JP2019065617A - Rock property determination apparatus - Google Patents

Rock property determination apparatus Download PDF

Info

Publication number
JP2019065617A
JP2019065617A JP2017193372A JP2017193372A JP2019065617A JP 2019065617 A JP2019065617 A JP 2019065617A JP 2017193372 A JP2017193372 A JP 2017193372A JP 2017193372 A JP2017193372 A JP 2017193372A JP 2019065617 A JP2019065617 A JP 2019065617A
Authority
JP
Japan
Prior art keywords
rock
current
value
average value
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017193372A
Other languages
Japanese (ja)
Other versions
JP6942910B2 (en
Inventor
禎浩 伊藤
Teihiro Ito
禎浩 伊藤
河内 章
Akira Kawachi
章 河内
敏一 猪口
Toshiichi Inoguchi
敏一 猪口
横山 幸弘
Yukihiro Yokoyama
幸弘 横山
渉 松井
Wataru Matsui
渉 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kayaba System Machinery Co Ltd
Original Assignee
Kayaba System Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba System Machinery Co Ltd filed Critical Kayaba System Machinery Co Ltd
Priority to JP2017193372A priority Critical patent/JP6942910B2/en
Publication of JP2019065617A publication Critical patent/JP2019065617A/en
Application granted granted Critical
Publication of JP6942910B2 publication Critical patent/JP6942910B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

To provide an inexpensive rock property determination apparatus which can confirm the properties of the rock in the present cutting face.SOLUTION: A rock property determination apparatus 1 according to the present invention includes a current sensor 2 for detecting a current flowing through a motor M for driving a cutter head C provided at the tip of a boom B of a free section excavator E and a determination unit 3 for determining the property of the rock in the cutting face which cutter head C excavates on the basis of the current detected by the current sensor 2.SELECTED DRAWING: Figure 1

Description

本発明は、岩盤性状判定装置に関する。 The present invention relates to a rock quality determination apparatus.

トンネル掘削をする掘削機には、いくつか種類があるが、断面を任意の形状に掘削するには、自由断面掘削機が用いられる。自由断面掘削機は、たとえば、走行体に対して左右方向への旋回と上下方向への俯仰可能に取付けたブームの先端にカッタヘッドを備えており、ブームでカッタヘッドを切羽における切削したい位置へ移動させて掘削する。   Although there are several types of excavators that perform tunneling, free-section excavators are used to excise the cross-section into any shape. For example, the free cross section excavating machine has a cutter head at the tip of a boom mounted so as to be capable of turning in the left and right direction and raising and lowering in the up and down direction with respect to the traveling body. Move and dig.

トンネル掘削工事では、むき出しの切羽の任意の箇所を切削するので、予期せぬ地山状況の変化により、突発的に湧水が発生して、切羽の崩落や流出が起きる可能性がある。また、硬い地山を掘削する場合、自由断面掘削機への負荷が高いため、掘削機が故障して停止してしまう可能性がある。   In the case of the tunnel excavation work, since any part of the exposed face is cut, unexpected changes in the ground conditions may cause a sudden spring, which may cause the face to fall or run off. In addition, when digging a hard ground, the load on the free cross-section drilling machine is high, so the drilling machine may break down and stop.

したがって、自由断面掘削機を用いる場合、安全かつ効率的にトンネル掘削を行うには、切羽における岩盤の強度の把握が重要である。従来は、削孔速度解析、先進ボーリング、坑内での弾性波探査等により事前に前方の岩盤の強度を予測していたが、これらの事前調査は、非常に高価である。   Therefore, in the case of using a free cross section drilling machine, it is important to grasp the strength of the bedrock in the face in order to conduct tunnel excavation safely and efficiently. Conventionally, the strength of the forward rock was predicted in advance by drilling speed analysis, advanced boring, elastic wave exploration in a well, etc. However, these preliminary investigations are very expensive.

そこで、安価に岩盤の硬度を計測する計測システムの提案があり、この計測システムでは、カッタヘッドで切羽を所定深さだけ垂直に切削し、その切削に際してカッタヘッドを駆動するモータが消費した電力量で岩盤の硬度を計測する(たとえば、特許文献1参照)。   Therefore, there is a proposal of a measurement system that measures the hardness of the rock at low cost. In this measurement system, the cutter head cuts the face vertically by a predetermined depth, and the amount of power consumed by the motor driving the cutter head The hardness of the rock is measured at (see, for example, Patent Document 1).

特開平11−44622号公報Japanese Patent Application Laid-Open No. 11-44622

前述の計測システムでは、カッタヘッドが岩盤を掘削する際の仕事量で岩盤の硬度を計測するため、切羽の掘削中に適時に岩盤の性状を判定できない。また、モータの電力量を検知するために、電流センサと電圧センサの複数のセンサが必要であり、高価であるという問題がある。   In the above-mentioned measurement system, since the hardness of the bedrock is measured by the amount of work when the cutter head excavates the bedrock, the behavior of the bedrock can not be determined in a timely manner while the face is being excavated. Further, in order to detect the amount of electric power of the motor, a plurality of sensors, that is, a current sensor and a voltage sensor, are required, which is expensive.

そこで、本発明は、現在の切羽における岩盤の性状を確認でき、且つ、安価な岩盤性状判定装置の提供である。   Therefore, the present invention is to provide an inexpensive rock quality determination apparatus capable of confirming the nature of the rock quality in the current face.

本発明の岩盤性状判定装置は、自由断面掘削機のブームの先端に設けられるカッタヘッドを駆動するモータに流れる電流を検知する電流センサと、モータの電流の波形の振幅である波高値と、電流の絶対値の平均値或いは電流の実効値と、に基づいてカッタヘッドが掘削する切羽における岩盤の性状を判定する判定部とを備えている。このように構成される岩盤性状判定装置では、モータに流れる電流から切羽における岩盤の性状を判定できるから、現在掘削中の岩盤の性状を把握できる。   The rock quality determination apparatus according to the present invention includes a current sensor for detecting a current flowing through a motor for driving a cutter head provided at a tip of a boom of a free cross section drilling machine, a peak value which is an amplitude of a waveform of the current of the motor, and a current And a determination unit that determines the property of the rock in the face where the cutter head excavates based on the average value of the absolute value of the current value or the effective value of the current. In the rock quality determination apparatus configured as described above, since the property of the rock in the face can be determined from the current flowing to the motor, the property of the rock currently being excavated can be grasped.

具体的には、判定部は、モータの電流の波形における波高値が基準波高値より高く、且つ、電流の絶対値の平均値が基準平均値より低いか或いは電流の実効値が基準実効値より低い場合、岩盤が硬岩で組成されていると判定し、モータの電流の波形における波高値が基準波高値より低く、且つ、電流の絶対値の平均値が基準平均値より高いか或いは電流の実効値が基準実効値より低い場合、岩盤が軟岩で組成されていると判定すればよい。   Specifically, in the determination unit, the crest value in the current waveform of the motor is higher than the reference crest value, and the average value of the absolute values of the current is lower than the reference average value, or the effective value of the current is greater than the reference effective value. If it is low, it is judged that the rock is composed of hard rock, the peak value in the motor current waveform is lower than the reference peak value, and the average absolute value of the current is higher than the reference average or the current If the effective value is lower than the reference effective value, it may be determined that the rock is composed of soft rock.

さらに、本発明の他の岩盤性状判定装置は、自由断面掘削機のブームの先端に設けられるカッタヘッドを駆動するモータに流れる電流を検知する電流センサと、電流のモータのトルク変動に起因する振動成分の周波数と、電流の絶対値の平均値或いは電流の実効値と、に基づいてカッタヘッドが掘削する切羽における岩盤の性状を判定する判定部とを備えている。このように構成される岩盤性状判定装置では、岩盤の硬度の他、岩盤が含んでいる亀裂の大小も判定できる。   Furthermore, another rock quality determination apparatus according to the present invention includes a current sensor for detecting a current flowing in a motor for driving a cutter head provided at a tip of a boom of a free cross section drilling machine, and vibration due to torque fluctuation of the current motor. And a determination unit that determines the property of the rock in the face where the cutter head excavates based on the frequency of the component and the average value of the absolute value of the current or the effective value of the current. In the rock quality determination apparatus configured as described above, in addition to the hardness of the rock, the magnitude of the crack included in the rock can also be determined.

具体的には、判定部は、モータのトルク変動に起因する電流波形の振動成分の周波数が基準周波数より高く、且つ、電流の絶対値の平均値が基準平均値より低いか或いは電流の実効値が基準実効値より低い場合、岩盤が大きな亀裂を有する硬岩であると判定し、前記周波数が基準周波数より高く、且つ、前記平均値が基準平均値より高いか或いは前記実効値が基準実効値より高い場合、岩盤が小さな亀裂を有する硬岩であると判定し、前記周波数が基準周波数より低く、且つ、前記平均値が基準平均値より高いか或いは前記実効値が基準実効値より高い場合、岩盤が軟岩であると判定すればよい。   Specifically, the determination unit determines that the frequency of the vibration component of the current waveform caused by the torque fluctuation of the motor is higher than the reference frequency, and the average value of the absolute values of the current is lower than the reference average value or the effective value of the current Is lower than the reference effective value, it is determined that the bedrock is a hard rock having a large crack, the frequency is higher than the reference frequency, and the average value is higher than the reference average value or the effective value is the reference effective value If higher, it is determined that the bedrock is a hard rock having a small crack, the frequency is lower than the reference frequency, and the average value is higher than the reference average value or the effective value is higher than the reference effective value. It may be determined that the rock is soft rock.

本発明の岩盤性状判定装置によれば、安価に現在の切羽における岩盤の性状を確認できる。   According to the rock quality determination apparatus of the present invention, it is possible to confirm the property of the rock in the current face at low cost.

一実施の形態における岩盤性状判定装置を搭載した自由断面掘削機の側面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a side view of the free cross-section drilling machine which mounts the rock quality determination apparatus in one Embodiment. (A)は、硬い岩盤を掘削した場合の電流波形を示した図である。(B)は、軟らかい岩盤を掘削した場合の電流波形を示した図である。(A) is the figure which showed the current waveform at the time of excavating a hard bedrock. (B) is a figure which showed the current waveform at the time of excavating a soft bedrock. 一実施の形態の岩盤性状判定装置における岩盤の硬度の判定手順の第一例を説明する図である。It is a figure explaining the 1st example of the determination procedure of the hardness of the rock in the rock property determination apparatus of one Embodiment. 一実施の形態の岩盤性状判定装置における岩盤の硬度の判定手順の第二例を説明する図である。It is a figure explaining the 2nd example of the determination procedure of the hardness of the rock in the rock property determination apparatus of one Embodiment. 大きな亀裂が有る岩盤と小さな亀裂が有る岩盤を掘削した場合の電流波形を示した図である。It is a figure showing the current waveform at the time of excavating a rock with a large crack and a rock with a small crack. 一実施の形態の岩盤性状判定装置における岩盤の硬度の判定手順の第三例を説明する図である。It is a figure explaining the 3rd example of the determination procedure of the hardness of the rock in the rock property determination apparatus of one Embodiment. 一実施の形態の岩盤性状判定装置における岩盤の硬度の判定手順の第四例を説明する図である。It is a figure explaining the 4th example of the judgment procedure of the hardness of the rock in the rock quality judgment device of one embodiment.

以下、図に示した実施の形態に基づき、本発明を説明する。一実施の形態における岩盤性状判定装置1は、図1に示すように、切羽を掘削する自由断面掘削機EのブームBの先端に設けられるカッタヘッドCを駆動するモータMに流れる電流を検知する電流センサ2と、電流センサ2で検知した電流に基づいてカッタヘッドCが掘削する切羽における岩盤の性状を判定する判定部3とを備えて構成されている。   Hereinafter, the present invention will be described based on the embodiments shown in the drawings. As shown in FIG. 1, the rock quality determination apparatus 1 according to one embodiment detects a current flowing to a motor M driving a cutter head C provided at the tip of a boom B of a free cross-section drilling machine E excavating a face. A current sensor 2 and a determination unit 3 which determines a property of a rock in a face where a cutter head C excavates based on a current detected by the current sensor 2 is configured.

以下、岩盤性状判定装置1の各部について詳細に説明する。まず、岩盤性状判定装置1が適用される自由断面掘削機Eは、クローラを備えた走行体Wと、走行体Wに対して左右方向への旋回と上下方向への俯仰とを可能に取付けられて伸縮可能なブームBと、ブームBの先端に回転可能に装着されるカッタヘッドCと、カッタヘッドCを回転駆動するモータMとを備えて構成されている。   Hereinafter, each part of the rock quality determination apparatus 1 will be described in detail. First, the free cross section drilling machine E to which the rock quality determination device 1 is applied can be mounted for traveling body W provided with crawlers and turning in the lateral direction and elevation in the vertical direction with respect to the traveling body W It comprises a boom B which can be extended and retracted, a cutter head C rotatably mounted on the tip of the boom B, and a motor M for rotationally driving the cutter head C.

このように構成された自由断面掘削機Eは、カッタヘッドCをモータMで回転駆動しつつ、ブームBを駆動してカッタヘッドCを切羽の掘削したい位置へ配置するととともにカッタヘッドCを略一定の押圧力で切羽に押し付けて切羽における岩盤を掘削する。なお、モータMは、図示しない電源から一定電圧の電力供給を受けてカッタヘッドCを回転駆動するようになっている。   The free cross-section drilling machine E configured in this way drives the boom B to rotate the cutter head C by the motor M and arranges the cutter head C to a position where digging of the face is desired, and the cutter head C is substantially constant. The rock face of the face is excavated by pressing it against the face with a pressure of The motor M is configured to rotate the cutter head C by receiving power supply of a constant voltage from a power supply (not shown).

つづいて、岩盤性状判定装置1について説明する。電流センサ2は、所定のサンプリング周期でモータMに流れる電流を順次検知して、検知した電流を判定部3へ出力する。   Subsequently, the rock quality determination apparatus 1 will be described. The current sensor 2 sequentially detects the current flowing through the motor M at a predetermined sampling cycle, and outputs the detected current to the determination unit 3.

判定部3は、電流センサ2が検知した電流の入力を受けてカッタヘッドCが切削中の切羽における岩盤の性状を判定する。判定部3は、有線通信にて電流センサ2からの電流の入力を受けてもよいし、無線通信によってもよい。また、判定部3は、自由断面掘削機Eに設置されていてもよいが、トンネル工事を管理する管理事務所に設置されてもよい。   The determination unit 3 receives the input of the current detected by the current sensor 2 and determines the property of the rock in the face where the cutter head C is cutting. The determination unit 3 may receive an input of the current from the current sensor 2 by wire communication, or may be by wireless communication. Moreover, although the determination part 3 may be installed in the free cross-section drilling machine E, you may be installed in the management office which manages tunnel construction.

ここで、カッタヘッドCは、自由断面掘削機Eが掘削中は、ブームB側から図示しない油圧シリンダによって附勢されており、切羽に対して略一定の押付力にて押付られて切羽における岩盤を掘削する。カッタヘッドCは、掘削中に岩盤側から常に抵抗を受けて回転駆動されており、岩盤側からのカッタヘッドCに作用する抵抗が変化するとカッタヘッドCを駆動するモータMの出力トルクも変動する。モータMは、前述の通り、切羽を掘削する際に、図外の電源から一定電圧の電力供給を受けてカッタヘッドCを回転駆動しているので、トルクが変動するとモータMの巻線に流れる電流も変動する。   Here, the cutter head C is biased by the hydraulic cylinder (not shown) from the boom B side while the free cross-section drilling machine E is excavating, and is pressed against the face with a substantially constant pressing force to obtain a bedrock of the face Excavate. The cutter head C is constantly rotationally driven by receiving resistance from the rock during drilling, and when the resistance acting on the cutter head C from the rock changes, the output torque of the motor M driving the cutter head C also fluctuates. . As described above, when excavating the face, the motor M receives the power supply of a constant voltage from the power supply (not shown) and rotationally drives the cutter head C. Therefore, when the torque fluctuates, it flows in the winding of the motor M The current also fluctuates.

カッタヘッドCで硬い岩盤を掘削する場合、カッタヘッドCが岩盤に食い込みにくいので、カッタヘッドCと岩盤との間で滑りが生じやすい。よって、掘削中にカッタヘッドCが岩盤から受ける抵抗は、平均的に低くなる傾向となるので、図2(A)に示すように、モータMの平均トルクも低くなり、モータMに流れる電流の絶対値の平均値も低くなる。また、岩盤が硬い場合、カッタヘッドCで岩盤を掘削すると岩盤から大きな塊の岩が剥がれやすい。このように大きな塊の岩が岩盤から剥がれる場合、岩が岩盤から剥がれる前にはカッタヘッドCに大きな抵抗が作用し、岩が岩盤から剥がれた後ではカッタヘッドCに作用する抵抗は著しく小さくなる。よって、岩が岩盤から剥がれる前後においては、モータMのトルクが大きく変動するから、図2(A)に示すように、モータMに流れる電流も大きく変動する。したがって、カッタヘッドCが掘削中の岩盤が硬い場合、モータMの電流の波形の波高値、つまり、電流波形の振幅は大きくなる傾向を示す。   When excavating a hard bedrock with a cutter head C, the cutter head C is less likely to bite into the bedrock, so slippage is likely to occur between the cutter head C and the bedrock. Therefore, the resistance that the cutter head C receives from the rock during drilling tends to be low on average, so the average torque of the motor M also becomes low, as shown in FIG. The average of the absolute values also decreases. In addition, when the bedrock is hard, when the bedrock is excavated with a cutter head C, a large block of rock is likely to be detached from the bedrock. When such a large block of rock is detached from the rock, a large resistance acts on the cutter head C before the rock is detached from the rock, and the resistance acting on the cutter head C is significantly reduced after the rock is detached from the rock . Therefore, before and after the rock is peeled from the rock, the torque of the motor M fluctuates significantly, and therefore, as shown in FIG. 2A, the current flowing through the motor M also fluctuates significantly. Therefore, when the rock which is being excavated by the cutter head C is hard, the peak value of the current waveform of the motor M, that is, the amplitude of the current waveform tends to increase.

他方、カッタヘッドCで軟らかい岩盤を掘削する場合、カッタヘッドCが岩盤に食い込みやすいので、カッタヘッドCが岩盤から受ける抵抗は平均的に高くなる傾向となる。よって、図2(B)に示すように、モータMの平均トルクが高くなり、モータMに流れる電流の絶対値の平均値も高くなる。また、岩盤が軟らかい場合、カッタヘッドCで岩盤を掘削すると、岩盤が削られやすいために岩盤から粒子の細かい石が削り取られる。このようにカッタヘッドCの掘削により細かい石が岩盤から削り取られる場合、カッタヘッドCが受ける抵抗の変動は、硬い岩盤を掘削する場合に比較して小さくなる。よって、図2(B)に示すように、カッタヘッドCが掘削中の岩盤が軟らかい場合、モータMの電流の波形の波高値は小さくなる傾向を示す。   On the other hand, when excavating a soft bedrock with the cutter head C, the cutter head C tends to bite into the bedrock, so the resistance that the cutter head C receives from the bedrock tends to be high on average. Therefore, as shown in FIG. 2 (B), the average torque of the motor M becomes high, and the average value of the absolute value of the current flowing through the motor M also becomes high. In addition, when the bedrock is soft, when the bedrock is excavated with the cutter head C, the rock of the particle is easily removed from the bedrock because the bedrock is easily scraped. As described above, when a fine stone is scraped from the rock by the digging of the cutter head C, the variation in resistance to which the cutter head C is subjected is smaller than that in the case of digging a hard rock. Therefore, as shown in FIG. 2B, when the rock which is being excavated by the cutter head C is soft, the peak value of the current waveform of the motor M tends to be small.

以上より、判定部3は、モータMに流れる電流の絶対値の平均値と、電流の波形の波高値に基づいて、岩盤の性状を判定する。具体的には、判定部3は、図3に示すように、モータMの電流の波形の振幅である波高値に対して基準波高値を設定するとともに、電流の絶対値の平均値に対して基準平均値を設定し、波高値と基準波高値の比較結果と電流の絶対値の平均値と基準平均値の比較結果に基づいて岩盤の性状を判定する。より詳細には、判定部3は、モータMの電流の波形における波高値が基準波高値より高く、且つ、前記電流の絶対値の平均値が基準平均値より低い場合、岩盤が硬岩で組成されていると判定し、前記電流の波形における波高値が基準波高値より低く、且つ、前記電流の絶対値の平均値が基準平均値より高い場合、岩盤が軟岩で組成されていると判定する。なお、電流の波形の波高値の高低を判定するための基準となる基準波高値と、電流の絶対値の平均値の高低を判定するための基準となる基準平均値は、たとえば、実機で岩盤を掘削して得られるデータと岩盤の硬度調査の結果とを参酌して決めればよい。なお、波高値については、電流波形の振幅の平均値或いは電流波形における振幅の大きなものを決められた個数を抽出して抽出した振幅の平均値を波高値としてもよいし、電流波形における最大振幅を波高値としてもよい。   As mentioned above, the determination part 3 determines the property of a rock based on the average value of the absolute value of the electric current which flows into the motor M, and the peak value of the waveform of an electric current. Specifically, as shown in FIG. 3, determination unit 3 sets a reference crest value to a crest value that is an amplitude of the current waveform of motor M, and also determines an average value of absolute values of current. A reference average value is set, and the property of the rock is determined based on the comparison result of the peak value and the reference peak value, and the comparison result of the average value of the absolute value of the current and the reference average value. More specifically, when the peak value in the current waveform of the motor M is higher than the reference peak value and the average value of the absolute values of the current is lower than the reference average value, the determination unit 3 determines that the bedrock is hard rock If the crest value in the waveform of the current is lower than the reference crest value and the average value of the absolute values of the current is higher than the reference average value, it is determined that the rock is composed of soft rock . The reference peak value serving as a reference for determining the magnitude of the peak value of the current waveform and the reference average value serving as a reference for determining the magnitude of the average value of the absolute values of the current The data obtained by drilling and the results of the hardness survey of the rock may be taken into consideration. As for the peak value, an average value of the amplitude of the current waveform or an average value of the amplitude extracted by extracting the determined number of large ones in the current waveform may be used as the peak value, or the maximum amplitude in the current waveform The peak value may be used.

本例では、岩盤の性状を硬岩と軟岩のいずれかであると判定しているが、電流の絶対値の平均値が低く、且つ、電流の波形の波高値が高い程、岩盤の硬度が高く、電流の絶対値の平均値が高く、且つ、電流の波形の波高値が低い程、岩盤の硬度が低くなる。よって、判定部3は、岩盤の性状の判定において、岩盤の硬度を電流の絶対値の平均値と電流の波形の波高値とに基づいて数値で出力するようにしてもよい。   In this example, the rock quality is judged to be either hard rock or soft rock, but the hardness of the rock is lower as the average value of the absolute values of the current is lower and the wave height of the current is higher. The higher the average value of the absolute values of the current and the lower the peak value of the current waveform, the lower the hardness of the rock. Therefore, the determination unit 3 may output the hardness of the rock as a numerical value based on the average value of the absolute values of the current and the peak value of the waveform of the current in the determination of the property of the rock.

なお、図示はしないが、カッタヘッドCで硬い岩盤を掘削する場合、モータMに流れる電流の絶対値の平均値と同様に、電流の実効値も低くなり、カッタヘッドCで軟らかい岩盤を掘削する場合、モータMに流れる電流の絶対値の平均値と同様に、電流の実効値も高くなる。よって、判定部3は、岩盤の硬軟の判定において、電流の波形の波高値と共に使用する判定材料として、モータMに流れる電流の絶対値の平均値の代わりに当該電流の実効値を用いてもよい。   Although not shown, when excavating a hard bedrock with a cutter head C, the effective value of the current is lowered as well as the average value of the absolute values of the current flowing through the motor M, and a soft bedrock is excavated with a cutter head C In this case, as well as the average value of the absolute values of the current flowing to the motor M, the effective value of the current also becomes high. Therefore, the determination unit 3 uses the effective value of the current instead of the average value of the absolute value of the current flowing through the motor M as a determination material to be used together with the peak value of the current waveform in the determination of hardness of the rock. Good.

この場合、判定部3は、モータMに流れる電流の実効値と、電流の波形の波高値に基づいて、岩盤の性状を判定すればよい。具体的には、判定部3は、図4に示すように、モータMの電流の波形の振幅である波高値に対して基準波高値を設定するとともに、電流の実効値に対して基準実効値を設定し、波高値と基準波高値の比較結果と電流の実効値と基準実効値の比較結果に基づいて岩盤の性状を判定する。より詳細には、判定部3は、モータMの電流の波形における波高値が基準波高値より高く、且つ、前記電流の実効値が基準実効値より低い場合、岩盤が硬岩で組成されていると判定し、前記電流の波形における波高値が基準波高値より低く、且つ、前記電流の実効値が基準実効値より高い場合、岩盤が軟岩で組成されていると判定する。なお、電流の実効値の高低を判定するための基準となる基準実効値は、たとえば、実機で岩盤を掘削して得られるデータと岩盤の硬度調査の結果とを参酌して決めればよい。   In this case, the determination unit 3 may determine the property of the rock based on the effective value of the current flowing through the motor M and the peak value of the current waveform. Specifically, as shown in FIG. 4, determination unit 3 sets a reference crest value for the crest value which is the amplitude of the current waveform of motor M, and also determines a reference effective value for the effective value of current. Is determined, and the property of the rock is determined based on the comparison result of the peak value and the reference peak value and the comparison result of the effective value of the current and the reference effective value. More specifically, the determination unit 3 determines that the rock is made of hard rock when the wave height value of the current waveform of the motor M is higher than the reference wave height value and the effective value of the current is lower than the reference effective value. If the crest value in the waveform of the current is lower than the reference crest value and the effective value of the current is higher than the reference effective value, it is determined that the rock is composed of soft rock. The reference effective value serving as a reference for determining the level of the effective value of the current may be determined based on, for example, data obtained by excavating the rock with a real machine and the result of the hardness survey of the rock.

また、岩盤の性状を硬岩と軟岩のいずれかであると判定しているが、電流の実効値が低く、且つ、電流の波形の波高値が高い程、岩盤の硬度が高く、電流の実効値が高く、且つ、電流の波形の波高値が低い程、岩盤の硬度が低くなる。よって、判定部3は、岩盤の性状の判定において、岩盤の硬度を電流の実効値と電流の波形の波高値とに基づいて数値で出力するようにしてもよい。   In addition, although it is judged that the property of the rock is either hard rock or soft rock, the lower the effective value of the current and the higher the wave height of the current waveform, the higher the hardness of the rock and the effective of the current The higher the value and the lower the crest value of the current waveform, the lower the rock hardness. Therefore, the determination unit 3 may output the hardness of the rock in a numerical value based on the effective value of the current and the peak value of the waveform of the current in the determination of the property of the rock.

また、判定部3は、モータMに流れる電流の絶対値の平均値と、トルク変動に起因してモータMの電流の波形に現れる振動成分の周波数とに基づいて岩盤の性状を判定してもよい。カッタヘッドCで硬い岩盤を掘削する場合、カッタヘッドCで岩盤を掘削すると岩盤から順次岩が剥がれるので、カッタヘッドCが岩盤から受ける抵抗が大きく変動し、モータMのトルク変動の周期も短くなる。他方、カッタヘッドCで軟らかい岩盤を掘削する場合にはトルク変動が少ないために、モータMのトルク変動の周期が長くなる。図2に示すように、トルク変動に起因してモータMの電流の波形に現れる振動成分の周波数はモータMの電流波形の包絡線に一致する。そこで、前記トルク変動に起因してモータMの電流の波形に現れる振動成分の周波数に着目すると、図2に示すように、硬い岩盤を掘削した場合の電流の波形(図2(A)中実線)の包絡線(図2(A)中破線)の周波数の方が軟らかい岩盤を掘削した場合の電流の波形(図2(B)中実線)の包絡線(図2(B)中破線)の周波数より高くなる。したがって、判定部3では、電流センサ2から入力されるモータMの電流の波形に現れるトルク変動による振動成分の周波数を調べて、この周波数が高い場合、岩盤が硬岩で組成されていると判定する。前記包絡線を得るには、たとえば、ヒルベルト変換によってもよいし、包絡線検波器を用いてもよい。なお、トルク変動に起因してモータMの電流の波形に現れる振動成分の周波数を得るには、包絡線を求める他、以下のようにしてもよい。検知したモータMの電流からモータMを駆動するために要求される電流の駆動周波数よりも低周波のトルク変動に起因する振動成分の周波数成分を抽出するローパスフィルタ或いはバンドパスフィルタで前記電流を濾波して前記振動成分を抽出し、抽出した振動成分から周波数を求めてもよい。   Also, the determination unit 3 determines the property of the rock based on the average value of the absolute values of the current flowing through the motor M and the frequency of the vibration component appearing in the waveform of the current of the motor M due to the torque fluctuation. Good. When excavating a hard bedrock with cutter head C, if rock bed is excavated with cutter head C, the rock will peel off from bedrock sequentially, so resistance that cutter head C receives from bedrock will fluctuate greatly, and the cycle of torque fluctuation of motor M will also be short. . On the other hand, in the case of excavating a soft bedrock with a cutter head C, since the torque fluctuation is small, the cycle of the torque fluctuation of the motor M becomes long. As shown in FIG. 2, the frequency of the vibration component appearing in the current waveform of the motor M due to the torque fluctuation coincides with the envelope of the current waveform of the motor M. Therefore, focusing on the frequency of the vibration component appearing in the waveform of the current of the motor M due to the torque fluctuation, as shown in FIG. 2, the waveform of the current when solid rock is excavated (solid line in FIG. Of the current waveform (solid line in FIG. 2 (B)) when the frequency of the envelope (broken line in FIG. 2 (A)) excavates a soft rock is It is higher than the frequency. Therefore, the determination unit 3 examines the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M input from the current sensor 2 and determines that the rock is composed of hard rock when this frequency is high. Do. In order to obtain the envelope, for example, Hilbert transform may be used, or an envelope detector may be used. Incidentally, in order to obtain the frequency of the vibration component appearing in the waveform of the current of the motor M due to the torque fluctuation, the envelope may be determined as follows. The current is filtered by a low pass filter or a band pass filter that extracts a frequency component of a vibration component caused by torque fluctuation lower than the drive frequency of the current required to drive the motor M from the detected current of the motor M Then, the vibration component may be extracted, and the frequency may be obtained from the extracted vibration component.

さらに、発明者らは、岩盤が硬い場合であって、岩盤に亀裂が有る場合、亀裂の大小によって、カッタヘッドCが岩盤から受ける抵抗に差があり、岩盤の亀裂が大きい程、カッタヘッドCが岩盤から受ける抵抗の平均値が低くなるとの知見を得た。したがって、図5に示すように、大きな亀裂が有る硬い岩盤を掘削する場合の電流波形(図5中実線)と、小さな亀裂が有る硬い岩盤を掘削する場合の電流波形(図5中破線)とを比較すると、亀裂が大きくなる程、電流の絶対値の平均値が低くなる。よって、判定部3は、モータMの電流の波形に現れるトルク変動による振動成分の周波数が高く、且つ、電流の絶対値の平均値が低い場合、岩盤が大きな亀裂を含む硬岩で組成されていると判定する。また、判定部3は、モータMの電流の波形に現れるトルク変動による振動成分の周波数が高く、且つ、電流の絶対値の平均値が高い場合、岩盤が小さな亀裂を含む硬岩で組成されていると判定する。   Furthermore, in the case where the rock is hard and there is a crack in the rock, the resistance that the cutter head C receives from the rock differs depending on the size of the crack, and the cutter head C becomes larger as the rock in the rock becomes larger. We found that the average value of the resistance received from the bedrock is low. Therefore, as shown in FIG. 5, a current waveform (solid line in FIG. 5) when digging a hard rock with a large crack and a current waveform (dotted line in FIG. 5) when digging a hard rock with a small crack In comparison, the larger the crack, the lower the average absolute value of the current. Therefore, when the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M is high and the average value of the absolute values of the current is low, the judgment unit 3 is composed of hard rock containing large cracks It is determined that there is. Further, when the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M is high and the average value of the absolute values of the current is high, the judgment unit 3 is composed of hard rock containing small cracks It is determined that there is.

これに対して、カッタヘッドCで軟らかい岩盤を掘削する場合、カッタヘッドCで岩盤を掘削すると岩盤が削られやすいのでカッタヘッドCが岩盤から受ける抵抗の変動は少なく、モータMのトルク変動の周期も長くなる。つまり、前記トルク変動に起因してモータMの電流の波形に現れる振動成分の周波数は低くなる。したがって、電流センサ2から入力されるモータMの電流の波形に現れるトルク変動による振動成分の周波数が低い場合、岩盤が軟岩で組成されている可能性がある。また、カッタヘッドCで軟らかい岩盤を掘削する場合、カッタヘッドCが岩盤に食い込みやすいので、モータMの平均トルクが高くなり、モータMに流れる電流の絶対値の平均値が高くなる。よって、判定部3は、モータMの電流の波形に現れるトルク変動による振動成分の周波数が低く、且つ、電流の絶対値の平均値が高い場合に、岩盤が軟岩で組成されていると判定する。   On the other hand, when excavating a soft bedrock with cutter head C, if the bedrock is excavated with cutter head C, the bedrock is easily scraped off, so that the variation in resistance that cutter head C receives from the bedrock is small. It also gets longer. That is, the frequency of the vibration component appearing in the current waveform of the motor M due to the torque fluctuation is lowered. Therefore, when the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M input from the current sensor 2 is low, there is a possibility that the rock is composed of soft rock. Moreover, when excavating a soft bedrock with the cutter head C, the cutter head C easily bites into the bedrock, so the average torque of the motor M becomes high, and the average value of the absolute value of the current flowing through the motor M becomes high. Therefore, when the frequency of the vibration component due to torque fluctuation appearing in the waveform of the current of the motor M is low and the average value of the absolute values of the current is high, the determination unit 3 determines that the rock is composed of soft rock. .

以上より、判定部3は、モータMの電流の波形に現れるトルク変動による振動成分の周波数とモータMに流れる電流の絶対値の平均値とに基づいて、岩盤の性状を判定する。具体的には、判定部3は、図6に示すように、モータMの電流の波形に現れるトルク変動による振動成分の周波数に対して基準周波数を設定するとともに、電流の絶対値の平均値に対して基準平均値を設定し、前記周波数と基準周波数の比較結果と電流の絶対値の平均値と基準平均値の比較結果に基づいて岩盤の性状を判定する。より詳細には、判定部3は、モータMの電流の波形に現れるトルク変動による振動成分の周波数が基準周波数より高く、且つ、電流の絶対値の平均値が基準平均値より低い場合、岩盤が大きな亀裂を含む硬岩で組成されていると判定する。また、判定部3は、モータMの電流の波形に現れるトルク変動による振動成分の周波数が基準周波数より高く、且つ、電流の絶対値の平均値が基準平均値より高い場合、岩盤が小さな亀裂を含む硬岩で組成されていると判定する。さらに、判定部3は、モータMの電流の波形に現れるトルク変動による振動成分の周波数基準周波数よりが低く、且つ、電流の絶対値の平均値が基準平均値より高い場合に、岩盤が軟岩で組成されていると判定する。なお、モータMの電流の波形に現れるトルク変動による振動成分の周波数の高低を判定するための基準となる基準周波数と、電流の絶対値の平均値の高低を判定するための基準となる基準平均値は、たとえば、実機で岩盤を掘削して得られるデータと岩盤の硬度調査の結果とを参酌して決めればよい。また、前記モータMの電流の波形に現れるトルク変動による振動成分の周波数とモータMに流れる電流の絶対値の平均値とに基づいて岩盤の性状を判定するための基準平均値は、モータMの電流の波形の波高値と電流の絶対値の平均値とに基づいて岩盤の性状を判定する際の基準平均値とは、異なる値に設定されてもよい。   From the above, the determination unit 3 determines the property of the rock based on the frequency of the vibration component due to the torque fluctuation appearing in the current waveform of the motor M and the average value of the absolute value of the current flowing to the motor M. Specifically, as shown in FIG. 6, determination unit 3 sets the reference frequency to the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of motor M, and determines the average value of the absolute values of the current. Then, a reference average value is set, and the property of the rock is determined based on the comparison result of the frequency and the reference frequency, the average value of the absolute value of the current and the reference average value. More specifically, when the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M is higher than the reference frequency and the average value of the absolute values of the current is lower than the reference average value, the determination unit 3 Determined to be composed of hard rock containing large cracks. In addition, when the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M is higher than the reference frequency and the average value of the absolute values of the current is higher than the reference average, the determination unit 3 Determined to be composed of hard rock. Furthermore, when the determination unit 3 is lower than the frequency reference frequency of the vibration component due to torque fluctuation appearing in the current waveform of the motor M and the average value of the absolute values of the current is higher than the reference average value It is determined that the composition is made. Note that a reference frequency serving as a reference for determining the level of the frequency of the vibration component due to torque fluctuation appearing in the current waveform of the motor M and a reference average serving as a reference for determining the level of the average value of the absolute values of the current. The value may be determined, for example, based on the data obtained by excavating the rock with a real machine and the result of the rock hardness survey. The reference average value for determining the property of the rock based on the frequency of the vibration component due to torque fluctuation appearing in the current waveform of the motor M and the average value of the absolute value of the current flowing to the motor M is The reference average value may be set to a value different from the reference average value when determining the property of the rock based on the peak value of the current waveform and the average value of the absolute values of the current.

本例では、岩盤の性状を硬岩と軟岩のいずれかであるかとの判定と、硬岩である場合に亀裂が大きいか小さいかの判定をしている。モータMの電流の波形に現れるトルク変動による振動成分の周波数が高いほど岩盤の硬度が高く、岩盤が硬岩である場合に電流の絶対値の平均値が低い程亀裂が大きくなる。また、モータMの電流の波形に現れるトルク変動による振動成分の周波数が低く、且つ、電流の平均値が高いほど岩盤の硬度が低くなる。よって、判定部3は、岩盤の性状の判定において、岩盤の硬度と亀裂の大小を前記周波数と電流の平均値とに基づいて数値で出力するようにしてもよい。   In this example, it is determined whether the rock quality is hard rock or soft rock, and in the case of hard rock, whether the crack is large or small. The higher the frequency of the vibration component due to the torque fluctuation appearing in the current waveform of the motor M, the higher the hardness of the rock, and the lower the average absolute value of the current when the rock is hard rock, the larger the crack becomes. Further, the lower the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M, and the higher the average value of the current, the lower the hardness of the rock becomes. Therefore, the determination unit 3 may output the hardness of the rock and the magnitude of the crack numerically based on the average value of the frequency and the current in the determination of the property of the rock.

なお、図示はしないが、大きな亀裂が有る硬い岩盤を掘削する場合の電流波形と、小さな亀裂が有る硬い岩盤を掘削する場合の電流波形とを比較すると、亀裂が大きくなる程、電流の絶対値の平均値と同様に電流の実効値が低くなる。よって、判定部3は、モータMの電流の波形に現れるトルク変動による振動成分の周波数が高く、且つ、電流の実効値が低い場合、岩盤が大きな亀裂を含む硬岩で組成されていると判定してもよい。また、判定部3は、モータMの電流の波形に現れるトルク変動による振動成分の周波数が高く、且つ、電流の実効値が高い場合、岩盤が小さな亀裂を含む硬岩で組成されていると判定してもよい。つまり、判定部3は、岩盤の性状の判定において、モータMの電流の波形に現れるトルク変動による振動成分の周波数と共に使用する判定材料として、モータMに流れる電流の絶対値の平均値の代わりに当該電流の実効値を用いてもよい。   In addition, although not shown in the drawings, comparing the current waveform in the case of excavating a hard rock with a large crack with the current waveform in the case of excavating a hard rock with a small crack, the absolute value of the current becomes larger as the crack becomes larger. The effective value of the current decreases as well as the average value of Therefore, if the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M is high and the effective value of the current is low, the determination unit 3 determines that the rock is composed of hard rock containing a large crack You may Further, when the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M is high and the effective value of the current is high, the determination unit 3 determines that the rock mass is composed of hard rock containing small cracks. You may That is, in the determination of the property of the rock, the determination unit 3 uses the frequency of the vibration component due to the torque fluctuation appearing in the current waveform of the motor M as a determination material to be used instead of the average value of the absolute value of the current flowing through the motor M. The effective value of the current may be used.

この場合、具体的には、判定部3は、モータMの電流の波形に現れるトルク変動による振動成分の周波数に対して基準周波数を設定するとともに、電流の実効値に対して基準実効値を設定し、前記周波数と基準周波数の比較結果と電流の実効値と基準実効値の比較結果に基づいて岩盤の性状を判定すればよい。より詳細には、判定部3は、図7に示すように、モータMの電流の波形に現れるトルク変動による振動成分の周波数が基準周波数より高く、且つ、電流の実効値が基準実効値より低い場合、岩盤が大きな亀裂を含む硬岩で組成されていると判定する。また、判定部3は、モータMの電流の波形に現れるトルク変動による振動成分の周波数が基準周波数より高く、且つ、電流の実効値が基準実効値より高い場合、岩盤が小さな亀裂を含む硬岩で組成されていると判定する。さらに、判定部3は、モータMの電流の波形に現れるトルク変動による振動成分の周波数基準周波数よりが低く、且つ、電流の実効値が基準実効値より高い場合に、岩盤が軟岩で組成されていると判定する。なお、電流の実効値の高低を判定するための基準となる基準実効値は、たとえば、実機で岩盤を掘削して得られるデータと岩盤の硬度調査の結果とを参酌して決めればよい。また、前記モータMの電流の波形に現れるトルク変動による振動成分の周波数とモータMに流れる電流の実効値とに基づいて岩盤の性状を判定するための基準実効値は、モータMの電流の波形の波高値と電流の実効値とに基づいて岩盤の性状を判定する際の基準実効値とは、異なる値に設定されてもよい。   In this case, specifically, determination unit 3 sets the reference frequency to the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of motor M, and sets the reference effective value to the effective value of the current. The nature of the rock may be determined based on the comparison result of the frequency and the reference frequency and the comparison result of the effective value of the current and the reference effective value. More specifically, as shown in FIG. 7, determination unit 3 determines that the frequency of the vibration component due to torque fluctuation appearing in the current waveform of motor M is higher than the reference frequency, and the effective value of the current is lower than the reference effective value. If so, determine that the bedrock is composed of hard rock containing large cracks. In addition, when the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M is higher than the reference frequency and the effective value of the current is higher than the reference effective value, the judging unit 3 It is determined that the composition is Furthermore, when the judgment unit 3 has a frequency reference frequency lower than the frequency reference frequency of the vibration component due to the torque fluctuation appearing in the current waveform of the motor M, and the effective value of the current is higher than the reference effective value, It is determined that there is. The reference effective value serving as a reference for determining the level of the effective value of the current may be determined based on, for example, data obtained by excavating the rock with a real machine and the result of the hardness survey of the rock. Further, the reference effective value for determining the property of the rock based on the frequency of the vibration component due to the torque fluctuation appearing in the waveform of the current of the motor M and the effective value of the current flowing to the motor M is the waveform of the current of the motor M The reference effective value may be set to a value different from the reference effective value when determining the property of the rock based on the peak value of the current and the effective value of the current.

本例では、岩盤の性状を硬岩と軟岩のいずれかであるかとの判定と、硬岩である場合に亀裂が大きいか小さいかの判定をしている。モータMの電流の波形に現れるトルク変動による振動成分の周波数が高いほど岩盤の硬度が高く、岩盤が硬岩である場合に電流の実効値が低い程亀裂が大きくなる。また、モータMの電流の波形に現れるトルク変動による振動成分の周波数が低く、且つ、電流の実効値が高いほど岩盤の硬度が低くなる。よって、判定部3は、岩盤の性状の判定において、岩盤の硬度と亀裂の大小を前記周波数と電流の実効値とに基づいて数値で出力するようにしてもよい。   In this example, it is determined whether the rock quality is hard rock or soft rock, and in the case of hard rock, whether the crack is large or small. The higher the frequency of the vibration component due to the torque fluctuation appearing in the current waveform of the motor M, the higher the hardness of the rock, and the lower the effective value of the current when the rock is hard rock, the larger the crack becomes. Further, the lower the frequency of the vibration component due to the torque fluctuation appearing in the current waveform of the motor M and the higher the effective value of the current, the lower the hardness of the rock becomes. Therefore, the determination unit 3 may output the hardness of the rock and the size of the crack numerically based on the frequency and the effective value of the current in the determination of the property of the rock.

以上、本発明の岩盤性状判定装置1は、自由断面掘削機EのブームBの先端に設けられるカッタヘッドCを駆動するモータMに流れる電流を検知する電流センサ2と、電流センサ2で検知した電流に基づいてカッタヘッドCが掘削する切羽における岩盤の性状を判定する判定部3とを備えている。このように構成される岩盤性状判定装置1では、モータMに流れる電流から切羽における岩盤の性状を判定できるから、掘削中に岩盤の性状が変化しても適時に岩盤の性状を把握でき、切羽崩落等の危険の有無をいち早く察知できる。また、モータMの電流の検知のみで岩盤の性状を判定できるから、複数のセンサを設置する必要がなく、簡単且つ安価に岩盤の性状を把握できる。もともと、モータMに電流センサが設けられている場合には、この電流センサを岩盤性状判定装置1における電流センサ2として利用してもよい。   As mentioned above, the rock quality determination apparatus 1 of the present invention is detected by the current sensor 2 for detecting the current flowing to the motor M for driving the cutter head C provided at the tip of the boom B of the free cross section drilling machine E And a determination unit 3 that determines the nature of the rock in the face where the cutter head C excavates based on the current. In the rock quality determination apparatus 1 configured as described above, since the property of the rock in the face can be determined from the current flowing to the motor M, even if the property of the rock changes during excavation, the property of the rock can be grasped in a timely manner. It can quickly detect the presence of danger such as collapse. Further, since the property of the rock can be determined only by detecting the current of the motor M, it is not necessary to install a plurality of sensors, and the property of the rock can be grasped easily and inexpensively. Originally, when the motor M is provided with a current sensor, this current sensor may be used as the current sensor 2 in the rock quality determination device 1.

また、判定部3がモータMの電流の波形における波高値と電流の平均値とに基づいて岩盤の性状を判定する場合には、岩盤の硬度を判定できる。なお、具体的には、判定部3は、モータMの電流の波形における波高値が基準波高値より高く、且つ、電流の平均値が基準平均値より低い場合、岩盤が硬岩で組成されていると判定し、モータMの電流の波形における波高値が基準波高値より低く、且つ、電流の平均値が基準平均値より高い場合、岩盤が軟岩で組成されていると判定すればよい。   When the determination unit 3 determines the property of the rock based on the peak value of the current waveform of the motor M and the average value of the current, the hardness of the rock can be determined. In addition, specifically, when the crest value in the waveform of the current of the motor M is higher than the reference crest value and the average value of the current is lower than the reference average value, the determination unit 3 is made of hard rock If it is determined that the wave height value of the current waveform of the motor M is lower than the reference wave height value and the average value of the current is higher than the reference average value, it may be determined that the rock is composed of soft rock.

さらに、判定部3は、モータMの電流の波形のトルク変動に起因する振動成分の周波数とモータMの電流の平均値とに基づいて岩盤の性状を判定してもよく、この場合には、岩盤の硬度の他、岩盤が含んでいる亀裂の大小も判定できる。なお、具体的には、判定部3は、モータMのトルク変動に起因する電流波形の振動成分の周波数が基準周波数より高く、且つ、電流の平均値が基準平均値より低いと岩盤が大きな亀裂を有する硬岩であると判定し、前記周波数が基準周波数より高く、且つ、前記平均値が基準平均値より高いと岩盤が小さな亀裂を有する硬岩であると判定し、前記周波数が基準周波数より低く、且つ、前記平均値が基準平均値より高いと岩盤が軟岩であると判定すればよい。   Furthermore, the determination unit 3 may determine the property of the rock based on the frequency of the vibration component caused by the torque fluctuation of the waveform of the current of the motor M and the average value of the current of the motor M, in this case In addition to the hardness of the rock, it is also possible to judge the size of the cracks contained in the rock. In addition, specifically, when the frequency of the vibration component of the current waveform caused by the torque fluctuation of the motor M is higher than the reference frequency and the average value of the current is lower than the reference average value, the determination unit 3 If the frequency is higher than the reference frequency and the average value is higher than the reference average, it is determined that the rock is a hard rock having a small crack, and the frequency is higher than the reference frequency. If the average value is lower than the reference average value, it may be determined that the rock is soft rock.

以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形、および変更が可能である。   While the preferred embodiments of the present invention have been described above in detail, modifications, variations and changes are possible without departing from the scope of the claims.

1・・・岩盤性状判定装置、2・・・電流センサ、3・・・判定部、B・・・ブーム、C・・・カッタヘッド、E・・・自由断面掘削機、M・・・モータ DESCRIPTION OF SYMBOLS 1 ... rock quality determination apparatus, 2 ... current sensor, 3 ... determination part, B ... boom, C ... cutter head, E ... free cross section excavating machine, M ... motor

Claims (4)

自由断面掘削機のブームの先端に設けられるカッタヘッドを駆動するモータに流れる電流を検知する電流センサと、
前記電流センサで検知した前記電流の波形の振幅である波高値と、前記電流の絶対値の平均値或いは前記電流の実効値と、に基づいて前記カッタヘッドが掘削する切羽における岩盤の性状を判定する判定部とを備えた
ことを特徴とする岩盤性状判定装置。
A current sensor for detecting an electric current flowing to a motor for driving a cutter head provided at a tip of a boom of the free cross section drilling machine;
Based on the crest value which is the amplitude of the waveform of the current detected by the current sensor and the average value of the absolute value of the current or the effective value of the current, the property of the rock in the face where the cutter head excavates is determined A rock quality determination apparatus comprising: a determination unit;
自由断面掘削機のブームの先端に設けられるカッタヘッドを駆動するモータに流れる電流を検知する電流センサと、
前記電流センサで検知した前記電流の前記モータのトルク変動に起因する振動成分の周波数と、前記電流の絶対値の平均値或いは前記電流の実効値と、に基づいて前記カッタヘッドが掘削する切羽における岩盤の性状を判定する判定部とを備えた
ことを特徴とする岩盤性状判定装置。
A current sensor for detecting an electric current flowing to a motor for driving a cutter head provided at a tip of a boom of the free cross section drilling machine;
In the face where the cutter head excavates based on the frequency of the vibration component due to the torque fluctuation of the motor detected by the current sensor and the average value of the absolute value of the current or the effective value of the current A rock quality determination apparatus comprising: a determination unit that determines a property of a rock.
前記判定部は、
前記電流の波高値が基準波高値より高く、前記電流の絶対値の平均値が基準平均値より低いか或いは前記電流の実効値が基準実効値より低い場合、前記岩盤が硬岩で組成されていると判定し、
前記電流の波高値が前記基準波高値より低く、前記電流の絶対値の平均値が前記基準平均値より高いか或いは前記電流の実効値が基準実効値より高い場合、前記岩盤が軟岩で組成されていると判定する
ことを特徴とする請求項1に記載の岩盤性状判定装置。
The determination unit is
When the peak value of the current is higher than the reference peak value and the average value of the absolute values of the current is lower than the reference average value or the effective value of the current is lower than the reference effective value, the rock is composed of hard rock It is determined that
If the crest value of the current is lower than the reference crest value and the average value of the absolute values of the current is higher than the reference average value or the effective value of the current is higher than the reference effective value, the rock mass is composed of soft rock The rock quality determination apparatus according to claim 1, wherein the rock quality determination apparatus is determined.
前記判定部は、
前記周波数が基準周波数より高く、且つ、前記平均値が前記基準平均値より低いか或いは前記実効値が前記基準実効値より低い場合、前記岩盤が大きな亀裂を有する硬岩であると判定し、
前記周波数が前記基準周波数より高く、且つ、前記平均値が前記基準平均値より高いか或いは前記実効値が前記基準実効値より高い場合、前記岩盤が小さな亀裂を有する硬岩であると判定し、
前記周波数が前記基準周波数より低く、且つ、前記平均値が前記基準平均値より高いか或いは前記実効値が前記基準実効値より高い場合、前記岩盤が軟岩であると判定する
ことを特徴とする請求項2に記載の岩盤性状判定装置。
The determination unit is
If the frequency is higher than a reference frequency and the average value is lower than the reference average value or the effective value is lower than the reference effective value, it is determined that the rock is a hard rock having a large crack;
If the frequency is higher than the reference frequency and the average value is higher than the reference average value or the effective value is higher than the reference effective value, it is determined that the rock is a hard rock having a small crack;
When the frequency is lower than the reference frequency and the average value is higher than the reference average value or the effective value is higher than the reference effective value, it is determined that the rock is soft rock. The rock quality determination device according to Item 2.
JP2017193372A 2017-10-03 2017-10-03 Rock property judgment device Active JP6942910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017193372A JP6942910B2 (en) 2017-10-03 2017-10-03 Rock property judgment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017193372A JP6942910B2 (en) 2017-10-03 2017-10-03 Rock property judgment device

Publications (2)

Publication Number Publication Date
JP2019065617A true JP2019065617A (en) 2019-04-25
JP6942910B2 JP6942910B2 (en) 2021-09-29

Family

ID=66339232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017193372A Active JP6942910B2 (en) 2017-10-03 2017-10-03 Rock property judgment device

Country Status (1)

Country Link
JP (1) JP6942910B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020101042A (en) * 2018-12-25 2020-07-02 カヤバ システム マシナリー株式会社 Hardness analysis device of drilled surface and hardness analysis method of drilled surface

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762980A (en) * 1993-08-26 1995-03-07 Okumura Corp Excavation control method for tunnel excavator
JPH09170398A (en) * 1995-12-20 1997-06-30 Taisei Corp Geological distribution survey device for excavated face and the surveying and control method for excavation work
JPH1144622A (en) * 1997-07-29 1999-02-16 Ohbayashi Corp System and method for measuring bedrock strength by using free cross section excavator
JPH11223089A (en) * 1998-02-04 1999-08-17 Okumura Corp Cutting face rock condition judging method and equipment
JP2001207784A (en) * 2000-01-24 2001-08-03 Mitsubishi Heavy Ind Ltd Underground obstruction removal method and tunnel boring machine
JP2002147174A (en) * 2000-11-09 2002-05-22 Mitsubishi Heavy Ind Ltd Tunnel excavator controller and anomaly detecting device for drive motor
JP2003003789A (en) * 2001-06-27 2003-01-08 Okumura Corp Evaluation method of property of tunnel excavated natural ground
JP2003193796A (en) * 2001-12-27 2003-07-09 Okumura Corp Method for evaluating strength of subject to be drilled
JP2017025637A (en) * 2015-07-24 2017-02-02 大成建設株式会社 Tunnel excavation method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762980A (en) * 1993-08-26 1995-03-07 Okumura Corp Excavation control method for tunnel excavator
JPH09170398A (en) * 1995-12-20 1997-06-30 Taisei Corp Geological distribution survey device for excavated face and the surveying and control method for excavation work
JPH1144622A (en) * 1997-07-29 1999-02-16 Ohbayashi Corp System and method for measuring bedrock strength by using free cross section excavator
JPH11223089A (en) * 1998-02-04 1999-08-17 Okumura Corp Cutting face rock condition judging method and equipment
JP2001207784A (en) * 2000-01-24 2001-08-03 Mitsubishi Heavy Ind Ltd Underground obstruction removal method and tunnel boring machine
JP2002147174A (en) * 2000-11-09 2002-05-22 Mitsubishi Heavy Ind Ltd Tunnel excavator controller and anomaly detecting device for drive motor
JP2003003789A (en) * 2001-06-27 2003-01-08 Okumura Corp Evaluation method of property of tunnel excavated natural ground
JP2003193796A (en) * 2001-12-27 2003-07-09 Okumura Corp Method for evaluating strength of subject to be drilled
JP2017025637A (en) * 2015-07-24 2017-02-02 大成建設株式会社 Tunnel excavation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020101042A (en) * 2018-12-25 2020-07-02 カヤバ システム マシナリー株式会社 Hardness analysis device of drilled surface and hardness analysis method of drilled surface
JP7128734B2 (en) 2018-12-25 2022-08-31 Kyb株式会社 Excavated surface hardness analysis device and excavated surface hardness analysis method

Also Published As

Publication number Publication date
JP6942910B2 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
Dollinger et al. Use of the punch test for estimating TBM performance
JP7160467B2 (en) Method and construction equipment for soil work
US20160326806A1 (en) A method for energy efficient and fast rotary drilling in inhomogeneous and/or hard rock formations
WO2010065808A3 (en) Method of monitoring wear of rock bit cutters
JP2007009645A (en) Method of hydraulic fracture test
JP5819152B2 (en) Support layer arrival estimation method and support layer arrival estimation support device used in pile embedding method
CN104310259A (en) System and method for controlling floating of main winch of rotary drilling rig and rotary drilling rig
US11753935B2 (en) Directional drilling-exploring-monitoring integrated method for guaranteeing safety of underwater shield tunnel
CN103277037A (en) Pipe pile leading-hole construction method under boulder cluster geological condition
JP2019065617A (en) Rock property determination apparatus
US10214965B2 (en) Method and an installation for cutting up a mass of reinforced concrete
CN111577300A (en) Construction method for shield to penetrate through dense holes in boulder and boulder stratum
CN211819264U (en) Foundation pile drilling and digging sleeve for constructional engineering
CN114086949A (en) Geological exploration sampling method guided by hydraulic pressure
CN102852510A (en) Auxiliary driller system and drill
CN102505724B (en) Hole guiding device and hole guiding method for bad ground
JP2006124936A (en) Method and apparatus for performing survey on bedrock and the like
KR20210053521A (en) TBM Optimal Driving System for Soft Ground
KR101892714B1 (en) Auger control system with reactor start and inverter control
CN103256038B (en) The method of monitoring downhole drill bit behavior in service
Rodgers et al. Monitoring while drilling shafts in Florida limestone
CN220271061U (en) Device for detecting strength of cutting pick
JP7188768B2 (en) Support layer determination system
CN218725425U (en) Soil sampling device for ring knife method field detection test
CN219932059U (en) Hole guiding device for complex soil layer in-situ test

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210721

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210728

R151 Written notification of patent or utility model registration

Ref document number: 6942910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350