JP3629670B2 - Tunneling method - Google Patents

Tunneling method Download PDF

Info

Publication number
JP3629670B2
JP3629670B2 JP13969397A JP13969397A JP3629670B2 JP 3629670 B2 JP3629670 B2 JP 3629670B2 JP 13969397 A JP13969397 A JP 13969397A JP 13969397 A JP13969397 A JP 13969397A JP 3629670 B2 JP3629670 B2 JP 3629670B2
Authority
JP
Japan
Prior art keywords
face
boring
tbm
drilling
natural ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13969397A
Other languages
Japanese (ja)
Other versions
JPH10331574A (en
Inventor
太 楠本
垣見康介
勉 木内
竹内伸光
和田利彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP13969397A priority Critical patent/JP3629670B2/en
Publication of JPH10331574A publication Critical patent/JPH10331574A/en
Application granted granted Critical
Publication of JP3629670B2 publication Critical patent/JP3629670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、全断面トンネル掘削機(以下、tunnel boring machine =TBMという)を使用するトンネル掘進システムの技術分野に属する。
【0002】
【従来の技術】
TBM掘進工法は、地山条件に恵まれれば無支保での高速掘進が可能でありその長所を十分に生かすことができるが、固結度の低い帯水地山や断層破砕帯などの不良地質部での掘削は苦手であり、これらに起因するトラブルが多く発生し、TBMが数カ月止まることもたびたびある。このような地質的な要因からのTBMのトラブルを未然に防ぐには、切羽前方地山の地層構造の変化や不良地質部の地山性状とその規模を事前に精度良く知ることとと、これらを正しく評価しその対策工や補助工法の選定、TBM掘進の可否の判定などができるTBM掘進システムが必要である。
【0003】
従来、切羽前方地山の予測方法として、例えば特開平4−161588号公報においては、油圧式パーカッションドリルによる削孔データ(削孔により得られた削孔深度と各深度における累積掘削時間、削孔速度、ピストン打撃エネルギー、給進力、トルク、送水圧等)により破壊エネルギーを算出し、確率統計手法により岩盤等級と関係づけて予測を行う方法を提案している。
【0004】
【発明が解決しようとする課題】
しかしながら、上記パーカッションドリルによる予測方法は、発破工法の場合には有効な方法ではあるが、TBMの場合には、掘削を中断して切羽面にパーカッションドリルを設置しなければならないとともに、ボーリング中はTBM掘進ができないので工期が大幅に延びるという問題や、ロッドが地山にかまれロッドを地山中に捨てざるをえない場合に、TBMのカッター破損の問題があり、TBM掘進に上記方法を採用することは困難である。
【0005】
本発明は、上記従来の問題を解決するものであって、TBM機内から切羽前方の地山調査、評価が可能となり、地山性状を高精度に判別できるとともに、地山性状に応じた適切な支保工と補助工法を選定でき、確実なTBM掘進を行うことができるトンネル掘進方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明のトンネル掘進方法は、カッターヘッド、スキンプレート及びスラストジャッキを有するトンネル掘削機と、該トンネル掘削機内に設置され、切羽面に対して直角方向に削孔する切羽内ボーリングと切羽斜め前方に削孔する切羽外ボーリングとが可能なロータリパーカッションドリルとを備え、前記切羽外ボーリングの削孔データから切羽前方の地山性状を判別し、地山性状が良くない場合には前記切羽内ボーリングによりコアを採取して地山性状を判別し、地山性状に応じた支保構造を選定することを特徴とする。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しつつ説明する。図1〜図4は、本発明のトンネル掘進方法を説明する図であり、図1は、本発明で使用するTBMの模式図である。
【0008】
図1において、TBM1は、円筒状のスキンプレート3、スキンプレート3の先端に回転自在に装着されたカッターヘッド2、機内後部に設置されるスラストジャッキ4及びメイングリッパ5等を備え、メイングリッパ5を坑壁に張り出しこれに反力を取ってスラストジャッキ4を伸ばしながらカッターヘッド2を回転させ、1ストローク分を掘削する。スラストジャッキ4上には、ロータリパーカッションドリル6が設置されている。このロータリパーカッションドリル6は、先端ビットを打撃、回転させながら削孔するノンコアボーリングモードと、ビットを交換しドリルを打撃、回転させながら先端コアを採取する部分コアボーリングモードとを備え、また、ロータリパーカッションドリル6は上下左右方向に揺動可能に設置され、図示点線で示すように切羽面7に対して直角方向に削孔される切羽内ボーリング8と、図示実線で示すようにスキンプレート3の後端から切羽斜め前方に削孔される切羽外ボーリング9が可能にされている。
【0009】
図2は、本発明のトンネル掘進方法によるデータ処理の1例を示すフロー図である。先ず、ステップS1で、地質図書などから切羽前方の地山調査地点を特定した後、ステップS2で調査地点までTBM掘進を行い、ステップS3で掘進速度、カッタートルク、スラスト推力などのTBM掘削データを取得する。ステップS4で、TBM掘進と並行してノンコアボーリングモードでロータリパーカッションドリル6により切羽斜め前方にボーリング9(50〜100m程度)を行い、ステップS5でボーリング削孔データを取得する。このボーリング削孔データは、削孔深度、削孔速度、給進力、打撃エネルギー、打撃回数、トルク、回転数、送水圧力、送水量などである。次に、ステップS6のデータ解析・図化手段で、ボーリング削孔データに基づいて(1)深度変化の分析、(2)データ間の相関分析、(3)測定データの指標化、(4)力学パラメータの推定を行う。これらの内容について以下に説明する。
【0010】
(1)深度変化の分析
図3(A)に示す削孔深度に対する測定値変化のデータから既知の確率・統計手法を用いて例えば図3(B)に示すガウス型モデルや図3(C)に示す非ガウス型モデルに図化する。これにより、削孔深度に対する測定値の変化を容易に認識することが可能となる。
【0011】
(2)データ間の相関分析
▲1▼削孔速度と打撃エネルギー×打撃回数の相関から地層の硬軟の様子が推定できる。
▲2▼削孔速度と給進力の相関から岩質の様子が推定できる。
▲3▼削孔速度とトルク×回転数の相関から地層の崩壊性が推定できる。
▲4▼トルク×回転数と打撃エネルギー×打撃回数の相関から岩種が推定できる。
▲5▼送水圧力と送水量の相関から岩種、水理地質構造が推定できる。
【0012】
(3)測定データの指標化

Figure 0003629670
(4)力学パラメータの推定
岩盤の一軸圧縮強度=k×破壊エネルギー
次に、ステップS7の地山評価手段において、前記測定データ間の相関性などを参考にして、ボーリング削孔データの内、破壊エネルギー、削孔速度、トルク、給進力などの深度軸に対する変化の様子などから地層構造、岩種岩質、岩盤性状などを区分け、特定、判定し専門家がTBM地山評価図を作成する。
【0013】
次に、ステップS8において、地山が不良で更に詳細に調べたい場合には切羽内コアボーリングを実施するか否かが判断され、YESの場合には切羽内コアボーリングが行われ、ステップS10でコアボーリングデータが取得され、このデータに基づいてステップS5〜S7で再度、地層構造の判定が行われる。そして、判定された地層構造に基づいて、ステップS11で支保工の選定及び補助工法の選定が行われる。次に、ステップS12でTBM掘進可否の判定が行われ、TBM掘進可能と判定されればステップS2に戻りTBM掘進が行われ、TBM掘進不可能と判定されれば、ステップS13で不良地質部の評価が行われ、トラブルの推定、その対策工、事前地山補強工が実施され、ステップS2に戻りTBM掘進が行われる。
【0014】
図4は、前記ステップS7の地山評価及びステップS11の支保工の選定及び補助工法の選定を説明するための図である。なお、ボーリング削孔データ評価基準値、支保構造及び補助工法はあくまで1例を示すものでこれに限定されるものではない。測定した削孔速度、トルク、給進力と測定データからの計算値の破壊エネルギーの値によって、I〜Vの5段階の地山区分に区分され、それぞれの地山区分に応じて適切な支保工の選定と補助工法の選定、さらにはTBM掘進方式が選定される。なお、全周簡易ライナーとは、坑壁の全周にわたってライナーピースを組み付ける方式であり、シールドジャッキはこの全周簡易ライナーに推進反力をとる方式である。また、裏込め注入とはライナーと坑壁との間にモルタルを注入する方式であり、切羽注入とは、機内から切羽とその周辺地山内にセメントミルクやウレタン材を注入する方式である。
【0015】
図5は、図4の簡易先受け支保システムを説明するための図であり、図5(A)はTBMの断面図、図5(B)はスキンプレートのテール部での横断面図である。本システムは、カッターヘッド2が1ストローク分掘進すると、スキンプレート3のテール部のすぐ後方で先受け材11Bをリング支保工12で受け、インバートライナ15上に設置した可伸機構13を伸長させて押圧支持し、また、タイロッド16で1つ手前のリング支保工12に固定する。次いで、今ある先受け材11Bの間の空いている場所でスキンプレート3と坑壁との空間に次の先受け材11Aを差し込み、坑壁面にはファイバー吹付モルタル20を施工する。以上のようにしてスキンプレート3の後方を常に先受け材で支持するため、肌落ち、抜け落ちを防止することができる。
【0016】
図6は、図4の開口ライナーシステムを示す斜視図である。本システムは、隣接するリング支保工12の間にトンネル天端の一部を支持するライナー部材21a、21b、21cを配設し、トンネル天端を安定化し、また、シールドジャッキの推進反力をとるものである。地盤の強度により、プレート状のライナー部材21a、一部空間のあるライナー部材21b、金網状のライナー部材21cが用意されている。
【0017】
図7は、ボーリングの削孔深度に応じて、地山区分、支保構造、補助工法、掘進方式が変化する例を示し、可能な限りTBM機内から切羽前方の地山性状を予測し、地山性状に応じた適切な支保構造と補助工法を選択することにより、確実な掘進を行うことができる。
【0018】
【発明の効果】
以上の説明から明らかなように、本発明によれば、TBM機内から切羽前方の地山調査、評価が可能となり、地山性状を高精度に判別できるとともに、地山性状に応じた適切な支保構造と補助工法を選定でき、確実なTBM掘進を行うことができる。また、TBM掘進が不能となるような不良地質部の規模とその位置が検出できるので、切羽崩壊による機体の埋没、突発大量湧水による機体の埋没、切羽の押し出しによる機体の後退等の地質に起因する重大トラブルの発生を避けることが可能となる。
【図面の簡単な説明】
【図1】本発明で使用するTBMの模式図である。
【図2】本発明のトンネル掘進方法によるデータ処理の1例を示すフロー図である。
【図3】データの図化を説明するための図である。
【図4】地山評価並びに支保構造の選定及び補助工法の選定を説明するための図である。
【図5】図4の簡易先受け支保システムを説明するための図であり、図5(A)はTBMの断面図、図5(B)はスキンプレートのテール部での横断面図である。
【図6】図4の開口ライナーシステムを示す斜視図である。
【図7】ボーリングの削孔深度に応じて、地山区分、支保構造、補助工法、掘進方式が変化する例を示す図である。
【符号の説明】
1…TBM(トンネル掘削機)
2…カッターヘッド
3…スキンプレート
4…スラストジャッキ
5…メイングリッパ
6…ロータリパーカッションドリル
7…切羽面
8…切羽内ボーリング
9…切羽外ボーリング[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of a tunnel excavation system using a full-section tunnel excavator (hereinafter referred to as tunnel boring machine = TBM).
[0002]
[Prior art]
The TBM excavation method is capable of high-speed excavation without support if it is blessed with natural ground conditions, and can fully utilize its advantages, but poor geological areas such as aquifer mountains and fault fracture zones with low consolidation Drilling is not good, and troubles caused by these often occur, and TBM often stops for several months. In order to prevent TBM troubles due to such geological factors, it is necessary to know in advance the changes in the geological structure of the ground in front of the face and the geological properties and scale of the defective geological area in advance. It is necessary to have a TBM excavation system that can correctly evaluate the above, select countermeasures and auxiliary methods, and determine whether TBM excavation is possible.
[0003]
Conventionally, as a method for predicting the face ahead of the face, for example, in JP-A-4-161588, drilling data by a hydraulic percussion drill (a drilling depth obtained by drilling, a cumulative drilling time at each depth, a drilling hole, We propose a method to calculate the fracture energy by speed, piston impact energy, feed force, torque, water supply pressure, etc.) and to make a prediction in relation to the rock grade by the probability statistical method.
[0004]
[Problems to be solved by the invention]
However, although the prediction method using the percussion drill is an effective method in the case of the blasting method, in the case of TBM, the drilling must be interrupted and a percussion drill must be installed on the face, and during boring There is a problem that the construction period is greatly extended because TBM excavation is not possible, and there is a problem of TBM cutter breakage when the rod is bitten in a natural ground and the rod must be thrown into the natural ground, and the above method is adopted for TBM excavation It is difficult to do.
[0005]
The present invention solves the above-mentioned conventional problems, and enables the investigation and evaluation of the natural ground in front of the face from the inside of the TBM machine, enables the determination of the natural condition with high accuracy and the appropriateness according to the natural condition. An object is to provide a tunnel excavation method that can select a support method and an auxiliary method, and can perform reliable TBM excavation.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a tunnel excavation method according to the present invention includes a tunnel excavator having a cutter head, a skin plate, and a thrust jack, and is installed in the tunnel excavator and drills in a direction perpendicular to the face surface. It is equipped with a rotary percussion drill capable of boring inside the face and outside the face that drills diagonally forward, and the ground characteristics in front of the face are discriminated from the drilling data of the boring outside the face, and the ground characteristics are not good. In some cases, the core is sampled by boring inside the face to discriminate natural ground properties, and a support structure corresponding to the natural ground properties is selected.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1-4 is a figure explaining the tunnel excavation method of this invention, and FIG. 1 is a schematic diagram of TBM used by this invention.
[0008]
In FIG. 1, the TBM 1 includes a cylindrical skin plate 3, a cutter head 2 that is rotatably mounted at the tip of the skin plate 3, a thrust jack 4 and a main gripper 5 that are installed at the rear of the machine, and the main gripper 5. The cutter head 2 is rotated while the thrust jack 4 is extended by taking a reaction force on the well wall and excavating one stroke. A rotary percussion drill 6 is installed on the thrust jack 4. The rotary percussion drill 6 has a non-core boring mode in which a drill bit is drilled while rotating and rotating the tip bit, and a partial core boring mode in which the tip core is taken while the bit is changed and the drill is struck and rotated. The percussion drill 6 is installed so as to be swingable in the vertical and horizontal directions, and as shown by the dotted line in the figure, the inside face boring 8 drilled in the direction perpendicular to the face surface 7 and the skin plate 3 as shown by the solid line in the figure. An outer face boring 9 that is drilled from the rear end obliquely forward of the face is made possible.
[0009]
FIG. 2 is a flowchart showing an example of data processing by the tunnel excavation method of the present invention. First, in step S1, a geological survey point in front of the face is specified from a geological book or the like, and then a TBM excavation is performed to the survey point in step S2, and TBM excavation data such as excavation speed, cutter torque, thrust thrust, etc. is obtained in step S3. get. In step S4, in parallel with the TBM excavation, boring 9 (about 50 to 100 m) is performed obliquely forward with the rotary percussion drill 6 in the non-core boring mode, and boring drilling data is acquired in step S5. This borehole drilling data includes drilling depth, drilling speed, feed force, impact energy, number of impacts, torque, rotation speed, water supply pressure, water supply amount, and the like. Next, in the data analysis / plotting means in step S6, based on the boring data, (1) depth change analysis, (2) correlation analysis between data, (3) measurement data indexing, (4) Estimate mechanical parameters. These contents will be described below.
[0010]
(1) Analysis of change in depth For example, a Gaussian model shown in FIG. 3 (B) or FIG. 3 (C) using a known probability / statistical method from data of changes in measured values with respect to the drilling depth shown in FIG. 3 (A). The non-Gaussian model shown in Fig. Thereby, it becomes possible to recognize easily the change of the measured value with respect to the drilling depth.
[0011]
(2) Correlation analysis between data (1) It is possible to estimate the hardness of the formation from the correlation between drilling speed and impact energy x the number of impacts.
(2) The rocky state can be estimated from the correlation between drilling speed and feed force.
(3) The formation collapse can be estimated from the correlation between drilling speed and torque x rotation speed.
(4) The type of rock can be estimated from the correlation between torque × rotational speed and impact energy × number of impacts.
(5) The rock type and hydrogeological structure can be estimated from the correlation between the water supply pressure and the water supply volume.
[0012]
(3) Indexing measurement data
Figure 0003629670
(4) Estimation of mechanical parameters Uniaxial compressive strength of rock mass = k x fracture energy Next, in the natural ground evaluation means in step S7, with reference to the correlation between the measured data, the fracture of the borehole data An expert creates a TBM ground evaluation map by classifying the geological structure, rock type rock mass, rock properties, etc. based on changes in the depth axis, such as energy, drilling speed, torque, and feed force. .
[0013]
Next, in step S8, it is determined whether or not to perform core boring in the face if the ground is defective and it is desired to investigate in more detail. If YES, core boring in the face is performed, and in step S10 Core boring data is acquired, and the formation structure is determined again in steps S5 to S7 based on this data. Then, based on the determined stratum structure, a support construction and an auxiliary construction method are selected in step S11. Next, in step S12, whether or not TBM excavation is possible is determined. If it is determined that TBM excavation is possible, the process returns to step S2, TBM excavation is performed, and if it is determined that TBM excavation is impossible, in step S13 Evaluation is performed, trouble estimation, countermeasure work, and preliminary ground reinforcement work are performed, and the process returns to step S2 to perform TBM excavation.
[0014]
FIG. 4 is a diagram for explaining the natural ground evaluation in step S7, the selection of the support work and the selection of the auxiliary method in step S11. Note that the borehole drilling data evaluation reference value, the support structure, and the auxiliary method are merely examples, and are not limited thereto. Depending on the measured drilling speed, torque, feed force and the fracture energy value calculated from the measured data, it is divided into 5 levels from 1 to V, and appropriate support according to each level. Selection of construction method, selection of auxiliary construction method, and TBM excavation method are selected. The all-around simple liner is a method in which a liner piece is assembled over the entire circumference of the well wall, and the shield jack is a method in which a propulsion reaction force is applied to this all-around simple liner. The backfill injection is a method in which mortar is injected between the liner and the pit wall, and the face injection is a method in which cement milk or urethane material is injected from the inside of the machine into the face and the surrounding ground.
[0015]
5A and 5B are diagrams for explaining the simplified prior support system of FIG. 4, in which FIG. 5A is a cross-sectional view of the TBM, and FIG. 5B is a cross-sectional view of the tail portion of the skin plate. . In this system, when the cutter head 2 digs for one stroke, the tip receiving material 11B is received by the ring support 12 immediately behind the tail portion of the skin plate 3, and the extendable mechanism 13 installed on the inverse liner 15 is extended. Then, the tie rod 16 is used to support the ring support 12 and the tie rod 16 is fixed to the ring support 12 in front. Next, the next receiving material 11A is inserted into the space between the skin plate 3 and the pit wall at a space between the existing receiving material 11B, and the fiber blowing mortar 20 is applied to the pit wall surface. As described above, since the back of the skin plate 3 is always supported by the receiving material, it is possible to prevent the skin from falling off.
[0016]
FIG. 6 is a perspective view of the open liner system of FIG. In this system, liner members 21a, 21b, and 21c that support a part of the tunnel top end are disposed between adjacent ring support members 12 to stabilize the tunnel top end, and to promote the reaction force of the shield jack. It is something to take. Depending on the strength of the ground, a plate-like liner member 21a, a liner member 21b having a partial space, and a wire mesh-like liner member 21c are prepared.
[0017]
Fig. 7 shows an example in which the natural ground division, support structure, auxiliary construction method, and excavation method change according to the drilling depth of the boring, predicting natural ground properties in front of the face from the TBM machine as much as possible, By selecting an appropriate support structure and auxiliary method according to the properties, reliable excavation can be performed.
[0018]
【The invention's effect】
As is apparent from the above description, according to the present invention, it is possible to investigate and evaluate the natural ground in front of the face from the inside of the TBM machine, and it is possible to discriminate the natural condition with high accuracy and to appropriately support the natural condition according to the natural condition. The structure and auxiliary method can be selected, and reliable TBM excavation can be performed. In addition, since the scale and position of a defective geological part that makes TBM excavation impossible can be detected, it can be used for geological features such as burying the aircraft due to the collapse of the face, burying the aircraft due to sudden large springs, and retreating the aircraft due to the push of the face. It is possible to avoid the occurrence of serious troubles.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a TBM used in the present invention.
FIG. 2 is a flowchart showing an example of data processing by the tunnel excavation method of the present invention.
FIG. 3 is a diagram for explaining data plotting.
FIG. 4 is a diagram for explaining natural ground evaluation, support structure selection, and auxiliary construction method selection.
FIGS. 5A and 5B are diagrams for explaining the simplified prior support system of FIG. 4, in which FIG. 5A is a cross-sectional view of the TBM, and FIG. 5B is a cross-sectional view of the tail portion of the skin plate. .
6 is a perspective view of the open liner system of FIG. 4. FIG.
FIG. 7 is a view showing an example in which the ground division, the support structure, the auxiliary construction method, and the excavation method change according to the drilling depth of the boring.
[Explanation of symbols]
1 ... TBM (tunnel excavator)
2 ... Cutter head 3 ... Skin plate 4 ... Thrust jack 5 ... Main gripper 6 ... Rotary percussion drill 7 ... Face face 8 ... Face boring 9 ... Face outside boring

Claims (2)

カッターヘッド、スキンプレート及びスラストジャッキを有するトンネル掘削機と、該トンネル掘削機内に設置され、切羽面に対して直角方向に削孔する切羽内ボーリングと切羽斜め前方に削孔する切羽外ボーリングとが可能なロータリパーカッションドリルとを備え、前記切羽外ボーリングの削孔データから切羽前方の地山性状を判別し、地山性状が良くない場合には前記切羽内ボーリングによりコアを採取して地山性状を判別し、地山性状に応じた支保構造を選定することを特徴とするトンネル掘進方法A tunnel excavator having a cutter head, a skin plate, and a thrust jack, and a boring inside the face that drills in a direction perpendicular to the face and a boring outside the face that drills diagonally forward of the face. A rotary percussion drill capable of discriminating the natural ground properties ahead of the face from the drilling data of the outer face boring, and if the natural ground characteristics are not good, the core is collected by boring inside the face and the natural ground characteristics A tunnel excavation method characterized by selecting a support structure according to natural ground properties. 上記削孔データは、少なくともロータリパーカッションドリルの削孔速度、トルク、給進力及び打撃エネルギーと打撃回数であることを特徴とする請求項1記載のトンネル掘進方法2. The tunnel excavation method according to claim 1, wherein the drilling data includes at least a drilling speed, torque, feed force, hitting energy and hitting number of a rotary percussion drill.
JP13969397A 1997-05-29 1997-05-29 Tunneling method Expired - Fee Related JP3629670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13969397A JP3629670B2 (en) 1997-05-29 1997-05-29 Tunneling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13969397A JP3629670B2 (en) 1997-05-29 1997-05-29 Tunneling method

Publications (2)

Publication Number Publication Date
JPH10331574A JPH10331574A (en) 1998-12-15
JP3629670B2 true JP3629670B2 (en) 2005-03-16

Family

ID=15251225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13969397A Expired - Fee Related JP3629670B2 (en) 1997-05-29 1997-05-29 Tunneling method

Country Status (1)

Country Link
JP (1) JP3629670B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293205A (en) * 2008-06-03 2009-12-17 Shimizu Corp Tunnel excavation method
JP6131160B2 (en) * 2013-09-26 2017-05-17 古河ロックドリル株式会社 Rock exploration method, rock exploration system, and drilling data correction device for rock exploration
CN105649655B (en) * 2016-03-25 2020-06-19 粤水电轨道交通建设有限公司 Be used for following shield structure built-in toward peripheral stratum slip casting reinforcing apparatus
CN107355226B (en) * 2017-08-23 2023-08-22 中国电建集团成都勘测设计研究院有限公司 Broken area hole section processing structure of TBM construction tunnel fault

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749756B2 (en) * 1990-10-22 1995-05-31 鹿島建設株式会社 Evaluation method of rock mass and prediction of geology ahead of cutting face using drilling data with hydraulic drill
JP2710740B2 (en) * 1993-03-19 1998-02-10 戸田建設株式会社 Front face exploration method
JP3250873B2 (en) * 1993-06-29 2002-01-28 株式会社間組 Tunnel boring machine
JPH07208060A (en) * 1994-01-24 1995-08-08 Shimizu Corp Rock blasting work by boring energy evaluation value of boring machine and correcting method of support structure
JP2945289B2 (en) * 1994-11-28 1999-09-06 川崎重工業株式会社 Tunnel excavator

Also Published As

Publication number Publication date
JPH10331574A (en) 1998-12-15

Similar Documents

Publication Publication Date Title
CN105339579B (en) Arrangement for controlling percussive drilling process
Schunnesson RQD predictions based on drill performance parameters
JP3721486B2 (en) Evaluation method of ground in tunnel excavation and tunnel excavation method using it
JP3380795B2 (en) Rock bed exploration method
JPH07208060A (en) Rock blasting work by boring energy evaluation value of boring machine and correcting method of support structure
CN112324443A (en) Pretreatment method for subway shield to penetrate through boulder with super-large diameter
AU2011202223B2 (en) Automated drill string position survey
JP4692883B2 (en) Ground investigation method and equipment using rotary percussion drill
JP3629670B2 (en) Tunneling method
JP2878255B1 (en) Geological survey method
Deketh et al. Towards the prediction of rock excavation machine performance
JPH06273533A (en) Forward probing system at stall
CN111577300A (en) Construction method for shield to penetrate through dense holes in boulder and boulder stratum
JPH11294079A (en) Tunnel boring method
JP3943430B2 (en) Method for predicting natural conditions ahead of face and excavation method
JPH0718650A (en) Geological survey method for working face front natural ground in blast excavation method
JP2014234629A (en) Foundation strength measurement analysis system
JP2002180789A (en) Tunnel excavating method using jumbo
Noma et al. Development of low noise and vibration tunneling methods using slots by single hole continuous drilling
JPH09303076A (en) Tunnel excavating construction method and excavating device
US20200072046A1 (en) Method and system for determining a soil class and use during determination of a soil class
CN114542066B (en) Advanced pre-splitting method for coal seam roof
KR102566443B1 (en) Vibration-Free Rock Crushing with 3 Free-face Excavation Method
JP2563974B2 (en) Earth auger
JPH11256561A (en) Design evaluating method for reinforcement material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040823

A131 Notification of reasons for refusal

Effective date: 20040901

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20041012

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20041110

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041203

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20101224

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees