JP6942910B2 - Rock property judgment device - Google Patents

Rock property judgment device Download PDF

Info

Publication number
JP6942910B2
JP6942910B2 JP2017193372A JP2017193372A JP6942910B2 JP 6942910 B2 JP6942910 B2 JP 6942910B2 JP 2017193372 A JP2017193372 A JP 2017193372A JP 2017193372 A JP2017193372 A JP 2017193372A JP 6942910 B2 JP6942910 B2 JP 6942910B2
Authority
JP
Japan
Prior art keywords
current
rock
value
bedrock
average value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017193372A
Other languages
Japanese (ja)
Other versions
JP2019065617A (en
Inventor
禎浩 伊藤
禎浩 伊藤
河内 章
章 河内
敏一 猪口
敏一 猪口
横山 幸弘
幸弘 横山
渉 松井
渉 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP2017193372A priority Critical patent/JP6942910B2/en
Publication of JP2019065617A publication Critical patent/JP2019065617A/en
Application granted granted Critical
Publication of JP6942910B2 publication Critical patent/JP6942910B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

本発明は、岩盤性状判定装置に関する。 The present invention relates to a rock property determination device.

トンネル掘削をする掘削機には、いくつか種類があるが、断面を任意の形状に掘削するには、自由断面掘削機が用いられる。自由断面掘削機は、たとえば、走行体に対して左右方向への旋回と上下方向への俯仰可能に取付けたブームの先端にカッタヘッドを備えており、ブームでカッタヘッドを切羽における切削したい位置へ移動させて掘削する。 There are several types of excavators for tunnel excavation, but a free-section excavator is used to excavate a cross section in any shape. The free-section excavator is equipped with a cutter head at the tip of the boom, which is attached so that it can turn left and right with respect to the traveling body and can be raised and lowered in the vertical direction. Move and excavate.

トンネル掘削工事では、むき出しの切羽の任意の箇所を切削するので、予期せぬ地山状況の変化により、突発的に湧水が発生して、切羽の崩落や流出が起きる可能性がある。また、硬い地山を掘削する場合、自由断面掘削機への負荷が高いため、掘削機が故障して停止してしまう可能性がある。 In tunnel excavation work, any part of the exposed face is cut, so unexpected changes in the ground conditions may cause sudden spring water to collapse or run out of the face. Further, when excavating a hard ground, the load on the free-section excavator is high, so that the excavator may break down and stop.

したがって、自由断面掘削機を用いる場合、安全かつ効率的にトンネル掘削を行うには、切羽における岩盤の強度の把握が重要である。従来は、削孔速度解析、先進ボーリング、坑内での弾性波探査等により事前に前方の岩盤の強度を予測していたが、これらの事前調査は、非常に高価である。 Therefore, when using a free-section excavator, it is important to understand the strength of the bedrock at the face in order to safely and efficiently excavate the tunnel. Conventionally, the strength of the rock in front has been predicted in advance by drilling velocity analysis, advanced boring, elastic wave exploration in the mine, etc., but these preliminary surveys are very expensive.

そこで、安価に岩盤の硬度を計測する計測システムの提案があり、この計測システムでは、カッタヘッドで切羽を所定深さだけ垂直に切削し、その切削に際してカッタヘッドを駆動するモータが消費した電力量で岩盤の硬度を計測する(たとえば、特許文献1参照)。 Therefore, there is a proposal of a measurement system that measures the hardness of rock mass at low cost. In this measurement system, the face is cut vertically by a predetermined depth with the cutter head, and the amount of power consumed by the motor that drives the cutter head during the cutting. Measure the hardness of the bedrock with (see, for example, Patent Document 1).

特開平11−44622号公報Japanese Unexamined Patent Publication No. 11-44622

前述の計測システムでは、カッタヘッドが岩盤を掘削する際の仕事量で岩盤の硬度を計測するため、切羽の掘削中に適時に岩盤の性状を判定できない。また、モータの電力量を検知するために、電流センサと電圧センサの複数のセンサが必要であり、高価であるという問題がある。 In the above-mentioned measurement system, since the hardness of the rock is measured by the amount of work performed by the cutter head when excavating the rock, it is not possible to determine the properties of the rock in a timely manner during the excavation of the face. Further, in order to detect the electric energy of the motor, a plurality of sensors such as a current sensor and a voltage sensor are required, which is expensive.

そこで、本発明は、現在の切羽における岩盤の性状を確認でき、且つ、安価な岩盤性状判定装置の提供である。 Therefore, the present invention provides an inexpensive rock property determination device capable of confirming the properties of rock in the current face.

本発明の岩盤性状判定装置は、自由断面掘削機のブームの先端に設けられるカッタヘッドを駆動するモータに流れる電流を検知する電流センサと、モータの電流の波形の振幅である波高値と、電流の絶対値の平均値或いは電流の実効値と、に基づいてカッタヘッドが掘削する切羽における岩盤の性状を判定する判定部とを備えている。このように構成される岩盤性状判定装置では、モータに流れる電流から切羽における岩盤の性状を判定できるから、現在掘削中の岩盤の性状を把握できる。 The bedrock property determination device of the present invention includes a current sensor that detects the current flowing through the motor that drives the cutter head provided at the tip of the boom of the free-section excavator, the peak value that is the amplitude of the current waveform of the motor, and the current. It is provided with a determination unit for determining the properties of the bedrock in the face excavated by the cutter head based on the average value of the absolute values or the effective value of the current. With the rock property determination device configured in this way, the properties of the rock at the face can be determined from the current flowing through the motor, so that the properties of the rock currently being excavated can be grasped.

具体的には、判定部は、モータの電流の波形における波高値が基準波高値より高く、且つ、電流の絶対値の平均値が基準平均値より低いか或いは電流の実効値が基準実効値より低い場合、岩盤が硬岩で組成されていると判定し、モータの電流の波形における波高値が基準波高値より低く、且つ、電流の絶対値の平均値が基準平均値より高いか或いは電流の実効値が基準実効値より低い場合、岩盤が軟岩で組成されていると判定すればよい。 Specifically, in the determination unit, the peak value in the current waveform of the motor is higher than the reference peak value, and the average value of the absolute values of the current is lower than the reference average value, or the effective value of the current is higher than the reference effective value. If it is low, it is determined that the bedrock is composed of hard rock, the peak value in the current waveform of the motor is lower than the reference peak value, and the average value of the absolute values of the current is higher than the reference average value or the current. If the effective value is lower than the standard effective value, it may be determined that the bedrock is composed of soft rock.

さらに、本発明の他の岩盤性状判定装置は、自由断面掘削機のブームの先端に設けられるカッタヘッドを駆動するモータに流れる電流を検知する電流センサと、電流のモータのトルク変動に起因する振動成分の周波数と、電流の絶対値の平均値或いは電流の実効値と、に基づいてカッタヘッドが掘削する切羽における岩盤の性状を判定する判定部とを備えている。このように構成される岩盤性状判定装置では、岩盤の硬度の他、岩盤が含んでいる亀裂の大小も判定できる。 Further, the other bedrock property determination device of the present invention includes a current sensor that detects the current flowing through the motor that drives the cutter head provided at the tip of the boom of the free-section excavator, and vibration caused by the torque fluctuation of the current motor. It is provided with a determination unit for determining the properties of the bedrock in the face excavated by the cutter head based on the frequency of the component and the average value of the absolute values of the current or the effective value of the current. With the rock property determination device configured in this way, not only the hardness of the rock but also the size of the cracks contained in the rock can be determined.

具体的には、判定部は、モータのトルク変動に起因する電流波形の振動成分の周波数が基準周波数より高く、且つ、電流の絶対値の平均値が基準平均値より低いか或いは電流の実効値が基準実効値より低い場合、岩盤が大きな亀裂を有する硬岩であると判定し、前記周波数が基準周波数より高く、且つ、前記平均値が基準平均値より高いか或いは前記実効値が基準実効値より高い場合、岩盤が小さな亀裂を有する硬岩であると判定し、前記周波数が基準周波数より低く、且つ、前記平均値が基準平均値より高いか或いは前記実効値が基準実効値より高い場合、岩盤が軟岩であると判定すればよい。 Specifically, the determination unit determines that the frequency of the vibration component of the current waveform caused by the torque fluctuation of the motor is higher than the reference frequency, and the average value of the absolute values of the current is lower than the reference average value, or the effective value of the current. If is lower than the reference effective value, it is determined that the bedrock is a hard rock having a large crack, and the frequency is higher than the reference frequency and the average value is higher than the reference average value, or the effective value is the reference effective value. If it is higher, it is determined that the bedrock is a hard rock with small cracks, and if the frequency is lower than the reference frequency and the average value is higher than the reference average value or the effective value is higher than the reference effective value. It may be determined that the bedrock is soft rock.

本発明の岩盤性状判定装置によれば、安価に現在の切羽における岩盤の性状を確認できる。 According to the rock property determination device of the present invention, the properties of the rock in the current face can be confirmed at low cost.

一実施の形態における岩盤性状判定装置を搭載した自由断面掘削機の側面図である。It is a side view of the free-section excavator equipped with the rock property determination device in one embodiment. (A)は、硬い岩盤を掘削した場合の電流波形を示した図である。(B)は、軟らかい岩盤を掘削した場合の電流波形を示した図である。(A) is a figure which showed the current waveform at the time of excavating a hard rock. FIG. (B) is a diagram showing a current waveform when excavating soft rock. 一実施の形態の岩盤性状判定装置における岩盤の硬度の判定手順の第一例を説明する図である。It is a figure explaining the first example of the determination procedure of the hardness of rocks in the rock property determination apparatus of one Embodiment. 一実施の形態の岩盤性状判定装置における岩盤の硬度の判定手順の第二例を説明する図である。It is a figure explaining the 2nd example of the procedure of determining the hardness of rock in the rock property determination apparatus of one Embodiment. 大きな亀裂が有る岩盤と小さな亀裂が有る岩盤を掘削した場合の電流波形を示した図である。It is the figure which showed the current waveform at the time of excavating the rock mass with a large crack and the rock mass with a small crack. 一実施の形態の岩盤性状判定装置における岩盤の硬度の判定手順の第三例を説明する図である。It is a figure explaining the 3rd example of the process of determining the hardness of a rock in the rock property determination apparatus of one Embodiment. 一実施の形態の岩盤性状判定装置における岩盤の硬度の判定手順の第四例を説明する図である。It is a figure explaining the 4th example of the determination procedure of the hardness of rocks in the rock property determination apparatus of one Embodiment.

以下、図に示した実施の形態に基づき、本発明を説明する。一実施の形態における岩盤性状判定装置1は、図1に示すように、切羽を掘削する自由断面掘削機EのブームBの先端に設けられるカッタヘッドCを駆動するモータMに流れる電流を検知する電流センサ2と、電流センサ2で検知した電流に基づいてカッタヘッドCが掘削する切羽における岩盤の性状を判定する判定部3とを備えて構成されている。 Hereinafter, the present invention will be described based on the embodiments shown in the figure. As shown in FIG. 1, the rock property determination device 1 in one embodiment detects the current flowing through the motor M that drives the cutter head C provided at the tip of the boom B of the free-section excavator E that excavates the face. It is configured to include a current sensor 2 and a determination unit 3 for determining the properties of the bedrock in the face excavated by the cutter head C based on the current detected by the current sensor 2.

以下、岩盤性状判定装置1の各部について詳細に説明する。まず、岩盤性状判定装置1が適用される自由断面掘削機Eは、クローラを備えた走行体Wと、走行体Wに対して左右方向への旋回と上下方向への俯仰とを可能に取付けられて伸縮可能なブームBと、ブームBの先端に回転可能に装着されるカッタヘッドCと、カッタヘッドCを回転駆動するモータMとを備えて構成されている。 Hereinafter, each part of the rock property determination device 1 will be described in detail. First, the free-section excavator E to which the rock property determination device 1 is applied is attached to a traveling body W equipped with a crawler and capable of turning left and right and raising and lowering in the vertical direction with respect to the traveling body W. It is configured to include a boom B that can be expanded and contracted, a cutter head C that is rotatably attached to the tip of the boom B, and a motor M that rotationally drives the cutter head C.

このように構成された自由断面掘削機Eは、カッタヘッドCをモータMで回転駆動しつつ、ブームBを駆動してカッタヘッドCを切羽の掘削したい位置へ配置するととともにカッタヘッドCを略一定の押圧力で切羽に押し付けて切羽における岩盤を掘削する。なお、モータMは、図示しない電源から一定電圧の電力供給を受けてカッタヘッドCを回転駆動するようになっている。 In the free-section excavator E configured in this way, while the cutter head C is rotationally driven by the motor M, the boom B is driven to arrange the cutter head C at the position where the face is to be excavated, and the cutter head C is substantially constant. The rock mass in the face is excavated by pressing it against the face with the pressing force of. The motor M is adapted to rotate and drive the cutter head C by receiving a constant voltage of electric power from a power source (not shown).

つづいて、岩盤性状判定装置1について説明する。電流センサ2は、所定のサンプリング周期でモータMに流れる電流を順次検知して、検知した電流を判定部3へ出力する。 Next, the rock property determination device 1 will be described. The current sensor 2 sequentially detects the current flowing through the motor M at a predetermined sampling cycle, and outputs the detected current to the determination unit 3.

判定部3は、電流センサ2が検知した電流の入力を受けてカッタヘッドCが切削中の切羽における岩盤の性状を判定する。判定部3は、有線通信にて電流センサ2からの電流の入力を受けてもよいし、無線通信によってもよい。また、判定部3は、自由断面掘削機Eに設置されていてもよいが、トンネル工事を管理する管理事務所に設置されてもよい。 The determination unit 3 receives the input of the current detected by the current sensor 2 and determines the properties of the bedrock in the face being cut by the cutter head C. The determination unit 3 may receive an input of a current from the current sensor 2 by wired communication, or may be wireless communication. Further, the determination unit 3 may be installed in the free-section excavator E, but may also be installed in the management office that manages the tunnel construction.

ここで、カッタヘッドCは、自由断面掘削機Eが掘削中は、ブームB側から図示しない油圧シリンダによって附勢されており、切羽に対して略一定の押付力にて押付られて切羽における岩盤を掘削する。カッタヘッドCは、掘削中に岩盤側から常に抵抗を受けて回転駆動されており、岩盤側からのカッタヘッドCに作用する抵抗が変化するとカッタヘッドCを駆動するモータMの出力トルクも変動する。モータMは、前述の通り、切羽を掘削する際に、図外の電源から一定電圧の電力供給を受けてカッタヘッドCを回転駆動しているので、トルクが変動するとモータMの巻線に流れる電流も変動する。 Here, the cutter head C is urged by a hydraulic cylinder (not shown) from the boom B side during excavation by the free-section excavator E, and is pressed against the face with a substantially constant pressing force against the rock in the face. To excavate. The cutter head C is constantly driven to rotate by receiving resistance from the bedrock side during excavation, and when the resistance acting on the cutter head C from the bedrock side changes, the output torque of the motor M that drives the cutter head C also fluctuates. .. As described above, when the face is excavated, the motor M receives a constant voltage of electric power from a power source (not shown) to rotate and drive the cutter head C. Therefore, when the torque fluctuates, the motor M flows into the winding of the motor M. The current also fluctuates.

カッタヘッドCで硬い岩盤を掘削する場合、カッタヘッドCが岩盤に食い込みにくいので、カッタヘッドCと岩盤との間で滑りが生じやすい。よって、掘削中にカッタヘッドCが岩盤から受ける抵抗は、平均的に低くなる傾向となるので、図2(A)に示すように、モータMの平均トルクも低くなり、モータMに流れる電流の絶対値の平均値も低くなる。また、岩盤が硬い場合、カッタヘッドCで岩盤を掘削すると岩盤から大きな塊の岩が剥がれやすい。このように大きな塊の岩が岩盤から剥がれる場合、岩が岩盤から剥がれる前にはカッタヘッドCに大きな抵抗が作用し、岩が岩盤から剥がれた後ではカッタヘッドCに作用する抵抗は著しく小さくなる。よって、岩が岩盤から剥がれる前後においては、モータMのトルクが大きく変動するから、図2(A)に示すように、モータMに流れる電流も大きく変動する。したがって、カッタヘッドCが掘削中の岩盤が硬い場合、モータMの電流の波形の波高値、つまり、電流波形の振幅は大きくなる傾向を示す。 When excavating hard rock with the cutter head C, the cutter head C does not easily bite into the rock, so that slippage easily occurs between the cutter head C and the rock. Therefore, the resistance that the cutter head C receives from the bedrock during excavation tends to be low on average. Therefore, as shown in FIG. 2 (A), the average torque of the motor M is also low, and the current flowing through the motor M tends to be low. The average value of absolute values is also low. Further, when the bedrock is hard, excavating the bedrock with the cutter head C tends to cause a large block of rock to peel off from the bedrock. When such a large block of rock is peeled off from the bedrock, a large resistance acts on the cutter head C before the rock is peeled off from the bedrock, and the resistance acting on the cutter head C becomes significantly smaller after the rock is peeled off from the bedrock. .. Therefore, before and after the rock is peeled off from the bedrock, the torque of the motor M fluctuates greatly, and as shown in FIG. 2A, the current flowing through the motor M also fluctuates greatly. Therefore, when the rock mass being excavated by the cutter head C is hard, the peak value of the current waveform of the motor M, that is, the amplitude of the current waveform tends to increase.

他方、カッタヘッドCで軟らかい岩盤を掘削する場合、カッタヘッドCが岩盤に食い込みやすいので、カッタヘッドCが岩盤から受ける抵抗は平均的に高くなる傾向となる。よって、図2(B)に示すように、モータMの平均トルクが高くなり、モータMに流れる電流の絶対値の平均値も高くなる。また、岩盤が軟らかい場合、カッタヘッドCで岩盤を掘削すると、岩盤が削られやすいために岩盤から粒子の細かい石が削り取られる。このようにカッタヘッドCの掘削により細かい石が岩盤から削り取られる場合、カッタヘッドCが受ける抵抗の変動は、硬い岩盤を掘削する場合に比較して小さくなる。よって、図2(B)に示すように、カッタヘッドCが掘削中の岩盤が軟らかい場合、モータMの電流の波形の波高値は小さくなる傾向を示す。 On the other hand, when excavating soft rock with the cutter head C, the cutter head C tends to bite into the rock easily, so that the resistance received by the cutter head C from the rock tends to be high on average. Therefore, as shown in FIG. 2B, the average torque of the motor M becomes high, and the average value of the absolute values of the currents flowing through the motor M also becomes high. When the rock is soft, when the rock is excavated with the cutter head C, the rock is easily scraped, so that fine-grained stones are scraped from the rock. When fine stones are scraped from the bedrock by excavating the cutter head C in this way, the fluctuation of the resistance received by the cutter head C becomes smaller than that when excavating the hard rock. Therefore, as shown in FIG. 2B, when the rock mass being excavated by the cutter head C is soft, the peak value of the current waveform of the motor M tends to be small.

以上より、判定部3は、モータMに流れる電流の絶対値の平均値と、電流の波形の波高値に基づいて、岩盤の性状を判定する。具体的には、判定部3は、図3に示すように、モータMの電流の波形の振幅である波高値に対して基準波高値を設定するとともに、電流の絶対値の平均値に対して基準平均値を設定し、波高値と基準波高値の比較結果と電流の絶対値の平均値と基準平均値の比較結果に基づいて岩盤の性状を判定する。より詳細には、判定部3は、モータMの電流の波形における波高値が基準波高値より高く、且つ、前記電流の絶対値の平均値が基準平均値より低い場合、岩盤が硬岩で組成されていると判定し、前記電流の波形における波高値が基準波高値より低く、且つ、前記電流の絶対値の平均値が基準平均値より高い場合、岩盤が軟岩で組成されていると判定する。なお、電流の波形の波高値の高低を判定するための基準となる基準波高値と、電流の絶対値の平均値の高低を判定するための基準となる基準平均値は、たとえば、実機で岩盤を掘削して得られるデータと岩盤の硬度調査の結果とを参酌して決めればよい。なお、波高値については、電流波形の振幅の平均値或いは電流波形における振幅の大きなものを決められた個数を抽出して抽出した振幅の平均値を波高値としてもよいし、電流波形における最大振幅を波高値としてもよい。 From the above, the determination unit 3 determines the properties of the bedrock based on the average value of the absolute values of the current flowing through the motor M and the peak value of the waveform of the current. Specifically, as shown in FIG. 3, the determination unit 3 sets a reference peak value for the peak value which is the amplitude of the waveform of the current of the motor M, and sets the reference peak value with respect to the average value of the absolute values of the current. A reference average value is set, and the properties of the bedrock are determined based on the comparison result of the crest value and the reference crest value and the comparison result of the average value of the absolute values of the current and the reference average value. More specifically, in the determination unit 3, when the crest value in the waveform of the current of the motor M is higher than the reference crest value and the average value of the absolute values of the current is lower than the reference average value, the bedrock is composed of hard rock. If the crest value in the waveform of the current is lower than the reference crest value and the average value of the absolute values of the current is higher than the reference average value, it is determined that the bedrock is composed of soft rock. .. The reference peak value, which is the reference for determining the height of the peak value of the current waveform, and the reference average value, which is the reference for determining the average value of the absolute values of the current, are, for example, rock mass in an actual machine. It should be decided by taking into consideration the data obtained by excavating the rock and the result of the rock hardness survey. As for the crest value, the average value of the amplitudes of the current waveform or the average value of the amplitudes extracted by extracting a predetermined number of large amplitudes in the current waveform may be used as the crest value, or the maximum amplitude in the current waveform. May be the peak value.

本例では、岩盤の性状を硬岩と軟岩のいずれかであると判定しているが、電流の絶対値の平均値が低く、且つ、電流の波形の波高値が高い程、岩盤の硬度が高く、電流の絶対値の平均値が高く、且つ、電流の波形の波高値が低い程、岩盤の硬度が低くなる。よって、判定部3は、岩盤の性状の判定において、岩盤の硬度を電流の絶対値の平均値と電流の波形の波高値とに基づいて数値で出力するようにしてもよい。 In this example, the properties of the bedrock are determined to be either hard rock or soft rock, but the lower the average value of the absolute values of the current and the higher the peak value of the current waveform, the harder the bedrock. The higher the average value of the absolute values of the current and the lower the peak value of the waveform of the current, the lower the hardness of the bedrock. Therefore, the determination unit 3 may output the hardness of the bedrock as a numerical value based on the average value of the absolute values of the currents and the peak value of the waveform of the currents in the determination of the properties of the bedrock.

なお、図示はしないが、カッタヘッドCで硬い岩盤を掘削する場合、モータMに流れる電流の絶対値の平均値と同様に、電流の実効値も低くなり、カッタヘッドCで軟らかい岩盤を掘削する場合、モータMに流れる電流の絶対値の平均値と同様に、電流の実効値も高くなる。よって、判定部3は、岩盤の硬軟の判定において、電流の波形の波高値と共に使用する判定材料として、モータMに流れる電流の絶対値の平均値の代わりに当該電流の実効値を用いてもよい。 Although not shown, when excavating hard rock with the cutter head C, the effective value of the current becomes low as well as the average value of the absolute values of the current flowing through the motor M, and the soft rock is excavated with the cutter head C. In this case, the effective value of the current becomes high as well as the average value of the absolute values of the current flowing through the motor M. Therefore, the determination unit 3 may use the effective value of the current instead of the average value of the absolute values of the current flowing through the motor M as the determination material to be used together with the peak value of the current waveform in the determination of the hardness of the bedrock. good.

この場合、判定部3は、モータMに流れる電流の実効値と、電流の波形の波高値に基づいて、岩盤の性状を判定すればよい。具体的には、判定部3は、図4に示すように、モータMの電流の波形の振幅である波高値に対して基準波高値を設定するとともに、電流の実効値に対して基準実効値を設定し、波高値と基準波高値の比較結果と電流の実効値と基準実効値の比較結果に基づいて岩盤の性状を判定する。より詳細には、判定部3は、モータMの電流の波形における波高値が基準波高値より高く、且つ、前記電流の実効値が基準実効値より低い場合、岩盤が硬岩で組成されていると判定し、前記電流の波形における波高値が基準波高値より低く、且つ、前記電流の実効値が基準実効値より高い場合、岩盤が軟岩で組成されていると判定する。なお、電流の実効値の高低を判定するための基準となる基準実効値は、たとえば、実機で岩盤を掘削して得られるデータと岩盤の硬度調査の結果とを参酌して決めればよい。 In this case, the determination unit 3 may determine the properties of the bedrock based on the effective value of the current flowing through the motor M and the peak value of the waveform of the current. Specifically, as shown in FIG. 4, the determination unit 3 sets the reference peak value with respect to the peak value which is the amplitude of the waveform of the current of the motor M, and sets the reference effective value with respect to the effective value of the current. Is set, and the properties of the bedrock are judged based on the comparison result of the crest value and the reference crest value and the comparison result of the effective value of the current and the reference effective value. More specifically, in the determination unit 3, when the crest value in the current waveform of the motor M is higher than the reference crest value and the effective value of the current is lower than the reference effective value, the bedrock is composed of hard rock. When the crest value in the waveform of the current is lower than the reference crest value and the effective value of the current is higher than the reference effective value, it is determined that the bedrock is composed of soft rock. The reference effective value, which is a reference for determining the level of the effective value of the electric current, may be determined by taking into consideration, for example, the data obtained by excavating the rock with an actual machine and the result of the hardness survey of the rock.

また、岩盤の性状を硬岩と軟岩のいずれかであると判定しているが、電流の実効値が低く、且つ、電流の波形の波高値が高い程、岩盤の硬度が高く、電流の実効値が高く、且つ、電流の波形の波高値が低い程、岩盤の硬度が低くなる。よって、判定部3は、岩盤の性状の判定において、岩盤の硬度を電流の実効値と電流の波形の波高値とに基づいて数値で出力するようにしてもよい。 In addition, the properties of the bedrock are judged to be either hard rock or soft rock, but the lower the effective value of the current and the higher the peak value of the waveform of the current, the higher the hardness of the bedrock and the more effective the current. The higher the value and the lower the peak value of the current waveform, the lower the hardness of the bedrock. Therefore, the determination unit 3 may output the hardness of the bedrock as a numerical value based on the effective value of the current and the peak value of the waveform of the current in determining the properties of the bedrock.

また、判定部3は、モータMに流れる電流の絶対値の平均値と、トルク変動に起因してモータMの電流の波形に現れる振動成分の周波数とに基づいて岩盤の性状を判定してもよい。カッタヘッドCで硬い岩盤を掘削する場合、カッタヘッドCで岩盤を掘削すると岩盤から順次岩が剥がれるので、カッタヘッドCが岩盤から受ける抵抗が大きく変動し、モータMのトルク変動の周期も短くなる。他方、カッタヘッドCで軟らかい岩盤を掘削する場合にはトルク変動が少ないために、モータMのトルク変動の周期が長くなる。図2に示すように、トルク変動に起因してモータMの電流の波形に現れる振動成分の周波数はモータMの電流波形の包絡線に一致する。そこで、前記トルク変動に起因してモータMの電流の波形に現れる振動成分の周波数に着目すると、図2に示すように、硬い岩盤を掘削した場合の電流の波形(図2(A)中実線)の包絡線(図2(A)中破線)の周波数の方が軟らかい岩盤を掘削した場合の電流の波形(図2(B)中実線)の包絡線(図2(B)中破線)の周波数より高くなる。したがって、判定部3では、電流センサ2から入力されるモータMの電流の波形に現れるトルク変動による振動成分の周波数を調べて、この周波数が高い場合、岩盤が硬岩で組成されていると判定する。前記包絡線を得るには、たとえば、ヒルベルト変換によってもよいし、包絡線検波器を用いてもよい。なお、トルク変動に起因してモータMの電流の波形に現れる振動成分の周波数を得るには、包絡線を求める他、以下のようにしてもよい。検知したモータMの電流からモータMを駆動するために要求される電流の駆動周波数よりも低周波のトルク変動に起因する振動成分の周波数成分を抽出するローパスフィルタ或いはバンドパスフィルタで前記電流を濾波して前記振動成分を抽出し、抽出した振動成分から周波数を求めてもよい。 Further, the determination unit 3 may determine the properties of the bedrock based on the average value of the absolute values of the current flowing through the motor M and the frequency of the vibration component appearing in the waveform of the current of the motor M due to the torque fluctuation. good. When excavating hard rock with the cutter head C, when the rock is excavated with the cutter head C, the rock is sequentially peeled off from the rock, so that the resistance received by the cutter head C from the rock fluctuates greatly and the cycle of torque fluctuation of the motor M also shortens. .. On the other hand, when excavating soft rock with the cutter head C, the torque fluctuation is small, so that the torque fluctuation cycle of the motor M becomes long. As shown in FIG. 2, the frequency of the vibration component appearing in the current waveform of the motor M due to the torque fluctuation coincides with the envelope of the current waveform of the motor M. Therefore, focusing on the frequency of the vibration component that appears in the waveform of the current of the motor M due to the torque fluctuation, as shown in FIG. 2, the waveform of the current when excavating a hard rock (solid line in FIG. 2 (A)). ) (Dashed line in the middle of FIG. 2 (A)) of the waveform of the current (solid line in FIG. 2 (B)) when excavating a rock whose frequency is softer (broken line in the middle of FIG. 2 (B)) It will be higher than the frequency. Therefore, the determination unit 3 examines the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M input from the current sensor 2, and if this frequency is high, it is determined that the bedrock is composed of hard rock. do. To obtain the envelope, for example, a Hilbert transform may be used, or an envelope detector may be used. In addition to obtaining the envelope, the following may be used to obtain the frequency of the vibration component that appears in the waveform of the current of the motor M due to the torque fluctuation. The current is filtered by a low-pass filter or a band-pass filter that extracts the frequency component of the vibration component caused by the torque fluctuation at a frequency lower than the drive frequency of the current required to drive the motor M from the detected current of the motor M. Then, the vibration component may be extracted, and the frequency may be obtained from the extracted vibration component.

さらに、発明者らは、岩盤が硬い場合であって、岩盤に亀裂が有る場合、亀裂の大小によって、カッタヘッドCが岩盤から受ける抵抗に差があり、岩盤の亀裂が大きい程、カッタヘッドCが岩盤から受ける抵抗の平均値が低くなるとの知見を得た。したがって、図5に示すように、大きな亀裂が有る硬い岩盤を掘削する場合の電流波形(図5中実線)と、小さな亀裂が有る硬い岩盤を掘削する場合の電流波形(図5中破線)とを比較すると、亀裂が大きくなる程、電流の絶対値の平均値が低くなる。よって、判定部3は、モータMの電流の波形に現れるトルク変動による振動成分の周波数が高く、且つ、電流の絶対値の平均値が低い場合、岩盤が大きな亀裂を含む硬岩で組成されていると判定する。また、判定部3は、モータMの電流の波形に現れるトルク変動による振動成分の周波数が高く、且つ、電流の絶対値の平均値が高い場合、岩盤が小さな亀裂を含む硬岩で組成されていると判定する。 Furthermore, the inventors have found that when the bedrock is hard and there are cracks in the bedrock, the resistance that the cutter head C receives from the bedrock differs depending on the size of the cracks, and the larger the cracks in the bedrock, the more the cutter head C. It was found that the average value of the resistance received from the bedrock is low. Therefore, as shown in FIG. 5, the current waveform when excavating hard rock with large cracks (solid line in FIG. 5) and the current waveform when excavating hard rock with small cracks (broken line in FIG. 5). The larger the crack, the lower the average value of the absolute values of the current. Therefore, when the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M is high and the average value of the absolute values of the currents is low, the determination unit 3 is composed of hard rock containing large cracks in the bedrock. Judge that there is. Further, when the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M is high and the average value of the absolute values of the currents is high, the determination unit 3 is composed of hard rock containing small cracks in the bedrock. Judge that there is.

これに対して、カッタヘッドCで軟らかい岩盤を掘削する場合、カッタヘッドCで岩盤を掘削すると岩盤が削られやすいのでカッタヘッドCが岩盤から受ける抵抗の変動は少なく、モータMのトルク変動の周期も長くなる。つまり、前記トルク変動に起因してモータMの電流の波形に現れる振動成分の周波数は低くなる。したがって、電流センサ2から入力されるモータMの電流の波形に現れるトルク変動による振動成分の周波数が低い場合、岩盤が軟岩で組成されている可能性がある。また、カッタヘッドCで軟らかい岩盤を掘削する場合、カッタヘッドCが岩盤に食い込みやすいので、モータMの平均トルクが高くなり、モータMに流れる電流の絶対値の平均値が高くなる。よって、判定部3は、モータMの電流の波形に現れるトルク変動による振動成分の周波数が低く、且つ、電流の絶対値の平均値が高い場合に、岩盤が軟岩で組成されていると判定する。 On the other hand, when excavating soft rock with the cutter head C, the rock is easily scraped when excavating the rock with the cutter head C, so the fluctuation of the resistance received by the cutter head C from the rock is small, and the cycle of the torque fluctuation of the motor M. Will also be longer. That is, the frequency of the vibration component appearing in the waveform of the current of the motor M due to the torque fluctuation becomes low. Therefore, if the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M input from the current sensor 2 is low, the bedrock may be composed of soft rock. Further, when excavating soft rock with the cutter head C, the cutter head C easily bites into the rock, so that the average torque of the motor M becomes high and the average value of the absolute values of the currents flowing through the motor M becomes high. Therefore, the determination unit 3 determines that the bedrock is composed of soft rock when the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M is low and the average value of the absolute values of the currents is high. ..

以上より、判定部3は、モータMの電流の波形に現れるトルク変動による振動成分の周波数とモータMに流れる電流の絶対値の平均値とに基づいて、岩盤の性状を判定する。具体的には、判定部3は、図6に示すように、モータMの電流の波形に現れるトルク変動による振動成分の周波数に対して基準周波数を設定するとともに、電流の絶対値の平均値に対して基準平均値を設定し、前記周波数と基準周波数の比較結果と電流の絶対値の平均値と基準平均値の比較結果に基づいて岩盤の性状を判定する。より詳細には、判定部3は、モータMの電流の波形に現れるトルク変動による振動成分の周波数が基準周波数より高く、且つ、電流の絶対値の平均値が基準平均値より低い場合、岩盤が大きな亀裂を含む硬岩で組成されていると判定する。また、判定部3は、モータMの電流の波形に現れるトルク変動による振動成分の周波数が基準周波数より高く、且つ、電流の絶対値の平均値が基準平均値より高い場合、岩盤が小さな亀裂を含む硬岩で組成されていると判定する。さらに、判定部3は、モータMの電流の波形に現れるトルク変動による振動成分の周波数基準周波数よりが低く、且つ、電流の絶対値の平均値が基準平均値より高い場合に、岩盤が軟岩で組成されていると判定する。なお、モータMの電流の波形に現れるトルク変動による振動成分の周波数の高低を判定するための基準となる基準周波数と、電流の絶対値の平均値の高低を判定するための基準となる基準平均値は、たとえば、実機で岩盤を掘削して得られるデータと岩盤の硬度調査の結果とを参酌して決めればよい。また、前記モータMの電流の波形に現れるトルク変動による振動成分の周波数とモータMに流れる電流の絶対値の平均値とに基づいて岩盤の性状を判定するための基準平均値は、モータMの電流の波形の波高値と電流の絶対値の平均値とに基づいて岩盤の性状を判定する際の基準平均値とは、異なる値に設定されてもよい。 From the above, the determination unit 3 determines the properties of the bedrock based on the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M and the average value of the absolute values of the current flowing through the motor M. Specifically, as shown in FIG. 6, the determination unit 3 sets a reference frequency with respect to the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M, and sets the average value of the absolute values of the currents. On the other hand, a reference average value is set, and the properties of the bedrock are determined based on the comparison result of the frequency and the reference frequency and the comparison result of the average value of the absolute values of the current and the reference average value. More specifically, in the determination unit 3, when the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M is higher than the reference frequency and the average value of the absolute values of the current is lower than the reference average value, the bedrock is formed. It is judged that it is composed of hard rock containing large cracks. Further, when the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M is higher than the reference frequency and the average value of the absolute values of the currents is higher than the reference average value, the determination unit 3 causes a small crack in the bedrock. It is determined that the composition is composed of containing hard rock. Further, in the determination unit 3, when the frequency reference frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M is lower and the average value of the absolute values of the currents is higher than the reference average value, the bedrock is soft rock. It is determined that it is composed. The reference frequency, which is a reference for determining the frequency of the vibration component due to the torque fluctuation appearing in the current waveform of the motor M, and the reference average, which is the reference for determining the average value of the absolute values of the current. The value may be determined, for example, by taking into consideration the data obtained by excavating the bedrock with an actual machine and the result of the bedrock hardness survey. Further, the reference average value for determining the properties of the bedrock based on the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M and the average value of the absolute values of the current flowing through the motor M is the reference average value of the motor M. The reference average value when determining the properties of the bedrock based on the average value of the peak value of the current waveform and the absolute value of the current may be set to a different value.

本例では、岩盤の性状を硬岩と軟岩のいずれかであるかとの判定と、硬岩である場合に亀裂が大きいか小さいかの判定をしている。モータMの電流の波形に現れるトルク変動による振動成分の周波数が高いほど岩盤の硬度が高く、岩盤が硬岩である場合に電流の絶対値の平均値が低い程亀裂が大きくなる。また、モータMの電流の波形に現れるトルク変動による振動成分の周波数が低く、且つ、電流の平均値が高いほど岩盤の硬度が低くなる。よって、判定部3は、岩盤の性状の判定において、岩盤の硬度と亀裂の大小を前記周波数と電流の平均値とに基づいて数値で出力するようにしてもよい。 In this example, it is determined whether the rock mass is either hard rock or soft rock, and whether the crack is large or small in the case of hard rock. The higher the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M, the higher the hardness of the bedrock, and when the bedrock is hard rock, the lower the average value of the absolute values of the current, the larger the crack. Further, the lower the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M and the higher the average value of the current, the lower the hardness of the bedrock. Therefore, the determination unit 3 may output the hardness of the rock and the size of the crack as numerical values based on the average value of the frequency and the current in the determination of the properties of the rock.

なお、図示はしないが、大きな亀裂が有る硬い岩盤を掘削する場合の電流波形と、小さな亀裂が有る硬い岩盤を掘削する場合の電流波形とを比較すると、亀裂が大きくなる程、電流の絶対値の平均値と同様に電流の実効値が低くなる。よって、判定部3は、モータMの電流の波形に現れるトルク変動による振動成分の周波数が高く、且つ、電流の実効値が低い場合、岩盤が大きな亀裂を含む硬岩で組成されていると判定してもよい。また、判定部3は、モータMの電流の波形に現れるトルク変動による振動成分の周波数が高く、且つ、電流の実効値が高い場合、岩盤が小さな亀裂を含む硬岩で組成されていると判定してもよい。つまり、判定部3は、岩盤の性状の判定において、モータMの電流の波形に現れるトルク変動による振動成分の周波数と共に使用する判定材料として、モータMに流れる電流の絶対値の平均値の代わりに当該電流の実効値を用いてもよい。 Although not shown, when comparing the current waveform when excavating hard rock with large cracks and the current waveform when excavating hard rock with small cracks, the larger the crack, the more the absolute value of the current. The effective value of the current becomes low as well as the average value of. Therefore, the determination unit 3 determines that the bedrock is composed of hard rock containing large cracks when the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M is high and the effective value of the current is low. You may. Further, the determination unit 3 determines that the bedrock is composed of hard rock containing small cracks when the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M is high and the effective value of the current is high. You may. That is, instead of the average value of the absolute values of the current flowing through the motor M, the determination unit 3 is used as a determination material to be used together with the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M in the determination of the properties of the bedrock. The effective value of the current may be used.

この場合、具体的には、判定部3は、モータMの電流の波形に現れるトルク変動による振動成分の周波数に対して基準周波数を設定するとともに、電流の実効値に対して基準実効値を設定し、前記周波数と基準周波数の比較結果と電流の実効値と基準実効値の比較結果に基づいて岩盤の性状を判定すればよい。より詳細には、判定部3は、図7に示すように、モータMの電流の波形に現れるトルク変動による振動成分の周波数が基準周波数より高く、且つ、電流の実効値が基準実効値より低い場合、岩盤が大きな亀裂を含む硬岩で組成されていると判定する。また、判定部3は、モータMの電流の波形に現れるトルク変動による振動成分の周波数が基準周波数より高く、且つ、電流の実効値が基準実効値より高い場合、岩盤が小さな亀裂を含む硬岩で組成されていると判定する。さらに、判定部3は、モータMの電流の波形に現れるトルク変動による振動成分の周波数基準周波数よりが低く、且つ、電流の実効値が基準実効値より高い場合に、岩盤が軟岩で組成されていると判定する。なお、電流の実効値の高低を判定するための基準となる基準実効値は、たとえば、実機で岩盤を掘削して得られるデータと岩盤の硬度調査の結果とを参酌して決めればよい。また、前記モータMの電流の波形に現れるトルク変動による振動成分の周波数とモータMに流れる電流の実効値とに基づいて岩盤の性状を判定するための基準実効値は、モータMの電流の波形の波高値と電流の実効値とに基づいて岩盤の性状を判定する際の基準実効値とは、異なる値に設定されてもよい。 In this case, specifically, the determination unit 3 sets the reference frequency for the frequency of the vibration component due to the torque fluctuation appearing in the current waveform of the motor M, and sets the reference effective value for the effective value of the current. Then, the properties of the bedrock may be determined based on the comparison result of the frequency and the reference frequency and the comparison result of the effective value of the current and the reference effective value. More specifically, as shown in FIG. 7, in the determination unit 3, the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M is higher than the reference frequency, and the effective value of the current is lower than the reference effective value. In this case, it is determined that the bedrock is composed of hard rock containing large cracks. Further, in the determination unit 3, when the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M is higher than the reference frequency and the effective value of the current is higher than the reference effective value, the bedrock contains a hard rock containing small cracks. It is determined that the composition is composed of. Further, in the determination unit 3, when the frequency reference frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M is lower and the effective value of the current is higher than the reference effective value, the bedrock is composed of soft rock. Judge that there is. The reference effective value, which is a reference for determining the level of the effective value of the electric current, may be determined by taking into consideration, for example, the data obtained by excavating the rock with an actual machine and the result of the hardness survey of the rock. Further, the reference effective value for determining the property of the bedrock based on the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M and the effective value of the current flowing through the motor M is the waveform of the current of the motor M. The reference effective value for determining the properties of the bedrock based on the peak value and the effective value of the current may be set to a different value.

本例では、岩盤の性状を硬岩と軟岩のいずれかであるかとの判定と、硬岩である場合に亀裂が大きいか小さいかの判定をしている。モータMの電流の波形に現れるトルク変動による振動成分の周波数が高いほど岩盤の硬度が高く、岩盤が硬岩である場合に電流の実効値が低い程亀裂が大きくなる。また、モータMの電流の波形に現れるトルク変動による振動成分の周波数が低く、且つ、電流の実効値が高いほど岩盤の硬度が低くなる。よって、判定部3は、岩盤の性状の判定において、岩盤の硬度と亀裂の大小を前記周波数と電流の実効値とに基づいて数値で出力するようにしてもよい。 In this example, it is determined whether the rock mass is either hard rock or soft rock, and whether the crack is large or small in the case of hard rock. The higher the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M, the higher the hardness of the bedrock, and when the bedrock is hard rock, the lower the effective value of the current, the larger the crack. Further, the lower the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M and the higher the effective value of the current, the lower the hardness of the bedrock. Therefore, the determination unit 3 may output the hardness of the rock and the size of the crack as numerical values based on the frequency and the effective value of the current in the determination of the properties of the rock.

以上、本発明の岩盤性状判定装置1は、自由断面掘削機EのブームBの先端に設けられるカッタヘッドCを駆動するモータMに流れる電流を検知する電流センサ2と、電流センサ2で検知した電流に基づいてカッタヘッドCが掘削する切羽における岩盤の性状を判定する判定部3とを備えている。このように構成される岩盤性状判定装置1では、モータMに流れる電流から切羽における岩盤の性状を判定できるから、掘削中に岩盤の性状が変化しても適時に岩盤の性状を把握でき、切羽崩落等の危険の有無をいち早く察知できる。また、モータMの電流の検知のみで岩盤の性状を判定できるから、複数のセンサを設置する必要がなく、簡単且つ安価に岩盤の性状を把握できる。もともと、モータMに電流センサが設けられている場合には、この電流センサを岩盤性状判定装置1における電流センサ2として利用してもよい。 As described above, the rock property determination device 1 of the present invention has been detected by the current sensor 2 and the current sensor 2 that detect the current flowing through the motor M that drives the cutter head C provided at the tip of the boom B of the free-section excavator E. It is provided with a determination unit 3 for determining the properties of the bedrock in the face to be excavated by the cutter head C based on the electric current. Since the rock property determination device 1 configured in this way can determine the properties of the rock in the face from the current flowing through the motor M, even if the properties of the rock change during excavation, the properties of the rock can be grasped in a timely manner, and the face can be grasped. You can quickly detect the presence or absence of danger such as collapse. Further, since the property of the rock can be determined only by detecting the current of the motor M, it is not necessary to install a plurality of sensors, and the property of the rock can be grasped easily and inexpensively. Originally, when the motor M is provided with a current sensor, this current sensor may be used as the current sensor 2 in the rock property determination device 1.

また、判定部3がモータMの電流の波形における波高値と電流の平均値とに基づいて岩盤の性状を判定する場合には、岩盤の硬度を判定できる。なお、具体的には、判定部3は、モータMの電流の波形における波高値が基準波高値より高く、且つ、電流の平均値が基準平均値より低い場合、岩盤が硬岩で組成されていると判定し、モータMの電流の波形における波高値が基準波高値より低く、且つ、電流の平均値が基準平均値より高い場合、岩盤が軟岩で組成されていると判定すればよい。 Further, when the determination unit 3 determines the properties of the bedrock based on the peak value and the average value of the currents in the waveform of the current of the motor M, the hardness of the bedrock can be determined. Specifically, in the determination unit 3, when the peak value in the waveform of the current of the motor M is higher than the reference peak value and the average value of the current is lower than the reference average value, the bedrock is composed of hard rock. If the crest value in the waveform of the current of the motor M is lower than the reference crest value and the average value of the current is higher than the reference average value, it may be determined that the bedrock is composed of soft rock.

さらに、判定部3は、モータMの電流の波形のトルク変動に起因する振動成分の周波数とモータMの電流の平均値とに基づいて岩盤の性状を判定してもよく、この場合には、岩盤の硬度の他、岩盤が含んでいる亀裂の大小も判定できる。なお、具体的には、判定部3は、モータMのトルク変動に起因する電流波形の振動成分の周波数が基準周波数より高く、且つ、電流の平均値が基準平均値より低いと岩盤が大きな亀裂を有する硬岩であると判定し、前記周波数が基準周波数より高く、且つ、前記平均値が基準平均値より高いと岩盤が小さな亀裂を有する硬岩であると判定し、前記周波数が基準周波数より低く、且つ、前記平均値が基準平均値より高いと岩盤が軟岩であると判定すればよい。 Further, the determination unit 3 may determine the properties of the bedrock based on the frequency of the vibration component caused by the torque fluctuation of the current waveform of the motor M and the average value of the current of the motor M. In this case, the determination unit 3 may determine the properties of the rock mass. In addition to the hardness of the bedrock, the size of the cracks contained in the bedrock can also be determined. Specifically, in the determination unit 3, when the frequency of the vibration component of the current waveform caused by the torque fluctuation of the motor M is higher than the reference frequency and the average value of the current is lower than the reference average value, the rock mass is cracked. If the frequency is higher than the reference frequency and the average value is higher than the reference average value, it is determined that the bedrock is a hard rock having small cracks, and the frequency is higher than the reference frequency. If it is low and the average value is higher than the reference average value, it may be determined that the bedrock is soft rock.

以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形、および変更が可能である。 Although the preferred embodiments of the present invention have been described in detail above, they can be modified, modified, and modified as long as they do not deviate from the claims.

1・・・岩盤性状判定装置、2・・・電流センサ、3・・・判定部、B・・・ブーム、C・・・カッタヘッド、E・・・自由断面掘削機、M・・・モータ 1 ... Rock property judgment device, 2 ... Current sensor, 3 ... Judgment unit, B ... Boom, C ... Cutter head, E ... Roadheader, M ... Motor

Claims (4)

自由断面掘削機のブームの先端に設けられるカッタヘッドを駆動するモータに流れる電流を検知する電流センサと、
前記電流センサで検知した前記電流の波形の振幅である波高値と、前記電流の絶対値の平均値或いは前記電流の実効値と、に基づいて前記カッタヘッドが掘削する切羽における岩盤の性状を判定する判定部とを備えた
ことを特徴とする岩盤性状判定装置。
A current sensor that detects the current flowing through the motor that drives the cutter head installed at the tip of the boom of the free-section excavator, and
The property of the bedrock in the face excavated by the cutter head is determined based on the peak value which is the amplitude of the waveform of the current detected by the current sensor and the average value of the absolute values of the current or the effective value of the current. A rock property determination device characterized by having a determination unit for determining the electric current.
自由断面掘削機のブームの先端に設けられるカッタヘッドを駆動するモータに流れる電流を検知する電流センサと、
前記電流センサで検知した前記電流の前記モータのトルク変動に起因する振動成分の周波数と、前記電流の絶対値の平均値或いは前記電流の実効値と、に基づいて前記カッタヘッドが掘削する切羽における岩盤の性状を判定する判定部とを備えた
ことを特徴とする岩盤性状判定装置。
A current sensor that detects the current flowing through the motor that drives the cutter head installed at the tip of the boom of the free-section excavator, and
In the face excavated by the cutter head based on the frequency of the vibration component of the current detected by the current sensor due to the torque fluctuation of the motor and the average value of the absolute values of the current or the effective value of the current. A rock mass property determination device characterized by having a determination unit for determining the properties of the bedrock.
前記判定部は、
前記電流の波高値が基準波高値より高く、前記電流の絶対値の平均値が基準平均値より低いか或いは前記電流の実効値が基準実効値より低い場合、前記岩盤が硬岩で組成されていると判定し、
前記電流の波高値が前記基準波高値より低く、前記電流の絶対値の平均値が前記基準平均値より高いか或いは前記電流の実効値が基準実効値より高い場合、前記岩盤が軟岩で組成されていると判定する
ことを特徴とする請求項1に記載の岩盤性状判定装置。
The determination unit
When the peak value of the current is higher than the reference peak value and the average value of the absolute values of the current is lower than the reference average value or the effective value of the current is lower than the reference effective value, the bedrock is composed of hard rock. Judged to be
When the peak value of the current is lower than the reference peak value and the average value of the absolute values of the current is higher than the reference average value or the effective value of the current is higher than the reference effective value, the bedrock is composed of soft rock. The rock property determination device according to claim 1, wherein the rock property determination device is characterized.
前記判定部は、
前記周波数が基準周波数より高く、且つ、前記平均値が前記基準平均値より低いか或いは前記実効値が前記基準実効値より低い場合、前記岩盤が大きな亀裂を有する硬岩であると判定し、
前記周波数が前記基準周波数より高く、且つ、前記平均値が前記基準平均値より高いか或いは前記実効値が前記基準実効値より高い場合、前記岩盤が小さな亀裂を有する硬岩であると判定し、
前記周波数が前記基準周波数より低く、且つ、前記平均値が前記基準平均値より高いか或いは前記実効値が前記基準実効値より高い場合、前記岩盤が軟岩であると判定する
ことを特徴とする請求項2に記載の岩盤性状判定装置。
The determination unit
When the frequency is higher than the reference frequency and the average value is lower than the reference average value or the effective value is lower than the reference effective value, it is determined that the bedrock is a hard rock having a large crack.
When the frequency is higher than the reference frequency and the average value is higher than the reference average value or the effective value is higher than the reference effective value, it is determined that the bedrock is a hard rock having small cracks.
When the frequency is lower than the reference frequency and the average value is higher than the reference average value or the effective value is higher than the reference effective value, it is determined that the bedrock is soft rock. Item 2. The rock property determination device according to item 2.
JP2017193372A 2017-10-03 2017-10-03 Rock property judgment device Active JP6942910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017193372A JP6942910B2 (en) 2017-10-03 2017-10-03 Rock property judgment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017193372A JP6942910B2 (en) 2017-10-03 2017-10-03 Rock property judgment device

Publications (2)

Publication Number Publication Date
JP2019065617A JP2019065617A (en) 2019-04-25
JP6942910B2 true JP6942910B2 (en) 2021-09-29

Family

ID=66339232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017193372A Active JP6942910B2 (en) 2017-10-03 2017-10-03 Rock property judgment device

Country Status (1)

Country Link
JP (1) JP6942910B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7128734B2 (en) * 2018-12-25 2022-08-31 Kyb株式会社 Excavated surface hardness analysis device and excavated surface hardness analysis method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2864204B2 (en) * 1993-08-26 1999-03-03 株式会社奥村組 Excavation control method of tunnel excavator
JPH09170398A (en) * 1995-12-20 1997-06-30 Taisei Corp Geological distribution survey device for excavated face and the surveying and control method for excavation work
JPH1144622A (en) * 1997-07-29 1999-02-16 Ohbayashi Corp System and method for measuring bedrock strength by using free cross section excavator
JP3447544B2 (en) * 1998-02-04 2003-09-16 株式会社奥村組 Face rock state determination method and face rock state determination apparatus
JP2001207784A (en) * 2000-01-24 2001-08-03 Mitsubishi Heavy Ind Ltd Underground obstruction removal method and tunnel boring machine
JP3848829B2 (en) * 2000-11-09 2006-11-22 三菱重工業株式会社 Tunnel excavator control device and drive motor abnormality detection device
JP2003003789A (en) * 2001-06-27 2003-01-08 Okumura Corp Evaluation method of property of tunnel excavated natural ground
JP4087109B2 (en) * 2001-12-27 2008-05-21 株式会社奥村組 Strength evaluation method for excavated objects
JP6566764B2 (en) * 2015-07-24 2019-08-28 大成建設株式会社 Tunnel excavation method

Also Published As

Publication number Publication date
JP2019065617A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
CN108331573B (en) Waste oil well treatment method for coal mining area
US20160326806A1 (en) A method for energy efficient and fast rotary drilling in inhomogeneous and/or hard rock formations
JP2007009645A (en) Method of hydraulic fracture test
JP2020515746A (en) A Method for Determining Pressure Release Perforation Interval Based on Target Bearing Pressure
JP5635020B2 (en) How to create teacher data
JP5819152B2 (en) Support layer arrival estimation method and support layer arrival estimation support device used in pile embedding method
CN108086977A (en) A kind of coal seam prevents water-resisting floor coal-mining method for water-bearing layer
CN108802838A (en) A kind of working face mining formation damage underground roof and floor drilling electrical method monitoring method
CN103277037A (en) Pipe pile leading-hole construction method under boulder cluster geological condition
JP6942910B2 (en) Rock property judgment device
CN108757043A (en) One kind is for the anti-method of harnessing the river of getting working face
Aydin Stability of saprolitic slopes: nature and role of field scale heterogeneities
CN112855123B (en) Method for determining depth of pressure relief drilling hole
NO20131661A1 (en) Detection of well vibrations using surface data from drilling rigs
JP6131160B2 (en) Rock exploration method, rock exploration system, and drilling data correction device for rock exploration
CN111577300A (en) Construction method for shield to penetrate through dense holes in boulder and boulder stratum
CA2976352C (en) Surface excitation ranging methods and systems employing a customized grounding arrangement
NO20161148A1 (en) Method for Detecting a Malfunction during Drilling Operations
CN102852510A (en) Auxiliary driller system and drill
CN114086949A (en) Geological exploration sampling method guided by hydraulic pressure
JP2006124936A (en) Method and apparatus for performing survey on bedrock and the like
JP3480183B2 (en) Reaming excavation management construction method
JP6016010B2 (en) Geological and formation change detection device and detection method
KR101892714B1 (en) Auger control system with reactor start and inverter control
JP2006124936A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210721

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210728

R151 Written notification of patent or utility model registration

Ref document number: 6942910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350