JP2008157752A - Quantification method of iron metal inside reduced iron pellet - Google Patents

Quantification method of iron metal inside reduced iron pellet Download PDF

Info

Publication number
JP2008157752A
JP2008157752A JP2006346918A JP2006346918A JP2008157752A JP 2008157752 A JP2008157752 A JP 2008157752A JP 2006346918 A JP2006346918 A JP 2006346918A JP 2006346918 A JP2006346918 A JP 2006346918A JP 2008157752 A JP2008157752 A JP 2008157752A
Authority
JP
Japan
Prior art keywords
iron
iron metal
reduced iron
bromine
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006346918A
Other languages
Japanese (ja)
Inventor
Kazunori Kobayashi
和範 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2006346918A priority Critical patent/JP2008157752A/en
Publication of JP2008157752A publication Critical patent/JP2008157752A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a quantitative analysis method of iron metal, capable of analyzing the iron metal contained inside the reduced iron pellet from a steel manufacturing method, in a short time, using a relatively easy operation and which is also advantageous in terms of cost. <P>SOLUTION: The iron metal contained in the reduced iron pellet is completely dissolved in a bromine-methanol mixed solution; and after the obtained solution is dripped on filter paper to be dried, the solution dropping part of the filter paper is measured by a fluorescent X-ray analyzer to quantify the iron metal. The adding amount of the reduced iron pellet to the bromine-methanol mixed solution is set to 0.08 or higher to 0.3g or lower, and it is preferable to completely dissolve the iron metal by stirring the bromine-methanol mixed solution at least for 20 min. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鉄鋼ダストを再生した還元鉄ペレット中に含まれる鉄メタルを定量分析する方法に関する。   The present invention relates to a method for quantitatively analyzing iron metal contained in reduced iron pellets obtained by regenerating steel dust.

鉄鋼製造過程の高炉および電気炉などから発生する鉄鋼ダストは、その主成分である酸化鉄以外に亜鉛、鉛などを含有している。そのため、鉄鋼ダスト中の亜鉛や鉛を還元揮発させて亜鉛製錬用の再生原料として回収すると共に、酸化鉄は製鉄用の再生原料として回収することが行われている。   Steel dust generated from blast furnaces and electric furnaces in the steel manufacturing process contains zinc, lead and the like in addition to iron oxide which is the main component. For this reason, zinc and lead in steel dust are reduced and volatilized and recovered as a recycled raw material for zinc smelting, and iron oxide is recovered as a recycled raw material for iron making.

実際の操業ではロータリーキルンによる還元焙焼法が一般的であり、鉄鋼ダストは必要に応じて予め適当なペレットに成型され、石炭やコークスなどの還元剤と共にロータリーキルン中に連続的に装入されて、反応帯の温度と滞留時間をコントロールして還元焙焼される。還元揮発した亜鉛や鉛は排ガスに伴って集塵機に導入され、補足された粉塵は粗酸化亜鉛と称され、亜鉛製錬用の再生原料として回収される。また、ロータリーキルン内に残った残渣は、還元鉄ペレットと称され、製鉄用の再生原料として回収される。   In actual operation, reduction roasting using a rotary kiln is common, and steel dust is formed into appropriate pellets in advance if necessary, and continuously charged in a rotary kiln together with a reducing agent such as coal or coke. Reduction roasting is performed by controlling the temperature and residence time of the reaction zone. The reduced and volatilized zinc and lead are introduced into the dust collector along with the exhaust gas, and the captured dust is called crude zinc oxide, and is recovered as a recycled raw material for zinc smelting. The residue remaining in the rotary kiln is called reduced iron pellets and is recovered as a recycled raw material for iron making.

この還元鉄ペレット中には鉄メタルが含まれており、この鉄メタルの量を定量分析することにより還元状態を把握して、良好な操業を維持するためにロータリーキルンなどの還元条件に反映させる必要がある。また、鉄鋼原料として販売する場合には、その価格決定のために鉄メタル量を定量分析する必要がある。尚、定量分析の精度については、1%のオーダーが得られれば工業上問題はない。   This reduced iron pellet contains iron metal. It is necessary to grasp the reduction state by quantitative analysis of the amount of this iron metal and reflect it in the reduction conditions such as a rotary kiln in order to maintain good operation. There is. Moreover, when selling as a steel raw material, it is necessary to quantitatively analyze the amount of iron metal in order to determine the price. As for the accuracy of quantitative analysis, there is no industrial problem if an order of 1% is obtained.

従来、還元鉄ペレット中に含まれる鉄メタルの定量分析は、原子吸光分析装置あるいは誘導結合プラズマ発光分光分析装置を用いて行われていた。即ち、臭素−メタノール混合液で還元鉄ペレット中の鉄メタルを溶解し、得られた溶解液をろ過した後、ろ液を蒸発乾固し、更に酸を添加して鉄メタルを溶解することで試料液を調整する。この試料液を、原子吸光分析装置又は誘導結合プラズマ発光分光分析装置で測定する。このため、還元鉄ペレット中の鉄メタルの定量分析にはほぼ2日間かかっていた。   Conventionally, quantitative analysis of iron metal contained in reduced iron pellets has been performed using an atomic absorption spectrometer or an inductively coupled plasma emission spectrometer. That is, by dissolving the iron metal in the reduced iron pellets with a bromine-methanol mixture and filtering the resulting solution, the filtrate is evaporated to dryness, and further acid is added to dissolve the iron metal. Prepare the sample solution. This sample solution is measured with an atomic absorption spectrometer or an inductively coupled plasma emission spectrometer. For this reason, it took almost two days for the quantitative analysis of the iron metal in the reduced iron pellets.

このように還元鉄ペレット中の鉄メタルの定量分析に極めて長い時間を要するため、例えば還元条件上のトラブルが発生した場合に、鉄メタルの定量分析結果が出てから還元条件へ反映させても、還元条件上のトラブルを解決するための対応が遅れるという問題があった。また、鉄鋼原料としての急な出荷要請に対しても、納期への対応が困難であるという問題があった。   As described above, since it takes a very long time to quantitatively analyze the iron metal in the reduced iron pellet, for example, when trouble occurs in the reducing conditions, even if the result of quantitative analysis of the iron metal appears, it is reflected in the reducing conditions. There was a problem that the response to solve the trouble on the reduction condition was delayed. In addition, there is a problem that it is difficult to meet the delivery date even in response to a sudden shipment request as a steel raw material.

一方、蛍光X線分析法は、X線を試料に照射し、そのとき試料から発生する2次X線の一種である蛍光X線の強度を測定することにより、試料中の含有元素の量を知ることができる定量分析方法である。この蛍光X線分析法は、試料の前処理が簡単であるうえ、分析操作が簡単で分析のための所要時間も短いことから、広く利用されている。   On the other hand, X-ray fluorescence analysis irradiates a sample with X-rays and measures the intensity of fluorescent X-rays, which are a kind of secondary X-rays generated from the sample at that time, thereby determining the amount of contained elements in the sample. It is a quantitative analysis method that can be known. This fluorescent X-ray analysis method is widely used because sample pretreatment is simple, the analysis operation is simple, and the time required for analysis is short.

この蛍光X線分析においては、分析を行う試料の前処理、即ち試料調製が重要である。特に試料が液体の場合には、液体試料そのままを測定容器に移すか、あるいは液体試料をろ紙又はメンブレンフィルター等に滴下して、乾燥するなどの前処理方法が行われている。   In this fluorescent X-ray analysis, pretreatment of the sample to be analyzed, that is, sample preparation, is important. In particular, when the sample is a liquid, a pretreatment method is performed such as transferring the liquid sample as it is to a measurement container, or dropping the liquid sample onto a filter paper or a membrane filter and drying the sample.

例えば、特開2000−310586号公報(特許文献1)には、酸化物を含む製鋼用合金源副原料中の金属元素の定量分析について、試料を鉱酸に浸漬して加熱加圧することにより溶解し、得られた溶解液をろ紙上に点滴し、乾燥させた後、ろ紙を蛍光X線分析に供して金属元素を定量する方法が記載されている。しかし、この方法では試料を全て溶解させるため、還元鉄ペレットを試料とした場合、鉄メタルだけでなく酸化鉄なども全て溶解されてしまうため、還元鉄ペレット中の鉄メタルの定量分析には適用できない。   For example, in JP 2000-310586 A (Patent Document 1), for quantitative analysis of metal elements in an alloy source auxiliary material for steel making containing oxides, the sample is dissolved by being immersed in mineral acid and heated and pressurized. The obtained solution is instilled on a filter paper, dried, and then subjected to fluorescent X-ray analysis to quantify the metal element. However, this method dissolves all the sample, so when reduced iron pellets are used as samples, not only iron metal but also iron oxide etc. are dissolved, so it is applicable for quantitative analysis of iron metal in reduced iron pellets. Can not.

また、特開2003−090810号公報(特許文献2)や特許第3783829号公報(特許文献3)には、蛍光X線分析用の点滴フィルムあるいは蛍光X線分析用試料保持具が提案され、試料溶液を点滴した後乾燥させてから、蛍光X線分析に供することが記載されている。しかし、いずれも0.1%以上の高い分析精度を得るための方法であり、前述の通り1%オーダーの分析精度で充分な還元鉄ペレット中の鉄メタルの定量分析には過剰な分析精度となっている。   JP 2003-090810 A (Patent Document 2) and Japanese Patent No. 3783829 (Patent Document 3) propose a drip film for X-ray fluorescence analysis or a sample holder for X-ray fluorescence analysis. It is described that the solution is instilled and dried, and then subjected to fluorescent X-ray analysis. However, both are methods for obtaining a high analysis accuracy of 0.1% or more, and as described above, an analysis accuracy of 1% order is sufficient for quantitative analysis of iron metal in reduced iron pellets and an excessive analysis accuracy. It has become.

特開2000−310586号公報JP 2000-310586 A 特開2003−090810号公報JP 2003-090810 A 特許第3783829号公報Japanese Patent No. 3783829

本発明は、このような従来の事情に鑑みてなされたものであり、鉄鋼製造過程からの再生原料である還元鉄ペレット中に含まれる鉄メタルについて、比較的容易な操作で従来よりも短時間にて分析することができ、コスト面でも有利な鉄メタルの定量分析法を提供することを目的とする。   The present invention has been made in view of such a conventional situation, and it is a relatively easy operation for iron metal contained in reduced iron pellets, which is a recycled raw material from the steel manufacturing process, in a shorter time than before. It is an object of the present invention to provide a quantitative analysis method for ferrous metal that can be analyzed by the above-described method and is advantageous in terms of cost.

本発明者は、上記目的を達成するため各種分析方法について検討を重ねた結果、臭素とメタノールの混合液で還元鉄ペレット中の鉄メタルを完全に溶解し、その溶解液をろ紙に滴下した部分を蛍光X線分析装置で測定することによって、簡単且つ低コストにて鉄メタルの定量分析ができることを見出した。   As a result of repeatedly examining various analytical methods to achieve the above object, the present inventor completely dissolved the iron metal in the reduced iron pellets with a mixed solution of bromine and methanol, and dropped the solution on the filter paper. It has been found that the quantitative analysis of iron metal can be performed easily and at low cost by measuring the above with a fluorescent X-ray analyzer.

即ち、本発明が提供する還元鉄ペレット中の鉄メタルの定量方法は、還元鉄ペレット中に含まれる鉄メタルを臭素とメタノールの混合液で溶解し、得られた溶解液をろ紙に滴下して乾燥し、蛍光X線分析装置により定量することを特徴とするものである。   That is, the method for quantifying iron metal in reduced iron pellets provided by the present invention is to dissolve iron metal contained in reduced iron pellets with a mixed solution of bromine and methanol, and drop the obtained solution onto filter paper. It is characterized by being dried and quantified by a fluorescent X-ray analyzer.

また、上記本発明による還元鉄ペレット中の鉄メタルの定量方法においては、前記臭素とメタノールの混合液に0.08g以上0.3g未満の還元鉄ペレットを添加し、少なくとも20分間撹拌して鉄メタルを溶解することが好ましい。   In the method for determining iron metal in reduced iron pellets according to the present invention, 0.08 g or more and less than 0.3 g of reduced iron pellets are added to the mixed solution of bromine and methanol, and the mixture is stirred for at least 20 minutes. It is preferable to dissolve the metal.

本発明によれば、臭素とメタノールの混合液による還元鉄ペレット中の鉄メタルの完全溶解と、その溶解液を滴下したろ紙の蛍光X線分析との組合せにより、簡単な操作であるにもかかわらず、極めて短時間に且つ低コストで、還元鉄ペレット中に含まれている鉄メタルを工業上十分な1%オーダーの分析精度で定量分析することができる。   According to the present invention, the combination of complete dissolution of iron metal in reduced iron pellets with a mixed solution of bromine and methanol and the fluorescent X-ray analysis of the filter paper on which the dissolved solution has been dropped is simple operation. Therefore, it is possible to quantitatively analyze the iron metal contained in the reduced iron pellets with an analytical accuracy of 1% order which is industrially sufficient in a very short time and at a low cost.

本発明の方法は、臭素とメタノールの混合液(以下、臭素−メタノール混合液と称する)に還元鉄ペレット中の鉄メタルを溶解させる工程と、得られた溶解液をろ紙に滴下した後乾燥させる工程と、そのろ紙の溶解液滴下部分を蛍光X線分析にて分析する工程とからなり、従来に比べてはるかに短時間で鉄メタルを定量分析することができる。   The method of the present invention comprises a step of dissolving iron metal in reduced iron pellets in a bromine-methanol mixture (hereinafter referred to as bromine-methanol mixture), and the resulting solution is dropped onto a filter paper and dried. It consists of a process and a process of analyzing the lower part of the dissolved droplet of the filter paper by fluorescent X-ray analysis, and iron metal can be quantitatively analyzed in a much shorter time than in the past.

より詳しくは、まず、還元鉄ペレットの所定量をフラスコあるいはビーカーなどの溶解に適した容器に秤取し、所定量の臭素−メタノール混合液を添加撹拌して、還元鉄ペレット中の鉄メタルを完全に溶解する。次に、得られた溶解液の所定量をろ紙の中央部に滴下し、乾燥させて測定試料とする。その後、ろ紙の溶解液が染み込んだ部分を蛍光X線分析装置で分析することにより、得られた蛍光X線強度値から還元鉄ペレット中の鉄メタル濃度を求める。尚、臭素−メタノール混合液の臭素/メタノールの比率は、臭素を含有する分析後廃液の取り扱いを考慮して、1/20程度とすることが望ましい。   More specifically, first, a predetermined amount of the reduced iron pellet is weighed in a container suitable for dissolution such as a flask or a beaker, and a predetermined amount of bromine-methanol mixed solution is added and stirred to remove the iron metal in the reduced iron pellet. Dissolve completely. Next, a predetermined amount of the obtained solution is dropped on the center of the filter paper and dried to obtain a measurement sample. Thereafter, the portion of the filter paper infiltrated with the solution is analyzed with a fluorescent X-ray analyzer, and the concentration of iron metal in the reduced iron pellet is determined from the obtained fluorescent X-ray intensity value. In addition, it is desirable that the bromine / methanol ratio of the bromine-methanol mixed solution is about 1/20 in consideration of the handling of the waste liquid after analysis containing bromine.

図1は、鉄メタル含有量がそれぞれ10重量%、20重量%、30重量%に相当する標準鉄メタルを秤取し、臭素−メタノール混合液で溶解して溶解液とし、測定用X線が適切に照射される程度の同一量の溶解液をろ紙に滴下して乾燥した後、蛍光X線分析装置により測定して得た鉄メタル含有量と蛍光X線強度との関係を示すグラフである。図1において鉄メタル含有量と蛍光X線強度とが良好な直線関係となっていることから、鉄メタルが完全に溶解していること、並びに図1のグラフを本発明方法の検量線として使用できることが分る。   In FIG. 1, standard iron metals having iron metal contents of 10%, 20%, and 30% by weight are weighed and dissolved in a bromine-methanol mixture to obtain a solution. It is a graph which shows the relationship between the iron metal content and fluorescence X-ray intensity which were obtained by dripping and drying the same amount of the solution of the same amount on the filter paper and then measuring with a fluorescent X-ray analyzer. . Since the iron metal content and the fluorescent X-ray intensity in FIG. 1 are in a good linear relationship, the iron metal is completely dissolved, and the graph of FIG. 1 is used as a calibration curve for the method of the present invention. I know what I can do.

また、還元鉄ペレット中の鉄メタルは完全に溶解されることが重要である。そこで、臭素−メタノール混合液に、鉄メタル含有量が27重量%である還元鉄ペレットを、それぞれ0.1g、0.3g、0.5g、0.7g添加し、且つ溶解時間を20分、50分、80分、110分と変化させて溶解した。得られた溶解液を、それぞれ測定用X線が適切に照射される程度の同一量にてろ紙に滴下して乾燥した後、蛍光X線分析装置により分析した。得られた結果を図2に示す。   It is important that the iron metal in the reduced iron pellet is completely dissolved. Therefore, 0.1 g, 0.3 g, 0.5 g, and 0.7 g of reduced iron pellets having an iron metal content of 27% by weight are added to the bromine-methanol mixture, respectively, and the dissolution time is 20 minutes. The dissolution was carried out at 50 minutes, 80 minutes and 110 minutes. The obtained lysate was dropped on a filter paper in the same amount so that X-rays for measurement were appropriately irradiated and dried, and then analyzed by a fluorescent X-ray analyzer. The obtained results are shown in FIG.

還元鉄ペレットの溶解時間と測定により得られた鉄メタル含有量の関係を還元鉄ペレットの添加量毎に示す図2から、還元鉄ペレットの添加量が0.1gの場合は、溶解時間が20分以上であれば、溶解時間にかかわらず鉄メタル含有量が27重量%という結果が得られたことから、還元鉄ペレット中の鉄メタルが完全に溶解していることが分る。一方、還元ペレットの添加量が0.3g以上の場合は、溶解時間を110分まで延長しても鉄メタル含有量の測定結果が27重量%に到達せず、還元鉄ペレット中の鉄メタルの溶解は不完全であることが分る。   FIG. 2 shows the relationship between the dissolution time of the reduced iron pellets and the iron metal content obtained by measurement for each addition amount of the reduced iron pellets. When the addition amount of the reduced iron pellets is 0.1 g, the dissolution time is 20 If it is more than minutes, the result that the iron metal content was 27% by weight was obtained regardless of the dissolution time, and it can be seen that the iron metal in the reduced iron pellet was completely dissolved. On the other hand, when the addition amount of the reduced pellet is 0.3 g or more, even if the dissolution time is extended to 110 minutes, the measurement result of the iron metal content does not reach 27% by weight, and the iron metal in the reduced iron pellet It can be seen that the dissolution is incomplete.

上記の実験から、臭素−メタノール混合液で還元鉄ペレット中の鉄メタルを完全に溶解するためには、還元鉄ペレットの添加量を0.3g未満とすることが望ましく、0.2g以下がより好ましいことが分った。ただし、臭素−メタノール混合液に対する還元鉄ペレットの添加量が少なすぎると、分析精度に支障を来たす恐れがあるため、還元鉄ペレットの添加量は0.08g以上であることが好ましく、0.1g以上が更に好ましい。   From the above experiment, in order to completely dissolve the iron metal in the reduced iron pellets with the bromine-methanol mixed solution, it is desirable that the added amount of the reduced iron pellets is less than 0.3 g, and more preferably 0.2 g or less. I found it preferable. However, if the amount of the reduced iron pellet added to the bromine-methanol mixture is too small, the analysis accuracy may be hindered. Therefore, the amount of the reduced iron pellet added is preferably 0.08 g or more, and 0.1 g. The above is more preferable.

また、図2から分るように、還元鉄ペレットの添加量を0.1g程度とした場合は、溶解時間として少なくとも20分あれば十分である。しかし、一連の分析作業として引き続き蛍光X線測定装置の準備などが控えているため、これらの準備作業を見こんだ溶解時間としては更に長いことが好ましいが、溶解時間を長くしすぎると定量分析の所要時間の短縮という目的に反する。これらの点を考慮すると、溶解時間は25〜35分の範囲がより好ましい。   As can be seen from FIG. 2, when the added amount of reduced iron pellets is about 0.1 g, a dissolution time of at least 20 minutes is sufficient. However, since preparations for fluorescent X-ray measurement devices are refraining as a series of analysis operations, it is preferable that the dissolution time in consideration of these preparation operations is longer, but if the dissolution time is too long, quantitative analysis is performed. Contrary to the purpose of shortening the required time. Considering these points, the dissolution time is more preferably in the range of 25 to 35 minutes.

臭素−メタノール混合液で鉄メタルを溶解した溶解液は、ろ紙に滴下して乾燥した後、蛍光X線分析装置で分析する。溶解液の滴下量については、前述したとおり、測定用のX線が適切に照射される程度の量であればよい。例えば、蛍光X線分析装置としてPANalytical社製のMagiXを使用する場合、標準的なホルダーの測定X線照射部分が直径27mmであるため、ろ紙に滴下した溶解液が染み込んだ部分の直径が27mm以下となる量を滴下する。尚、蛍光X線分析装置に使用するろ紙は、鉄を含まないことが必要である。   A solution obtained by dissolving iron metal with a bromine-methanol mixed solution is dropped on a filter paper and dried, and then analyzed with a fluorescent X-ray analyzer. About the dripping amount of a solution, as long as it was mentioned above, what is necessary is just the quantity which is the grade which is irradiated with the X-ray for a measurement appropriately. For example, when MaganiX manufactured by PANalytical is used as the fluorescent X-ray analyzer, the diameter of the measurement X-ray irradiation part of the standard holder is 27 mm, so the diameter of the part soaked with the solution dripped on the filter paper is 27 mm or less. The amount to become is dropped. Note that the filter paper used for the fluorescent X-ray analyzer must not contain iron.

例えば、操作の容易性を考慮すると、溶解液の滴下量は20μlとすることが望ましい。20μl分取用のマイクロピペットで容易に分取でき、また、ろ紙に滴下したとき溶解液が染み込む範囲の直径が10mm程度となり、溶媒成分を乾燥すると、溶解液の溶質成分は直径10mm程度の範囲内に保持されるからである。上記のごとくホルダーの測定用X線照射部分の直径が27mmであることから、直径10mm程度の範囲に保持された溶質成分は、その全範囲をホルダーの直径内に容易にセットすることが可能であるため、溶質成分に漏れなく測定用X線を照射することができる。   For example, in consideration of ease of operation, it is desirable that the dropping amount of the solution is 20 μl. Can be easily collected with a micropipette for 20 μl separation, and the diameter of the range in which the solution soaks when dropped onto the filter paper is about 10 mm. When the solvent component is dried, the solute component in the solution is in the range of about 10 mm in diameter. It is because it is held in. As described above, since the diameter of the X-ray irradiation portion for measurement of the holder is 27 mm, the solute component held in the range of about 10 mm in diameter can be easily set within the diameter of the holder. Therefore, X-rays for measurement can be irradiated without leakage to the solute component.

上記した本発明方法による一連の分析作業に要する時間は、準備時間、還元鉄ペレットの溶解時間、蛍光X線分析装置での測定時間を含めて、わずか1時間程度である。従って、上述した従来の分析方法ではほぼ2日を要していた還元鉄ペレット中の鉄メタルの定量分析時間を、大幅に短縮することができる。尚、本発明方法の実施に当たっては、臭素−メタノール混合液の量あるいは混合比率を変えた場合にも、還元鉄ペレットの添加重量を適切に比例調整させることにより、同様の効果が得られる。   The time required for the series of analysis operations according to the above-described method of the present invention is only about 1 hour including the preparation time, the dissolution time of the reduced iron pellets, and the measurement time with the fluorescent X-ray analyzer. Therefore, the quantitative analysis time of the iron metal in the reduced iron pellets, which takes about two days in the above-described conventional analysis method, can be greatly shortened. In carrying out the method of the present invention, the same effect can be obtained by appropriately proportionally adjusting the added weight of the reduced iron pellets even when the amount or mixing ratio of the bromine-methanol mixture is changed.

還元鉄ペレット試料0.1gを100ml共栓付きフラスコに秤取し、21mlの臭素−メタノール混合液(臭素/メタノールの比率=1/20)を添加し、スターラー上で30分間撹拌した後、5分間静置した。得られた溶解液をマイクロピペットで20μl分取し、ろ紙の中央部に滴下した。滴下後2分程度放置し、溶解液を乾燥させた後、滴下した部分を蛍光X線分析装置(PANalytical社製:MagiX)により測定した。   0.1 g of reduced iron pellet sample was weighed into a 100 ml stoppered flask, 21 ml of bromine-methanol mixture (bromine / methanol ratio = 1/20) was added, and the mixture was stirred for 30 minutes on a stirrer. Let stand for a minute. 20 μl of the resulting lysate was collected with a micropipette and dropped onto the center of the filter paper. After dropping, the solution was allowed to stand for about 2 minutes, and the dissolved solution was dried. Then, the dropped portion was measured with a fluorescent X-ray analyzer (manufactured by PANalytical: MagiX).

比較のため、上記と同じ還元鉄ペレット試料について、従来の分析方法により鉄メタルの定量分析を行った。即ち、還元鉄ペレット中の鉄メタルを臭素−メタノール混合液で溶解し、得られた溶解液をろ過した後、ろ液を蒸発乾固させ、残った鉄メタルを酸の添加により溶解して試料液を調整した。この試料液を、原子吸光分析装置により測定した。   For comparison, the same reduced iron pellet sample as above was quantitatively analyzed for iron metal by a conventional analysis method. That is, the iron metal in the reduced iron pellet is dissolved with a bromine-methanol mixture, and the obtained solution is filtered, and then the filtrate is evaporated to dryness, and the remaining iron metal is dissolved by adding an acid. The liquid was adjusted. This sample solution was measured by an atomic absorption analyzer.

鉄メタル含有量が異なる試料A〜Dの4種類の還元鉄ペレット試料について、上記した本発明の分析方法(XRF)による鉄メタルの定量分析結果と、従来の分析方法による鉄メタルの定量分析結果を、下記表1に比較して示した。   For the four types of reduced iron pellet samples A to D having different iron metal contents, the result of quantitative analysis of iron metal by the analysis method (XRF) of the present invention described above and the result of quantitative analysis of iron metal by the conventional analysis method Is shown in comparison with Table 1 below.

Figure 2008157752
Figure 2008157752

この結果から明らかなように、本発明の分析方法と従来の分析方法で得られた結果は1%のオーダーでは一致しており、双方とも同等の分析精度が得られていることが分る。しかも、本発明の分析方法は、臭素−メタノール混合液で鉄メタルを溶解した溶解液を、ろ紙に滴下して測定するだけの簡単な方法であるため、分析時間は従来の約2日間から約1時間程度にまで大幅に短縮された。   As is apparent from this result, the results obtained by the analysis method of the present invention and the conventional analysis method agree with each other on the order of 1%, and it can be seen that both have the same analysis accuracy. In addition, the analysis method of the present invention is a simple method in which a solution obtained by dissolving iron metal in a bromine-methanol mixed solution is simply dropped onto a filter paper and measured, so the analysis time is about 2 days from the conventional time. It was greatly shortened to about 1 hour.

標準鉄メタル試料を測定して得た鉄メタル含有量と蛍光X線強度との関係を示すグラフである。It is a graph which shows the relationship between the iron metal content and fluorescent X-ray intensity which were obtained by measuring a standard iron metal sample. 還元鉄ペレットの溶解時間と測定により得られた鉄メタル含有量の関係を還元鉄ペレットの添加量毎に示すグラフである。It is a graph which shows the relationship between the dissolution time of a reduced iron pellet, and the iron metal content obtained by measurement for every addition amount of a reduced iron pellet.

Claims (2)

還元鉄ペレット中に含まれる鉄メタルの定量方法であって、還元鉄ペレット中の鉄メタルを臭素とメタノールの混合液で溶解し、得られた溶解液をろ紙に滴下して乾燥し、蛍光X線分析装置により定量することを特徴とする還元鉄ペレット中の鉄メタルの定量方法。   A method for quantifying iron metal contained in reduced iron pellets, wherein iron metal in reduced iron pellets is dissolved in a mixed solution of bromine and methanol, and the obtained solution is dropped on a filter paper and dried, and fluorescent X A method for quantifying iron metal in reduced iron pellets, characterized by quantifying with a line analyzer. 前記臭素とメタノールの混合液に0.08g以上0.3g未満の還元鉄ペレットを添加し、少なくとも20分間撹拌して鉄メタルを溶解することを特徴とする、請求項1に記載の鉄メタルの定量方法。   The iron metal according to claim 1, wherein 0.08 g or more and less than 0.3 g of reduced iron pellets are added to the mixed liquid of bromine and methanol, and the iron metal is dissolved by stirring for at least 20 minutes. Quantitation method.
JP2006346918A 2006-12-25 2006-12-25 Quantification method of iron metal inside reduced iron pellet Pending JP2008157752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006346918A JP2008157752A (en) 2006-12-25 2006-12-25 Quantification method of iron metal inside reduced iron pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006346918A JP2008157752A (en) 2006-12-25 2006-12-25 Quantification method of iron metal inside reduced iron pellet

Publications (1)

Publication Number Publication Date
JP2008157752A true JP2008157752A (en) 2008-07-10

Family

ID=39658818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006346918A Pending JP2008157752A (en) 2006-12-25 2006-12-25 Quantification method of iron metal inside reduced iron pellet

Country Status (1)

Country Link
JP (1) JP2008157752A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20101576A1 (en) * 2010-08-27 2012-02-28 Cogne Acciai Speciali S P A METHOD FOR CHEMICAL ANALYSIS OF ELEMENTS IN METALLIC ALLOYS
KR101225288B1 (en) 2011-07-28 2013-01-22 현대제철 주식회사 M-fe analysis method in reduced iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20101576A1 (en) * 2010-08-27 2012-02-28 Cogne Acciai Speciali S P A METHOD FOR CHEMICAL ANALYSIS OF ELEMENTS IN METALLIC ALLOYS
KR101225288B1 (en) 2011-07-28 2013-01-22 현대제철 주식회사 M-fe analysis method in reduced iron

Similar Documents

Publication Publication Date Title
CN102564973B (en) Method for rapidly determining contents of phosphorus, lead and zinc in industrial iron-containing dust mud
Limbeck et al. Improvements in the direct analysis of advanced materials using ICP-based measurement techniques
Flores et al. Sample preparation techniques based on combustion reactions in closed vessels—A brief overview and recent applications
CN101688857B (en) Method for analysis of metal sample
Resano et al. Direct determination of sulfur in solid samples by means of high-resolution continuum source graphite furnace molecular absorption spectrometry using palladium nanoparticles as chemical modifier
JP4907377B2 (en) Trace metal analysis method
Dos Santos et al. Determination of Hg and Pb in compact fluorescent lamp by slurry sampling inductively coupled plasma optical emission spectrometry
Pereira et al. Determination of halogens and sulfur in pitch from crude oil by plasma-based techniques after microwave-induced combustion
Sahuquillo et al. Comparison of leaching tests for the study of trace metals remobilisation in soils and sediments
JP2008309767A (en) Method for decomposing solid sample and method for determining quantity of chrome using the same
JP2016223836A (en) Analysis method for metal in high-salinity sample
Zhou et al. Quantitative determination of trace metals in high-purity silicon carbide powder by laser ablation inductively coupled plasma mass spectrometry without binders
Dabek-Zlotorzynska et al. Evaluation of capillary electrophoresis combined with a BCR sequential extraction for determining distribution of Fe, Zn, Cu, Mn, and Cd in airborne particulate matter
JP2008157752A (en) Quantification method of iron metal inside reduced iron pellet
Ho et al. Electrothermal vaporization inductively coupled plasma mass spectrometry for determination of vanadium and chromium in soils
JP6943264B2 (en) A method for collecting inclusions and / or precipitates in a metal sample, a method for analyzing inclusions and / or precipitates in a metal sample, and an electrolytic solution.
Friese et al. Electrothermal atomic absorption spectrometry using an improved solid sampling system for the analysis of high purity tantalum powders
JP3943488B2 (en) Analytical method of composition and / or particle size of nonmetallic inclusions in steel samples
JP2020165962A (en) Ore sample analysis method
Coedo et al. Slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for steelmaking flue dust analysis
Guevara-Riba et al. Effect of chloride on heavy metal mobility of harbour sediments
JP2008128992A (en) Apparatus and method for analyzing silicon containing solid metallic material
JP2010210305A (en) Combustion improver, and analysis method of carbon and/or sulfur in metal sample using the same
Bin et al. Direct determination of aluminium in biological materials by electrothermal vaporization-inductively coupled plasma atomic emission spectrometry with polytetrafluoroethylene as chemical modifier
JP2012027006A (en) Method for analyzing concentration of heavy metal ion or rare-earth metal ion