JP6131160B2 - Rock exploration method, rock exploration system, and drilling data correction device for rock exploration - Google Patents

Rock exploration method, rock exploration system, and drilling data correction device for rock exploration Download PDF

Info

Publication number
JP6131160B2
JP6131160B2 JP2013200284A JP2013200284A JP6131160B2 JP 6131160 B2 JP6131160 B2 JP 6131160B2 JP 2013200284 A JP2013200284 A JP 2013200284A JP 2013200284 A JP2013200284 A JP 2013200284A JP 6131160 B2 JP6131160 B2 JP 6131160B2
Authority
JP
Japan
Prior art keywords
drilling
rock
corrected
pressure
rock mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013200284A
Other languages
Japanese (ja)
Other versions
JP2015067957A (en
Inventor
健司 長谷部
健司 長谷部
能代 泰範
泰範 能代
和弥 石川
和弥 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Rock Drill Co Ltd
Original Assignee
Furukawa Rock Drill Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Rock Drill Co Ltd filed Critical Furukawa Rock Drill Co Ltd
Priority to JP2013200284A priority Critical patent/JP6131160B2/en
Publication of JP2015067957A publication Critical patent/JP2015067957A/en
Application granted granted Critical
Publication of JP6131160B2 publication Critical patent/JP6131160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Earth Drilling (AREA)

Description

本発明は、主にトンネル等を掘削する場合に、トンネル切羽前方の岩盤評価に採用する上で好適な岩盤探査技術に係り、特に、さく孔中のパーカッションドリル(さく岩機)から得られる情報に基づいて、対象岩盤の状況を探査する岩盤探査方法および岩盤探査システム並びに岩盤探査用穿孔データ補正装置に関する。   The present invention relates to a rock exploration technique suitable for use in rock evaluation in front of a tunnel face, mainly when excavating a tunnel or the like, and in particular, information obtained from a percussion drill (crag drill) in a drill hole. The present invention relates to a rock exploration method, a rock exploration system, and a drilling data correction device for rock exploration, for exploring the condition of a target rock.

従来から、岩盤を探査する方法として、さく孔中のさく岩機から得られるさく孔データを利用することが試みられている(例えば特許文献1参照)。従来の岩盤探査方法の多くは、さく岩機から得られるさく孔データの打撃エネルギや穿孔速度を重視しており、さく岩機が岩盤に与えた単位体積当たりの破壊エネルギを基準とするものがほとんどである。
しかし、穿孔の結果として得られる回転圧力の変化は、回転数の変化となって穿孔状態に大きな影響を与える。そのため、この評価情報が欠落すれば、重大な評価違いを起こす事態をまねくおそれがあり、岩盤評価上、回転圧力の変化は重要な評価指標になると本発明者は考えた。
Conventionally, as a method for exploring a rock mass, attempts have been made to use drilling data obtained from a drilling machine in a drilling hole (see, for example, Patent Document 1). Many conventional rock mass exploration methods place importance on the impact energy and drilling speed of drilling data obtained from drilling machines, and are based on the fracture energy per unit volume given to the bedrock by drilling machines. Is almost.
However, a change in rotational pressure obtained as a result of drilling becomes a change in the number of revolutions, which greatly affects the drilling state. For this reason, if this evaluation information is missing, there is a risk of causing a serious difference in evaluation, and the present inventor considered that a change in rotational pressure becomes an important evaluation index for rock mass evaluation.

これに対し、例えば特許文献2記載の地層岩盤判別方法は、ロータリーパーカッションドリル(穿孔機)を用い、地盤を単位体積あたりの推進エネルギ、回転エネルギおよび打撃エネルギの合計、すなわち回転エネルギを加えた全投入エネルギに基づき、総合的に評価するというものであり、比較的軟弱でかつ安定した地盤をロータリーパーカッションドリルで穿孔する場合に有効な調査方法である。   On the other hand, for example, in the method for discriminating formation rock described in Patent Document 2, a rotary percussion drill (drilling machine) is used, and the ground is added to the sum of propulsion energy, rotational energy and impact energy per unit volume, that is, rotational energy is added. This is a comprehensive evaluation based on the input energy, and is an effective investigation method when drilling a relatively soft and stable ground with a rotary percussion drill.

特公平7−49756号公報Japanese Examined Patent Publication No. 7-49756 特許第3831904号公報Japanese Patent No. 3831904

しかしながら、特許文献2記載の地層岩盤判別方法は、比較的軟弱でかつ安定した地盤の硬軟岩の評価には有効ではあるものの、複雑な状態が混在する不連続層等の岩質を捉えた評価に対しては不十分であり、特に、硬く且つ不安定な状態が混在するトンネル掘削のための探査方法としては不適当である。
例えば、破砕帯では、正常な穿孔が損なわれて不均一な繰り粉がさく孔抵抗となることからさく孔時の回転圧力が上昇して回転数が減少するところ、特許文献2記載の評価手法では、単純に回転エネルギを加えた全投入エネルギに基づき評価するので、穿孔速度の低下から破壊エネルギが上昇した場合には、「岩盤が硬くなった」との実態とは相反する間違った評価をするおそれがある。
However, although the method for discriminating formation rocks described in Patent Document 2 is effective for evaluating relatively soft and stable hard and soft rocks, it is an evaluation that captures rocks such as discontinuous layers with complex conditions. In particular, it is not suitable as an exploration method for tunnel excavation in which hard and unstable conditions are mixed.
For example, in the crushing zone, normal perforation is impaired and non-uniform flouring results in drilling resistance, so that the rotational pressure during drilling increases and the rotational speed decreases. Then, since the evaluation is simply based on the total input energy with rotational energy added, if the fracture energy increases due to a decrease in the drilling speed, an incorrect evaluation contradicting the actual condition that the bedrock has become harder is made. There is a risk.

そこで、本発明は、このような問題点に着目してなされたものであって、岩盤の硬軟岩の評価および不連続層等の岩質の評価のいずれにおいても好適に評価し得る岩盤探査方法および岩盤探査システム、並びに岩盤探査用穿孔データ補正装置を提供することを目的としている。   Accordingly, the present invention has been made paying attention to such problems, and is a rock mass exploration method that can be suitably evaluated in both evaluation of hard rocks and rocks such as discontinuous layers. Another object of the present invention is to provide a rock exploration system and a drilling data correction device for rock exploration.

上記課題を解決するために、本発明の一態様のうち、本発明の第一の態様に係る岩盤探査方法は、さく孔中のパーカッションドリルから得られる情報に基づいて、対象とする岩盤の状況を探査する岩盤探査方法であって、前記パーカッションドリルで対象とする岩盤をさく孔によって穿孔して実測穿孔データとして穿孔速度および回転圧力を取得する実測穿孔データ取得工程と、前記穿孔速度に基づいて対象とする岩盤の岩盤強度を判別する岩盤強度判別工程と、前記回転圧力に基づいて対象とする岩盤の岩盤性状を判別する岩盤性状判別工程と、前記岩盤強度と前記岩盤性状との関係に基づいて、対象とする岩盤の地山分類を判別する地山分類判別工程と、判定の基準とする基準岩盤の地山等級と前記地山分類の判別結果との関係に基づいて、対象とする岩盤の地山等級を判別する地山等級判別工程とを含むことを特徴とする。   In order to solve the above-described problems, the rock exploration method according to the first aspect of the present invention is one of the aspects of the present invention, and the condition of the target rock is based on information obtained from the percussion drill in the drilling hole. A rock exploration method for exploring, wherein a drilling speed and rotational pressure are obtained as measured drilling data by drilling a target rock with the percussion drill by drilling holes, and based on the drilling speed Based on the relationship between the rock mass strength determining step for determining the rock strength of the target rock mass, the rock mass property determining step for determining the rock mass property of the target rock mass based on the rotational pressure, and the relationship between the rock mass strength and the rock mass property Based on the relationship between the natural ground classification determination process for determining the natural rock classification of the target rock mass, and the natural rock grade of the reference rock mass as the determination reference and the determination result of the natural rock classification , Characterized in that it comprises a natural ground grade determination step of determining the natural ground grade rock of interest.

また、本発明の第二の態様に係る岩盤探査方法は、さく孔中のパーカッションドリルから得られる情報に基づいて、対象とする岩盤の状況を探査する岩盤探査方法であって、判定の基準とする基準岩盤に対する前記パーカッションドリルでの予備穿孔に基づいて基準穿孔値を設定する基準穿孔値設定工程と、前記パーカッションドリルで対象とする岩盤をさく孔によって穿孔して実測穿孔データを取得する実測穿孔データ取得工程と、前記基準穿孔値および前記実測穿孔データ相互の穿孔速度の比較に基づいて対象とする岩盤の岩盤強度を判別する岩盤強度判別工程と、前記基準穿孔値および前記実測穿孔データ相互の回転圧力の比較に基づいて対象とする岩盤の岩盤性状を判別する岩盤性状判別工程と、前記岩盤強度判別工程での岩盤強度の判別結果および前記岩盤性状判別工程での岩盤性状の判別結果相互の関係に基づいて、対象とする岩盤の地山分類を判別する地山分類判別工程と、前記基準岩盤の地山等級に対する前記地山分類判別工程での地山分類の判別結果の関係に基づいて、対象とする岩盤の地山等級を判別する地山等級判別工程とを含むことを特徴とする。   Further, the rock exploration method according to the second aspect of the present invention is a rock exploration method for exploring the condition of a target rock based on information obtained from a percussion drill in a drilling hole, and A reference drilling value setting step for setting a reference drilling value based on a preliminary drilling with the percussion drill for the reference rock mass to be measured, and an actual drilling for drilling the target rock with the percussion drill to obtain measured drilling data A data acquisition step, a rock strength discriminating step for discriminating a rock strength of a target rock based on a comparison of a drilling speed between the reference drilling value and the measured drilling data, and a mutual relationship between the reference drilling value and the measured drilling data The rock mass discrimination process to discriminate the rock mass of the target rock mass based on the comparison of the rotation pressure, and the rock mass strength in the rock mass discrimination process Based on the relationship between the determination result and the rock property determination result in the rock property determination step, the natural ground classification determination step for determining the natural ground classification of the target rock mass, and the ground relative to the natural rock grade of the reference rock mass And a natural ground grade discrimination step of discriminating the natural ground grade of the target rock based on the relationship of the discrimination results of the natural ground classification in the mountain classification discrimination step.

また、上記課題を解決するために、本発明の一態様に係る岩盤探査システムは、さく孔中のパーカッションドリルから得られる情報に基づいて、対象とする岩盤の状況を探査する岩盤探査システムであって、前記さく岩機で対象とする岩盤をさく孔によって穿孔して実測穿孔データとして穿孔速度および回転圧力を取得する実測穿孔データ取得手段と、前記穿孔速度に基づいて対象とする岩盤の岩盤強度を判別する岩盤強度判別手段と、前記回転圧力に基づいて対象とする岩盤の岩盤性状を判別する岩盤性状判別手段と、前記岩盤強度と前記岩盤性状との関係に基づいて、対象とする岩盤の地山分類を判別する地山分類判別手段と、判定の基準とする基準岩盤の地山等級と前記地山分類の判別結果との関係に基づいて、対象とする岩盤の地山等級を判別する地山等級判別手段とを有することを特徴とする。   In order to solve the above problems, a rock mass exploration system according to an aspect of the present invention is a rock mass exploration system for exploring the condition of a target rock mass based on information obtained from a percussion drill in a drill hole. The actual rock drilling data acquisition means for drilling the target rock mass with the drilling hole by the drilling hole and acquiring the drilling speed and rotational pressure as the actual drilling data, and the rock mass strength of the target rock mass based on the drilling speed The rock strength discriminating means for discriminating the rock mass, the rock mass property discriminating means for discriminating the rock mass property of the target rock mass based on the rotational pressure, and based on the relationship between the rock mass strength and the rock mass property, Based on the relationship between the natural ground classification discriminating means for discriminating the natural ground classification, the natural rock grade of the reference rock mass used as the reference for determination, and the discrimination result of the natural ground classification, the natural ground of the target rock mass And having a natural ground grade judging means for judging grade.

本発明によれば、穿孔速度に基づく岩盤強度の判別と、回転圧力に基づく岩盤性状の判別とを別個に行い、これらの判別結果相互の関係に基づいて対象とする岩盤の地山分類を判別し、さらに、基準岩盤の地山等級と地山分類の判別結果との関係に基づいて対象とする岩盤の地山等級を判別するので、対象とする岩盤が複雑な状態が混在する岩盤であっても、穿孔速度に基づいて得られた岩盤の硬軟評価を分類しつつ、回転圧力の変化を複雑な岩盤性状に応じて加わる負荷抵抗の度合いとして捉えて評価分類した上で、これらを組み合わせて総合評価することができる。そのため、パーカッションドリルの穿孔理論に即してパラメータを選定して岩盤を評価することができるため、基準岩盤に対する相対比較を精度良く行うことができる。したがって、複雑な状態が混在する岩盤であっても、その岩盤の硬軟岩の評価および不連続層等の岩質の評価のいずれにおいても好適な岩盤評価を行うことができる。   According to the present invention, the determination of the rock mass strength based on the drilling speed and the determination of the rock property based on the rotational pressure are performed separately, and the ground classification of the target rock mass is determined based on the relationship between these determination results. In addition, the target rock mass is determined based on the relationship between the standard rock mass level and the classification result of the natural rock classification. However, while classifying the rock hardness evaluation obtained based on the drilling speed, the change in rotational pressure is regarded as the degree of load resistance applied according to the complicated rock properties, and the classification is performed. A comprehensive evaluation is possible. Therefore, since the rock can be evaluated by selecting parameters according to the drilling theory of the percussion drill, the relative comparison with the reference rock can be performed with high accuracy. Therefore, even if it is a rock in which a complicated state is mixed, a suitable rock can be evaluated both in the evaluation of the hard soft rock of the rock and in the evaluation of the rock quality such as the discontinuous layer.

なお、パーカッションドリル(さく岩機)は、打撃機構で発生させた衝撃波を回転機構で位相を変化させながらロッド先端のビットを介して岩盤に伝えて岩盤を破砕しつつ、送り機構で孔の奥底に押し込んで掘り進むという、さく孔による穿孔を行うものであるのに対し、上述したロータリーパーカッションドリル(穿孔機)は、回転トルクで地盤を削り取るものであって、これに打撃機能を加えることで穿孔能力を高めた装置であり(回転だけで穿孔する場合もある)、両者は穿孔のメカニズムが基本的に異なるものである。   In addition, percussion drills (shear rock drills) transmit shock waves generated by the striking mechanism to the bedrock through the bit at the end of the rod while changing the phase using the rotation mechanism, and crush the bedrock while using the feed mechanism to break the bottom of the hole. The above-mentioned rotary percussion drill (drilling machine) scrapes the ground with rotational torque, and drills by adding a striking function. It is a device with enhanced capability (sometimes it is drilled only by rotation), and both have fundamentally different drilling mechanisms.

ここで、本発明の一態様に係る岩盤探査方法において、前記岩盤強度判別工程は、判別に用いる穿孔速度として、前記実測穿孔データとして取得された穿孔速度に補正式を適用して得られた補正穿孔速度を用い、前記岩盤性状判別工程は、判別に用いる回転圧力として、前記実測穿孔データとして取得された回転圧力に補正式を適用して得られた補正回転圧力を用い、実測穿孔データ取得工程は、穿孔開始時は予め設定された基準穿孔値に基づいて穿孔を行い、その後は、穿孔に用いる穿孔速度または回転圧力として、前記補正穿孔速度または補正回転圧力を穿孔状況に応じて用いることは好ましい。   Here, in the rock mass exploration method according to an aspect of the present invention, the rock strength determination step includes a correction obtained by applying a correction formula to the drilling speed acquired as the actually measured drilling data as the drilling speed used for the determination. Using the drilling speed, the rock property determination step uses the corrected rotation pressure obtained by applying a correction formula to the rotation pressure acquired as the measured drilling data as the rotation pressure used for the determination, and the measured drilling data acquisition step The drilling is performed based on a preset reference drilling value at the start of drilling, and thereafter, the corrected drilling speed or the corrected rotational pressure is used according to the drilling situation as the drilling speed or the rotational pressure used for drilling. preferable.

このような構成であれば、補正を行わない場合には膨大な測定時間を要するところ、実測穿孔データ取得工程での穿孔速度または回転圧力をその時々の穿孔状況に応じて最適となるように補正できるので、測定時間を短縮できるとともに、穿孔できなくなるような事態を未然に防止することができる。また、岩盤強度判別工程および岩盤性状判別工程で判別に用いるデータが補正されるので、探査精度を向上させる上でより好適である。   With such a configuration, if correction is not performed, it takes an enormous amount of measurement time. However, the drilling speed or rotational pressure in the actual drilling data acquisition process is corrected so as to be optimized according to the drilling situation at that time. As a result, the measurement time can be shortened and a situation in which drilling cannot be performed can be prevented. Further, since the data used for discrimination in the rock mass strength discrimination step and the rock mass property discrimination step is corrected, it is more suitable for improving the exploration accuracy.

また、本発明の一態様に係る岩盤探査方法において、前記基準岩盤は、予めボーリングデータを採取した岩盤であってその地山等級がB、CI、CIIのいずれかの岩盤から選択されたものであることは好ましい。
このような構成であれば、岩盤評価に際し、事前に実施されたボーリングデータの情報が取得されており、これによる地山等級区分が判る岩盤が基準岩盤に設定される。そのため、この基準岩盤に対する想定または試験穿孔等の予備穿孔に基づいて基準穿孔値を設定した上で岩盤評価を行うことは精度の高い岩盤の硬軟岩の評価および不連続層等の岩質の評価を行う上でより好適である。
In the rock exploration method according to one aspect of the present invention, the reference rock is a rock from which boring data has been collected in advance, and the ground level is selected from any one of B, CI, and CII. It is preferable that there is.
If it is such a structure, the information of the boring data implemented beforehand will be acquired in the case of rock mass evaluation, and the rock mass by which the ground grade classification by this will be understood will be set as a reference rock mass. Therefore, it is important to evaluate the rock mass after setting the standard drilling value based on the assumption for the standard rock mass or the preliminary drilling such as the test drilling. It is more suitable for performing.

また、上記課題を解決するために、本発明の一態様に係る岩盤探査用穿孔データ補正装置は、さく孔中のパーカッションドリルから得られる情報に基づいて、対象とする岩盤の状況を探査する岩盤探査システムに用いられ、前記パーカッションドリルでのさく孔に用いる穿孔データを穿孔状況に応じて補正する岩盤探査用穿孔データ補正装置であって、前記岩盤探査システムは、前記パーカッションドリルで対象とする岩盤をさく孔によって穿孔して実測穿孔データとして穿孔速度および回転圧力を取得する、本発明の一態様に係る岩盤探査システムであり、当該穿孔データ補正装置は、前記実測穿孔データとして取得された穿孔速度に補正式として(式1)を適用して補正穿孔速度を算出する補正穿孔速度算出手段と、前記実測穿孔データとして取得された回転圧力に補正式として(式2)を適用して補正回転圧力を算出する補正回転圧力算出手段とを有し、算出された補正穿孔速度または補正回転圧力をさく孔に用いる穿孔データとして出力することを特徴とする。   In order to solve the above-mentioned problem, a drilling data correction device for rock exploration according to an aspect of the present invention is a rock that explores the condition of a target rock based on information obtained from a percussion drill in a drilling hole. A drilling data correction device for rock exploration used in a survey system, which corrects drilling data used for drilling holes in the percussion drill according to a drilling situation, wherein the rock exploration system is the target rock in the percussion drill A rock exploration system according to an aspect of the present invention, wherein the drilling speed and the rotational pressure are acquired as measured drilling data by drilling with a drill hole, and the drilling data correction device includes the drilling speed acquired as the measured drilling data. A correction drilling speed calculating means for calculating a corrected drilling speed by applying (Equation 1) as a correction formula to the correction formula, and the measured drilling data Correction rotational pressure calculating means for calculating the corrected rotational pressure by applying (Equation 2) as a correction formula to the rotational pressure acquired in this manner, and using the calculated corrected drilling speed or corrected rotational pressure for the drilling hole. It is characterized by being output as perforation data.

本発明の一態様に係る岩盤探査用穿孔データ補正装置によれば、さく孔に用いる穿孔データを穿孔状況に応じて補正し、これを出力することができるので、これを岩盤探査システムに用いれば、測定時間を短縮できるとともに、穿孔できなくなるような事態を未然に防止することができる。また、探査精度を向上させることができる。   According to the drilling data correction device for rock exploration according to one aspect of the present invention, the drilling data used for drilling can be corrected according to the drilling situation and output, so if this is used in a rock drilling system, In addition to shortening the measurement time, it is possible to prevent a situation in which drilling cannot be performed. In addition, the search accuracy can be improved.

上述のように、本発明によれば、岩盤の硬軟岩の評価および不連続層等の岩質の評価のいずれにおいても好適に評価できる。   As described above, according to the present invention, the evaluation can be suitably performed in both the evaluation of hard and soft rocks and the evaluation of rock quality such as discontinuous layers.

本発明の一態様に係る岩盤探査方法を実行するトンネル切羽前方探査システムを説明する模式図である。It is a mimetic diagram explaining a tunnel face front exploration system which performs a rock exploration method concerning one mode of the present invention. 図1のトンネル切羽前方探査システムで実行される地山等級判別処理のフローチャートである。It is a flowchart of the natural ground grade discrimination | determination process performed with the tunnel face front search system of FIG. 本発明に係るトンネル切羽前方探査システムによるトンネル切羽前方探査で得られた随時の穿孔長における穿孔速度比の一実施例を示すグラフである。It is a graph which shows one Example of the drilling speed ratio in the drilling length at any time obtained by the tunnel face front search by the tunnel face front search system which concerns on this invention. 本発明に係るトンネル切羽前方探査システムによるトンネル切羽前方探査で得られた随時の穿孔長における回転圧力比の一実施例を示すグラフである。It is a graph which shows one Example of the rotational pressure ratio in the drilling length at any time obtained by the tunnel face front search by the tunnel face front search system which concerns on this invention. 本発明に係るトンネル切羽前方探査システムによるトンネル切羽前方探査で得られた随時の穿孔長における地山等級区分の一実施例を示すグラフである。It is a graph which shows one Example of the ground grade classification | category in the drilling length at any time obtained by the tunnel face front search by the tunnel face front search system which concerns on this invention.

以下、本発明の一実施形態について、図面を適宜参照しつつ説明する。
本実施形態の岩盤探査方法は、岩盤を探査する一例として、トンネルの切羽前方の岩盤を探査するトンネル切羽前方探査システムによって実施する例であり、パーカッションドリルで切羽前方の岩盤をさく孔によって穿孔し、そのさく孔時に得られる穿孔データに基づいて、ビットが打撃している個所における随時の穿孔長に対する岩盤の種類(地山等級区分)を自動的に判定するものである。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings as appropriate.
The rock mass exploration method of the present embodiment is an example implemented by a tunnel face front exploration system for exploring a rock surface in front of a tunnel face as an example of exploring the rock, and a rock in front of the face is drilled by a drill hole with a percussion drill. Based on the drilling data obtained at the time of drilling, the type of rock mass (geological grade classification) with respect to the drilling length at any time where the bit is hit is automatically determined.

詳しくは、図1に示すように、このトンネル切羽前方探査システム1は、パーカッションドリル10を備えている。パーカッションドリル10は、自走可能な台車2に搭載されている。台車2には、油圧発生装置およびエンジン等を含む駆動部8が備えられる。台車2の前方には起伏自在にブーム3が設けられ、ブーム3の先端にガイドシェル4を介して油圧式のドリフタ本体5が取り付けられている。ドリフタ本体5は、不図示のフィード機構によりガイドシェル4に沿ってスライド移動可能になっている。ドリフタ本体5には、先端にビット7を有するロッド6が装着されている。ビット7の最先端部には超硬チップが埋め込まれている。また、ドリフタ本体5は、ロッド6に打撃力を加えるパーカッション機構と、岩盤と接触するビット7の位相を変化させるためにロッド6に回転を与える回転機構とを備えている。ここで、パーカッションドリル10における回転機構の役割は、ビット先端の超硬チップと岩盤の回転軸回りの接触状態を1打撃毎に変化させることであり、回転トルクで岩盤を削り取るというものではない。なお、ロッド6は、穿孔長に応じ、所定長のさく孔がなされる毎に継ぎ足し可能とされている。   Specifically, as shown in FIG. 1, the tunnel face forward exploration system 1 includes a percussion drill 10. The percussion drill 10 is mounted on a self-propelled carriage 2. The carriage 2 includes a drive unit 8 including a hydraulic pressure generator and an engine. A boom 3 is provided in front of the carriage 2 so as to be raised and lowered. A hydraulic drifter body 5 is attached to the tip of the boom 3 via a guide shell 4. The drifter body 5 is slidable along the guide shell 4 by a feed mechanism (not shown). A rod 6 having a bit 7 at the tip is attached to the drifter body 5. A carbide chip is embedded in the most advanced portion of the bit 7. The drifter body 5 includes a percussion mechanism that applies a striking force to the rod 6 and a rotation mechanism that rotates the rod 6 in order to change the phase of the bit 7 that contacts the rock. Here, the role of the rotation mechanism in the percussion drill 10 is to change the state of contact between the carbide tip at the tip of the bit and the rotation axis of the rock mass for each impact, and does not scrape the rock mass with rotational torque. The rod 6 can be added each time a predetermined length of drilling is made according to the perforation length.

そして、このトンネル切羽前方探査システム1では、上記パーカッションドリル10で探査の対象とする岩盤をさく孔し、さく孔時に随時に取得された油圧データが制御装置20に入力されるようになっている。制御装置20は、コンピュータを含む情報処理装置であり、後述の地山等級判別処理に係る所定のプログラムを実行して地山等級を自動的に判別可能になっている。   In this tunnel face front exploration system 1, the percussion drill 10 drills a rock to be surveyed, and hydraulic data acquired at any time during drilling is input to the control device 20. . The control device 20 is an information processing device including a computer, and can automatically determine the ground level by executing a predetermined program related to the ground level determination process described later.

次に、上記トンネル切羽前方探査システム1の制御装置20で実行される地山等級判別処理について図2を参照しつつ説明する。
この地山等級判別処理は、上記制御装置20で実行されると、図2のステップS1に移行して、まず、予め記憶されている基準穿孔値を読み込んで、その読み込んだ基準穿孔値を以降の判別処理の基準値として設定する(基準穿孔値設定工程)。この基準穿孔値の設定に際しては、同一現場の地山の中において、予めボーリングデータを採取した岩盤から地山等級がB、CI、CIIのいずれかの岩盤を選択してこれを「基準岩盤」とし、この基準岩盤に対してパーカッションドリルで予備穿孔を行うことにより設定される。本実施形態では、基準岩盤は、B、CI、CII以外の地山等級からは選定しない。ここで、このステップS1での「地山等級」は、「道路トンネル技術基準(構造編)・同解説 平成15年11月 社団法人日本道路協会 表5−2−1 地山分類表」により設定する。
Next, the ground level classification process executed by the control device 20 of the tunnel face forward exploration system 1 will be described with reference to FIG.
When this natural ground grade discrimination process is executed by the control device 20, the process proceeds to step S1 in FIG. 2 and first reads a pre-stored reference perforation value, and then reads the read standard perforation value. Is set as a reference value for the discrimination processing (reference perforation value setting step). When setting the standard drilling value, select a rock mass of B, CI or CII from the rocks from which the boring data was collected in advance in the ground at the same site and select this as the “standard rock mass”. It is set by performing preliminary drilling with a percussion drill on this reference rock. In this embodiment, the reference bedrock is not selected from ground grades other than B, CI, and CII. Here, the “ground mountain grade” in this step S1 is set according to “Road Tunnel Technical Standard (Structure) / Summary November 2003 Japan Road Association Table 5-2-1 Ground Mountain Classification Table”. To do.

そして、上記の予備穿孔時に取得した油圧データに基づく打撃圧力、フィード圧力、穿孔速度、回転圧力を上記基準穿孔値(基準打撃圧力、基準フィード圧力、基準穿孔速度、基準回転圧力)とする。
基準穿孔値は、予備穿孔時に取得された基準フィード圧力、基準打撃圧力、基準回転圧力、基準穿孔速度である。各基準圧力は、上記ドリフタ本体5をスライド移動させるフィード機構の油圧、ロッド6を打撃するパーカッション機構の油圧、ロッド6を回転させる回転機構の油圧をそれぞれ検出可能に設けられた各油圧センサで計測する。基準穿孔速度は上記のフィード機構に設けられた作動量検出センサの計測値により算出する。
Then, the striking pressure, feed pressure, perforation speed, and rotation pressure based on the hydraulic pressure data acquired at the time of the preliminary perforation are set as the reference perforation values (reference striking pressure, reference feed pressure, reference perforation speed, and reference rotation pressure).
The reference piercing value is a reference feed pressure, a reference striking pressure, a reference rotation pressure, and a reference piercing speed acquired at the time of preliminary piercing. Each reference pressure is measured by each hydraulic sensor provided so that it can detect the hydraulic pressure of the feed mechanism that slides the drifter body 5, the hydraulic pressure of the percussion mechanism that strikes the rod 6, and the hydraulic pressure of the rotation mechanism that rotates the rod 6. To do. The reference drilling speed is calculated from the measured value of the operation amount detection sensor provided in the feed mechanism.

ステップS1で基準穿孔値を設定後、続くステップS2に移行し、切羽前方の地山に対して実測穿孔を行う。実測穿孔は、ロッド6を継ぎ足しながら行う長孔穿孔である。当該実測穿孔時の各穿孔条件は、上記予備穿孔時の条件を基準とする。実測穿孔中は、打撃圧力、フィード圧力、穿孔速度、回転圧力を各油圧センサで随時に計測し、制御装置20はこれを取得して、実測穿孔値(実測打撃圧力、実測フィード圧力、実測穿孔速度、実測回転圧力)とする(実測穿孔データ取得工程)。   After setting the reference drilling value in step S1, the process proceeds to the subsequent step S2, and actual drilling is performed on the ground in front of the face. The measured drilling is a long hole drilling while adding the rod 6. Each drilling condition at the time of the actual drilling is based on the condition at the time of the preliminary drilling. During the actual drilling, the striking pressure, feed pressure, drilling speed, and rotational pressure are measured at any time by each hydraulic sensor, and the control device 20 obtains the measured drilling values (measured hammering pressure, actual feed pressure, actual drilling). Speed, measured rotational pressure) (actual drilling data acquisition step).

実測穿孔値が得られたら、続くステップS3に移行し、実測穿孔値を補正式に適用して補正穿孔値(補正穿孔速度、補正回転圧力)を算出する。ここで、補正穿孔速度は、実測穿孔速度を、基準フィード圧力と実測フィード圧力との関係、基準打撃圧力と実測打撃圧力との関係、およびパーカッションドリルの穿孔用のロッドの継ぎ足し本数の状況との関係に応じて補正したものを用い、補正回転圧力は、実測回転圧力を、パーカッションドリルの穿孔用のロッドの継ぎ足し本数の状況に応じて補正したものを用いることは好ましい。補正穿孔値の適用は、ロッド6が2本以上継ぎ足されたときに行い、ロッド6が1本のときは補正することなく以降のステップに移行する。   When the actual drilling value is obtained, the process proceeds to the subsequent step S3, and the corrected drilling value (corrected drilling speed, corrected rotational pressure) is calculated by applying the actual drilling value to the correction formula. Here, the corrected drilling speed is calculated by comparing the measured drilling speed with the relationship between the reference feed pressure and the measured feed pressure, the relationship between the reference striking pressure and the measured striking pressure, and the situation of the number of rods for percussion drill drilling. It is preferable to use one corrected in accordance with the relationship, and the corrected rotational pressure is obtained by correcting the actually measured rotational pressure in accordance with the situation of the number of rods for percussion drill drilling. The correction perforation value is applied when two or more rods 6 are added, and when there is one rod 6, the process proceeds to the subsequent steps without correction.

本実施形態では、補正穿孔値として、以下の(式1)、(式2)により、補正穿孔速度および補正回転圧力をそれぞれ算出した。(式1)、(式2)において、ロッド6を1本継ぎ足すことによる減衰率をDとした。減衰率は、例えば、0<D≦0.1の範囲で設定する。なお、本実施形態では、減衰率を2%(D=0.02)とした。   In the present embodiment, the corrected drilling speed and the corrected rotational pressure are calculated as the corrected drilling values by the following (Formula 1) and (Formula 2), respectively. In (Equation 1) and (Equation 2), D is the attenuation factor obtained by adding one rod 6. The attenuation rate is set in a range of 0 <D ≦ 0.1, for example. In the present embodiment, the attenuation factor is 2% (D = 0.02).

Figure 0006131160
Figure 0006131160

Figure 0006131160
Figure 0006131160

補正穿孔値(補正穿孔速度、補正回転圧力)を算出したら、以下のステップS4〜S6に移行して、地山分類の判別処理を実行する。地山分類の判別処理は、基準穿孔値と補正穿孔値との対比により地山分類を判別する。すなわち、地山分類の判別処理にあたっては、まず、ステップS4に移行し、基準岩盤よりも硬いものから軟らかいものに亘る岩盤の硬軟を、穿孔速度をパラメータとして複数の区分に分類する(岩盤強度判別工程)。本実施形態の例では、岩盤の硬軟は、基準穿孔速度を100とし、補正穿孔速度の変動値により岩盤の硬軟を以下のX1〜X4に分類した。
X1:70以下の場合:基準岩盤よりも硬い安定岩盤
X2:70を超え130以下の場合:基準岩盤と同等の岩盤
X3:130を超え200以下の場合:基準岩盤よりも軟らかい安定岩盤
X4:200を超える場合:基準岩盤よりも非常に軟らかい岩盤
When the corrected perforation value (corrected perforation speed, corrected rotational pressure) is calculated, the process proceeds to the following steps S4 to S6, and a discrimination process of ground mountain classification is executed. In the determination process of the natural ground classification, the natural ground classification is determined by comparing the reference drilling value and the corrected drilling value. That is, in the discrimination processing of the natural ground classification, first, the process proceeds to step S4, and the hardness of the rock ranging from the harder to the softer than the reference rock is classified into a plurality of categories using the drilling speed as a parameter (rock strength determination). Process). In the example of the present embodiment, the rock hardness is classified into the following X1 to X4 based on the fluctuation value of the corrected drilling speed with the reference drilling speed set to 100.
X1: 70 or less: Stable rock that is harder than the reference rock X2: More than 70 and 130 or less: The same rock as the reference rock X3: More than 130 and 200 or less: Stable rock that is softer than the reference rock X4: 200 Exceeding: Rock bed that is much softer than the standard bedrock

次に、続くステップS5に移行し、回転圧力をパラメータとして岩盤の性状を複数の区分に分類する(岩盤性状判別工程)。本実施形態での岩盤の性状は、基準回転圧力を100とし、補正回転圧力の変動値により岩盤の性状を以下のY1〜Y4に分類した。
Y1:80以下の場合:粘土層・空洞
Y2:80を超え120以下の場合:基準岩盤と同等の性状
Y3:120を超え140以下の場合:強風化・やや粗い不連続層
Y4:140を超える場合:粗い不連続層(破砕帯)
Next, the process proceeds to step S5, where the rock properties are classified into a plurality of sections using the rotational pressure as a parameter (rock property determining step). The properties of the rock mass in this embodiment are classified into the following Y1 to Y4 according to the fluctuation value of the corrected rotational pressure, with the reference rotational pressure being 100.
Y1: When 80 or less: Clay layer / cavity Y2: When exceeding 80 and 120 or less: Properties equivalent to the standard bedrock Y3: When exceeding 120 and 140 or less: Strong weathering / Slightly rough discontinuous layer Y4: Over 140 Case: Rough discontinuous layer (fracture zone)

次に、続くステップS6に移行し、上記複数の区分に分類された岩盤の硬軟と岩盤の性状を総合して地山分類を判別する(地山分類判別工程)。本実施形態のステップS6では、地山分類の判別にあたって、先ず、総合的な地山分類を以下のZ1〜Z6として設定する。
Z1:標準より硬い安定岩盤
Z2:標準岩盤
Z3:標準より軟らかい安定岩盤
Z4:強風化・やや粗い不連続層
Z5:標準より非常に軟らかい岩盤
Z6:粘土層・空洞、または粗い不連続層(破砕帯)
Next, the process proceeds to the subsequent step S6, and the natural ground classification is determined by combining the rock hardness and rock properties classified into the plurality of categories (natural ground classification determining step). In step S6 of the present embodiment, in determining the natural ground classification, first, a comprehensive natural ground classification is set as the following Z1 to Z6.
Z1: Stabilized rock mass harder than standard Z2: Standard rock mass Z3: Stable rock mass softer than standard Z4: Strongly weathered / slightly rough discontinuous layer Z5: Rock mass much softer than standard Z6: Clay layer / cavity or coarse discontinuous layer (crushing) band)

そして、上記岩盤の硬軟:X1〜X4と(ステップS4)、岩盤の性状:Y1〜Y4(ステップS5)の判別結果相互の関係を、程度の良いものから悪いものに亘って相互をマトリクス状に配し、これらの組合せに対応して得られる地山分類:Z1〜Z6を以下の表1に基づき判別する。   And the relationship between the discrimination results of the rock mass hardness: X1 to X4 and (step S4), and the rock mass properties: Y1 to Y4 (step S5), in a matrix form, ranging from good to bad. The natural ground classifications Z1 to Z6 obtained in correspondence with these combinations are determined based on Table 1 below.

Figure 0006131160
Figure 0006131160

次に、ステップS7に移行し、上記地山分類Z1〜Z6と基準岩盤の地山等級B、CI、CIIとから、最終的に切羽前方の地山等級を判別する(地山等級判別工程)。ここで、基準岩盤の地山等級B、CI、CIIと地山分類Z1〜Z6相互の関係を、程度の良いものから悪いものに亘って相互をマトリクス状に配した。そして、これらの組み合わせに対応して得られる切羽前方探査結果としての地山等級は以下の表2の通りとした。   Next, the process proceeds to step S7, and finally the ground level in front of the face is determined from the ground level classifications Z1 to Z6 and the ground level B, CI, CII of the reference rock (ground level classification step). . Here, the relationship between the ground rock grades B, CI, and CII of the reference rock mass and the ground rock classifications Z1 to Z6 was arranged in a matrix from a good level to a bad level. And the natural ground grade as a result of exploration of the front face of the face obtained corresponding to these combinations is as shown in Table 2 below.

Figure 0006131160
Figure 0006131160

以上の一連の処理により、切羽前方探査結果としての地山等級が得られるので、これを当該穿孔長(m)に対応付けしたデータとして記憶装置に格納してステップS8に移行する。
ステップS8では、上記実測穿孔が終了しているか否かを判定し、実測穿孔が終了していれば(Yes)、当該地山等級判別処理を終了し、そうでなければ(No)処理をステップS2に戻し、実測穿孔が終了するまで上記ステップS2〜7の処理を繰り返し実行する。このように、当該地山等級判別処理は、随時の実測穿孔値を取得し、これに基づく補正穿孔値の算出から地山等級の判別に係る一連の地山等級判別処理が、コンピュータプログラムで自動的に処理される。
By the series of processes described above, the natural ground grade as a result of the search for the front face of the face is obtained, and this is stored in the storage device as data associated with the perforation length (m), and the process proceeds to step S8.
In step S8, it is determined whether or not the actual drilling has been completed. If the actual drilling has been completed (Yes), the natural ground grade determination process is terminated; otherwise (No) the process is performed. Returning to S2, the processes in steps S2 to S7 are repeated until the actual drilling is completed. In this way, the natural ground grade discrimination process obtains an actual measured drilling value at any time, and a series of natural ground grade discrimination processes related to the judgment of the natural ground grade from the calculation of the corrected drilling value based on this is automatically performed by the computer program. Processed.

次に、このトンネル切羽前方探査システム1によるトンネル切羽前方探査方法(岩盤探査方法)の作用効果について説明する。
上述のトンネル切羽前方探査システム1で岩盤探査を行う場合は、予め同一現場の地山の中にてボーリングデータを採取した岩盤から地山等級がB、CI、CIIのいずれかの岩盤を選択してこれを基準岩盤とし、この基準岩盤に対してパーカッションドリル10で予備穿孔を行って、基準穿孔値(基準打撃圧力、基準フィード圧力、基準穿孔速度、基準回転圧力)を設定しておく(ステップS1)。
Next, the effect of the tunnel face forward exploration method (rock exploration method) by the tunnel face forward exploration system 1 will be described.
When rock exploration is performed with the tunnel face forward exploration system 1 described above, select a rock mass of B, CI, or CII from the rock mass from which the drilling data has been collected in advance. This is used as a reference rock mass, and preliminary drilling is performed on the reference rock mass with a percussion drill 10 to set a reference drilling value (reference striking pressure, reference feed pressure, reference drilling speed, reference rotational pressure) (step). S1).

次いで、オペレータは、台車2、ブーム3等の移動により、切羽前方探査を行う地山の対象の岩盤に対して所期の位置にパーカッションドリル10を設置する。なお、図1に示す例は、トンネルの切羽前方探査を目的として、トンネルTの切羽Sに対してパーカッションドリル10を設置した例である。
オペレータは、パーカッションドリル10を対象岩盤の所期の位置に設置したら、ドリフタ本体5を駆動してロッド6を継ぎ足しながら長孔の実測穿孔を開始する。これにより、同時に制御装置20では上記地山等級判別処理が実行され、さく孔時に随時に取得された油圧データが制御装置20に入力されて実測穿孔データが取得される(ステップS2)。なお、当該実測穿孔を開始時の各穿孔条件は、上記予備穿孔時の基準穿孔値を基準とするが、地山の状態やロッド6の継ぎ足し状況に応じて適宜穿孔条件(穿孔速度、回転圧力)を変更しながら実測穿孔を行う。本実施形態では、実測穿孔に用いる穿孔速度または回転圧力として、上述した補正穿孔速度または補正回転圧力を用いている。なお、穿孔条件の適宜の変更は、制御装置20からの指令によって自動的に行ってもよいし、状況に応じてオペレータが手動によって変更してもよい。これにより、切羽前方探査の時間短縮を図りながらもロッド6が岩盤に喰い込み穿孔不能(いわゆる、「タケノコ状態」)となることを防止する。
Next, the operator installs the percussion drill 10 at a predetermined position with respect to the target rock of the natural ground to be searched forward of the face by moving the carriage 2, the boom 3, and the like. The example shown in FIG. 1 is an example in which a percussion drill 10 is installed on the face S of the tunnel T for the purpose of exploring the front face of the tunnel.
When the operator installs the percussion drill 10 at an intended position of the target rock, the operator starts the actual drilling of the long hole while driving the drifter body 5 and adding the rod 6. As a result, the control device 20 simultaneously executes the above-mentioned ground level classification process, and hydraulic data acquired at the time of drilling is input to the control device 20 to acquire measured drilling data (step S2). The respective drilling conditions at the start of the actual drilling are based on the reference drilling value at the time of the preliminary drilling. However, the drilling conditions (drilling speed, rotational pressure) are appropriately determined according to the state of the ground and the addition state of the rod 6. ) Measure drilling while changing. In the present embodiment, the above-described corrected drilling speed or corrected rotational pressure is used as the drilling speed or rotational pressure used for the actual drilling. The appropriate change of the drilling conditions may be automatically performed according to a command from the control device 20, or may be manually changed by the operator depending on the situation. This prevents the rod 6 from biting into the rock and making it unperforated (so-called “bamboo shoot state”) while shortening the time for exploring the front of the face.

以降、オペレータが実測穿孔を継続しているときは、制御装置20では、実測穿孔が終了するまで上記ステップS2〜7の処理を繰り返し実行し、穿孔長の全長に亘って切羽前方探査結果としての地山等級を、当該穿孔長(m)に対応付けしたデータとして記憶装置に格納する(ステップS2〜7)。
これにより、このトンネル切羽前方探査システム1であれば、さく孔中のパーカッションドリル10から随時に得られる穿孔情報に基づいて、探査対象の岩盤の状況を探査することができる。なお、図3〜図5は、地山等級区分が「CI」である岩盤を基準岩盤として選定した上で、探査対象の岩盤に穿孔長30mに渡って実測穿孔を行い、随時に得られる穿孔情報に基づいて地山等級区分を自動判定したトンネル切羽前方探査の実施例である。
Thereafter, when the operator continues the actual drilling, the control device 20 repeatedly executes the processes of steps S2 to S7 until the actual drilling is completed, and as a result of exploring the front of the face over the entire length of the drilling length. The natural ground grade is stored in the storage device as data associated with the perforation length (m) (steps S2 to S7).
Thereby, if it is this tunnel face front exploration system 1, based on the drilling information obtained at any time from the percussion drill 10 in a drilling hole, the condition of the rock mass to be explored can be explored. In addition, in FIGS. 3 to 5, drilling obtained at any time is carried out by conducting actual drilling over the drilling length of 30 m on the rock to be surveyed after selecting the rock mass with the ground grade classification “CI” as the reference rock mass. It is the Example of the tunnel face front exploration which determined the natural ground grade division automatically based on information.

このように、本実施形態のトンネル切羽前方探査システム1で行われる岩盤探査方法によれば、岩盤の硬軟を穿孔速度に基づき分類し(ステップS4)、岩盤の性状を回転圧力に基づき分類し(ステップS5)、両者をマトリクス状(表1)に配して対象とする岩盤の地山分類(ステップS6)判別し、さらに、基準岩盤の地山等級に対する地山分類の判別結果の関係をマトリクス状(表2)に配して地山等級(ステップS7)を判別するのである。   Thus, according to the rock mass exploration method performed in the tunnel face forward exploration system 1 of the present embodiment, the rock mass is classified based on the drilling speed (step S4), and the rock properties are classified based on the rotational pressure ( In step S5), both are arranged in a matrix (Table 1), and the target rock mass classification is determined (step S6). Further, the relationship of the determination result of the natural rock classification to the natural rock grade of the reference rock mass is matrixed. The ground grade (step S7) is discriminated in the form (Table 2).

本実施形態の岩盤探査方法の特徴は、穿孔速度に基づく評価分類に回転圧力に基づく評価分類を加える点にあり、これにより、パーカッションドリルの穿孔理論に即してパラメータを選定して岩盤を評価することができるので、複雑な状態が混在する岩盤の前方探査に適している。
つまり、パーカッションドリルの回転圧力の変化は、穿孔状態の良し悪しに対する結果圧として記録される。例えば、破砕帯では、正常な穿孔が損なわれ不均一な繰り粉が抵抗となることから回転圧力が上昇し回転数が減少する。この点において、従来の地盤調査手法(例えば特許文献2)では、穿孔速度の低下から破壊エネルギが上昇したことにより、「岩盤が硬くなった」との実態とは相反する間違った評価をしてしまうおそれがある。
The feature of the rock mass exploration method of this embodiment is that the evaluation classification based on the rotational pressure is added to the evaluation classification based on the drilling speed, so that the parameters are selected according to the drilling theory of the percussion drill and the rock mass is evaluated. Therefore, it is suitable for forward exploration of rocks with complex conditions.
In other words, the change in the rotational pressure of the percussion drill is recorded as a result pressure for whether the drilling state is good or bad. For example, in the crushing zone, normal perforation is impaired and non-uniform flouring becomes resistance, so that the rotational pressure increases and the rotational speed decreases. In this regard, the conventional ground survey method (for example, Patent Document 2) has made a wrong evaluation contrary to the actual condition that “the rock mass has become harder” due to the increase in fracture energy due to the decrease in drilling speed. There is a risk that.

これに対し、本実施形態の岩盤探査方法によれば、回転圧力の変化に応じた岩盤評価を、穿孔速度の変化に応じた岩盤評価と同様に、基準穿孔値と比較することによって、回転圧力の変化を複雑な岩盤性状に応じて加わる負荷抵抗の度合いとして捉えて評価分類することができる。更に、穿孔速度の変化に応じた岩盤評価によって得られた岩盤の硬軟評価分類と、回転圧力の変化に応じた岩盤評価によって得られた複雑な岩盤性状の評価分類とをマトリクス状に組み合わせて総合評価することにより、基準岩盤に対する相対比較を精度良く行うことができる。   On the other hand, according to the rock mass exploration method of the present embodiment, the rock pressure evaluation according to the change in the rotation pressure is compared with the reference drilling value in the same manner as the rock mass evaluation according to the change in the drilling speed. Can be evaluated and classified as a degree of load resistance applied according to complex rock properties. Furthermore, the rock hardness evaluation classification obtained by rock mass evaluation according to changes in drilling speed and the complex rock mass evaluation classification obtained by rock mass evaluation according to changes in rotational pressure are combined in a matrix. By performing the evaluation, it is possible to accurately perform a relative comparison with the reference rock mass.

したがって、本実施形態の岩盤探査方法によれば、岩盤の硬軟岩の評価および不連続層等の岩質の評価のいずれにおいても好適な岩盤評価を行うことができる。また、本実施形態の岩盤探査方法によれば、岩盤の硬軟岩の評価に岩盤性状の評価が加味されることによって、不良地山の位置の抽出が容易であり、また、地山主体岩盤の有効的な一軸圧縮強度(推定)の把握が容易である。   Therefore, according to the rock mass exploration method of the present embodiment, suitable rock mass evaluation can be performed in both evaluation of hard and soft rocks and evaluation of rock quality such as discontinuous layers. In addition, according to the rock exploration method of the present embodiment, the position of the bad ground can be easily extracted by adding the evaluation of the rock properties to the evaluation of the hard and soft rocks of the rock. It is easy to grasp effective uniaxial compressive strength (estimation).

また、本実施形態の岩盤探査方法によれば、基準岩盤を予め設定することによって、探査に伴う実測穿孔時の穿孔速度および回転圧力の状態把握が容易である。つまり、本実施形態の岩盤探査によれば、基準岩盤に対して予備穿孔を行って、予備穿孔時の条件を基準とする実測穿孔を行うものの、その後は、地山の状態やロッド6の継ぎ足し状況に応じて、制御装置20またはオペレータが適宜穿孔条件を変更しながら穿孔を行うことで、穿孔速度と回転圧力をその時々の状況に応じて最適に補正できる。そのため、補正を行わない場合には膨大な測定時間を要するのに対し、測定時間を短縮できるとともに、穿孔できなくなるような事態を未然に防止することができる。また、前方探査の精度を向上させることができる。   Further, according to the rock mass exploration method of the present embodiment, it is easy to grasp the state of the drilling speed and the rotational pressure at the time of actual drilling accompanying the exploration by setting the reference rock mass in advance. In other words, according to the rock exploration of the present embodiment, preliminary drilling is performed on the reference rock, and actual drilling is performed based on the conditions at the time of preliminary drilling. Depending on the situation, the control device 20 or the operator performs the drilling while appropriately changing the drilling conditions, so that the drilling speed and the rotational pressure can be optimally corrected according to the situation at that time. Therefore, when correction is not performed, an enormous amount of measurement time is required, while the measurement time can be shortened and a situation in which drilling cannot be performed can be prevented. In addition, the accuracy of forward search can be improved.

すなわち、一般に、基準値との対比によって観測対象を判別する場合、基準値を得るための条件をそのまま維持しながら観測対象の測定をするのが常套手段といえるところ、実際のトンネル切羽の現場において、定められた穿孔条件を常時維持しながら行なう岩盤探査方法であると、判定に非常に時間が掛かることになり、また、岩盤の不意の変化に対応できない場合には穿孔不能となり得るのである。   That is, in general, when observing an observation target by comparison with a reference value, it can be said that it is a conventional means to measure the observation target while maintaining the conditions for obtaining the reference value as it is. If it is a rock exploration method that is performed while maintaining the predetermined drilling conditions at all times, it will take a very long time to judge, and if it cannot cope with the unexpected change of the rock mass, it may be impossible to drill.

例えば、複数のロッドを継ぎ足す(例えば最大で約30m)ことにより穿孔効率は低下するので、ロッドの継ぎ足し状態に応じてフィード圧力を上げないと穿孔速度がどんどん低下(場合によっては推力不足で停止)して判定時間が嵩んでしまうことになる。また、逆に破砕帯を穿孔する際には、フィード圧力を瞬時に下げないとロッドがスタックしてしまい穿孔を継続できない事態に陥る場合もある。   For example, drilling efficiency is reduced by adding multiple rods (for example, about 30m at the maximum), so the drilling speed will decrease rapidly unless the feed pressure is increased according to the rod addition status (in some cases, it will stop due to insufficient thrust) ) And the determination time increases. Conversely, when drilling the crush zone, the rod may get stuck unless the feed pressure is lowered instantaneously, resulting in a situation where drilling cannot be continued.

これに対し、本実施形態の岩盤探査方法であれば、基準穿孔値を基本の穿孔条件としつつも、オペレータが穿孔の様子を見ながら穿孔条件を適宜調整することを許容しており、実際の穿孔条件である実測穿孔値から補正穿孔値を算出して基準穿孔値との対比を行うので、岩盤の不意の変化に対しても適切な穿孔状態を維持するために穿孔条件を調整することができる。したがって、測定時間を短縮できるとともに、穿孔できなくなるような事態を未然に防止することができるという格別顕著な効果を奏するのである。   On the other hand, in the rock exploration method of the present embodiment, while the reference drilling value is set as the basic drilling condition, the operator is allowed to adjust the drilling condition as appropriate while watching the drilling state. Since the corrected drilling value is calculated from the actual drilling value, which is the drilling condition, and compared with the reference drilling value, it is possible to adjust the drilling condition to maintain an appropriate drilling state even if the rock mass unexpectedly changes. it can. Accordingly, it is possible to shorten the measurement time and to prevent a situation in which the drilling cannot be performed in advance.

また、本実施形態の岩盤探査方法によれば、地山等級判別処理が制御装置20で自動的に実行されるので、主観を極力排除した地山等級区分の判定(推定)が可能である。そのため、本発明の切羽前方探査技術を応用することによって、従来の岩盤探査に基づくさく孔制御に比べて一層木目細かな制御信号をさく岩機に与えることが可能であり、自動穿孔技術の精度が飛躍的に向上する。   Further, according to the rock mass exploration method of the present embodiment, the ground level classification process is automatically executed by the control device 20, so that it is possible to determine (estimate) the ground level classification with the subjectivity excluded as much as possible. Therefore, by applying the forward face exploration technology of the present invention, it is possible to give a drilling machine a finer control signal than the drilling control based on the conventional rock exploration, and the accuracy of the automatic drilling technology Will improve dramatically.

なお、本発明に係る岩盤探査方法は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しなければ種々の変形が可能であることは勿論である。
例えば、上記実施形態では、トンネルの切羽前方探査を目的として、トンネルTの切羽Sに対してパーカッションドリル10を設置した例で説明したが、トンネル切羽の前方探査に限らず、本発明に係る岩盤探査方法は、岩盤の状況を探査する用途に対して適用することができる。
It should be noted that the rock exploration method according to the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.
For example, in the above embodiment, the example in which the percussion drill 10 is installed on the face S of the tunnel T for the purpose of exploring the tunnel face forward is described. However, the present invention is not limited to the forward exploration of the tunnel face, and the bedrock according to the present invention. The exploration method can be applied to the purpose of exploring the condition of the rock mass.

1 トンネル切羽前方探査システム
2 台車
3 ブーム
4 ガイドシェル
5 ドリフタ本体
6 ロッド
7 ビット
8 駆動部
10 パーカッションドリル
20 制御装置
T トンネル
S 切羽
DESCRIPTION OF SYMBOLS 1 Tunnel face search system 2 Bogie 3 Boom 4 Guide shell 5 Drifter body 6 Rod 7 Bit 8 Drive part 10 Percussion drill 20 Controller T Tunnel S Face

Claims (12)

さく孔中のパーカッションドリルから得られる情報に基づいて、対象とする岩盤の状況を探査する岩盤探査方法であって、
前記パーカッションドリルで対象とする岩盤をさく孔によって穿孔して実測穿孔データとして穿孔速度および回転圧力を取得する実測穿孔データ取得工程と、前記穿孔速度に基づいて対象とする岩盤の岩盤強度を判別する岩盤強度判別工程と、前記回転圧力に基づいて対象とする岩盤の岩盤性状を判別する岩盤性状判別工程と、前記岩盤強度と前記岩盤性状との関係に基づいて、対象とする岩盤の地山分類を判別する地山分類判別工程と、判定の基準とする基準岩盤の地山等級と前記地山分類の判別結果との関係に基づいて、対象とする岩盤の地山等級を判別する地山等級判別工程とを含むことを特徴とする岩盤探査方法。
A rock exploration method for exploring the condition of a target rock based on information obtained from a percussion drill in a drill hole,
An actual drilling data acquisition step of acquiring a drilling speed and a rotational pressure as actual drilling data by drilling a target rock with the percussion drill, and determining a rock mass strength of the target rock based on the drilling speed Based on the relationship between the rock strength discriminating step, the rock mass discriminating step for discriminating the rock mass properties of the target rock mass based on the rotational pressure, and the rock mass classification based on the relationship between the rock mass strength and the rock mass properties A natural ground classification that determines the natural ground grade of the target rock mass based on the relationship between the natural ground classification determination process for determining the natural ground, the natural rock grade of the reference rock base used as the determination criterion, and the determination result of the natural ground classification A rock exploration method comprising a discrimination step.
前記実測穿孔データ取得工程、前記岩盤強度判別工程、前記岩盤性状判別工程、前記地山分類判別工程および前記地山等級判別工程は、制御装置で実行されることを特徴とする請求項1に記載の岩盤探査方法。   The said actually measured drilling data acquisition process, the said rock mass strength discrimination | determination process, the said rock mass property discrimination | determination process, the said natural ground classification discrimination | determination process, and the said natural ground grade discrimination | determination process are performed by a control apparatus. Rock bed exploration method. 前記岩盤強度判別工程は、判別に用いる穿孔速度として、前記実測穿孔データとして取得された穿孔速度に補正式を適用して得られた補正穿孔速度を用い、
前記岩盤性状判別工程は、判別に用いる回転圧力として、前記実測穿孔データとして取得された回転圧力に補正式を適用して得られた補正回転圧力を用い、
実測穿孔データ取得工程は、穿孔開始時は予め設定された基準穿孔値に基づいて穿孔を行い、その後は、穿孔に用いる穿孔速度または回転圧力として、前記補正穿孔速度または補正回転圧力を穿孔状況に応じて用いることを特徴とする請求項1または2に記載の岩盤探査方法。
The rock mass strength determining step uses a corrected drilling speed obtained by applying a correction formula to the drilling speed acquired as the measured drilling data, as the drilling speed used for the determination,
The bedrock property determination step uses a corrected rotation pressure obtained by applying a correction formula to the rotation pressure acquired as the actually measured drilling data as the rotation pressure used for the determination,
In the actual drilling data acquisition step, drilling is performed based on a preset reference drilling value at the start of drilling, and thereafter, the corrected drilling speed or corrected rotational pressure is set to the drilling state as the drilling speed or rotational pressure used for drilling. The rock mass exploration method according to claim 1, wherein the rock mass exploration method is used according to claim 1.
さく孔中のパーカッションドリルから得られる情報に基づいて、対象とする岩盤の状況を探査する岩盤探査方法であって、
判定の基準とする基準岩盤に対する前記パーカッションドリルでの予備穿孔に基づいて基準穿孔値を設定する基準穿孔値設定工程と、
前記パーカッションドリルで対象とする岩盤をさく孔によって穿孔して実測穿孔データを取得する実測穿孔データ取得工程と、
前記基準穿孔値および前記実測穿孔データ相互の穿孔速度の比較に基づいて対象とする岩盤の岩盤強度を判別する岩盤強度判別工程と、
前記基準穿孔値および前記実測穿孔データ相互の回転圧力の比較に基づいて対象とする岩盤の岩盤性状を判別する岩盤性状判別工程と、
前記岩盤強度判別工程での岩盤強度の判別結果および前記岩盤性状判別工程での岩盤性状の判別結果相互の関係に基づいて、対象とする岩盤の地山分類を判別する地山分類判別工程と、
前記基準岩盤の地山等級に対する前記地山分類判別工程での地山分類の判別結果の関係に基づいて、対象とする岩盤の地山等級を判別する地山等級判別工程とを含むことを特徴とする岩盤探査方法。
A rock exploration method for exploring the condition of a target rock based on information obtained from a percussion drill in a drill hole,
A reference drilling value setting step for setting a reference drilling value based on preliminary drilling with the percussion drill with respect to the reference rock as a criterion for determination;
An actual drilling data acquisition step for acquiring actual drilling data by drilling a target rock with the percussion drill with a drill hole;
Rock mass strength determination step of determining the rock mass strength of the target rock mass based on the comparison of the drilling speed between the reference drilling value and the measured drilling data;
A rock property determination step for determining a rock property of a target rock based on a comparison of rotational pressure between the reference drilling value and the measured drilling data,
Based on the relationship between the determination result of the rock mass strength in the rock strength determination step and the relationship between the determination results of the rock property in the rock property determination step, the natural ground classification determination step for determining the natural rock classification of the target rock mass,
A natural ground grade determining step for determining the natural ground grade of the target rock based on the relationship of the determination result of the natural ground classification in the natural ground classification determining step with respect to the natural ground grade of the reference rock mass. The rock exploration method.
前記基準穿孔値設定工程、前記実測穿孔データ取得工程、前記岩盤強度判別工程、前記岩盤性状判別工程、前記地山分類判別工程および前記地山等級判別工程は、制御装置で実行されることを特徴とする請求項4に記載の岩盤探査方法。   The reference drilling value setting process, the measured drilling data acquisition process, the rock mass strength determination process, the rock mass property determination process, the natural ground classification determination process, and the natural ground grade determination process are executed by a control device. The rock exploration method according to claim 4. 前記岩盤強度判別工程は、判別に用いる穿孔速度として、前記実測穿孔データとして取得された穿孔速度に補正式を適用して得られた補正穿孔速度を用い、
前記岩盤性状判別工程は、判別に用いる回転圧力として、前記実測穿孔データとして取得された回転圧力に補正式を適用して得られた補正回転圧力を用い、
実測穿孔データ取得工程は、穿孔開始時は前記基準穿孔値に基づいて穿孔を行い、その後は、穿孔に用いる穿孔速度または回転圧力として、前記補正穿孔速度または補正回転圧力を穿孔状況に応じて用いることを特徴とする請求項4または5に記載の岩盤探査方法。
The rock mass strength determining step uses a corrected drilling speed obtained by applying a correction formula to the drilling speed acquired as the measured drilling data, as the drilling speed used for the determination,
The bedrock property determination step uses a corrected rotation pressure obtained by applying a correction formula to the rotation pressure acquired as the actually measured drilling data as the rotation pressure used for the determination,
The actual drilling data acquisition step performs drilling based on the reference drilling value at the start of drilling, and thereafter uses the corrected drilling speed or the corrected rotational pressure as the drilling speed or rotational pressure used for drilling according to the drilling situation. The bedrock exploration method according to claim 4 or 5, characterized in that.
前記基準穿孔値として、基準打撃圧力、基準フィード圧力、基準穿孔速度および基準回転圧力が取得され、
前記実測穿孔データとして、実測打撃圧力、実測フィード圧力、実測穿孔速度および実測回転圧力が取得され、
前記補正穿孔速度は、前記実測穿孔速度を、前記基準フィード圧力と前記実測フィード圧力との関係、前記基準打撃圧力と前記実測打撃圧力との関係、および前記パーカッションドリルの穿孔用のロッドの継ぎ足し本数の状況との関係に応じて補正したものを用い、
前記補正回転圧力は、前記実測回転圧力を、前記パーカッションドリルの穿孔用のロッドの継ぎ足し本数の状況に応じて補正したものを用いることを特徴とする請求項6に記載の岩盤探査方法。
As the reference piercing value, a reference striking pressure, a reference feed pressure, a reference piercing speed and a reference rotational pressure are acquired,
As the measured drilling data, measured impact pressure, measured feed pressure, measured drilling speed and measured rotational pressure are acquired,
The corrected drilling speed includes the measured drilling speed, the relationship between the reference feed pressure and the measured feed pressure, the relationship between the reference striking pressure and the measured striking pressure, and the number of rods for drilling the percussion drill. Use the one corrected according to the relationship with the situation,
7. The rock exploration method according to claim 6, wherein the corrected rotational pressure is obtained by correcting the measured rotational pressure in accordance with the number of rods for drilling the percussion drill.
前記補正穿孔速度は、補正式として(式1)を適用して得られ、
前記補正回転圧力は、補正式として(式2)を適用して得られたものであることを特徴とする請求項7に記載の岩盤探査方法。
但し、(式1)および(式2)において、Dはロッドを1本継ぎ足すことによる減衰率である。
Figure 0006131160
Figure 0006131160
The corrected drilling speed is obtained by applying (Equation 1) as a correction formula,
The rock mass exploration method according to claim 7, wherein the corrected rotational pressure is obtained by applying (Equation 2) as a correction equation.
However, in (Formula 1) and (Formula 2), D is an attenuation factor by adding one rod.
Figure 0006131160
Figure 0006131160
前記基準岩盤は、予めボーリングデータを採取した岩盤であってその地山等級がB、CI、CIIのいずれかの岩盤から選択されたものであることを特徴とする請求項1〜8のいずれか一項に記載の岩盤探査方法。   9. The base rock according to any one of claims 1 to 8, wherein the base rock is a rock from which boring data has been collected in advance, and the ground grade is selected from any one of B, CI, and CII. The rock exploration method according to one item. さく孔中のパーカッションドリルから得られる情報に基づいて、対象とする岩盤の状況を探査する岩盤探査システムであって、
前記パーカッションドリルで対象とする岩盤をさく孔によって穿孔して実測穿孔データとして穿孔速度および回転圧力を取得する実測穿孔データ取得手段と、前記穿孔速度に基づいて対象とする岩盤の岩盤強度を判別する岩盤強度判別手段と、前記回転圧力に基づいて対象とする岩盤の岩盤性状を判別する岩盤性状判別手段と、前記岩盤強度と前記岩盤性状との関係に基づいて、対象とする岩盤の地山分類を判別する地山分類判別手段と、判定の基準とする基準岩盤の地山等級と前記地山分類の判別結果との関係に基づいて、対象とする岩盤の地山等級を判別する地山等級判別手段とを有することを特徴とする岩盤探査システム。
A rock mass exploration system for exploring the condition of a target rock mass based on information obtained from percussion drills in drill holes,
Drilling the target rock with the percussion drill and drilling the drilling speed and rotational pressure as measured drilling data, and determining the rock strength of the target rock based on the drilling speed Rock strength discrimination means, rock mass discrimination means for discriminating the rock property of the target rock based on the rotational pressure, and ground mass classification of the target rock based on the relationship between the rock strength and the rock property A natural ground classification classifying means for determining the natural ground grade of the target rock mass, based on the relationship between the natural ground classification determining means for determining the natural ground, the natural rock grade of the standard rock base used as the determination reference, and the determination result of the natural rock classification A rock exploration system characterized by having a discrimination means.
前記岩盤強度判別手段は、判別に用いる穿孔速度として、前記実測穿孔データとして取得された穿孔速度に補正式を適用して得られた補正穿孔速度を用い、
前記岩盤性状判別手段は、判別に用いる回転圧力として、前記実測穿孔データとして取得された回転圧力に補正式を適用して得られた補正回転圧力を用い、
実測穿孔データ取得手段は、穿孔開始時は予め設定された基準穿孔値に基づいて穿孔を行い、その後は、穿孔に用いる穿孔速度または回転圧力として、前記補正穿孔速度または補正回転圧力を穿孔状況に応じて用いることを特徴とする請求項10に記載の岩盤探査システム。
The rock mass strength discriminating means uses a corrected drilling speed obtained by applying a correction formula to the drilling speed acquired as the measured drilling data, as the drilling speed used for the determination,
The rock property determination means uses a corrected rotation pressure obtained by applying a correction formula to the rotation pressure acquired as the actually measured drilling data as the rotation pressure used for the determination,
The measured drilling data acquisition means performs drilling based on a preset reference drilling value at the start of drilling, and thereafter sets the corrected drilling speed or corrected rotational pressure as the drilling status as the drilling speed or rotational pressure used for drilling. The rock exploration system according to claim 10, wherein the rock exploration system is used accordingly.
さく孔中のパーカッションドリルから得られる情報に基づいて、対象とする岩盤の状況を探査する岩盤探査システムに用いられ、前記パーカッションドリルでのさく孔に用いる穿孔データを穿孔状況に応じて補正する岩盤探査用穿孔データ補正装置であって、
前記岩盤探査システムは、前記パーカッションドリルで対象とする岩盤をさく孔によって穿孔して実測穿孔データとして穿孔速度および回転圧力を取得する、請求項11に記載の岩盤探査システムであり、
当該穿孔データ補正装置は、前記実測穿孔データとして取得された穿孔速度に補正式として(式1)を適用して補正穿孔速度を算出する補正穿孔速度算出手段と、前記実測穿孔データとして取得された回転圧力に補正式として(式2)を適用して補正回転圧力を算出する補正回転圧力算出手段とを有し、算出された補正穿孔速度または補正回転圧力をさく孔に用いる穿孔データとして出力することを特徴とする岩盤探査用穿孔データ補正装置。
但し、(式1)および(式2)において、Dはロッドを1本継ぎ足すことによる減衰率である。
Figure 0006131160
Figure 0006131160
Based on the information obtained from the percussion drill in the drilling hole, it is used in the rock exploration system to search the condition of the target rock, and the drilling data used for drilling holes in the percussion drill is corrected according to the drilling situation A drilling data correction device for exploration,
The rock exploration system according to claim 11, wherein the rock exploration system drills the target rock with the percussion drill by drilling holes and acquires the drilling speed and rotational pressure as measured drilling data.
The perforation data correcting device is a corrected perforation speed calculating means for calculating a corrected perforation speed by applying (Equation 1) as a correction formula to the perforation speed acquired as the actual perforation data, and acquired as the actual perforation data. A correction rotational pressure calculating unit that calculates the corrected rotational pressure by applying (Equation 2) as a correction formula to the rotational pressure, and outputs the calculated corrected drilling speed or the corrected rotational pressure as drilling data to be used for drilling holes. Drilling data correction device for rock exploration characterized by this.
However, in (Formula 1) and (Formula 2), D is an attenuation factor by adding one rod.
Figure 0006131160
Figure 0006131160
JP2013200284A 2013-09-26 2013-09-26 Rock exploration method, rock exploration system, and drilling data correction device for rock exploration Active JP6131160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013200284A JP6131160B2 (en) 2013-09-26 2013-09-26 Rock exploration method, rock exploration system, and drilling data correction device for rock exploration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013200284A JP6131160B2 (en) 2013-09-26 2013-09-26 Rock exploration method, rock exploration system, and drilling data correction device for rock exploration

Publications (2)

Publication Number Publication Date
JP2015067957A JP2015067957A (en) 2015-04-13
JP6131160B2 true JP6131160B2 (en) 2017-05-17

Family

ID=52834940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013200284A Active JP6131160B2 (en) 2013-09-26 2013-09-26 Rock exploration method, rock exploration system, and drilling data correction device for rock exploration

Country Status (1)

Country Link
JP (1) JP6131160B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109765097A (en) * 2018-12-21 2019-05-17 中铁三局集团有限公司 A kind of tunnel surrounding rapid classification method based on RPD drilling machine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108646298B (en) * 2018-04-09 2020-05-15 陕西铁道工程勘察有限公司 Tunnel wave velocity inversion imaging and surrounding rock grading method under multi-well multi-parameter constraint
JP7247597B2 (en) * 2019-01-21 2023-03-29 株式会社大林組 Rock ground evaluation method, rock ground assessment system and rock ground assessment program
JP7263851B2 (en) * 2019-03-11 2023-04-25 株式会社大林組 Rock ground evaluation method, rock ground assessment system and rock ground assessment program
JP7545787B2 (en) 2020-10-16 2024-09-05 古河ロックドリル株式会社 Civil engineering work equipment and civil engineering work vehicle equipped with the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749756B2 (en) * 1990-10-22 1995-05-31 鹿島建設株式会社 Evaluation method of rock mass and prediction of geology ahead of cutting face using drilling data with hydraulic drill
JP3432574B2 (en) * 1994-03-25 2003-08-04 古河機械金属株式会社 Data recorder for rock quality discrimination
JP3238840B2 (en) * 1994-11-18 2001-12-17 不動建設株式会社 Tunnel ground search system
JP3629670B2 (en) * 1997-05-29 2005-03-16 清水建設株式会社 Tunneling method
JPH11294079A (en) * 1998-04-09 1999-10-26 Shimizu Corp Tunnel boring method
US6490527B1 (en) * 1999-07-13 2002-12-03 The United States Of America As Represented By The Department Of Health And Human Services Method for characterization of rock strata in drilling operations
JP3704257B2 (en) * 1999-08-31 2005-10-12 ライト工業株式会社 Ground property estimation system and ground property estimation method
JP4421146B2 (en) * 2001-07-09 2010-02-24 鹿島建設株式会社 Geological prediction method and geological prediction device in front of tunnel face
JP2004092034A (en) * 2002-08-29 2004-03-25 Shimizu Corp Geological interpretation method
JP4913547B2 (en) * 2006-10-31 2012-04-11 鹿島建設株式会社 Geological prediction method of natural ground
JP4883405B2 (en) * 2006-12-20 2012-02-22 株式会社大林組 Correlation curve creation method, drilling speed correction method, ground mountain division evaluation table creation method and face front prediction method
JP5223333B2 (en) * 2007-12-28 2013-06-26 株式会社大林組 Method for calculating correlation between drilling speed ratio and natural ground parameter, and method for predicting face front using it
JP5831683B2 (en) * 2011-06-14 2015-12-09 株式会社大林組 Method for evaluating distance attenuation of drilling speed and forward exploration method for tunnel face using the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109765097A (en) * 2018-12-21 2019-05-17 中铁三局集团有限公司 A kind of tunnel surrounding rapid classification method based on RPD drilling machine
CN109765097B (en) * 2018-12-21 2021-07-02 中铁三局集团有限公司 Tunnel surrounding rock rapid classification method based on RPD drilling machine

Also Published As

Publication number Publication date
JP2015067957A (en) 2015-04-13

Similar Documents

Publication Publication Date Title
JP6131160B2 (en) Rock exploration method, rock exploration system, and drilling data correction device for rock exploration
US8082104B2 (en) Method to determine rock properties from drilling logs
JP5867957B2 (en) Method and system for predicting rock strength
Abu Bakar et al. Penetration rate and specific energy prediction of rotary–percussive drills using drill cuttings and engineering properties of selected rock units
JPH1181855A (en) Optimum blasting design system
JP6018977B2 (en) Evaluation method of bedrock
US12006770B2 (en) Method and system for estimating wear of a drill bit
JP2011122335A (en) Drilling management system
JP5258734B2 (en) Tunnel front face exploration method and exploration system
US10324006B2 (en) Method for detecting a malfunction during drilling operations
JP6339425B2 (en) Drilling condition determination method, drilling length calculation method, and geological logging method
JP3632023B2 (en) Ground survey method based on drilling data of rock drill
JP5831683B2 (en) Method for evaluating distance attenuation of drilling speed and forward exploration method for tunnel face using the method
JP3831904B2 (en) Geological rock mass discrimination method
EP3795796B1 (en) A method for determination of properties of cuttings from rock drilling
JP5720968B2 (en) Exploration method of the front ground
JP3943430B2 (en) Method for predicting natural conditions ahead of face and excavation method
KR20110076022A (en) Prediction of rock mass strength ahead of tunnel face using hydraulic drilling data
Ling et al. Predicting Rock Unconfined Compressive Strength Based on Tunnel Face Boreholes Measurement-While-Drilling Data
JP2006124936A (en) Method and apparatus for performing survey on bedrock and the like
CN113646506B (en) Method for controlling the drilling process of a percussion drill
Mafazy et al. Influence of Rock Microstructure on Rock Strength and Drilling Rate of Penetration (ROP)
Boldyrev et al. The boring sounding of alluvial soils
JP6439449B2 (en) Exploration method of the front ground
JP2014234629A (en) Foundation strength measurement analysis system

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20160705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170417

R150 Certificate of patent or registration of utility model

Ref document number: 6131160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250