JP2020134192A - Method for analyzing deposit and/or inclusion in metal sample - Google Patents

Method for analyzing deposit and/or inclusion in metal sample Download PDF

Info

Publication number
JP2020134192A
JP2020134192A JP2019024444A JP2019024444A JP2020134192A JP 2020134192 A JP2020134192 A JP 2020134192A JP 2019024444 A JP2019024444 A JP 2019024444A JP 2019024444 A JP2019024444 A JP 2019024444A JP 2020134192 A JP2020134192 A JP 2020134192A
Authority
JP
Japan
Prior art keywords
precipitates
dispersion solution
metal sample
inclusions
analyzing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019024444A
Other languages
Japanese (ja)
Other versions
JP6958577B2 (en
Inventor
誠也 菅原
Masaya Sugawara
誠也 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=72278277&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2020134192(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2019024444A priority Critical patent/JP6958577B2/en
Publication of JP2020134192A publication Critical patent/JP2020134192A/en
Application granted granted Critical
Publication of JP6958577B2 publication Critical patent/JP6958577B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide an analysis method for accurately analyzing a deposit and/or an inclusion in a metal sample even when the size of the deposit, etc., are fine.SOLUTION: The method for analyzing a deposit and/or an inclusion in a metal sample is provided that includes: an electrolysis step of electrolyzing a metal sample; a separation step of immersing the remainder of the metal sample remaining after the electrolysis step in a dispersion solution to separate the deposit and/or the inclusion from the remainder and collect the deposit and/or the inclusion in the dispersion solution; an extraction step of gasifying and evaporating the dispersion solution remaining after the separation step to extract the deposit and/or the inclusion; and an analysis step of analyzing the deposit and/or inclusion extracted in the extraction step.SELECTED DRAWING: None

Description

本発明は、金属試料中の析出物および/または介在物を精度よく分析する分析方法に関するものである。 The present invention relates to an analytical method for accurately analyzing precipitates and / or inclusions in a metal sample.

金属試料中に存在する析出物および/または介在物(以下、析出物等と称する場合がある。)は、加工性、靭性、被削性、電磁気特性、表面性状などに著しい影響を及ぼす。このため、析出物等の存在量を精度よく分析することがきわめて重要である。鉄鋼分野では、従来から析出物等をミクロ組織制御に活用し、製品特性を向上させる開発が行われており、近年、鉄鋼材料中には数nmサイズの極微細析出物が含有されている。 Precipitates and / or inclusions (hereinafter, may be referred to as precipitates and the like) present in the metal sample have a significant effect on workability, toughness, machinability, electromagnetic properties, surface properties and the like. Therefore, it is extremely important to accurately analyze the abundance of precipitates and the like. In the field of steel, developments have been made to improve product characteristics by utilizing precipitates and the like for microstructure control, and in recent years, ultrafine precipitates having a size of several nm are contained in steel materials.

一般に、鉄鋼材料などの金属試料中の析出物等を抽出して定量する技術は、非特許文献1に示すように、酸分解法、ハロゲン法、電解抽出法が知られている。これらのうち、電解抽出法は、金属試料と金属試料中の析出物等の電位差を利用して、金属試料中のマトリックス(鉄鋼材料の場合は母相のFe)のみを溶解し、電解液中に存在する析出物等を凝集させて、フィルタでろ過回収し分析する方法である。電解抽出法は、電解条件(電圧、電流値)を変化させることにより金属試料の特定の組織の電解や電解量を細かく調整できるので、標準的に用いられている方法である。 In general, as shown in Non-Patent Document 1, techniques for extracting and quantifying precipitates and the like in metal samples such as steel materials are known as an acid decomposition method, a halogen method, and an electrolytic extraction method. Of these, the electrolytic extraction method utilizes the potential difference between the metal sample and the precipitates in the metal sample to dissolve only the matrix (in the case of steel material, the parent phase Fe) in the metal sample and dissolve it in the electrolytic solution. This is a method in which the precipitates and the like present in the sample are aggregated, filtered and collected by a filter, and analyzed. The electrolytic extraction method is a standard method because the electrolysis and the amount of electrolysis of a specific structure of a metal sample can be finely adjusted by changing the electrolysis conditions (voltage, current value).

日本鉄鋼協会 「鉄鋼便覧第四版(CD−ROM)」第四巻 2編 3.5The Iron and Steel Institute of Japan "Steel Handbook 4th Edition (CD-ROM)" Volume 4 Volume 2 3.5

非特許文献1の電解抽出法では、電解液中の析出物全量をろ過回収する必要があるため、析出物が微細になるほどフィルタの孔径を小さくしなければならず、ろ過時間が長くなるという問題がある。また、析出物が数nmサイズになると、析出物同士が凝集したとしてもろ過漏れを起こしたり、フィルタからの汚染物質が混入している可能性があることが近年指摘されており、研究開発や工程分析の支障となっている。 In the electrolytic extraction method of Non-Patent Document 1, it is necessary to filter and recover the entire amount of the precipitate in the electrolytic solution. Therefore, the finer the precipitate, the smaller the pore size of the filter, which causes a problem that the filtration time becomes longer. There is. In recent years, it has been pointed out that when the precipitates have a size of several nm, even if the precipitates aggregate with each other, filtration leakage may occur or contaminants from the filter may be mixed in. It is an obstacle to process analysis.

本発明はかかる事情に鑑みなされたもので、析出物等のサイズが微細であっても、金属試料中に存在する析出物および/または介在物を、精度よく分析する分析方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides an analysis method for accurately analyzing precipitates and / or inclusions existing in a metal sample even if the size of the precipitate or the like is fine. The purpose.

本発明者は、上記の問題点を解決すべく鋭意検討した。その結果、数nmサイズの微細な析出物および/または介在物を含んでいても、ろ過抽出を行うことなく析出物および/または介在物を精度よく分析することが可能な分析方法を確立した。 The present inventor has diligently studied to solve the above problems. As a result, an analysis method has been established that enables accurate analysis of precipitates and / or inclusions without performing filtration extraction even if fine precipitates and / or inclusions having a size of several nm are contained.

本発明は、以上の知見に基づき完成されたものであり、その要旨は以下の通りである。
[1]金属試料を電解する電解ステップと、
前記電解ステップ後の金属試料の残部を分散溶液に浸漬して、残部から析出物および/または介在物を分離し、分散溶液中に析出物および/または介在物を回収する分離ステップと、
前記分離ステップ後の分散溶液を気化蒸発して前記析出物および/または介在物を抽出する抽出ステップと、
前記抽出ステップにて抽出した析出物および/または介在物を分析する分析ステップと、を有する金属試料中の析出物および/または介在物の分析方法。
[2]前記分散溶液の粘度は、25℃のとき1.0mPa・sec以下である[1]に記載の金属試料中の析出物および/または介在物の分析方法。
[3]前記分散溶液の蒸気圧は、25℃のとき170×10Pa以上である[1]または[2]に記載の金属試料中の析出物および/または介在物の分析方法。
[4]前記分散溶液は、10ml以下とする[1]〜[3]のいずれかに記載の金属試料中の析出物および/または介在物の分析方法。
The present invention has been completed based on the above findings, and the gist thereof is as follows.
[1] An electrolysis step for electrolyzing a metal sample and
A separation step in which the balance of the metal sample after the electrolysis step is immersed in a dispersion solution to separate precipitates and / or inclusions from the balance, and the precipitates and / or inclusions are recovered in the dispersion solution.
An extraction step in which the dispersion solution after the separation step is vaporized and evaporated to extract the precipitate and / or inclusions.
A method for analyzing precipitates and / or inclusions in a metal sample having an analysis step for analyzing the precipitates and / or inclusions extracted in the extraction step.
[2] The method for analyzing precipitates and / or inclusions in a metal sample according to [1], wherein the viscosity of the dispersion solution is 1.0 mPa · sec or less at 25 ° C.
[3] The method for analyzing precipitates and / or inclusions in a metal sample according to [1] or [2], wherein the vapor pressure of the dispersion solution is 170 × 10 2 Pa or more at 25 ° C.
[4] The method for analyzing precipitates and / or inclusions in a metal sample according to any one of [1] to [3], wherein the dispersion solution is 10 ml or less.

本発明によれば、金属試料中の析出物および/または介在物を、精度よく分析することができる。 According to the present invention, precipitates and / or inclusions in a metal sample can be analyzed with high accuracy.

以下、本発明の金属試料中の析出物および/または介在物の分析方法について、説明する。 Hereinafter, a method for analyzing precipitates and / or inclusions in a metal sample of the present invention will be described.

本発明の金属試料中の析出物および/または介在物の分析方法は、金属試料を電解する電解ステップと、電解ステップ後の金属試料の残部を分散溶液に浸漬して、残部から析出物および/または介在物を分離し、分散溶液中に析出物および/または介在物を回収する分離ステップと、分離ステップ後の分散溶液を気化蒸発して析出物および/または介在物を抽出する抽出ステップと、抽出ステップにて抽出した析出物および/または介在物を分析する分析ステップとを有する。 In the method for analyzing precipitates and / or inclusions in a metal sample of the present invention, an electrolysis step for electrolyzing the metal sample and the balance of the metal sample after the electrolysis step are immersed in a dispersion solution, and the precipitates and / or precipitates and / or precipitates are immersed from the balance. Alternatively, a separation step of separating inclusions and recovering the precipitates and / or inclusions in the dispersion solution, and an extraction step of vaporizing and evaporating the dispersion solution after the separation step to extract the precipitates and / or inclusions. It has an analysis step for analyzing the precipitates and / or inclusions extracted in the extraction step.

<電解ステップ>
まず、金属試料を電解液中で電解させる。この工程では、電解により金属試料中のマトリックスのみを溶解し、析出物を金属試料の内部から現出させる。金属試料を電解させる電解液は特に制限されることはなく、AA系(アセチルアセトン−塩化テトラメチルアンモニウム−メタノール)電解液、MS系(サリチル酸メチル−サリチル酸−塩化テトラメチルアンモニウム−メタノール)電解液、MA系(無水マレイン酸−塩化テトラメチルアンモニウム−メタノール)電解液などの非水溶媒系電解液、クエン酸電解液、塩酸電解液などの水溶液系電解液が利用できる。析出物等の溶解がなく、安定して抽出できるという観点から、電解液は非水溶媒系電解液が好ましい。
<Electrolysis step>
First, the metal sample is electrolyzed in the electrolytic solution. In this step, only the matrix in the metal sample is dissolved by electrolysis, and the precipitate appears from the inside of the metal sample. The electrolytic solution for electrolyzing the metal sample is not particularly limited, and is an AA-based (acetylacetone-tetramethylammonium chloride-methanol) electrolytic solution, an MS-based (methyl salicylate-salicylic acid-tetramethylammonium chloride-methanol) electrolytic solution, and MA. A non-aqueous solvent type electrolytic solution such as a system (maleic anhydride-tetramethylammonium chloride-methanol) electrolytic solution, an aqueous solution type electrolytic solution such as a citric acid electrolytic solution, and a hydrochloric acid electrolytic solution can be used. The electrolytic solution is preferably a non-aqueous solvent-based electrolytic solution from the viewpoint that precipitation and the like are not dissolved and stable extraction can be performed.

具体的には、金属試料を切断し研削、洗浄を行った後、金属試料(以下、被検試料と称することもある)の重量を測定する。次いで、この被検試料を陽極として定電位電解、または定電流電解を行う。電解量は特に制限はないが、通常は被検試料を1g程度溶解する。電解液の量、電解条件、溶解量は、金属試料の種類および析出物量の推定値に基づき、適宜調整することができる。 Specifically, after cutting, grinding, and cleaning the metal sample, the weight of the metal sample (hereinafter, also referred to as a test sample) is measured. Next, constant potential electrolysis or constant current electrolysis is performed using this test sample as an anode. The amount of electrolysis is not particularly limited, but usually about 1 g of the test sample is dissolved. The amount of electrolytic solution, electrolytic conditions, and dissolved amount can be appropriately adjusted based on the type of metal sample and the estimated value of the amount of precipitate.

<分離ステップ>
次に、電解ステップ後の金属試料(被検試料)の残部を分散溶液に浸漬して、残部から析出物および/または介在物を分離し、分散溶液中に析出物等を回収する。この工程では、電解(溶解)されずに残った電解後の被検試料の残部を分散溶液に浸漬させることで、析出物等を残部から分離し、分散溶液中に析出物等を分散させる。ここで、被検試料の残部から析出物等を迅速に全量分離させるために、超音波を付与することが好ましい。被検試料から析出物等が全量分離すると被検試料の残部が金属光沢を呈するので、超音波の付与時間は、これを目安とする。電解後の被検試料を分散溶液から取出し、メタノール等で十分に洗浄し乾燥させる。乾燥後の被検試料の重量を測定し、電解重量を求める。
<Separation step>
Next, the balance of the metal sample (test sample) after the electrolysis step is immersed in the dispersion solution, the precipitate and / or inclusions are separated from the balance, and the precipitate and the like are recovered in the dispersion solution. In this step, the residue of the test sample after electrolysis, which remains without electrolysis (dissolution), is immersed in the dispersion solution to separate the precipitate and the like from the balance, and the precipitate and the like are dispersed in the dispersion solution. Here, it is preferable to apply ultrasonic waves in order to quickly separate all the precipitates and the like from the rest of the test sample. When all the precipitates and the like are separated from the test sample, the rest of the test sample has a metallic luster. Therefore, the ultrasonic wave application time is used as a guide. The test sample after electrolysis is taken out from the dispersion solution, thoroughly washed with methanol or the like, and dried. The weight of the test sample after drying is measured, and the electrolytic weight is determined.

なお、非水溶媒系電解液による電解では、析出物等は溶解せず、すべて電解後の被検試料の表面に付着する。したがって、被検試料を所定量電解した後、電解後の被検試料の残部に付着している析出物等を電解液中に脱落させないように静かに取り出し、直ちに分散溶液に浸漬させる。 In electrolysis using a non-aqueous solvent-based electrolytic solution, precipitates and the like are not dissolved and all adhere to the surface of the test sample after electrolysis. Therefore, after electrolyzing a predetermined amount of the test sample, the precipitate or the like adhering to the rest of the test sample after electrolysis is gently taken out so as not to fall into the electrolytic solution, and immediately immersed in the dispersion solution.

また、1回の分離ステップで被検試料の残部が金属光沢とならない場合(析出物等が多く、1回の分離ステップ後であっても析出物等を分離しきれず、被検試料の表面に析出物等が残留していると思われる場合)は、別途分散溶液を準備して、被検試料の残部が金属光沢を呈するまで分離ステップを複数回行うことが好ましい。 In addition, when the balance of the test sample does not have a metallic luster in one separation step (there are many precipitates and the like, the precipitates and the like cannot be completely separated even after one separation step, and the surface of the test sample cannot be separated. If it seems that precipitates or the like remain), it is preferable to prepare a separate dispersion solution and perform the separation step a plurality of times until the balance of the test sample exhibits a metallic luster.

分散溶液は、析出物等の分散性を確保し分離回収率を上げるために粘度が極端に大きくないものが適している。さらに次の工程である抽出ステップで分散溶液を気化させるため、ホットプレート程度の加温で揮発性を有するものが適している。以上の観点から、分散溶液の粘度は、25℃のとき1.0mPa・sec以下であることが好ましい。また、分散溶液の蒸気圧は、25℃のとき170×10Pa以上であることが好ましい。このような条件を満足する分散溶液として、具体的には、メタノール、テトラヒドロフランまたはアセトンが好ましい。分散溶液の量は、被検試料のサイズにもよるが、気化蒸発の時間を短くするために、10ml以下とすることが好ましい。 The dispersion solution is preferably one whose viscosity is not extremely high in order to secure the dispersibility of precipitates and the like and increase the separation and recovery rate. Further, since the dispersion solution is vaporized in the extraction step, which is the next step, a hot plate that is heated to the extent of a hot plate and has volatility is suitable. From the above viewpoint, the viscosity of the dispersion solution is preferably 1.0 mPa · sec or less at 25 ° C. The vapor pressure of the dispersion solution is preferably 170 × 10 2 Pa or more at 25 ° C. Specifically, methanol, tetrahydrofuran or acetone is preferable as the dispersion solution satisfying such conditions. The amount of the dispersion solution depends on the size of the test sample, but is preferably 10 ml or less in order to shorten the time for vaporization and evaporation.

<抽出ステップ>
次に、分離ステップ後の分散溶液を気化蒸発して析出物および/または介在物を抽出する。すなわち、この工程では、析出物等を回収した分散溶液から分散溶液を気化蒸発させて、析出物等のみを抽出する。分離ステップを複数回行った場合は、分散溶液を1つの容器に収容して気化蒸発させればよい。本発明では、分離ステップ後の分散溶液を気化蒸発させる抽出ステップを実施することにより、ろ過抽出を行うことなく金属試料中の析出物等の分析を行うことができる。分散溶液を気化蒸発させる方法としては、分散溶液を常温に放置しておくだけでもよい。なお、気化蒸発の時間の短縮という観点から、分散溶液をホットプレート等で50〜120℃に加温したり、分散溶液を100〜10000Paに減圧したり、乾燥した空気や窒素ガスを分散溶液の表面に吹きかけることが好ましい。
<Extraction step>
Next, the dispersion solution after the separation step is vaporized and evaporated to extract precipitates and / or inclusions. That is, in this step, the dispersion solution is vaporized and evaporated from the dispersion solution in which the precipitate or the like is recovered, and only the precipitate or the like is extracted. When the separation step is performed a plurality of times, the dispersion solution may be contained in one container and vaporized and evaporated. In the present invention, by carrying out an extraction step of vaporizing and evaporating the dispersed solution after the separation step, it is possible to analyze precipitates and the like in a metal sample without performing filtration extraction. As a method of vaporizing and evaporating the dispersion solution, the dispersion solution may be simply left at room temperature. From the viewpoint of shortening the time for vaporization and evaporation, the dispersion solution is heated to 50 to 120 ° C. on a hot plate or the like, the dispersion solution is depressurized to 100 to 10,000 Pa, and dry air or nitrogen gas is added to the dispersion solution. It is preferable to spray on the surface.

<分析ステップ>
次に、抽出ステップにて抽出した析出物および/または介在物を分析する。具体的には、抽出した析出物等を溶解し、元素分析を行う。析出物等を溶解する酸またはアルカリ水溶液は、分析対象とする元素に応じて適宜選択する。分析手法は、誘導結合プラズマ発光分光分析法(ICP−AES)、誘導結合プラズマ質量分析法(ICP−MS)、原子吸光分析法などが好適である。
<Analysis step>
The precipitates and / or inclusions extracted in the extraction step are then analyzed. Specifically, the extracted precipitate or the like is dissolved and elemental analysis is performed. The acid or alkaline aqueous solution that dissolves the precipitate or the like is appropriately selected according to the element to be analyzed. As the analysis method, inductively coupled plasma emission spectroscopic analysis (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS), atomic absorption spectrometry and the like are suitable.

C:0.03mass%、Mn:0.12mass%、S:0.002mass%を含有する冷延鋼板中のMnSの量(析出物等)を、本発明の方法(発明例1)および従来の電解抽出法(比較例1)で定量した。 The amount of MnS (precipitate, etc.) in the cold-rolled steel sheet containing C: 0.03 mass%, Mn: 0.12 mass%, and S: 0.002 mass% is determined by the method of the present invention (Invention Example 1) and the conventional method. It was quantified by the electrolytic extraction method (Comparative Example 1).

まず、上記冷延鋼板を鏡面に研磨し、走査電子顕微鏡(SEM)で観察しながら、EDS(エネルギー分散型X線分析)を用いて、析出物等を分析した。測定時の条件は、加速電圧15.00kV、特性X線エネルギー範囲20keVとした。その結果、析出物等が粒径250〜500nmの粗大なMnSであることを確認した。上記の冷延鋼板(板厚1.2mm)を、30mm×30mmに切断し、鋼板表面を研磨して、被検試料とした。発明例および比較例のいずれも、約500mlの10%AA系電解液を使用し、20mA/cmの条件で定電流電解した。 First, the cold-rolled steel sheet was mirror-polished, and while observing with a scanning electron microscope (SEM), precipitates and the like were analyzed using EDS (Energy Dispersive X-ray Analysis). The conditions at the time of measurement were an accelerating voltage of 15.00 kV and a characteristic X-ray energy range of 20 keV. As a result, it was confirmed that the precipitate or the like was a coarse MnS having a particle size of 250 to 500 nm. The cold-rolled steel sheet (plate thickness 1.2 mm) was cut into a size of 30 mm × 30 mm, and the surface of the steel sheet was polished to obtain a test sample. In both the invention example and the comparative example, about 500 ml of 10% AA-based electrolytic solution was used, and constant current electrolysis was performed under the condition of 20 mA / cm 2 .

発明例1については、電解後、電解液から取り出した金属試料の残部を、分散溶液として10mlのメタノール溶液に浸漬し、超音波を2分間付与し、金属試料の残部が金属光沢となったことを確認した。その後、被検試料を分散溶液から取り出した。 In Invention Example 1, after electrolysis, the balance of the metal sample taken out from the electrolytic solution was immersed in a 10 ml methanol solution as a dispersion solution, ultrasonic waves were applied for 2 minutes, and the balance of the metal sample became metallic luster. It was confirmed. Then, the test sample was taken out from the dispersion solution.

分散溶液が入った容器を、ホットプレートで60℃に加熱し、分散溶液のみを気化蒸発させ、抽出物等を得た。得られた抽出物等に、20mlの硝酸を添加し、100℃で30分間加熱し析出物等を溶解した。析出物等の溶解後、ICP質量分析計でMnを定量した。なお、定量したMnは全てMnSを構成している。 The container containing the dispersion solution was heated to 60 ° C. on a hot plate, and only the dispersion solution was vaporized and evaporated to obtain an extract and the like. 20 ml of nitric acid was added to the obtained extract and the like, and the mixture was heated at 100 ° C. for 30 minutes to dissolve the precipitate and the like. After dissolving the precipitate and the like, Mn was quantified by an ICP mass spectrometer. All the quantified Mns constitute MnS.

比較例1については、被検試料を定電流電解後、分散溶液に浸漬させて析出物等を分散させた。なお、定電流電解および分散溶液量ならびに超音波付与の条件は発明例と同じである。次いで、析出物等が分散した分散溶液を孔径0.2μmのニュークリポアフィルタでろ過をし、残渣をフィルタ上に捕集した。次いで、フィルタ上の残渣をビーカーに入れ、20mlの硝酸を添加し、100℃で30分間加熱した。加熱後、フィルタを取り出し、フィルタに付着した溶液を純水で洗い流した。その後、ICP質量分析計でMnを定量した。なお、定量したMnは全てMnSを構成している。 In Comparative Example 1, the test sample was electrolyzed at a constant current and then immersed in a dispersion solution to disperse precipitates and the like. The conditions for constant current electrolysis, the amount of dispersed solution, and the application of ultrasonic waves are the same as those in the invention. Next, the dispersion solution in which the precipitates and the like were dispersed was filtered through a nucleo-pore filter having a pore size of 0.2 μm, and the residue was collected on the filter. The residue on the filter was then placed in a beaker, 20 ml of nitric acid was added and heated at 100 ° C. for 30 minutes. After heating, the filter was taken out, and the solution adhering to the filter was washed away with pure water. Then, Mn was quantified by ICP mass spectrometer. All the quantified Mns constitute MnS.

上記の定量実験を発明例および比較例についてそれぞれ3回繰返し行い、定量したMnの値の標準偏差を求め、分析精度とした。 The above quantitative experiment was repeated three times for each of the invention example and the comparative example, and the standard deviation of the quantified Mn value was obtained and used as the analysis accuracy.

本発明と比較例における、MnSとしてのMnの量および分析精度を表1に示す。 Table 1 shows the amount of Mn as MnS and the analysis accuracy in the present invention and the comparative example.

Figure 2020134192
Figure 2020134192

表1より発明例は比較例と同様の分析結果が得られている。その一方で、発明例の標準偏差は比較例に比べると非常に小さいことから、比較例よりも発明例の方が分析精度に優れていることがわかる。 From Table 1, the same analysis results as in the comparative examples were obtained for the invention examples. On the other hand, since the standard deviation of the invention example is much smaller than that of the comparative example, it can be seen that the invention example is superior in analysis accuracy to the comparative example.

C:0.0043mass%、Mn:0.23mass%、S:0.002mass%を含有する冷延鋼板を鏡面に研磨し、走査電子顕微鏡(SEM)で観察しながら、MnSの量(析出物等)を、本発明の方法(発明例2)および従来の電解抽出法(比較例2)で定量した。 A cold-rolled steel sheet containing C: 0.0043 mass%, Mn: 0.23 mass%, and S: 0.002 mass% is mirror-polished, and the amount of MnS (precipitate, etc.) is observed with a scanning electron microscope (SEM). ) Was quantified by the method of the present invention (Invention Example 2) and the conventional electrolytic extraction method (Comparative Example 2).

上記冷延鋼板中の析出物等について、EDS(エネルギー分散型X線分析)を用いて、析出物等を分析した。測定時の条件は、加速電圧15.00kV、エネルギー範囲20keVとした。その結果、析出物等が粒径20〜150nmの微細なMnSであることを確認した。 For the precipitates and the like in the cold-rolled steel sheet, the precipitates and the like were analyzed using EDS (Energy Dispersive X-ray Analysis). The conditions at the time of measurement were an accelerating voltage of 15.00 kV and an energy range of 20 keV. As a result, it was confirmed that the precipitate and the like were fine MnS having a particle size of 20 to 150 nm.

上記冷延鋼板(板厚1.2mm)を、30mm×30mmに切断し、鋼板表面を研磨して、被検試料とした。発明例および比較例のいずれも、約500mlの10%AA系電解液を使用し、20mA/cmの条件で定電流電解した。 The cold-rolled steel sheet (plate thickness 1.2 mm) was cut into a size of 30 mm × 30 mm, and the surface of the steel sheet was polished to obtain a test sample. In both the invention example and the comparative example, about 500 ml of 10% AA-based electrolytic solution was used, and constant current electrolysis was performed under the condition of 20 mA / cm 2 .

発明例2については、電解後、電解液から取り出した金属試料の残部を、分散溶液として10mlのアセトン溶液に浸漬し、超音波を2分間付与し、金属試料の残部が金属光沢となったことを確認した。その後、被検試料を分散溶液から取り出した。 In Invention Example 2, after electrolysis, the rest of the metal sample taken out from the electrolytic solution was immersed in a 10 ml acetone solution as a dispersion solution, ultrasonic waves were applied for 2 minutes, and the rest of the metal sample became metallic luster. It was confirmed. Then, the test sample was taken out from the dispersion solution.

分散溶液が入った容器を、ホットプレートで50℃に加熱し、分散溶液のみを気化蒸発させ、抽出物等を得た。得られた抽出物等に、20mlの硝酸を添加し、100℃で30分間加熱し析出物等を溶解した。析出物等の溶解後、ICP質量分析計でMnを定量した。なお、定量したMnは全てMnSを構成している。 The container containing the dispersion solution was heated to 50 ° C. on a hot plate, and only the dispersion solution was vaporized and evaporated to obtain an extract and the like. 20 ml of nitric acid was added to the obtained extract and the like, and the mixture was heated at 100 ° C. for 30 minutes to dissolve the precipitate and the like. After dissolving the precipitate and the like, Mn was quantified by an ICP mass spectrometer. All the quantified Mns constitute MnS.

比較例2については、被検試料を定電流電解後、分散溶液に浸漬させて析出物等を分散させた。なお、定電流電解および分散溶液量ならびに超音波付与の条件は発明例と同じである。次いで、析出物等が分散した分散溶液を孔径0.2μmのニュークリポアフィルタでろ過をし、残渣をフィルタ上に捕集した。次いで、フィルタ上の残渣をビーカーに入れ、20mlの硝酸を添加し、100℃で30分間加熱した。加熱後、フィルタを取り出し、フィルタに付着した溶液を純水で洗い流した。その後、ICP質量分析計でMnを定量した。なお、定量したMnは全てMnSを構成している。 In Comparative Example 2, the test sample was electrolyzed at a constant current and then immersed in a dispersion solution to disperse precipitates and the like. The conditions for constant current electrolysis, the amount of dispersed solution, and the application of ultrasonic waves are the same as those in the invention. Next, the dispersion solution in which the precipitates and the like were dispersed was filtered through a nucleo-pore filter having a pore size of 0.2 μm, and the residue was collected on the filter. The residue on the filter was then placed in a beaker, 20 ml of nitric acid was added and heated at 100 ° C. for 30 minutes. After heating, the filter was taken out, and the solution adhering to the filter was washed away with pure water. Then, Mn was quantified by ICP mass spectrometer. All the quantified Mns constitute MnS.

また、ろ過漏れを確認するために、ろ液をビーカーに捕集し本発明の分析方法で定量した。即ち、ろ液を50℃に加熱し溶媒を気化蒸発させた。その後、20mlの硝酸を添加し、100℃で30分間加熱し析出物を溶解した。その後、ICP質量分析計で含有成分を定量した。 In addition, in order to confirm filtration leakage, the filtrate was collected in a beaker and quantified by the analysis method of the present invention. That is, the filtrate was heated to 50 ° C. to vaporize and evaporate the solvent. Then, 20 ml of nitric acid was added, and the mixture was heated at 100 ° C. for 30 minutes to dissolve the precipitate. Then, the contained components were quantified by an ICP mass spectrometer.

上記の定量実験を発明例および比較例についてそれぞれ3回繰返し行い、定量したMnの値の標準偏差を求め、分析精度とした。 The above quantitative experiment was repeated three times for each of the invention example and the comparative example, and the standard deviation of the quantified Mn value was obtained and used as the analysis accuracy.

本発明と比較例における、MnS中のMnの量および分析精度を表2に示す。 Table 2 shows the amount of Mn in MnS and the analysis accuracy in the present invention and the comparative example.

Figure 2020134192
Figure 2020134192

表2より比較例では、ろ液からもMnが定量されていることから、ろ過漏れが生じていることが分かる。このろ過漏れは、析出物の大きさがフィルタ孔径よりも小さいために生じたものである。また、比較例2におけるフィルタ上のMnおよびろ液中のMnの合計値は、発明例2のMnの量と一致する、すなわち、本発明の分析方法を用いることで析出物を損失無く分析することができ、試料中に存在する析出物の分析精度が高いと言える。 From Table 2, in the comparative example, since Mn is also quantified from the filtrate, it can be seen that filtration leakage has occurred. This filtration leak is caused by the size of the precipitate being smaller than the filter pore size. Further, the total value of Mn on the filter and Mn in the filtrate in Comparative Example 2 is consistent with the amount of Mn in Invention Example 2, that is, the precipitate is analyzed without loss by using the analysis method of the present invention. It can be said that the analysis accuracy of the precipitates present in the sample is high.

Claims (4)

金属試料を電解する電解ステップと、
前記電解ステップ後の金属試料の残部を分散溶液に浸漬して、残部から析出物および/または介在物を分離し、分散溶液中に析出物および/または介在物を回収する分離ステップと、
前記分離ステップ後の分散溶液を気化蒸発して前記析出物および/または介在物を抽出する抽出ステップと、
前記抽出ステップにて抽出した析出物および/または介在物を分析する分析ステップと、を有する金属試料中の析出物および/または介在物の分析方法。
An electrolysis step to electrolyze a metal sample and
A separation step in which the balance of the metal sample after the electrolysis step is immersed in a dispersion solution to separate precipitates and / or inclusions from the balance, and the precipitates and / or inclusions are recovered in the dispersion solution.
An extraction step in which the dispersion solution after the separation step is vaporized and evaporated to extract the precipitate and / or inclusions.
A method for analyzing precipitates and / or inclusions in a metal sample having an analysis step for analyzing the precipitates and / or inclusions extracted in the extraction step.
前記分散溶液の粘度は、25℃のとき1.0mPa・sec以下である請求項1に記載の金属試料中の析出物および/または介在物の分析方法。 The method for analyzing precipitates and / or inclusions in a metal sample according to claim 1, wherein the viscosity of the dispersion solution is 1.0 mPa · sec or less at 25 ° C. 前記分散溶液の蒸気圧は、25℃のとき170×10Pa以上である請求項1または2に記載の金属試料中の析出物および/または介在物の分析方法。 The method for analyzing precipitates and / or inclusions in a metal sample according to claim 1 or 2, wherein the vapor pressure of the dispersion solution is 170 × 10 2 Pa or more at 25 ° C. 前記分散溶液は、10ml以下とする請求項1〜3のいずれかに記載の金属試料中の析出物および/または介在物の分析方法。 The method for analyzing precipitates and / or inclusions in a metal sample according to any one of claims 1 to 3, wherein the dispersion solution is 10 ml or less.
JP2019024444A 2019-02-14 2019-02-14 Method for Analyzing Precipitates and / or Occlusions in Metal Samples Active JP6958577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019024444A JP6958577B2 (en) 2019-02-14 2019-02-14 Method for Analyzing Precipitates and / or Occlusions in Metal Samples

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019024444A JP6958577B2 (en) 2019-02-14 2019-02-14 Method for Analyzing Precipitates and / or Occlusions in Metal Samples

Publications (2)

Publication Number Publication Date
JP2020134192A true JP2020134192A (en) 2020-08-31
JP6958577B2 JP6958577B2 (en) 2021-11-02

Family

ID=72278277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019024444A Active JP6958577B2 (en) 2019-02-14 2019-02-14 Method for Analyzing Precipitates and / or Occlusions in Metal Samples

Country Status (1)

Country Link
JP (1) JP6958577B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3952295A1 (en) 2020-08-06 2022-02-09 Funai Electric Co., Ltd. Electronic device comprising a housing and means for fixing an electronic unit to the housing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040119483A1 (en) * 2002-12-20 2004-06-24 Gunter Topfer Measurement of molten metal with ion conducting phase sensors by means of an electrical measuring unit
JP2004317203A (en) * 2003-04-14 2004-11-11 Nippon Steel Corp Method of evaluating inclusion and precipitate in metal and evaluation tool therefor
JP2010145157A (en) * 2008-12-17 2010-07-01 Jfe Steel Corp Method for analysis of deposit and/or enclosure in metal sample
JP2010151695A (en) * 2008-11-28 2010-07-08 Jfe Steel Corp Method for analyzing deposit and/or inclusion in metal material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040119483A1 (en) * 2002-12-20 2004-06-24 Gunter Topfer Measurement of molten metal with ion conducting phase sensors by means of an electrical measuring unit
JP2004317203A (en) * 2003-04-14 2004-11-11 Nippon Steel Corp Method of evaluating inclusion and precipitate in metal and evaluation tool therefor
JP2010151695A (en) * 2008-11-28 2010-07-08 Jfe Steel Corp Method for analyzing deposit and/or inclusion in metal material
JP2010145157A (en) * 2008-12-17 2010-07-01 Jfe Steel Corp Method for analysis of deposit and/or enclosure in metal sample

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3952295A1 (en) 2020-08-06 2022-02-09 Funai Electric Co., Ltd. Electronic device comprising a housing and means for fixing an electronic unit to the housing

Also Published As

Publication number Publication date
JP6958577B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
CN101688857B (en) Method for analysis of metal sample
Ye et al. A new infinite solid solution strategy to design eutectic high entropy alloys with B2 and BCC structure
WO2010061487A1 (en) Method for analyzing metallic material
JP6958577B2 (en) Method for Analyzing Precipitates and / or Occlusions in Metal Samples
CN106582058B (en) A method of separation petroleum coke Soluble Organic Matter
Liang-Cheng et al. Application of inductively coupled plasma-atomic emission spectrometry/mass spectrometry to phase analysis of gold in gold ores
JP2004317203A (en) Method of evaluating inclusion and precipitate in metal and evaluation tool therefor
Mohammadi et al. Simultaneous extraction of trace amounts of cobalt, nickel and copper ions using magnetic iron oxide nanoparticles without chelating agent
Liu et al. Occurrences of perfluoroalkyl and polyfluoroalkyl substances in tree bark: Interspecies variability related to chain length
JPWO2006132308A1 (en) Method for producing ultrafine particles or ultrafine particle aggregates
JP2010151695A (en) Method for analyzing deposit and/or inclusion in metal material
JP6919775B1 (en) Method for extracting precipitates and / or inclusions, method for quantitative analysis of precipitates and / or inclusions, method for preparing electrolytic solution, and replica sample.
KR101735097B1 (en) Composition containing Rhus verniciflua extract for corrosion inhibition and the method of corrosion inhibition using the same
Kasai et al. Electron spin resonance study of intermetallic molecules AgM (M= Group 2 metal)
JP2009008586A (en) Method of obtaining solid solution content rate of target element in metal sample
JP6969222B2 (en) Cu-added steel sheet
JP7010411B2 (en) A method for extracting precipitates and / or inclusions, a method for quantitative analysis of precipitates and / or inclusions, and an electrolytic solution.
Kinoshiro et al. Determination of Micro-alloyed Elements Containing in the Solid Solution Phase in High Tensile Steel
Mauro et al. de Oliveira Junior, FOR; D’Elia, E. Ziziphus joazeiro Stem Bark Extract as a Green Corrosion Inhibitor for Mild Steel in Acid Medium. Processes 2021, 9, 1323
Dittrich et al. Screening of organic compounds in complexly contaminated scrubber dust by GC× GC-MS and FT-ICR-MS
JP2018163034A (en) Method of assessing stability of steel
WO2024005036A1 (en) Tungsten carbide powder
WO2024005100A1 (en) Tungsten carbide powder
JP2012052978A (en) Quantity determining method for nitride in steel
TWI227705B (en) Method of automatically recycling heavy metal sludge

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210920

R150 Certificate of patent or registration of utility model

Ref document number: 6958577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150