量を行なうのに充分とは言えない。この原因は、溶媒メタノールの脱水量が電解液ごとで一定ではなかった、あるいは、湿度や電解液の温度等で溶媒メタノール中に含まれる水分量が一定ではなかったためであると推察された。 The result of condition B has a higher quantitative value of Ca-based inclusions. That is, under condition B, although there is an effect of reducing the dissolution loss by removing water, the accuracy of repeated analysis is poor, and it cannot be said that it is sufficient for quantification. It was presumed that this was because the amount of dehydration of the solvent methanol was not constant for each electrolytic solution, or the amount of water contained in the solvent methanol was not constant due to humidity, the temperature of the electrolytic solution, and the like.

そこで、より安定的に電解抽出する方法として、本発明者はメタノール中に水分が残存する場合でもその影響を受けない方法を鋭意検討した。その結果、予め電解液の中に分析対象である介在物および/または析出物を構成する金属元素を含む化合物を過剰に添加しておくことで、たとえ電解液中に水分が残存しても介在物および/または析出物の溶解を防止できるとの考えに至った。 Therefore, as a method for more stable electrolytic extraction, the present inventor has diligently studied a method that is not affected even if water remains in methanol. As a result, by adding an excessive amount of a compound containing a metal element constituting an inclusion and / or a precipitate to be analyzed to the electrolytic solution in advance, even if water remains in the electrolytic solution, the inclusion is present. We came up with the idea that the dissolution of substances and / or precipitates could be prevented.

表1の鋼材を用い、条件Aの電解液中にCaSを沈殿が生じるまで添加した後、沈殿した過剰なCaSをろ過操作で取り除き、飽和電解液とした。電解液中に僅かに含まれる水分に対してCaSを飽和溶解させたこの電解液を用いる以外は条件Aと同じ電解抽出操作を行った(条件C)。抽出残渣に含まれるCa系介在物としてのCa量を定量した。その結果をあわせて表2に示す。Ca系介在物の定量値はさらに増加し、繰返し分析におけるばらつきは減少した。よって、条件Cは電解操作中の溶解を防止し、Ca系介在物の量を分析できたといえる。 Using the steel material shown in Table 1, CaS was added to the electrolytic solution under Condition A until precipitation occurred, and then the excess CaS precipitated was removed by filtration to prepare a saturated electrolytic solution. The same electrolytic extraction operation as in Condition A was performed except that this electrolytic solution in which CaS was saturated and dissolved in a small amount of water contained in the electrolytic solution was used (Condition C). The amount of Ca as a Ca-based inclusion contained in the extraction residue was quantified. The results are also shown in Table 2. The quantitative values of Ca-based inclusions increased further, and the variability in the iterative analysis decreased. Therefore, it can be said that Condition C was able to prevent dissolution during the electrolysis operation and analyze the amount of Ca-based inclusions.

以上の検討結果に基づく本発明の要旨構成は、次のとおりである。
[1]金属試料を電解液中で電解する電解工程と、
前記電解工程後の金属試料の残部に付着した介在物および/または析出物を分離してろ過し、捕集する捕集工程と、
を含む介在物および/または析出物の捕集方法において、
前記電解液に、捕集対象である介在物および/または析出物を構成する金属元素を含む化合物を含有させる、金属試料中の介在物および/または析出物の捕集方法。
[2]前記電解液は非水溶媒系電解液である、[1]に記載の金属試料中の介在物および/または析出物の捕集方法。
[3]前記電解液に含有させる金属元素を含む化合物の量が、飽和量である、[1]または[2]に記載の金属試料中の介在物および/または析出物の捕集方法。
[4][1]〜[3]のいずれか1項に記載の金属試料中の介在物および/または析出物の捕集方法で捕集した介在物および/または析出物を分析する分析工程を含む、金属試料中の介在物および/または析出物の分析方法。
[5]金属試料を電解液中で電解し、前記電解後の金属試料の残部に付着した介在物および/または析出物を分離してろ過し捕集する際に用いる電解液であって、
捕集対象である介在物および/または析出物を構成する金属元素を含む化合物を含有する、電解液。
[6]前記電解液は非水溶媒系電解液である、[5]に記載の電解液。
[7]前記電解液に含有させる金属元素を含む化合物の量が、飽和量である、[5]または[6]に記載の電解液。
The gist structure of the present invention based on the above examination results is as follows.
[1] An electrolysis step of electrolyzing a metal sample in an electrolytic solution and
A collection step in which inclusions and / or precipitates adhering to the rest of the metal sample after the electrolysis step are separated, filtered, and collected.
In the method of collecting inclusions and / or precipitates containing
A method for collecting inclusions and / or precipitates in a metal sample, wherein the electrolytic solution contains a compound containing a metal element constituting the inclusions and / or precipitates to be collected.
[2] The method for collecting inclusions and / or precipitates in a metal sample according to [1], wherein the electrolytic solution is a non-aqueous solvent-based electrolytic solution.
[3] The method for collecting inclusions and / or precipitates in a metal sample according to [1] or [2], wherein the amount of the compound containing a metal element contained in the electrolytic solution is a saturated amount.
[4] An analytical step for analyzing the inclusions and / or precipitates collected by the method for collecting inclusions and / or precipitates in the metal sample according to any one of [1] to [3]. A method for analyzing inclusions and / or precipitates in a metal sample, including.
[5] An electrolytic solution used when a metal sample is electrolyzed in an electrolytic solution, and inclusions and / or precipitates adhering to the rest of the metal sample after the electrolysis are separated, filtered and collected.
An electrolytic solution containing a compound containing a metal element constituting an inclusion and / or a precipitate to be collected.
[6] The electrolytic solution according to [5], wherein the electrolytic solution is a non-aqueous solvent type electrolytic solution.
[7] The electrolytic solution according to [5] or [6], wherein the amount of the compound containing a metal element contained in the electrolytic solution is a saturated amount.

本発明によれば、金属試料中の化学的に不安定な介在物および/または析出物を溶解させることなく捕集することができ、この捕集物を、電子顕微鏡等で観察したり、X線回折パターンを取得したりすることにより、介在物および/または析出物のサイズ分布や構造を評価できる。さらにこの捕集物を分析することにより、存在量を定量することもできる。また、本発明の電解液を用いて金属材料を電解することにより、金属試料中の化学的に不安定な介在物および/または析出物であっても電解中に溶解することなく正確に捕集することができる。その結果、鉄鋼製品の品質と介在物の存在状態との関係を正確に知ることができ、材料設計や工程条件の決定に大きな効果が期待できる。 According to the present invention, chemically unstable inclusions and / or precipitates in a metal sample can be collected without being dissolved, and the collected substances can be observed with an electron microscope or the like, or X. By acquiring a line diffraction pattern, the size distribution and structure of inclusions and / or precipitates can be evaluated. Furthermore, the abundance can be quantified by analyzing this collected material. Further, by electrolyzing the metal material using the electrolytic solution of the present invention, even chemically unstable inclusions and / or precipitates in the metal sample can be accurately collected without being dissolved in the electrolysis. can do. As a result, the relationship between the quality of steel products and the existence state of inclusions can be accurately known, and a great effect can be expected in material design and process condition determination.

次に、本発明について具体的に説明する。なお、以下の説明は、本発明の好適な実施態様を示すものであり、本発明は、以下の説明によって何ら限定されるものではない。 Next, the present invention will be specifically described. The following description shows a preferred embodiment of the present invention, and the present invention is not limited to the following description.

本発明の金属材料中の介在物および/または析出物の捕集方法は、金属試料を電解液中で電解する電解工程と、電解工程後の金属試料の残部に付着した介在物および/または析出物を分離してろ過し、捕集する捕集工程と、を含み、電解液に、捕集対象である介在物および/または析出物を構成する金属元素を含む化合物を含有させることを特徴とする。さらに、本発明の捕集方法によりより捕集した介在物および/または析出物を分析工程により分析することもできる。以下、各手順について説明する。 The method for collecting inclusions and / or precipitates in a metal material of the present invention includes an electrolysis step in which a metal sample is electrolyzed in an electrolytic solution, and inclusions and / or precipitates adhering to the rest of the metal sample after the electrolysis step. It comprises a collection step of separating, filtering, and collecting an object, and is characterized in that the electrolytic solution contains a compound containing metal elements constituting inclusions and / or precipitates to be collected. do. Furthermore, inclusions and / or precipitates collected more by the collection method of the present invention can also be analyzed by an analysis step. Each procedure will be described below.

まず、電解工程において、金属試料を電解液中で電解させる。なお、本発明における測定対象である金属材料としては、任意のものを用いることができるが、本発明の評価方法によって得られる情報の産業上の有用性という観点からは、鉄鋼材料に適用することが有効である。 First, in the electrolysis step, the metal sample is electrolyzed in the electrolytic solution. Any metal material to be measured in the present invention can be used, but it should be applied to steel materials from the viewpoint of industrial applicability of the information obtained by the evaluation method of the present invention. Is valid.

具体的には、試料準備として、分析対象である金属試料を切断し研削して試験片とし、アセトン等で洗浄を行った後、この試験片の重量を測定する。 Specifically, as a sample preparation, a metal sample to be analyzed is cut and ground to obtain a test piece, washed with acetone or the like, and then the weight of the test piece is measured.

次に、試験片を電解液中で電解させることにより、金属試料中の固溶元素のみをマトリックスとともに溶解する。多くの介在物および/または析出物に比較的安定して適用できるという点で、電解液は非水溶媒系電解液を用いることが好ましい。非水溶媒系電解液は、AA系電解液の他に、MS系電解液や、MA系電解液などが利用できる。 Next, by electrolyzing the test piece in the electrolytic solution, only the solid solution element in the metal sample is dissolved together with the matrix. It is preferable to use a non-aqueous solvent-based electrolytic solution as the electrolytic solution because it can be applied relatively stably to many inclusions and / or precipitates. As the non-aqueous solvent-based electrolytic solution, in addition to the AA-based electrolytic solution, an MS-based electrolytic solution, an MA-based electrolytic solution, or the like can be used.

本発明では、電解工程で用いる電解液について、捕集対象である介在物および/または析出物を構成する金属元素を含む化合物(以下、当該化合物を単に薬剤と称する。)を含有させる。例えば、捕集対象である介在物および/または析出物がCaSおよびCaSを主成分とする場合、含有させる薬剤として鉄鋼スラグや連鋳パウダー(主成分CaO)でもよく、CaS、CaO、CaCO、CaSO、Ca(OH)の市販試薬のうち少なくとも1つを選択してもよい。なお、介在物および/または析出物がCaSおよびCaSが主成分である場合、MnSが複合した複合介在物やアルミナ等の酸化物と複合した複合介在物であっても、薬剤がCaを含む化合物であれば分析可能である。表1に示す鋼材に対して、条件CのCaSに替えて、CaO、CaCO、CaSO、Ca(OH)をそれぞれ電解液に含有させて電解抽出実験を行なったが、CaSを含有させた場合とほぼ同等の分析結果が得られた。 In the present invention, the electrolytic solution used in the electrolytic step contains a compound containing metal elements constituting inclusions and / or precipitates to be collected (hereinafter, the compound is simply referred to as a drug). For example, when the inclusions and / or precipitates to be collected contain CaS and CaS as main components, steel slag or continuous casting powder (main component CaO) may be used as the chemicals to be contained, and CaS, CaO, CaCO 3 , At least one of the commercially available reagents of CaSO 4 and Ca (OH) 2 may be selected. When the inclusions and / or precipitates are mainly composed of CaS and CaS, even if the inclusions and / or precipitates are complex inclusions in which MnS is compounded or composite inclusions in which oxides such as alumina are compounded, the chemical contains Ca. If so, it can be analyzed. The steel materials shown in Table 1 were subjected to an electrolytic extraction experiment by adding CaO, CaCO 3 , CaSO 4 , and Ca (OH) 2 to the electrolytic solution instead of CaS under the condition C, but CaS was contained. The analysis results were almost the same as those in the case of.

介在物および/または析出物の溶解を抑制する効果を得るためには、少なくとも飽和する量まで薬剤を電解液中に含有させることが好ましい。電解液へ薬剤を飽和量まで含有させるには、電解液をよく撹拌しながら当該薬剤が沈殿するまで添加し、ろ過操作で沈殿した薬剤を除去する。後述するように、介在物および/または析出物を捕集する際に、電解液を直接ろ過する場合があるので、沈殿した薬剤は確実に除去することが重要である。電解液と薬剤との組み合わせによっては、薬剤が溶解するまでに長時間を要する場合もある。このため、確実に飽和状態(飽和電解液と称する)とさせておくことが望ましい。 In order to obtain the effect of suppressing the dissolution of inclusions and / or precipitates, it is preferable to contain the drug in the electrolytic solution to at least a saturated amount. To allow the electrolytic solution to contain the drug to a saturated amount, the electrolytic solution is added while stirring well until the drug precipitates, and the precipitated drug is removed by a filtration operation. As will be described later, when collecting inclusions and / or precipitates, the electrolytic solution may be directly filtered, so it is important to ensure that the precipitated drug is removed. Depending on the combination of the electrolytic solution and the drug, it may take a long time for the drug to dissolve. Therefore, it is desirable to ensure that the state is saturated (referred to as saturated electrolytic solution).

次に、電解槽に捕集対象である介在物および/または析出物を構成する金属元素を含む電解液を入れ、被検試料を陽極として定電位電解、または定電流電解を行う。電解量は抽出目的によるため特に制限はないが、定量分析を目的とする場合は通常約0.5〜1.0g程度溶解する。清浄度の要求が厳しい試料であるほど、電解による溶解量を多くすることが好ましい。 Next, an electrolytic solution containing metal elements constituting inclusions and / or precipitates to be collected is placed in an electrolytic cell, and constant potential electrolysis or constant current electrolysis is performed using the test sample as an anode. The amount of electrolysis depends on the purpose of extraction and is not particularly limited, but for the purpose of quantitative analysis, it usually dissolves in an amount of about 0.5 to 1.0 g. It is preferable to increase the amount of dissolution by electrolysis as the sample has a stricter cleanliness requirement.

次に、金属試料を所定量電解した後、電解操作で抽出された介在物および/または析出物を被検試料から分離し、ろ過して捕集する。電解が終了した被検試料の表面には、分析対象である介在物および/または析出物が吸着している。被検試料を電極から外して電解液から静かに引上げた後、電解後の被検試料をメタノール中で超音波振とうを行って、被検試料表面からメタノール中に分析対象である介在物および/または析出物を分離し、ろ過して捕集する。 Next, after electrolyzing a predetermined amount of the metal sample, inclusions and / or precipitates extracted by the electrolysis operation are separated from the test sample, filtered and collected. The inclusions and / or precipitates to be analyzed are adsorbed on the surface of the test sample after electrolysis. After removing the test sample from the electrode and gently pulling it out of the electrolytic solution, the test sample after electrolysis is subjected to ultrasonic shaking in methanol to bring the inclusions to be analyzed into methanol from the surface of the test sample and the inclusions to be analyzed. / Or the precipitate is separated, filtered and collected.

捕集はろ過漏れが発生しないようサブミクロン程度の孔径を有するフィルタを用い、吸引ろ過法などの一般的なろ過操作により捕集する。サイズの大きい介在物および/または析出物は、電解操作中に被検試料の表面から電解液中へ脱落する可能性があり、分析・解析を行なう際の誤差原因となる。したがって、電解後の電解液もろ過して捕集する。 For collection, use a filter with a pore size of about submicron so that filtration leakage does not occur, and collect by a general filtration operation such as suction filtration. Large-sized inclusions and / or precipitates may fall off from the surface of the test sample into the electrolytic solution during the electrolytic operation, which causes an error in the analysis / analysis. Therefore, the electrolytic solution after electrolysis is also filtered and collected.

フィルタに捕集した介在物および/または析出物は、清浄なメタノールで洗浄することが望ましい。洗浄を行なわないと、電解液中に溶解させたCaを含む薬剤が電解後の金属試料や介在物・析出物の表面に付着しており、これを洗浄して除去しないと正の誤差を生じるためである。なお、上述のメタノール洗浄による介在物および/または析出物の溶解は、本発明の捕集方法や、後述の定量分析において無視できるレベルである。 Enclosures and / or precipitates collected on the filter should be washed with clean methanol. If cleaning is not performed, the chemical containing Ca dissolved in the electrolytic solution adheres to the surface of the metal sample, inclusions, and precipitates after electrolysis, and if this is not cleaned and removed, a positive error will occur. Because. The dissolution of inclusions and / or precipitates by washing with methanol described above is at a level that can be ignored in the collection method of the present invention and the quantitative analysis described later.

本発明の捕集方法により得られた捕集物は、評価目的に応じて分析を行なってもよい。定量分析する場合は、酸分解もしくはアルカリ溶融分解などの方法により介在物および/または析出物を分解した後、ICP発光分光分析法や原子吸光法等で元素分析を行なう。捕集物である介在物および/または析出物を電子顕微鏡で観察する場合は、必要に応じ捕集物にカーボン等の蒸着を行なって導電性を付与した後、観察することができる。 The collected material obtained by the collecting method of the present invention may be analyzed according to the purpose of evaluation. In the case of quantitative analysis, after decomposing inclusions and / or precipitates by a method such as acid decomposition or alkaline melt decomposition, elemental analysis is performed by ICP emission spectroscopy, atomic absorption spectrometry, or the like. When observing inclusions and / or precipitates which are collectibles with an electron microscope, they can be observed after vapor deposition of carbon or the like is performed on the collectibles to impart conductivity.

以下、実施例によって、本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but these do not limit the scope of the present invention.

以下、実施例1として、鉄鋼試料中のカルシウム(Ca)系介在物の含有率を分析した例を具体的に説明する。 Hereinafter, as Example 1, an example in which the content of calcium (Ca) -based inclusions in the steel sample is analyzed will be specifically described.

表3に示す化学組成の鉄鋼材料について、2種類の鋼板を30mm×40mmに切断して、表面を研削し洗浄した後、以下に示す分析方法(本発明法および比較法)により、分析を行った。 The steel materials having the chemical compositions shown in Table 3 are analyzed by the following analysis methods (the method of the present invention and the comparative method) after cutting two types of steel plates into 30 mm × 40 mm, grinding and cleaning the surface. rice field.

Figure 0006943264
Figure 0006943264

[本発明法]
300mlの10%AA系電解液に、CaS粉末試薬(東京化成工業製)10gを添加した。よく撹拌したところ、添加量以上に電解液に溶解する様子が認められなかったことから、そのまま翌日まで1終夜静置した。その後、電解液の底に沈殿した未溶解CaS試薬をろ過操作によって除去し、あらかじめ天秤で重量を測定した鉄鋼試料を陽極として約0.5gを定電位電解した。電解終了後、試料を電解液中から静かに引き上げて取り出し、約100mlのメタノールを入れた別の容器に移し変え、超音波振とうを与えて試料表面に付着した介在物および/または析出物を金属試料から分離させた。試料表面が金属光沢を呈したところで超音波振とうを停止し、試料を容器から取り出してメタノールで洗浄した後、乾燥した。乾燥後、天秤で試料重量を測定して、電解前の試料重量から差し引くことで正確な電解重量を求めた。
[Method of the present invention]
10 g of CaS powder reagent (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to 300 ml of a 10% AA-based electrolytic solution. When it was stirred well, it was not observed that it was dissolved in the electrolytic solution more than the added amount. Therefore, the mixture was allowed to stand overnight until the next day. Then, the undissolved CaS reagent precipitated on the bottom of the electrolytic solution was removed by a filtration operation, and about 0.5 g was subjected to constant potential electrolysis using a steel sample whose weight was measured in advance with a balance as an anode. After completion of electrolysis, the sample is gently pulled out of the electrolytic solution, transferred to another container containing about 100 ml of methanol, and subjected to ultrasonic shaking to remove inclusions and / or precipitates adhering to the sample surface. It was separated from the metal sample. When the surface of the sample exhibited a metallic luster, ultrasonic shaking was stopped, the sample was taken out of the container, washed with methanol, and then dried. After drying, the sample weight was measured with a balance and subtracted from the sample weight before electrolysis to obtain an accurate electrolysis weight.

電解後の電解液を孔径0.2μmのニュークリポアフィルタを用いて吸引ろ過した。次いで、電解後の試料に付着した介在物および/または析出物の残渣を抽出したメタノールも、同じフィルタ上にろ過し捕集した。捕集した残渣(介在物)をろ紙ごと白金るつぼに入れ、ガスバーナーを用いて灰化した。放冷後、るつぼに炭酸ナトリウム1gと4ホウ酸ナトリウム1gを添加して、再度、ガスバーナーで加熱し、捕集した残渣を溶融し分解させた。分解が終わったら加熱を止め、放冷した後に、(1+1)塩酸50ml程度を入れたビーカーにるつぼごと浸漬し、200℃のホットプレート上で酸による抽出を行なった。抽出後の溶媒を100mlに定容した後、ICP発光分光分析装置でCa濃度を求め、電解重量で除して鋼中のCa介在物の含有量を算出した。 The electrolytic solution after electrolysis was suction-filtered using a nucleo-pore filter having a pore size of 0.2 μm. Then, the methanol from which the residue of inclusions and / or precipitates adhering to the sample after electrolysis was extracted was also filtered on the same filter and collected. The collected residue (inclusion) was placed in a platinum crucible together with the filter paper and incinerated using a gas burner. After allowing to cool, 1 g of sodium carbonate and 1 g of sodium tetraborate were added to the crucible, and the mixture was heated again with a gas burner to melt and decompose the collected residue. When the decomposition was completed, the heating was stopped, and after allowing to cool, the crucible was immersed in a beaker containing about 50 ml of (1 + 1) hydrochloric acid, and extraction was performed with an acid on a hot plate at 200 ° C. After the volume of the solvent after extraction was adjusted to 100 ml, the Ca concentration was determined by an ICP emission spectrophotometer and divided by the electrolytic weight to calculate the content of Ca inclusions in the steel.

[比較法]
CaSを添加しない300mlの電解液に10%AA系電解液を用いて、定電位電解を行った。なお、電解条件、および、電解後の分離、ろ過、捕集および分析操作の各条件は、本発明法と同じである。
[Comparison method]
Constant potential electrolysis was performed using a 10% AA-based electrolytic solution in 300 ml of an electrolytic solution to which CaS was not added. The electrolysis conditions and the conditions for separation, filtration, collection, and analysis after electrolysis are the same as in the method of the present invention.

本発明法および比較法について、電解〜定量までの一連の操作を4回繰り返して実施し、Ca介在物の含有量の平均値と標準偏差を求めた。 For the method of the present invention and the comparative method, a series of operations from electrolysis to quantification was repeated four times, and the average value and standard deviation of the contents of Ca inclusions were determined.

結果を表4に示す。 The results are shown in Table 4.

Figure 0006943264
Figure 0006943264

表4より、本発明法では、Ca量が高く、表3のCa量と比較してもCa量を溶損することなく分析できていると言える。これに対して、比較法では、Ca量のばらつきが大きく、表3のCa量と比較しても低値を示していることから溶損が発現していると判断され、本発明法に比べて劣ると言える。 From Table 4, it can be said that in the method of the present invention, the amount of Ca is high, and the analysis can be performed without eroding the amount of Ca even when compared with the amount of Ca in Table 3. On the other hand, in the comparative method, the amount of Ca varies widely, and the value is lower than that of the amount of Ca in Table 3, so it is judged that lysis loss has occurred, and compared with the method of the present invention. It can be said that it is inferior.

本発明法を用いることにより、金属試料中の化学的に不安定な介在物および/または析出物であっても電解中に溶解することなく正確に捕集することができCa系介在物量を精度高く分析することができる。 By using the method of the present invention, even chemically unstable inclusions and / or precipitates in a metal sample can be accurately collected without being dissolved in electrolysis, and the amount of Ca-based inclusions can be accurately collected. Can be analyzed highly.

Claims (7)

金属試料を電解液中で電解する電解工程と、
前記電解工程後の金属試料の残部に付着した介在物および/または析出物を分離してろ過し、捕集する捕集工程と、
を含む介在物および/または析出物の捕集方法において、
前記電解液に、捕集対象である介在物および/または析出物を構成する金属元素を含む化合物を含有させる、金属試料中の介在物および/または析出物の捕集方法。
An electrolysis process in which a metal sample is electrolyzed in an electrolytic solution and
A collection step in which inclusions and / or precipitates adhering to the rest of the metal sample after the electrolysis step are separated, filtered, and collected.
In the method of collecting inclusions and / or precipitates containing
A method for collecting inclusions and / or precipitates in a metal sample, wherein the electrolytic solution contains a compound containing a metal element constituting the inclusions and / or precipitates to be collected.
前記電解液は非水溶媒系電解液である、請求項1に記載の金属試料中の介在物および/または析出物の捕集方法。 The method for collecting inclusions and / or precipitates in a metal sample according to claim 1, wherein the electrolytic solution is a non-aqueous solvent-based electrolytic solution. 前記電解液に含有させる金属元素を含む化合物の量が、飽和量である、請求項1または2に記載の金属試料中の介在物および/または析出物の捕集方法。 The method for collecting inclusions and / or precipitates in a metal sample according to claim 1 or 2, wherein the amount of the compound containing a metal element contained in the electrolytic solution is a saturated amount. 請求項1〜3のいずれか1項に記載の金属試料中の介在物および/または析出物の捕集方法で捕集した介在物および/または析出物を分析する分析工程を含む、金属試料中の介在物および/または析出物の分析方法。 In a metal sample, comprising an analysis step of analyzing the inclusions and / or precipitates collected by the method for collecting inclusions and / or precipitates in the metal sample according to any one of claims 1 to 3. Method for analyzing inclusions and / or precipitates. 金属試料を電解液中で電解し、前記電解後の金属試料の残部に付着した介在物および/または析出物を分離してろ過し捕集する際に用いる電解液であって、
捕集対象である介在物および/または析出物を構成する金属元素を含む化合物を含有する、電解液。
An electrolytic solution used when a metal sample is electrolyzed in an electrolytic solution, and inclusions and / or precipitates adhering to the rest of the metal sample after the electrolysis are separated, filtered and collected.
An electrolytic solution containing a compound containing a metal element constituting an inclusion and / or a precipitate to be collected.
前記電解液は非水溶媒系電解液である、請求項5に記載の電解液。 The electrolytic solution according to claim 5, wherein the electrolytic solution is a non-aqueous solvent-based electrolytic solution. 前記電解液に含有させる金属元素を含む化合物の量が、飽和量である、請求項5または6に記載の電解液。 The electrolytic solution according to claim 5 or 6, wherein the amount of the compound containing a metal element contained in the electrolytic solution is a saturated amount.
JP2019048016A 2019-03-15 2019-03-15 A method for collecting inclusions and / or precipitates in a metal sample, a method for analyzing inclusions and / or precipitates in a metal sample, and an electrolytic solution. Active JP6943264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019048016A JP6943264B2 (en) 2019-03-15 2019-03-15 A method for collecting inclusions and / or precipitates in a metal sample, a method for analyzing inclusions and / or precipitates in a metal sample, and an electrolytic solution.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019048016A JP6943264B2 (en) 2019-03-15 2019-03-15 A method for collecting inclusions and / or precipitates in a metal sample, a method for analyzing inclusions and / or precipitates in a metal sample, and an electrolytic solution.

Publications (2)

Publication Number Publication Date
JP2020148696A JP2020148696A (en) 2020-09-17
JP6943264B2 true JP6943264B2 (en) 2021-09-29

Family

ID=72432248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019048016A Active JP6943264B2 (en) 2019-03-15 2019-03-15 A method for collecting inclusions and / or precipitates in a metal sample, a method for analyzing inclusions and / or precipitates in a metal sample, and an electrolytic solution.

Country Status (1)

Country Link
JP (1) JP6943264B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7020447B2 (en) * 2019-03-28 2022-02-16 Jfeスチール株式会社 A method for analyzing inclusions and / or precipitates in a metal sample, and a method for collecting inclusions and / or precipitates in a metal sample.
CN113466271B (en) * 2021-07-30 2022-12-16 钢铁研究总院 Method for accurately determining type, morphology and elemental composition of intermetallic compounds in steel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174716A (en) * 1992-12-11 1994-06-24 Sumitomo Metal Ind Ltd Extracting method and fractionating and quantitating method for ca inclusion in steel
JP4103661B2 (en) * 2003-03-31 2008-06-18 Jfeスチール株式会社 Electrolytic solution for extraction analysis of precipitates and / or inclusions in steel, and method for electrolytic extraction of precipitates and / or inclusions in steel using the same
WO2009131175A1 (en) * 2008-04-25 2009-10-29 新日本製鐵株式会社 Method of determining particle size distribution of fine particles contained in metallic material
CN104807684A (en) * 2015-05-12 2015-07-29 首钢总公司 Method for extracting and analyzing high-carbon steel inclusions

Also Published As

Publication number Publication date
JP2020148696A (en) 2020-09-17

Similar Documents

Publication Publication Date Title
Lachas et al. Determination of 17 trace elements in coal and ash reference materials by ICP-MS applied to milligram sample sizes
KR101163299B1 (en) Method for analysis of metal sample
Geng et al. Determination of mercury in ash and soil samples by oxygen flask combustion method–cold vapor atomic fluorescence spectrometry (CVAFS)
JP4737278B2 (en) Method for analyzing precipitates and / or inclusions in metal materials
JP6943264B2 (en) A method for collecting inclusions and / or precipitates in a metal sample, a method for analyzing inclusions and / or precipitates in a metal sample, and an electrolytic solution.
CN101046433B (en) Method of manufacturing analysis specimen
EP3418712B1 (en) Method for extracting metal compound particles, method for analyzing metal compound particles, and the use of the electrolyte solution for extracting metal compound particles present in a metal material
JP7020447B2 (en) A method for analyzing inclusions and / or precipitates in a metal sample, and a method for collecting inclusions and / or precipitates in a metal sample.
JP6897532B2 (en) Electrolytic solution for extracting metal compound particles, and electrolytic extraction method using it
JP3943488B2 (en) Analytical method of composition and / or particle size of nonmetallic inclusions in steel samples
Guevara-Riba et al. Effect of chloride on heavy metal mobility of harbour sediments
JP4972784B2 (en) Analysis method of fine particles in steel
JP5055251B2 (en) Inclusion extraction evaluation method
JP4103661B2 (en) Electrolytic solution for extraction analysis of precipitates and / or inclusions in steel, and method for electrolytic extraction of precipitates and / or inclusions in steel using the same
Arickx et al. Speciation of Cu in MSWI bottom ash and its relation to Cu leaching
JP2009008586A (en) Method of obtaining solid solution content rate of target element in metal sample
JP5324141B2 (en) Method for analyzing inclusions containing CaO in steel
US20220411947A1 (en) Method of extracting precipitates and/or inclusions, method of quantitatively analyzing precipitates and/or inclusions, and electrolyte
JP2019191005A (en) Method of measuring chelating agent
JP2020134192A (en) Method for analyzing deposit and/or inclusion in metal sample
JP2008082975A (en) Separation method for au contained in au containing cyano solution, and quantitative determination method for au contained in au containing cyano solution
JP6222526B2 (en) Method for quantifying AlN contained in Al or Al alloy
JP2008157752A (en) Quantification method of iron metal inside reduced iron pellet
JP2005249584A (en) Method of analyzing harmful metal elements and pretreatment method therefor
Sandblom Waste Incineration as a Possible Source of Perfluoroalkyl Acids to the Environment–Method Development and Screening

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210823

R150 Certificate of patent or registration of utility model

Ref document number: 6943264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150