JP6941919B2 - Optical instruments and prisms - Google Patents

Optical instruments and prisms Download PDF

Info

Publication number
JP6941919B2
JP6941919B2 JP2016020756A JP2016020756A JP6941919B2 JP 6941919 B2 JP6941919 B2 JP 6941919B2 JP 2016020756 A JP2016020756 A JP 2016020756A JP 2016020756 A JP2016020756 A JP 2016020756A JP 6941919 B2 JP6941919 B2 JP 6941919B2
Authority
JP
Japan
Prior art keywords
film
dielectric
refractive index
prism
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016020756A
Other languages
Japanese (ja)
Other versions
JP2017138544A (en
Inventor
裕樹 竹友
裕樹 竹友
秀雄 藤井
秀雄 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Imaging Co Ltd
Original Assignee
Ricoh Imaging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Imaging Co Ltd filed Critical Ricoh Imaging Co Ltd
Priority to JP2016020756A priority Critical patent/JP6941919B2/en
Publication of JP2017138544A publication Critical patent/JP2017138544A/en
Application granted granted Critical
Publication of JP6941919B2 publication Critical patent/JP6941919B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、少なくとも1枚のレンズと、呼び面角90°で交わる一対の反射面を有するプリズムを備えた観察光学系を有する観察光学機器及び物体像の上下左右を反転し正立正像に変換するプリズム、特にダハプリズムに関する。 The present invention is an observation optical device having an observation optical system having a prism having a pair of reflecting surfaces intersecting at a nominal angle of 90 ° and at least one lens, and an object image is inverted vertically and horizontally and converted into an upright orthodox image. Regarding prisms, especially roof prisms.

顕微鏡、望遠鏡、双眼鏡、一眼レフカメラ、一眼レフデジタルカメラ、測量機などの観察光学機器に使われるダハプリズムは、呼び面角90°で交わる一対の反射面の稜線によって観察光学系の瞳が分割されることから、高い加工精度が要求されるが、ポロプリズムなどの他の正立プリズムに比べてプリズムを小型にできるため、光学機器を小型・軽量化が可能になるという利点がある。 The roof prism used in observation optical instruments such as microscopes, telescopes, binoculars, single-lens reflex cameras, single-lens reflex digital cameras, and surveying instruments has the pupils of the observation optical system divided by the ridges of a pair of reflective surfaces that intersect at a nominal angle of 90 °. Therefore, high processing accuracy is required, but since the prism can be made smaller than other upright prisms such as the Porro prism, there is an advantage that the optical device can be made smaller and lighter.

一方、光束が反射面で反射すると、その面の前後において光波の互いに直交するs偏光成分とp偏光成分とに位相差が生じることが知られている。ダハプリズムのように稜線で瞳が分割される光学系では、分割された瞳の一方と他方とでダハプリズムから出射した光の偏光状態に違いが生じるため、波面収差が生じ、観察像の結像性能を劣化させる。反射面で生じる位相差が大きいほど、生じる偏光状態の違いが大きくなり、面角の加工精度が低い場合と同様に、二重像が観察されたり、コントラストが低下したりする。 On the other hand, it is known that when a light beam is reflected by a reflecting surface, a phase difference occurs between the s-polarized light component and the p-polarized light component, which are orthogonal to each other, before and after the surface. In an optical system in which the pupil is divided by a ridge like a roof prism, the polarization state of the light emitted from the roof prism differs between one of the divided pupils and the other, which causes wavefront aberration and the imaging performance of the observed image. Deteriorate. The larger the phase difference generated on the reflecting surface, the larger the difference in the polarization state generated, and the dihedral image is observed and the contrast is lowered as in the case where the processing accuracy of the surface angle is low.

このダハプリズムの反射面で生じる位相差を軽減するために、従来は反射面にアルミニウムや銀の金属膜を形成することが行われていた。しかし、ダハプリズムの加工精度が向上するのに伴い、金属膜では、問題の位相差を低減する効果が不十分であると指摘されるようになった。 Conventionally, in order to reduce the phase difference generated on the reflective surface of the roof prism, a metal film of aluminum or silver has been formed on the reflective surface. However, as the processing accuracy of the roof prism is improved, it has been pointed out that the metal film is insufficient in the effect of reducing the phase difference in question.

特許文献1(特開平11-326781号)は、ダハプリズムのダハ面に、屈折率M1、M2及びM3の誘電体膜(ただし、2.0<M1<2.1、1.35<M2<1.4及び1.45<M3<1.5)を9層積層してなる位相差低減多層膜を開示しており、1.46〜1.6の屈折率を有する基材からなるダハプリズムに対する可視域波長光の位相差低減に有効であると記載している。すなわち、特許文献1に記載の位相差低減多層膜は、ダハプリズムの一対の反射面に入射する光束の反射前後におけるs偏光とp偏光との位相差の変化を抑制し、波面収差の劣化を抑えて観察像の性能を向上させる効果を有している。 Patent Document 1 (Japanese Patent Laid-Open No. 11-326781) describes a dielectric film having refractive indexes M1, M2 and M3 (however, 2.0 <M1 <2.1, 1.35 <M2 <1.4 and 1.45 <M3 <1.5) on the roof surface of the roof prism. ) Is disclosed, and it is described that it is effective in reducing the phase difference of visible wavelength light with respect to a roof prism made of a base material having a refractive index of 1.46 to 1.6. .. That is, the phase difference reducing multilayer film described in Patent Document 1 suppresses the change in the phase difference between s-polarized light and p-polarized light before and after the reflection of the light flux incident on the pair of reflecting surfaces of the roof prism, and suppresses the deterioration of wavefront aberration. It has the effect of improving the performance of the observed image.

しかしながら、特許文献1に記載の位相差低減多層膜は基材内面反射光の入射角が臨界角を越えているときに起こる全反射を利用したものであるため、基材外面にゴミや汚れなどが付着した際に、その欠点において内面反射光の散乱や吸収を生じて、観察像のコントラストを低下させるという問題がある。 However, since the phase difference reducing multilayer film described in Patent Document 1 utilizes total reflection that occurs when the incident angle of the light reflected on the inner surface of the base material exceeds the critical angle, dust, dirt, etc. on the outer surface of the base material are used. When the light is attached, the drawback is that the internally reflected light is scattered or absorbed, and the contrast of the observed image is lowered.

基材外面のゴミや汚れの影響を防ぐためには、反射面に金属単層膜を形成し、ダハプリズム外部からの光を遮断する方法が有効である。しかしながら、例えば、屈折率1.516の基材において、金属単層膜を形成した反射面で基材内部からの光が入射角49°で反射したときにはs偏光とp偏光との位相差が20°以上となる。このように反射面での偏光状態の差が大きい場合、二重像が観察されたり、コントラストが低下したり、偏光成分を含む画像において二つのダハ面に色差を生じたりするという問題が生じる。 In order to prevent the influence of dust and dirt on the outer surface of the base material, it is effective to form a metal monolayer film on the reflective surface to block light from the outside of the roof prism. However, for example, in a base material having a refractive index of 1.516, when light from the inside of the base material is reflected at an incident angle of 49 ° on a reflective surface on which a metal monolayer film is formed, the phase difference between s-polarized light and p-polarized light is 20 ° or more. It becomes. When the difference in the polarization state on the reflecting surface is large as described above, there are problems that a double image is observed, the contrast is lowered, and a color difference is generated between the two roof surfaces in the image containing the polarization component.

特開平11-326781号公報Japanese Unexamined Patent Publication No. 11-326781

従って、本発明の目的は、入射した光束の反射前後において、s偏光とp偏光の位相差が小さいプリズム及びそれを備えた光学機器を提供することである。 Therefore, an object of the present invention is to provide a prism having a small phase difference between s-polarized light and p-polarized light before and after reflection of an incident light flux, and an optical device provided with the prism.

前記目的に鑑み鋭意研究の結果、本発明者らは、金属膜と基材の間に、屈折率の異なる誘電体膜を2層以上形成することで、s偏光とp偏光の位相差を調整できることを見出し、本発明に想到した。 As a result of diligent research in view of the above objectives, the present inventors adjusted the phase difference between s-polarized light and p-polarized light by forming two or more layers of dielectric films having different refractive indexes between the metal film and the base material. He found what he could do and came up with the present invention.

すなわち、本発明の光学機器は、呼び面角90°で交わる一対の反射面を有するプリズムと、少なくとも1枚のレンズとを備えた観察光学系を有する光学機器であって、
前記プリズムは、前記一対の反射面の稜線が前記観察光学系の瞳を分割するよう配置されており、
前記プリズムの一対の反射面は、
(a)少なくとも2層の誘電体膜からなる誘電体多層膜、及び
(b)前記誘電体多層膜の上に積層された金属膜を有しており、
前記誘電体多層膜は、隣接する誘電体膜の屈折率が互いに異なり、各誘電体膜の光学膜厚が5 nm以上であることを特徴とする。
That is, the optical device of the present invention is an optical device having an observation optical system including a prism having a pair of reflecting surfaces intersecting at a nominal surface angle of 90 ° and at least one lens.
The prism is arranged so that the ridges of the pair of reflecting surfaces divide the pupil of the observation optical system.
The pair of reflective surfaces of the prism
(a) A dielectric multilayer film consisting of at least two layers of dielectric film, and
(b) It has a metal film laminated on the dielectric multilayer film.
The dielectric multilayer film is characterized in that the refractive indexes of adjacent dielectric films are different from each other, and the optical film thickness of each dielectric film is 5 nm or more.

前記誘電体多層膜は、最も高い屈折率を有する誘電体膜と最も低い屈折率を有する誘電体膜との屈折率差が0.2以上であるのが好ましい。 The dielectric multilayer film preferably has a refractive index difference of 0.2 or more between the dielectric film having the highest refractive index and the dielectric film having the lowest refractive index.

前記誘電体多層膜は、最も高い屈折率を有する誘電体膜と前記金属膜に最も近い側の誘電体膜との屈折率差が0.2以上であるのが好ましい。 The dielectric multilayer film preferably has a refractive index difference of 0.2 or more between the dielectric film having the highest refractive index and the dielectric film on the side closest to the metal film.

前記誘電体多層膜は、少なくとも1層の屈折率1.8以上の高屈折率膜と少なくとも1層の屈折率1.8未満の低屈折率膜とを含み、前記高屈折率膜と前記低屈折率膜との屈折率差が0.2以上であるのが好ましい。 The dielectric multilayer film includes at least one high refractive index film having a refractive index of 1.8 or more and at least one low refractive index film having a refractive index of less than 1.8, and the high refractive index film and the low refractive index film. The difference in refractive index of is preferably 0.2 or more.

前記誘電体膜のうち最も前記プリズムに近い側の誘電体膜は前記プリズムに隣接しており、前記金属膜は少なくとも可視光に対する透過率が実質的に0%となる膜厚を有しているのが好ましい。 The dielectric film on the side closest to the prism among the dielectric films is adjacent to the prism, and the metal film has a film thickness at least such that the transmittance with respect to visible light is substantially 0%. Is preferable.

前記金属膜は銀、アルミニウム、金、銅、ニッケル、クロム、白金、ロジウム、錫、亜鉛及びマグネシウムからなる金属群から選ばれた1種からなる単体膜、又は前記金属群から選ばれた少なくとも1種を含む合金の膜であるのが好ましい。 The metal film is a simple substance film composed of one selected from the metal group consisting of silver, aluminum, gold, copper, nickel, chromium, platinum, rhodium, tin, zinc and magnesium, or at least one selected from the metal group. It is preferably a film of an alloy containing seeds.

誘電体膜はTiO2、Nb2O5、Ta2O5、La2O3、ZrO2、HfO2、Y2O3、WO3、CeO2、SnO2、MgO、SiO、Al2O3、CeF3、YF3、LaF3、SiO2、CaF2、MgF2及びAlF3からなる誘電体群から選ばれた少なくとも1種、又は前記誘電体群から選ばれた少なくとも1種を含む化合物からなるのが好ましい。 The dielectric film is TiO 2 , Nb 2 O 5 , Ta 2 O 5 , La 2 O 3 , ZrO 2 , HfO 2 , Y 2 O 3 , WO 3 , CeO 2 , SnO 2 , MgO, SiO, Al 2 O 3 , CeF 3 , YF 3 , LaF 3 , SiO 2 , CaF 2 , MgF 2 and AlF 3 from at least one selected from the dielectric group, or from a compound containing at least one selected from the dielectric group. It is preferable to be.

本発明のプリズムは、呼び面角90°で交わる一対の反射面を有するプリズムであって、
前記一対の反射面は、
(a)少なくとも2層の誘電体膜からなる誘電体多層膜、及び
(b)前記誘電体多層膜の上に積層された金属膜を有しており、
前記誘電体多層膜は、隣接する誘電体膜の屈折率が互いに異なり、各誘電体膜の光学膜厚が5 nm以上であることを特徴とする。
前記プリズムはペンタダハプリズム、ペシャンプリズム又はアミチプリズムであるのが好ましい。
The prism of the present invention is a prism having a pair of reflecting surfaces intersecting at a nominal angle of 90 °.
The pair of reflective surfaces
(a) A dielectric multilayer film consisting of at least two layers of dielectric film, and
(b) It has a metal film laminated on the dielectric multilayer film.
The dielectric multilayer film is characterized in that the refractive indexes of adjacent dielectric films are different from each other, and the optical film thickness of each dielectric film is 5 nm or more.
The prism is preferably a pentadha prism, a Peshan prism or an amici prism.

本発明の光学機器に備えられたプリズムは、s偏光とp偏光の位相差を小さくすることができるため、様々な観察光学機器に使用することができる Since the prism provided in the optical instrument of the present invention can reduce the phase difference between s-polarized light and p-polarized light, it can be used in various observation optical instruments.

基材内部からの光束が表面(空気との界面)で反射したときのs偏光とp偏光との位相差の変化を説明するための模式図である。It is a schematic diagram for demonstrating the change of the phase difference between s-polarized light and p-polarized light when the light flux from the inside of a base material is reflected by the surface (the interface with air). 基材内部からの光束が表面で反射したときのs偏光とp偏光との位相差の入射角依存性を示すグラフである。It is a graph which shows the incident angle dependence of the phase difference between s-polarized light and p-polarized light when the light flux from the inside of a base material is reflected on the surface. ペシャンプリズムに入射した光束の光路を示す模式図である。It is a schematic diagram which shows the optical path of the light flux incident on a Peshan prism. ペンタプリズムに入射した光束の光路を示す模式図である。It is a schematic diagram which shows the optical path of the light flux incident on a pentaprism. アミチプリズムに入射した光束の光路を示す模式図である。It is a schematic diagram which shows the optical path of the light flux incident on the amici prism. 金属単層膜(Ag:銀、Al:アルミニウム、Au:金、のいずれか)のみを設けた基材で内部からの光束が反射したときの反射率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the reflectance when the light flux from the inside is reflected by the base material provided only with the metal monolayer film (Ag: silver, Al: aluminum, Au: gold). 金属単層膜(Ag:銀、Al:アルミニウム、Au:金、のいずれか)のみを設けた基材で内部からの光束が反射したときのs偏光とp偏光との位相差の波長依存性を示すグラフである。Wavelength dependence of the phase difference between s-polarized light and p-polarized light when the light flux from the inside is reflected on a base material provided with only a metal monolayer film (Ag: silver, Al: aluminum, Au: gold). It is a graph which shows. 金属単層膜(Cu:銅、Ni:ニッケル、Cr:クロム、のいずれか)のみを設けた基材で内部からの光束が反射したときの反射率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the reflectance when the light flux from the inside is reflected by the base material provided only with the metal monolayer film (one of Cu: copper, Ni: nickel, Cr: chromium). 金属単層膜(Cu:銅、Ni:ニッケル、Cr:クロム、のいずれか)のみを設けた基材で内部からの光束が反射したときのs偏光とp偏光との位相差の波長依存性を示すグラフである。Wavelength dependence of the phase difference between s-polarized light and p-polarized light when the light flux from the inside is reflected on a base material provided with only a metal single-layer film (Cu: copper, Ni: nickel, Cr: chromium). It is a graph which shows. 実施例1の多層膜を設けた基材で内部からの光束が反射したときの反射率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the reflectance when the light flux from the inside is reflected by the base material provided with the multilayer film of Example 1. 実施例1の多層膜を設けた基材で内部からの光束が反射したときのs偏光とp偏光との位相差の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the phase difference between s-polarized light and p-polarized light when the light flux from the inside is reflected by the base material provided with the multilayer film of Example 1. FIG. 参考例2の多層膜を設けた基材で内部からの光束が反射したときの反射率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the reflectance when the light flux from the inside is reflected by the base material provided with the multilayer film of Reference Example 2. 参考例2の多層膜を設けた基材で内部からの光束が反射したときのs偏光とp偏光との位相差の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the phase difference between s-polarized light and p-polarized light when the light flux from the inside is reflected by the base material provided with the multilayer film of Reference Example 2. 参考例3の多層膜を設けた基材で内部からの光束が反射したときの反射率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the reflectance when the light flux from the inside is reflected by the base material provided with the multilayer film of Reference Example 3. 参考例3の多層膜を設けた基材で内部からの光束が反射したときのs偏光とp偏光との位相差の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the phase difference between s-polarized light and p-polarized light when the light flux from the inside is reflected by the base material provided with the multilayer film of Reference Example 3. 実施例4の多層膜を設けた基材で内部からの光束が反射したときの反射率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the reflectance when the light flux from the inside is reflected by the base material provided with the multilayer film of Example 4. 実施例4の多層膜を設けた基材で内部からの光束が反射したときのs偏光とp偏光との位相差の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the phase difference between s-polarized light and p-polarized light when the light flux from the inside is reflected by the base material provided with the multilayer film of Example 4. FIG. 実施例5の多層膜を設けた基材で内部からの光束が反射したときの反射率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the reflectance when the light flux from the inside is reflected by the base material provided with the multilayer film of Example 5. 実施例5の多層膜を設けた基材で内部からの光束が反射したときのs偏光とp偏光との位相差の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the phase difference between s-polarized light and p-polarized light when the light flux from the inside is reflected by the base material provided with the multilayer film of Example 5. FIG. 実施例6の多層膜を設けた基材で内部からの光束が反射したときの反射率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the reflectance when the light flux from the inside is reflected by the base material provided with the multilayer film of Example 6. 実施例6の多層膜を設けた基材で内部からの光束が反射したときのs偏光とp偏光との位相差の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the phase difference between s-polarized light and p-polarized light when the light flux from the inside is reflected by the base material provided with the multilayer film of Example 6. 実施例7の多層膜を設けた基材で内部からの光束が反射したときの反射率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the reflectance when the light flux from the inside is reflected by the base material provided with the multilayer film of Example 7. 実施例7の多層膜を設けた基材で内部からの光束が反射したときのs偏光とp偏光との位相差の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the phase difference between s-polarized light and p-polarized light when the light flux from the inside is reflected by the base material provided with the multilayer film of Example 7. FIG. 実施例8の多層膜を設けた基材で内部からの光束が反射したときの反射率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the reflectance when the light flux from the inside is reflected by the base material provided with the multilayer film of Example 8. 実施例8の多層膜を設けた基材で内部からの光束が反射したときのs偏光とp偏光との位相差の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the phase difference between s-polarized light and p-polarized light when the light flux from the inside is reflected by the base material provided with the multilayer film of Example 8. 比較例1の反射膜を設けた基材で内部からの光束が反射したときの反射率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the reflectance when the light flux from the inside is reflected by the base material provided with the reflective film of Comparative Example 1. 比較例1の反射膜を設けた基材で内部からの光束が反射したときのs偏光とp偏光との位相差の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the phase difference between s-polarized light and p-polarized light when the light flux from the inside is reflected by the base material provided with the reflective film of Comparative Example 1. 比較例2の反射膜を設けた基材で内部からの光束が反射したときの反射率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the reflectance when the light flux from the inside is reflected by the base material provided with the reflective film of Comparative Example 2. 比較例2の反射膜を設けた基材で内部からの光束が反射したときのs偏光とp偏光との位相差の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the phase difference between s-polarized light and p-polarized light when the light flux from the inside is reflected by the base material provided with the reflective film of Comparative Example 2. 比較例3の反射膜を設けた基材で内部からの光束が反射したときの反射率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the reflectance when the light flux from the inside is reflected by the base material provided with the reflective film of Comparative Example 3. 比較例3の反射膜を設けた基材で内部からの光束が反射したときのs偏光とp偏光との位相差の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the phase difference between s-polarized light and p-polarized light when the light flux from the inside is reflected by the base material provided with the reflective film of Comparative Example 3.

[1] 光学機器
本発明の光学機器は、呼び面角90°で交わる一対の反射面を有するプリズムと、少なくとも1枚のレンズとを備えた観察光学系を有する光学機器であって、前記プリズムは、前記一対の反射面の稜線が前記観察光学系の瞳を分割するよう配置されており、前記プリズムの一対の反射面は、(a)少なくとも2層の誘電体膜からなる誘電体多層膜、及び(b)前記誘電体多層膜の上に積層された金属膜を有しており、前記誘電体多層膜は、隣接する誘電体膜の屈折率が互いに異なり、各誘電体膜の光学膜厚が5 nm以上であることを特徴とする。
[1] Optical device The optical device of the present invention is an optical device having an observation optical system including a prism having a pair of reflecting surfaces intersecting at a nominal surface angle of 90 ° and at least one lens, and the prism. Is arranged so that the ridges of the pair of reflecting surfaces divide the pupil of the observation optical system, and the pair of reflecting surfaces of the prism are (a) a dielectric multilayer film composed of at least two layers of dielectric film. , And (b) have a metal film laminated on the dielectric multilayer film, and the dielectric multilayer film has different refractive coefficients of adjacent dielectric films, and the optical film of each dielectric film is different from each other. It is characterized by a thickness of 5 nm or more.

(1) 誘電体多層膜
本発明の光学機器は、基材(プリズム)と金属膜との間に、2層以上の誘電体膜からなる誘電体多層膜を設ける。前記誘電体多層膜は、隣接する誘電体膜の屈折率が互いに異なり、各誘電体膜の光学膜厚が5 nm以上である。前記誘電体膜のうち、最も高い屈折率を有する誘電体膜と最も低い屈折率を有する誘電体膜との屈折率差が0.2以上であるのが好ましい。さらに、最も高い屈折率を有する誘電体膜と前記金属膜に最も近い側の誘電体膜との屈折率差が0.2以上であるのが好ましい。前記誘電体膜のうち最も前記プリズムに近い側の誘電体膜は前記プリズムに隣接しているのが好ましい。
(1) Dielectric multilayer film In the optical device of the present invention, a dielectric multilayer film composed of two or more layers of dielectric films is provided between a base material (prism) and a metal film. In the dielectric multilayer film, the refractive indexes of adjacent dielectric films are different from each other, and the optical film thickness of each dielectric film is 5 nm or more. Among the dielectric films, the difference in refractive index between the dielectric film having the highest refractive index and the dielectric film having the lowest refractive index is preferably 0.2 or more. Further, it is preferable that the difference in refractive index between the dielectric film having the highest refractive index and the dielectric film on the side closest to the metal film is 0.2 or more. It is preferable that the dielectric film on the side closest to the prism among the dielectric films is adjacent to the prism.

誘電体膜の少なくとも1層は屈折率1.8以上の高屈折率膜であり、少なくとも1層は屈折率1.8未満の低屈折率膜であるのが好ましい。このとき、高屈折率膜と低屈折率膜との屈折率の差は0.2以上であるのが好ましい。金属膜に隣接する膜は低屈折率膜であるのが好ましい。 It is preferable that at least one layer of the dielectric film is a high refractive index film having a refractive index of 1.8 or more, and at least one layer is a low refractive index film having a refractive index of less than 1.8. At this time, the difference in refractive index between the high refractive index film and the low refractive index film is preferably 0.2 or more. The film adjacent to the metal film is preferably a low refractive index film.

例えば、2層の誘電体膜からなる場合、基材側が屈折率1.8以上の高屈折率膜であり、金属膜側が屈折率1.8未満の低屈折率膜であり、それらの屈折率の差が0.2以上であるのが好ましい。3層以上の誘電体膜からなる場合、基材に隣接する膜は高屈折率膜であっても低屈折率膜であってもよいが、金属膜に隣接する膜は低屈折率膜であるのが好ましい。 For example, in the case of two layers of dielectric film, the base material side is a high refractive index film with a refractive index of 1.8 or more, and the metal film side is a low refractive index film with a refractive index of less than 1.8, and the difference in refractive index between them is 0.2. The above is preferable. When composed of three or more layers of dielectric film, the film adjacent to the substrate may be a high refractive index film or a low refractive index film, but the film adjacent to the metal film is a low refractive index film. Is preferable.

例えば、3層の場合、基材側から高屈折率膜、低屈折率膜及び低屈折率膜からなる構成、又は基材側から低屈折率膜、高屈折率膜及び低屈折率膜からなる構成が好ましい。また4層の場合、基材側から高屈折率膜、低屈折率膜、高屈折率膜及び低屈折率膜からなる構成、又は基材側から低屈折率膜、高屈折率膜、低屈折率膜及び低屈折率膜からなる構成が好ましく、5層構成の場合、基材側から高屈折率膜、低屈折率膜、高屈折率膜、低屈折率膜及び低屈折率膜からなる構成、又は基材側から低屈折率膜、高屈折率膜、低屈折率膜、高屈折率膜及び低屈折率膜からなる構成が好ましい。6層構成以上の誘電体多層膜についても、これらと同様に設計することができる。 For example, in the case of three layers, it is composed of a high refractive index film, a low refractive index film and a low refractive index film from the base material side, or a low refractive index film, a high refractive index film and a low refractive index film from the base material side. The configuration is preferred. In the case of four layers, the composition is composed of a high refractive index film, a low refractive index film, a high refractive index film and a low refractive index film from the base material side, or a low refractive index film, a high refractive index film and a low refractive index from the base material side. A structure composed of a rate film and a low refractive index film is preferable, and in the case of a five-layer structure, a structure composed of a high refractive index film, a low refractive index film, a high refractive index film, a low refractive index film and a low refractive index film from the base material side. , Or a configuration composed of a low refractive index film, a high refractive index film, a low refractive index film, a high refractive index film, and a low refractive index film from the substrate side is preferable. A dielectric multilayer film having a structure of 6 or more can be designed in the same manner as these.

高屈折率膜が複数ある場合、それらの誘電体膜の屈折率は同じであっても異なっていても良い。同様に、低屈折率膜が複数ある場合、それらの誘電体膜の屈折率は同じであっても異なっていても良い。 When there are a plurality of high refractive index films, the refractive indexes of those dielectric films may be the same or different. Similarly, when there are a plurality of low refractive index films, the refractive indexes of those dielectric films may be the same or different.

3層以上の誘電体膜からなる場合も、高屈折率膜と低屈折率膜との屈折率の差は0.2以上であるのが好ましい。このとき、高屈折率膜と低屈折率膜とをどのように組み合わせた場合でもそれらの屈折率差が0.2以上となるように設計するのが好ましい。すなわち、高屈折率膜の中で最も屈折率の低い誘電体膜と、低屈折率膜の中で最も屈折率の高い誘電体膜との屈折率差が0.2以上となるように設計する。 Even when the film is composed of three or more layers of a dielectric film, the difference in refractive index between the high refractive index film and the low refractive index film is preferably 0.2 or more. At this time, it is preferable to design so that the difference in refractive index between the high refractive index film and the low refractive index film is 0.2 or more no matter how they are combined. That is, the refractive index difference between the dielectric film having the lowest refractive index among the high refractive index films and the dielectric film having the highest refractive index among the low refractive index films is designed to be 0.2 or more.

誘電体多層膜の層数は、2〜5層であるのが好ましい。6層以上でも位相差を低減する効果を発揮する多層膜を得ることは可能であるが、6層以上にしても5層で得られる特性(設計特性)とほとんど変わりがないし、層数が増えると製造工程が増えるので製造誤差の蓄積によって設計通りの特性が得られなくなるデメリットがある。 The number of layers of the dielectric multilayer film is preferably 2 to 5 layers. It is possible to obtain a multilayer film that has the effect of reducing the phase difference even with 6 or more layers, but even with 6 or more layers, there is almost no difference from the characteristics (design characteristics) obtained with 5 layers, and the number of layers increases. Since the number of manufacturing processes increases, there is a demerit that the characteristics as designed cannot be obtained due to the accumulation of manufacturing errors.

誘電体膜の光学膜厚は、高屈折率膜及び低屈折率膜ともに、それぞれ5 nm以上であるのが好ましい。誘電体膜の光学膜厚が5 nm未満であると反射光のs偏光成分とp偏光成分の位相差を低減する効果が小さくなる場合がある。このような膜厚を有する膜構成として各層の光学膜厚を最適化することで、干渉効果が最適化された誘電体多層膜が得られる。これらの誘電体多層膜を屈折率1.43〜2.1の基材(プリズム)に形成することにより、反射光のs偏光とp偏光との位相差を±20°未満とすることができる。 The optical film thickness of the dielectric film is preferably 5 nm or more for both the high-refractive index film and the low-refractive index film. If the optical film thickness of the dielectric film is less than 5 nm, the effect of reducing the phase difference between the s-polarized light component and the p-polarized light component of the reflected light may be reduced. By optimizing the optical film thickness of each layer as a film structure having such a film thickness, a dielectric multilayer film with an optimized interference effect can be obtained. By forming these dielectric multilayer films on a base material (prism) having a refractive index of 1.43 to 2.1, the phase difference between the s-polarized light and the p-polarized light of the reflected light can be made less than ± 20 °.

誘電体膜はTiO2、Nb2O5、Ta2O5、La2O3、ZrO2、HfO2、Y2O3、WO3、CeO2、SnO2、MgO、SiO、Al2O3、CeF3、YF3、LaF3、SiO2、CaF2、MgF2及びAlF3からなる誘電体群から選ばれた少なくとも1種、又は前記誘電体群から選ばれた少なくとも1種を含む化合物からなるのが好ましい。前記化合物としてはLaTiO3、LaAlO3等が挙げられる。これらの誘電体及び化合物からなる誘電体膜は、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法、熱CVD、プラズマCVD、光CVD等の化学蒸着法等によって形成することができる。 The dielectric film is TiO 2 , Nb 2 O 5 , Ta 2 O 5 , La 2 O 3 , ZrO 2 , HfO 2 , Y 2 O 3 , WO 3 , CeO 2 , SnO 2 , MgO, SiO, Al 2 O 3 , CeF 3 , YF 3 , LaF 3 , SiO 2 , CaF 2 , MgF 2 and AlF 3 from at least one selected from the dielectric group, or from a compound containing at least one selected from the dielectric group. It is preferable to be. Examples of the compound include LaTiO 3 , LaAlO 3, and the like. The dielectric film composed of these dielectrics and compounds can be formed by a physical vapor deposition method such as a vacuum vapor deposition method, a sputtering method or an ion plating method, or a chemical vapor deposition method such as thermal CVD, plasma CVD or optical CVD. ..

(3)金属膜
金属膜は銀、アルミニウム、金、銅、ニッケル、クロム、白金、ロジウム、錫、亜鉛及びマグネシウムからなる金属群から選ばれた1種からなる単体膜、又は前記金属群から選ばれた少なくとも1種を含む合金であるのが好ましい。これらの材料からなる金属膜は、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法によって形成することができる。また複数の種類の異なる金属膜を形成しても良い。金属膜は、外部からの可視光が入射しない厚さ、すなわち不透明(可視光に対する透過率が実質的に0%)となる厚さで形成するのが好ましい。金属膜の前記可視光に対する透過率は、0.01%以下であるのが好ましく、0.001以下であるのがより好ましい。
(3) Metal film The metal film is selected from a single film composed of one selected from the metal group consisting of silver, aluminum, gold, copper, nickel, chromium, platinum, rhodium, tin, zinc and magnesium, or from the metal group. It is preferable that the alloy contains at least one of the above. The metal film made of these materials can be formed by a physical vapor deposition method such as a vacuum vapor deposition method, a sputtering method, or an ion plating method. Further, a plurality of different types of different metal films may be formed. The metal film is preferably formed with a thickness that does not allow visible light from the outside to enter, that is, a thickness that makes it opaque (transmittance with respect to visible light is substantially 0%). The transmittance of the metal film with respect to visible light is preferably 0.01% or less, more preferably 0.001 or less.

耐久性や耐候性を向上するために、金属膜上に誘電体膜、塗層膜、撥水膜、撥油膜、防錆膜などを施しても良い。 In order to improve durability and weather resistance, a dielectric film, a coating film, a water-repellent film, an oil-repellent film, a rust-preventive film, or the like may be applied on the metal film.

[2]プリズム
本発明のプリズムは、呼び面角90°で交わる一対の反射面を有するプリズムであって、前記一対の反射面は、(a)少なくとも2層の誘電体膜からなる誘電体多層膜、及び(b)前記誘電体多層膜の上に積層された金属膜を有しており、前記誘電体多層膜は、隣接する誘電体膜の屈折率が互いに異なり、各誘電体膜の光学膜厚が5 nm以上であることを特徴とする。
[2] Prism The prism of the present invention is a prism having a pair of reflective surfaces intersecting at a nominal surface angle of 90 °, and the pair of reflective surfaces are (a) a dielectric multilayer composed of at least two layers of dielectric films. It has a film and (b) a metal film laminated on the dielectric multilayer film, and the dielectric multilayer films have different refractive indexes of adjacent dielectric films, and the optics of each dielectric film are different from each other. It is characterized by having a film thickness of 5 nm or more.

本発明のプリズムはダハプリズムとして用いられるのが好ましく、このようなダハプリズムとしては、例えば、図3に示すペチャンプリズム、図4に示すペンタダハプリズム(ペンタプリズム)、図5に示すアミチプリズムが挙げられる。これらの図において、破線矢印で示した光線がダハ面4へ入射する角度はペチャンプリズムでは48°(図3)、ペンタダハプリズムでは49°(図4)、アミチプリズムでは60°(図5)となる。ペンタダハプリズムが観測光学系として利用される光学機器としては、一眼レフカメラや一眼レフデジタルカメラなどが挙げられ、アミチプリズムが観測光学系として利用される光学機器としては、顕微鏡や測量機などが挙げられ、ペチャンプリズムが観測光学系として利用される光学機器としては、双眼鏡や望遠鏡などが挙げられる。 The prism of the present invention is preferably used as a roof prism, and examples of such a roof prism include a Pechan prism shown in FIG. 3, a penta-dach prism (penta-prism) shown in FIG. 4, and an amici prism shown in FIG. In these figures, the angle at which the light beam indicated by the broken line arrow enters the roof surface 4 is 48 ° (Fig. 3) for the Pechan prism, 49 ° (Fig. 4) for the penta-Dach prism, and 60 ° (Fig. 5) for the Amici prism. Become. Optical instruments in which the pentadha prism is used as the observation optical system include single-lens reflex cameras and single-lens reflex digital cameras, and optical instruments in which the amici prism is used as the observation optical system include microscopes and surveying instruments. Examples of optical instruments in which the pechan prism is used as an observation optical system include binoculars and a telescope.

本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。 The present invention will be described in more detail by way of examples, but the present invention is not limited thereto.

(1) s偏光とp偏光との位相差の入射角度依存性
s偏光とp偏光との位相差について、図1の通り座標を定義する。入射光線1と出射光線2とは紙面に平行であり、光線方向をz軸、紙面と平行でz軸と垂直な方向をx軸、紙面と垂直で紙面から出る方向をy軸とした。この場合にはy軸がs偏光で、x軸がp偏光に相当する。光線入射角θiと出射角θoとは反射の定義から等しくなる。位相差の定義では、未成膜基材と空気との界面3におけるs偏光とp偏光との位相差は、入射した光線がブリュスター角に達するまでは0°、ブリュスター角から臨界角までは180°、臨界角以上では角度に依存した値となる。図2に、屈折率nd=1.516のS-BSL7(株式会社オハラ製)を基材として用いた場合の、波長550 nmにおけるs偏光とp偏光との位相差の入射角度依存性を示す。図2において、ブリュスター角が33.4°、臨界角が41.3°となる。
(1) Incident angle dependence of phase difference between s-polarized light and p-polarized light
The coordinates of the phase difference between s-polarized light and p-polarized light are defined as shown in Fig. 1. The incident light beam 1 and the outgoing light ray 2 are parallel to the paper surface, the ray direction is the z-axis, the direction parallel to the paper surface and perpendicular to the z-axis is the x-axis, and the direction perpendicular to the paper surface and exiting the paper surface is the y-axis. In this case, the y-axis corresponds to s-polarized light and the x-axis corresponds to p-polarized light. The ray incident angle θi and the emitted angle θo are equal from the definition of reflection. In the definition of phase difference, the phase difference between s-polarized light and p-polarized light at the interface 3 between the undeposited substrate and air is 0 ° until the incident light ray reaches the brewer angle, and from the brewer angle to the critical angle. At 180 ° and above the critical angle, the value depends on the angle. FIG. 2 shows the incident angle dependence of the phase difference between s-polarized light and p-polarized light at a wavelength of 550 nm when S-BSL7 (manufactured by OHARA Corporation) having a refractive index of nd = 1.516 is used as a base material. In FIG. 2, the brewster angle is 33.4 ° and the critical angle is 41.3 °.

(2) 金属単層膜
プリズムとして、一眼レフカメラのファインダ光学系に用いられたペンタダハプリズムの場合を例に挙げて金属単層膜の効果について説明する。この場合、一眼レフカメラの焦点板で拡散される光束が、ペンタダハプリズムのダハ面に入射角49°を中心とした光束として入射する。ペンタダハプリズムの基材としてS-BSL7(nd=1.516、臨界角θ=41.3°)を用い、その反射面(ダハ面)にAg、Al、Au、Cu、Ni及びCrの金属単層膜を不透明(不透過)になる膜厚で形成した。このときs偏光とp偏光との位相差は134°となった。
(2) As the metal single-layer film prism, the effect of the metal single-layer film will be described by taking as an example the case of the pentadach prism used in the finder optical system of a single-lens reflex camera. In this case, the light flux diffused by the focal plate of the single-lens reflex camera is incident on the roof surface of the penta-dach prism as a light flux centered at an incident angle of 49 °. S-BSL7 (nd = 1.516, critical angle θ = 41.3 °) is used as the base material of the pentadach prism, and the metal single-layer film of Ag, Al, Au, Cu, Ni and Cr is opaque on its reflection surface (dach surface). It was formed with a film thickness that would be (impermeable). At this time, the phase difference between the s-polarized light and the p-polarized light was 134 °.

これらのAg、Al、Au、Cu、Ni及びCrの金属膜を形成した場合の、S-BSL7基材内部から入射角49°で反射面に入射した光の反射率の波長依存性を図6-1及び図6-3に、s偏光とp偏光の位相差を図6-2及び図6-4に示す。図6-2及び図6-4から、可視波長域の波長400〜700 nmにおけるs偏光とp偏光の位相差はいずれの金属単層膜においても20°以上であり、金属単層膜のみでは反射面での偏光状態に大きな差が生じてしまうことが分かる。 The wavelength dependence of the reflectance of light incident on the reflecting surface from the inside of the S-BSL7 base material at an incident angle of 49 ° when these metal films of Ag, Al, Au, Cu, Ni and Cr are formed is shown in Fig. 6 -1 and Fig. 6-3 show the phase difference between s-polarized light and p-polarized light in Fig. 6-2 and Fig. 6-4. From Fig. 6-2 and Fig. 6-4, the phase difference between s-polarized light and p-polarized light at wavelengths of 400 to 700 nm in the visible wavelength range is 20 ° or more for all metal monolayers, and only for metal monolayers. It can be seen that there is a large difference in the polarization state on the reflecting surface.

実施例1
S-BSL7(nd=1.516)基材にTiO2(nd=2.304)からなる光学膜厚55 nmの誘電体膜、及びAl2O3(nd=1.635)からなる光学膜厚103 nmの誘電体膜を順次形成し、さらに銀(nd=0.059、kd=3.643、kdはd線での吸収係数)からなる金属膜を不透明になる膜厚で形成した。この誘電体及び金属の多層膜を形成した面に、S-BSL7基材内部から49°で入射した光の反射率を図7-1に、s偏光とp偏光の位相差を図7-2に示す。
Example 1
S-BSL7 (nd = 1.516) base material with a dielectric film of TiO 2 (nd = 2.304) with an optical thickness of 55 nm and a dielectric film of Al 2 O 3 (nd = 1.635) with an optical thickness of 103 nm. The films were sequentially formed, and a metal film made of silver (nd = 0.059, kd = 3.634, kd is the absorption coefficient at the d line) was formed with a film thickness that became opaque. Fig. 7-1 shows the reflectance of light incident at 49 ° from the inside of the S-BSL7 base material on the surface on which the dielectric and metal multilayer film is formed, and Fig. 7-2 shows the phase difference between s-polarized light and p-polarized light. Shown in.

参考例2
株式会社オハラ製S-LAH66(nd=1.773)基材にTa2O5(nd=2.038)からなる光学膜厚33 nmの誘電体膜、及びSiO2(nd=1.468)からなる光学膜厚67 nmの誘電体膜を順次形成し、さらにアルミニウム(nd=0.932、kd=6.241)からなる金属膜を不透明になる膜厚で形成した。この誘電体及び金属の多層膜を形成した面に、S-LAH66基材内部から49°で入射した光の反射率を図8-1に、s偏光とp偏光の位相差を図8-2に示す。
Reference example 2
S-LAH66 (nd = 1.773) manufactured by O'Hara Co., Ltd. A dielectric film with an optical film thickness of 33 nm made of Ta 2 O 5 (nd = 2.038) and an optical film thickness of 67 made of SiO 2 (nd = 1.468) on a substrate. A dielectric film of nm was sequentially formed, and a metal film made of aluminum (nd = 0.932, kd = 6.241) was further formed with a film thickness that became opaque. The reflectance of light incident at 49 ° from the inside of the S-LAH66 substrate on the surface on which the dielectric and metal multilayer film is formed is shown in Fig. 8-1, and the phase difference between s-polarized light and p-polarized light is shown in Fig. 8-2. Shown in.

参考例3
株式会社オハラ製S-LAL14(nd=1.697)基材にTiO2(nd=2.304)からなる光学膜厚101 nmの誘電体膜、MgF2(nd=1.388)からなる光学膜厚29 nmの誘電体膜、及びAl2O3(nd=1.635)からなる光学膜厚30 nmの誘電体膜を順次形成し、さらに金(nd=0.276、kd=2.916)からなる金属膜を不透明になる膜厚で形成した。この誘電体及び金属の多層膜を形成した面に、S-LAL14基材内部から49°で入射した光の反射率を図9-1に、s偏光とp偏光の位相差を図9-2に示す。
Reference example 3
S-LAL14 (nd = 1.697) manufactured by O'Hara Co., Ltd. Dielectric film with an optical film thickness of 101 nm made of TiO 2 (nd = 2.304) and dielectric film with an optical film thickness of 29 nm made of MgF 2 (nd = 1.388) on a substrate. A body film and a dielectric film with an optical thickness of 30 nm made of Al 2 O 3 (nd = 1.635) are sequentially formed, and a metal film made of gold (nd = 0.276, kd = 2.916) becomes opaque. Formed with. The reflectance of light incident at 49 ° from the inside of the S-LAL14 substrate on the surface on which the dielectric and metal multilayer film is formed is shown in Fig. 9-1, and the phase difference between s-polarized light and p-polarized light is shown in Fig. 9-2. Shown in.

実施例4
株式会社オハラ製S-FSL5(nd=1.488)基材にZrO2(nd=1.936)からなる光学膜厚120 nmの誘電体膜、SiO2(nd=1.468)からなる光学膜厚31 nmの誘電体膜、及びAl2O3(nd=1.635)からなる光学膜厚30 nmの誘電体膜を順次形成し、さらに銅(nd=0.538、kd=2.861)からなる金属膜を不透明になる膜厚で形成した。この誘電体及び金属の多層膜を形成した面に、S-FSL5基材内部から49°で入射した光の反射率を図10-1に、s偏光とp偏光の位相差を図10-2に示す。
Example 4
S-FSL5 (nd = 1.488) made by OHARA Co., Ltd. Dielectric film with an optical film thickness of 120 nm made of ZrO 2 (nd = 1.936) and dielectric film with an optical film thickness of 31 nm made of SiO 2 (nd = 1.468) on a substrate. A body film and a dielectric film with an optical thickness of 30 nm made of Al 2 O 3 (nd = 1.635) are sequentially formed, and a metal film made of copper (nd = 0.538, kd = 2.861) becomes opaque. Formed with. Fig. 10-1 shows the reflectance of light incident at 49 ° from the inside of the S-FSL5 base material on the surface on which the dielectric and metal multilayer film was formed, and Fig. 10-2 shows the phase difference between s-polarized light and p-polarized light. Shown in.

実施例5
S-BSL7(nd=1.516)基材にMgF2(nd=1.388)からなる光学膜厚34 nmの誘電体膜、Ta2O5(nd=2.038)からなる光学膜厚57 nmの誘電体膜、及びMgF2(nd=1.388)からなる光学膜厚127 nmの誘電体膜を順次形成し、さらにニッケル(nd=1.850、kd=3.465)からなる金属膜を不透明になる膜厚で形成した。この誘電体及び金属の多層膜を形成した面に、S-BSL7基材内部から49°で入射した光の反射率を図11-1に、s偏光とp偏光の位相差を図11-2に示す。
Example 5
S-BSL7 (nd = 1.516) base material with a dielectric film of Mg F 2 (nd = 1.388) with an optical thickness of 34 nm and a dielectric film of Ta 2 O 5 (nd = 2.038) with an optical thickness of 57 nm. , And MgF 2 (nd = 1.388) with an optical thickness of 127 nm were sequentially formed, and a metal film made of nickel (nd = 1.850, kd = 3.465) was formed with an opaque thickness. Fig. 11-1 shows the reflectance of light incident at 49 ° from the inside of the S-BSL7 substrate on the surface on which the dielectric and metal multilayer film was formed, and Fig. 11-2 shows the phase difference between s-polarized light and p-polarized light. Shown in.

実施例6
S-BSL7(nd=1.516)基材にTa2O5(nd=2.038)からなる光学膜厚15 nmの誘電体膜、SiO2(nd=1.468)からなる光学膜厚101 nmの誘電体膜、Ta2O5(nd=2.038)からなる光学膜厚52 nmの誘電体膜、SiO2(nd=1.468)からなる光学膜厚146 nmの誘電体膜を順次形成し、さらにクロム(nd=2.902、kd=2.045)からなる金属膜を不透明になる膜厚で形成した。この誘電体及び金属の多層膜を形成した面に、S-BSL7基材内部から49°で入射した光の反射率を図12-1に、s偏光とp偏光の位相差を図12-2に示す。
Example 6
S-BSL7 (nd = 1.516) base material with a dielectric film of Ta 2 O 5 (nd = 2.038) with an optical thickness of 15 nm and SiO 2 (nd = 1.468) with an optical thickness of 101 nm. , Ta 2 O 5 (nd = 2.038) with an optical thickness of 52 nm, and SiO 2 (nd = 1.468) with an optical thickness of 146 nm are formed in sequence, and then chromium (nd = A metal film consisting of 2.902, kd = 2.045) was formed with a thickness that made it opaque. Fig. 12-1 shows the reflectance of light incident at 49 ° from the inside of the S-BSL7 substrate on the surface on which the dielectric and metal multilayer film was formed, and Fig. 12-2 shows the phase difference between s-polarized light and p-polarized light. Shown in.

実施例7
S-BSL7(nd=1.516)基材にTiO2(nd=2.304)からなる光学膜厚17 nmの誘電体膜、SiO2(nd=1.468)からなる光学膜厚90 nmの誘電体膜、TiO2(nd=2.304)からなる光学膜厚59 nmの誘電体膜、SiO2(nd=1.468)からなる光学膜厚78 nmの誘電体膜、及びAl2O3(nd=1.635)からなる光学膜厚30 nmの誘電体膜を順次形成し、さらに銀(nd=0.059、kd=3.643)からなる金属膜を不透明になる膜厚で形成した。この誘電体及び金属の多層膜を形成した面に、S-BSL7基材内部から41°で入射した光の反射率を図13-1に、s偏光とp偏光の位相差を図13-2に示す。
Example 7
S-BSL7 (nd = 1.516) substrate made of TiO 2 (nd = 2.304) with an optical thickness of 17 nm, a dielectric film made of SiO 2 (nd = 1.468) with an optical thickness of 90 nm, TiO A dielectric film with an optical thickness of 59 nm consisting of 2 (nd = 2.304), a dielectric film with an optical thickness of 78 nm consisting of SiO 2 (nd = 1.468), and an optical composition consisting of Al 2 O 3 (nd = 1.635). A dielectric film having a thickness of 30 nm was sequentially formed, and a metal film made of silver (nd = 0.059, kd = 3.634) was further formed with an opaque thickness. The reflectance of light incident at 41 ° from the inside of the S-BSL7 substrate on the surface on which the dielectric and metal multilayer film is formed is shown in Fig. 13-1, and the phase difference between s-polarized light and p-polarized light is shown in Fig. 13-2. Shown in.

実施例8
S-LAH66(nd=1.773)基材にTiO2(nd=2.304)からなる光学膜厚36 nmの誘電体膜、Al2O3(nd=1.635)からなる光学膜厚102 nmの誘電体膜、TiO2(nd=2.304)からなる光学膜厚95 nmの誘電体膜、及びAl2O3(nd=1.635)からなる光学膜厚146 nmの誘電体膜を順次形成し、さらに銀(nd=0.059、kd=3.643)からなる金属膜を不透明になる膜厚で形成した。この誘電体及び金属の多層膜を形成した面に、S-LAH66基材内部から60°で入射した光の反射率を図14-1に、s偏光とp偏光の位相差を図14-2に示す。
Example 8
S-LAH66 (nd = 1.773) substrate made of TiO 2 (nd = 2.304) with an optical thickness of 36 nm, and Al 2 O 3 (nd = 1.635) with an optical thickness of 102 nm. , A dielectric film having an optical thickness of 95 nm made of TiO 2 (nd = 2.304) and a dielectric film having an optical thickness of 146 nm made of Al 2 O 3 (nd = 1.635) were sequentially formed, and further silver (nd) was formed. A metal film consisting of = 0.059 and kd = 3.634) was formed with a thickness that made it opaque. The reflectance of light incident at 60 ° from the inside of the S-LAH66 substrate on the surface on which the dielectric and metal multilayer film is formed is shown in Fig. 14-1, and the phase difference between s-polarized light and p-polarized light is shown in Fig. 14-2. Shown in.

比較例1
S-BSL7(nd=1.516)基材に銀(nd=0.059、kd=3.643)からなる金属膜を不透明になる膜厚で形成した。この金属膜からなる反射膜を形成した面に、S-BSL7基材内部から49°で入射した光の反射率を図15-1に、s偏光とp偏光の位相差を図15-2に示す。
Comparative Example 1
A metal film made of silver (nd = 0.059, kd = 3.643) was formed on the S-BSL7 (nd = 1.516) substrate with a film thickness that became opaque. Fig. 15-1 shows the reflectance of light incident at 49 ° from the inside of the S-BSL7 base material on the surface on which the reflective film made of this metal film was formed, and Fig. 15-2 shows the phase difference between s-polarized light and p-polarized light. show.

比較例2
S-BSL7(nd=1.516)基材にAl2O3(nd=1.635)からなる光学膜厚213 nmの誘電体膜を形成し、さらに銀(nd=0.059、kd=3.643)からなる金属膜を不透明になる膜厚で形成した。この誘電体膜及び金属膜からなる反射膜を形成した面に、S-BSL7基材内部から49°で入射した光の反射率を図16-1に、s偏光とp偏光の位相差を図16-2に示す。
Comparative example 2
A dielectric film with an optical thickness of 213 nm made of Al 2 O 3 (nd = 1.635) is formed on the S-BSL7 (nd = 1.516) base material, and a metal film made of silver (nd = 0.059, kd = 3.643). Was formed with a film thickness that became opaque. Fig. 16-1 shows the reflectance of light incident at 49 ° from the inside of the S-BSL7 base material on the surface on which the reflective film made of the dielectric film and metal film is formed, and the phase difference between s-polarized light and p-polarized light is shown. Shown in 16-2.

比較例3
S-BSL7(nd=1.516)基材にSiO2(nd=1.468)からなる光学膜厚52 nmの誘電体膜形成し、さらに銀(nd=0.059、kd=3.643)からなる金属膜を不透明になる膜厚で形成した。この誘電体膜及び金属膜からなる反射膜を形成した面に、S-BSL7内部から49°で入射した光の反射率を図17-1に、s偏光とp偏光の位相差を図17-2に示す。
Comparative example 3
A dielectric film with an optical film thickness of 52 nm made of SiO 2 (nd = 1.468) is formed on the S-BSL7 (nd = 1.516) substrate, and a metal film made of silver (nd = 0.059, kd = 3.643) is made opaque. It was formed with a film thickness of Fig. 17-1 shows the reflectance of light incident on the surface of the reflective film made of a dielectric film and a metal film at 49 ° from the inside of S-BSL7, and Fig. 17- shows the phase difference between s-polarized light and p-polarized light. Shown in 2.

実施例1、参考例2、3、実施例4〜8の位相差のグラフ(図7-2、図8-2、図9-2、図10-2、図11-2、図12-2、図13-2及び図14-2)と比較例1〜3の位相差のグラフ(図15-2、図16-2及び図17-2)とを比較すれば分かるように、基材と金属膜の間に屈折率差0.2以上の誘電体膜を2層以上形成することで、可視波長域の400〜700 nmにおいてs偏光とp偏光の位相差が±20°未満とする効果を持つ位相差低減多層膜を得ることができた。
Graphs of phase differences of Examples 1, Reference Examples 2 , 3 and Examples 4 to 8 (Fig. 7-2, Fig. 8-2, Fig. 9-2, Fig. 10-2, Fig. 11-2, Fig. 12-2). , Fig. 13-2 and Fig. 14-2) and the graphs of the phase difference of Comparative Examples 1 to 3 (Fig. 15-2, Fig. 16-2 and Fig. 17-2). By forming two or more dielectric films with a refractive index difference of 0.2 or more between the metal films, it has the effect of making the phase difference between s-polarized light and p-polarized light less than ± 20 ° in the visible wavelength range of 400 to 700 nm. A multilayer film with reduced retardation could be obtained.

1・・・入射光線
2・・・出射光線
3・・・界面
4・・・ダハ面
1 ... Incident ray 2 ... Emission ray 3 ... Interface 4 ... Dach surface

Claims (10)

呼び面角90°で交わる一対の反射面を有するプリズムと、少なくとも1枚のレンズとを備えた観察光学系を有する光学機器であって、
前記プリズムは、前記一対の反射面の稜線が前記観察光学系の瞳を分割するよう配置されており、
前記プリズムの一対の反射面は、
(a)少なくとも2層の誘電体膜からなる誘電体多層膜、及び
(b)前記誘電体多層膜の上に積層された金属膜を有しており、
前記誘電体多層膜は、隣接する誘電体膜の屈折率が互いに異なり、各誘電体膜の光学膜厚が5 nm以上であり、最も高い屈折率を有する誘電体膜と最も低い屈折率を有する誘電体膜との屈折率差が0.2以上0.836以下であり、
前記金属膜が銀、金、銅、ニッケル、クロム、白金、ロジウム、錫、亜鉛及びマグネシウムからなる金属群から選ばれた1種からなる単体膜、又は前記金属群から選ばれた少なくとも1種を含む合金の膜であり、
可視波長域の波長400〜700 nmにおいて、前記プリズム内部からの光束が前記反射面で反射したときのs偏光とp偏光との位相差が±20°未満であることを特徴とする光学機器。
An optical instrument having an observation optical system including a prism having a pair of reflecting surfaces intersecting at a nominal angle of 90 ° and at least one lens.
The prism is arranged so that the ridges of the pair of reflecting surfaces divide the pupil of the observation optical system.
The pair of reflective surfaces of the prism
(a) A dielectric multilayer film consisting of at least two layers of dielectric film, and
(b) It has a metal film laminated on the dielectric multilayer film.
The dielectric multilayer films have different refractive indexes of adjacent dielectric films, each dielectric film has an optical film thickness of 5 nm or more, and has the highest refractive index and the lowest refractive index. The difference in refractive index from the dielectric film is 0.2 or more and 0.836 or less.
The metal film is a single film composed of one selected from the metal group consisting of silver, gold, copper, nickel, chromium, platinum, rhodium, tin, zinc and magnesium, or at least one selected from the metal group. It is a film of alloy containing
An optical instrument characterized in that the phase difference between s-polarized light and p-polarized light when a luminous flux from the inside of the prism is reflected by the reflecting surface at a wavelength of 400 to 700 nm in the visible wavelength range is less than ± 20 °.
請求項1に記載の光学機器において、前記誘電体多層膜は、最も高い屈折率を有する誘電体膜と前記金属膜に最も近い側の誘電体膜との屈折率差が0.2以上であることを特徴とする光学機器。 In the optical instrument according to claim 1, the dielectric multilayer film has a refractive index difference of 0.2 or more between the dielectric film having the highest refractive index and the dielectric film on the side closest to the metal film. Characteristic optical equipment. 請求項1又は2に記載の光学機器において、前記誘電体多層膜が少なくとも1層の屈折率1.8以上の高屈折率膜と少なくとも1層の屈折率1.8未満の低屈折率膜とを含み、前記高屈折率膜と前記低屈折率膜との屈折率差が0.2以上であることを特徴とする光学機器。 In the optical device according to claim 1 or 2, the dielectric multilayer film includes at least one high refractive index film having a refractive index of 1.8 or more and at least one low refractive index film having a refractive index of less than 1.8. An optical device characterized in that the difference in refractive index between the high refractive index film and the low refractive index film is 0.2 or more. 請求項1〜3のいずれかに記載の光学機器において、前記誘電体膜のうち最も前記プリズムに近い側の誘電体膜は前記プリズムに隣接しており、前記金属膜は可視光に対する透過率が実質的に0%となる膜厚を有していることを特徴とする光学機器。 In the optical instrument according to any one of claims 1 to 3, the dielectric film on the side closest to the prism among the dielectric films is adjacent to the prism, and the metal film has a transmittance for visible light. An optical device characterized by having a film thickness of substantially 0%. 請求項1〜のいずれかに記載の光学機器において、誘電体膜がTiO2、Nb2O5、Ta2O5、La2O3、ZrO2、HfO2、Y2O3、WO3、CeO2、SnO2、MgO、SiO、Al2O3、CeF3、YF3、LaF3、SiO2、CaF2、MgF2及びAlF3からなる誘電体群から選ばれた少なくとも1種、又は前記誘電体群から選ばれた少なくとも1種を含む化合物からなることを特徴とする光学機器。 In the optical device according to any one of claims 1 to 4 , the dielectric film is TiO 2 , Nb 2 O 5 , Ta 2 O 5 , La 2 O 3 , ZrO 2 , HfO 2 , Y 2 O 3 , WO 3. , CeO 2, SnO 2, MgO , SiO, Al 2 O 3, CeF 3, YF 3, LaF 3, SiO 2, CaF 2, at least one selected from the dielectric group consisting of MgF 2 and AlF 3, or An optical device comprising a compound containing at least one selected from the dielectric group. 請求項1〜のいずれかに記載の光学機器において、前記誘電体多層膜の層数が2〜5層であることを特徴とする光学機器。 The optical device according to any one of claims 1 to 5 , wherein the number of layers of the dielectric multilayer film is 2 to 5. 呼び面角90°で交わる一対の反射面を有するプリズムであって、
前記一対の反射面は、
(a)少なくとも2層の誘電体膜からなる誘電体多層膜、及び
(b)前記誘電体多層膜の上に積層された金属膜を有しており、
前記誘電体多層膜は、隣接する誘電体膜の屈折率が互いに異なり、各誘電体膜の光学膜厚が5 nm以上であり、最も高い屈折率を有する誘電体膜と最も低い屈折率を有する誘電体膜との屈折率差が0.2以上0.836以下であり、
前記金属膜が銀、金、銅、ニッケル、クロム、白金、ロジウム、錫、亜鉛及びマグネシウムからなる金属群から選ばれた1種からなる単体膜、又は前記金属群から選ばれた少なくとも1種を含む合金の膜であり、
可視波長域の波長400〜700 nmにおいて、前記プリズム内部からの光束が前記反射面で反射したときのs偏光とp偏光との位相差が±20°未満であることを特徴とするプリズム。
A prism having a pair of reflecting surfaces that intersect at a nominal angle of 90 °.
The pair of reflective surfaces
(a) A dielectric multilayer film consisting of at least two layers of dielectric film, and
(b) It has a metal film laminated on the dielectric multilayer film.
The dielectric multilayer films have different refractive indexes of adjacent dielectric films, each dielectric film has an optical film thickness of 5 nm or more, and has the highest refractive index and the lowest refractive index. The difference in refractive index from the dielectric film is 0.2 or more and 0.836 or less.
The metal film is a single film composed of one selected from the metal group consisting of silver, gold, copper, nickel, chromium, platinum, rhodium, tin, zinc and magnesium, or at least one selected from the metal group. It is a film of alloy containing
A prism characterized in that the phase difference between s-polarized light and p-polarized light when a luminous flux from the inside of the prism is reflected by the reflecting surface at a wavelength of 400 to 700 nm in the visible wavelength range is less than ± 20 °.
請求項に記載のプリズムはペンタダハプリズムであることを特徴とするプリズム。 The prism according to claim 7 , wherein the prism is a pentadach prism. 請求項に記載のプリズムはペシャンプリズムであることを特徴とするプリズム。 The prism according to claim 7 , wherein the prism is a Peshan prism. 請求項に記載のプリズムはアミチプリズムであることを特徴とするプリズム。
The prism according to claim 7 is an amici prism.
JP2016020756A 2016-02-05 2016-02-05 Optical instruments and prisms Active JP6941919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016020756A JP6941919B2 (en) 2016-02-05 2016-02-05 Optical instruments and prisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016020756A JP6941919B2 (en) 2016-02-05 2016-02-05 Optical instruments and prisms

Publications (2)

Publication Number Publication Date
JP2017138544A JP2017138544A (en) 2017-08-10
JP6941919B2 true JP6941919B2 (en) 2021-09-29

Family

ID=59565980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016020756A Active JP6941919B2 (en) 2016-02-05 2016-02-05 Optical instruments and prisms

Country Status (1)

Country Link
JP (1) JP6941919B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50123446A (en) * 1974-03-15 1975-09-27
JPS59107304A (en) * 1982-12-10 1984-06-21 Hoya Corp Semi-transmitting mirror
JP3586387B2 (en) * 1998-03-09 2004-11-10 ペンタックス株式会社 Observation optical apparatus having roof prism and roof prism
JP2008058412A (en) * 2006-08-29 2008-03-13 Matsushita Electric Ind Co Ltd Imaging optical system and imaging apparatus

Also Published As

Publication number Publication date
JP2017138544A (en) 2017-08-10

Similar Documents

Publication Publication Date Title
JP4984231B2 (en) Zoom lens, optical apparatus, and imaging method
EP2708922B1 (en) Anti-reflection coating, optical member having it, and optical equipment comprising such optical member
JP6449999B2 (en) Antireflection film, optical element and optical system
JP6051710B2 (en) Antireflection film, optical member using the same, and optical instrument
JP2006220873A (en) Optical filter and imaging device
JP6241102B2 (en) Antireflection film, optical member using the same, and optical instrument
JPH05215915A (en) Multilayer reflection increase film
JP6743398B2 (en) Observation optics and prism
JP6941919B2 (en) Optical instruments and prisms
JP2009192708A (en) Beam splitter, single-lens reflex digital camera using the same, and autofocus video camera
JP2002014203A (en) Antireflection film and optical member using the same
JP3894107B2 (en) Infrared antireflection film
JP2016109785A (en) Reflecting mirror, and optical equipment and oa equipment using the same
JP6236776B2 (en) Antireflection film, optical member using the same, and optical instrument
JP2014032330A (en) Half mirror and digital single-lens reflex camera
JP6727454B2 (en) Antireflection film, optical element and optical system
JP6361095B2 (en) Antireflection film, optical member using the same, and optical instrument
JP2011141339A (en) Antireflection film and optical member having the same
JPH0516003B2 (en)
JPH05264802A (en) Multilayered antireflection film
JP3894108B2 (en) Infrared antireflection film
JP7404673B2 (en) Antireflection film, its manufacturing method, and optical components
JP6268691B2 (en) Beam splitting optical element and digital single lens reflex camera
JP5292137B2 (en) Antireflection film and optical element
JP2012163779A (en) Optical element with anti-reflection film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200623

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200623

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200702

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200707

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200918

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200929

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201013

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210105

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210303

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210406

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210713

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210817

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210907

R150 Certificate of patent or registration of utility model

Ref document number: 6941919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150