JP6939474B2 - motor - Google Patents

motor Download PDF

Info

Publication number
JP6939474B2
JP6939474B2 JP2017227775A JP2017227775A JP6939474B2 JP 6939474 B2 JP6939474 B2 JP 6939474B2 JP 2017227775 A JP2017227775 A JP 2017227775A JP 2017227775 A JP2017227775 A JP 2017227775A JP 6939474 B2 JP6939474 B2 JP 6939474B2
Authority
JP
Japan
Prior art keywords
temperature
rotor
motor
space
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017227775A
Other languages
Japanese (ja)
Other versions
JP2019103146A (en
Inventor
敬右 金田
敬右 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017227775A priority Critical patent/JP6939474B2/en
Publication of JP2019103146A publication Critical patent/JP2019103146A/en
Application granted granted Critical
Publication of JP6939474B2 publication Critical patent/JP6939474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、永久磁石を使用するモータに関する。 The present invention relates to a motor that uses a permanent magnet.

ネオジウム系磁石を永久磁石として有するモータ用ロータおよびモータが特許文献1に記載されている。ネオジウム系磁石は高磁束密度、高保磁力な材料であるが、高温で保磁力が低下するために、重希土類金属であるDyやTbを添加して高温での保磁力を確保している。しかし、DyやTbは希少元素であるため高価格であり、資源リスクも高い。 Patent Document 1 describes a rotor for a motor and a motor having a neodymium magnet as a permanent magnet. Neodymium magnets are materials with high magnetic flux density and high coercive force, but since the coercive force decreases at high temperatures, heavy rare earth metals Dy and Tb are added to secure the coercive force at high temperatures. However, since Dy and Tb are rare elements, they are expensive and have a high resource risk.

DyやTbを添加しない材料からなる永久磁石を使用するモータにおいては、モータの回転速度が速い場合には、ロータから発生している磁束により、ステータ側のコイルではその磁束変化により逆起電力が発生する。このような逆起電力が発生するとエンジン主体で高速走行する場合、エンジンの負荷となり、高速燃費が悪くなる。そのためステータから、磁石の磁束を低減させるために、磁石回転と同期させて、逆の磁界を掛けて磁石の磁束を少なくする。これを「弱め界磁」という。このような弱め界磁は電力損失(銅損)の増加、モータ発熱等の原因となる恐れがある。それを回避することのできるモータが特許文献2に記載されている。 In a motor that uses a permanent magnet made of a material that does not contain Dy or Tb, when the rotation speed of the motor is high, the magnetic flux generated from the rotor causes a counter electromotive force in the coil on the stator side due to the change in the magnetic flux. appear. When such a counter electromotive force is generated, when the engine is mainly used for high-speed driving, the load on the engine becomes large and the high-speed fuel consumption deteriorates. Therefore, in order to reduce the magnetic flux of the magnet from the stator, the magnetic flux of the magnet is reduced by applying a reverse magnetic field in synchronization with the rotation of the magnet. This is called "weakening field". Such a weakened field may cause an increase in power loss (copper loss), heat generation of the motor, and the like. A motor capable of avoiding this is described in Patent Document 2.

特許文献2では、ロータに感温磁性材料を備えるようにしている。モータの回転速度が速い場合に、ロータの温度が上昇するため、感温磁性材料の温度が上昇して透磁率が減少する。感温磁性材料の透磁率が減少することで、ステータのコイルにて交番する永久磁石の磁束が少なくなる。そのため、逆起電力が小さくなり、大電力の弱め界磁電力を印加しなくても、ステータのコイルにおける誘起電力が小さくなるため、ステータにおける発熱が抑制され、モータの運転効率を高めることができる。 In Patent Document 2, the rotor is provided with a temperature-sensitive magnetic material. When the rotation speed of the motor is high, the temperature of the rotor rises, so that the temperature of the temperature-sensitive magnetic material rises and the magnetic permeability decreases. By reducing the magnetic permeability of the temperature-sensitive magnetic material, the magnetic flux of the permanent magnets alternated by the coil of the stator is reduced. Therefore, the counter electromotive force becomes small, and even if a large field weakening field power is not applied, the induced power in the coil of the stator becomes small, so that heat generation in the stator can be suppressed and the operating efficiency of the motor can be improved. ..

特開2017−153356号公報JP-A-2017-153356 特開2017−28806号公報JP-A-2017-28806

特許文献2に記載のモータでは、高価格であるDyやTb使用することなく、モータの高速回転時での運転効率を高めるができる。使用する感温磁性材料としては、液体であるフェリコロイドや、固定である鉄系の合金が記載されている。ロータ内に液体である感温磁性材料を配置することは、構成的に容易でない。また、鉄系の合金は、一般にキュリー温度が高く、実際の使用において、必ずしも有効はでない。 In the motor described in Patent Document 2, the operating efficiency at high speed rotation of the motor can be improved without using expensive Dy or Tb. As the temperature-sensitive magnetic material to be used, a liquid ferricolloid and a fixed iron-based alloy are described. Placing a temperature-sensitive magnetic material that is a liquid in the rotor is not structurally easy. Further, iron-based alloys generally have a high Curie temperature and are not always effective in actual use.

また、感温磁性材料の配置位置が、磁石V字配置に対してロータ表面側であり、高温になったときにリラクタンストルクが激減して、モータトルクが低下する、という問題がある。 Further, the position of the temperature-sensitive magnetic material is on the rotor surface side with respect to the magnet V-shaped arrangement, and there is a problem that the reluctance torque is drastically reduced when the temperature becomes high, and the motor torque is lowered.

本発明は、上記の事情に鑑みてなされたものであり、ロータに永久磁石とともに感温磁性材料を配置したロータを備えたモータにおいて、ロータ内への永久磁石および感温磁性材料の配置が容易であり、かつ高速回転時に、永久磁石から出る磁束を確実に低減することを可能としたモータを提供することを課題とする。 The present invention has been made in view of the above circumstances, and in a motor provided with a rotor in which a temperature-sensitive magnetic material is arranged together with a permanent magnet in the rotor, the permanent magnet and the temperature-sensitive magnetic material can be easily arranged in the rotor. An object of the present invention is to provide a motor capable of reliably reducing the magnetic flux emitted from a permanent magnet during high-speed rotation.

本発明によるモータは、コイルを備えるステータと、直方体形状の永久磁石を備えるロータとからなるモータであって、前記モータは、前記ロータの空間内の前記ロータの表面側に直方体形状の感温磁性材料を備え、前記ロータの軸側に前記永久磁石を配置していることを特徴とする。 The motor according to the present invention is a motor including a stator having a coil and a rotor having a rectangular permanent magnet, and the motor is a temperature-sensitive magnetism having a rectangular shape on the surface side of the rotor in the space of the rotor. It is characterized in that the material is provided and the permanent magnet is arranged on the shaft side of the rotor.

本発明によるモータでは、高速回転時に、ステータのコイルにて発生する逆起電力を小さくするために、ロータ内に配置する感温磁性材料として、直方体形状の感温磁性材料を用いるため、ロータへの感温磁性材料の組み付けはきわめて容易である。また、ロータに備え直方体形状の永久磁石に接するようにして、直方体形状の感温磁性材料を配置する構成であり、その点からも、ロータの組み付けはきわめて容易である。 In the motor according to the present invention, in order to reduce the counter electromotive force generated in the coil of the stator during high-speed rotation, a rectangular body-shaped temperature-sensitive magnetic material is used as the temperature-sensitive magnetic material arranged in the rotor. Assembling the temperature-sensitive magnetic material is extremely easy. Further, in preparation for the rotor, the rectangular parallelepiped-shaped temperature-sensitive magnetic material is arranged so as to be in contact with the rectangular parallelepiped-shaped permanent magnet, and from this point as well, the rotor can be assembled extremely easily.

モータの一部を示す横断面図。A cross-sectional view showing a part of a motor. 図1のA−A線、B−B線、C−C線に沿う断面図。A cross-sectional view taken along the line AA, line BB, and line CC of FIG. 感温磁性材料の温度特性を示すグラフ。The graph which shows the temperature characteristic of a temperature-sensitive magnetic material. 磁石保磁力と磁石にかかる最大逆磁界の関係を示すグラフ。A graph showing the relationship between the coercive force of a magnet and the maximum reverse magnetic field applied to the magnet. 感温磁性材料の使用による最大逆磁界低減効果を示すグラフ。The graph which shows the maximum reverse magnetic field reduction effect by using the temperature-sensitive magnetic material. 感温磁性材料の使用による磁石磁束低減効果を示すグラフ。The graph which shows the magnet magnetic flux reduction effect by using the temperature-sensitive magnetic material.

以下、図面を参照して、本発明の実施の形態を説明する。図1は、本実施の形態によるモータの一部を示す横断面図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a part of the motor according to the present embodiment.

モータ1は、中空円柱状のステータ10と、ステータ10の中空部に回転可能に設けられるロータ20とにより構成される。ステータ10には、その中心軸Oの方向に貫通する適数個のスロット11が、ステータ10の周方向に等間隔に形成されている。隣接するスロット11の間にティース12が形成され、ティース12を巻回するように、コイル13が設けられる。 The motor 1 is composed of a hollow columnar stator 10 and a rotor 20 rotatably provided in the hollow portion of the stator 10. The stator 10 is formed with an appropriate number of slots 11 penetrating in the direction of the central axis O at equal intervals in the circumferential direction of the stator 10. A tooth 12 is formed between adjacent slots 11, and a coil 13 is provided so as to wind the tooth 12.

ロータ20は、図2の中心軸方向の断面図に示すように、電磁鋼板21の積層体であり、該積層体を中心軸方向に貫通して、中心軸方向に延在する直方体形状の空間22を有している。該空間22には、共に直方体形状でありかつ平板状である永久磁石23と感温磁性材料24とが径方向に積層された状態で挿入されている。 As shown in the cross-sectional view in the central axial direction of FIG. 2, the rotor 20 is a laminated body of electromagnetic steel plates 21, and is a rectangular parallelepiped-shaped space that penetrates the laminated body in the central axial direction and extends in the central axial direction. Has 22. A permanent magnet 23 having a rectangular parallelepiped shape and a flat plate shape and a temperature-sensitive magnetic material 24 are inserted into the space 22 in a state of being laminated in the radial direction.

ステータ10のコイル13に所定の駆動周波数の交流電力が供給されると、所定のタイミングで回転磁界を発生する。ステータ10のコイル13により発生する回転磁界が、ロータ20の永久磁石23に作用することにより、コイル13と永久磁石23とが誘引または反発することで回転駆動力が発生し、ロータ20がステータ固定子10内で回転する。 When AC power of a predetermined drive frequency is supplied to the coil 13 of the stator 10, a rotating magnetic field is generated at a predetermined timing. The rotating magnetic field generated by the coil 13 of the stator 10 acts on the permanent magnet 23 of the rotor 20, and the coil 13 and the permanent magnet 23 are attracted or repelled to generate a rotational driving force, so that the rotor 20 is fixed to the stator. Rotate within the child 10.

本実施の形態において、空間22は、3つの空間22a、22b、22cの空間組として形成されており、その空間組の適数個がロータ20の周方向に等間隔に形成されている。それぞれの空間22a、22b、22c内に、前記した直方体形状でありかつ平板状である永久磁石23と感温磁性材料24とが径方向に積層された状態で挿入されている。 In the present embodiment, the space 22 is formed as a space set of three spaces 22a, 22b, and 22c, and an appropriate number of the space sets are formed at equal intervals in the circumferential direction of the rotor 20. In each of the spaces 22a, 22b, and 22c, the rectangular parallelepiped and flat plate-shaped permanent magnet 23 and the temperature-sensitive magnetic material 24 are inserted in a state of being laminated in the radial direction.

図示の例では、空間22aはロータ20の外周縁近くにおいて、ロータ20の中心軸Oからの径方向に延びる直線に直交する方向に形成されている。空間22bと空間22cは、空間22aよりも中心軸Oに近い位置において、空間22aを両側から挟み込むようにして、ステータ10側が開いた逆ハ字状(V字状)に形成されている。 In the illustrated example, the space 22a is formed near the outer peripheral edge of the rotor 20 in a direction orthogonal to a straight line extending in the radial direction from the central axis O of the rotor 20. The space 22b and the space 22c are formed in an inverted C shape (V shape) in which the stator 10 side is open so as to sandwich the space 22a from both sides at a position closer to the central axis O than the space 22a.

図1に示すように、各空間22a、22b、22cにおいて、永久磁石23と感温磁性材料24との積層体は、感温磁性材料24がステータ10の側(ロータ20の表面側)に面するようにして、空間内に挿入されている。すなわち、感温磁性材料24は、モータ1の運転時において、ステータ10と永久磁石23間での磁束の流れる方向に比較的直交するように永久磁石23の面に接して、かつステータ10側に面して配置されていることとなる。 As shown in FIG. 1, in the spaces 22a, 22b, and 22c, in the laminated body of the permanent magnet 23 and the temperature-sensitive magnetic material 24, the temperature-sensitive magnetic material 24 faces the stator 10 side (the surface side of the rotor 20). It is inserted in the space as if it were. That is, the temperature-sensitive magnetic material 24 is in contact with the surface of the permanent magnet 23 so as to be relatively orthogonal to the direction in which the magnetic flux flows between the stator 10 and the permanent magnet 23 during the operation of the motor 1, and is on the stator 10 side. It will be arranged facing each other.

本実施の形態において、感温磁性材料24はMn−Zn系のフェライト磁性材であり、一例として、Mn・Znが入ったFe系酸化物磁性体を挙げることができる。また、図示しないが、3つの空間22a、22b、22cは、必須でなく、いずれか1つであってもよく、選択された2つであってもよい。 In the present embodiment, the temperature-sensitive magnetic material 24 is a Mn—Zn-based ferrite magnetic material, and as an example, an Fe 2 O 3- based oxide magnetic material containing Mn · Zn can be mentioned. Further, although not shown, the three spaces 22a, 22b, and 22c are not essential and may be any one or two selected spaces.

感温磁性材料24の特性を、図3を参照して説明する。図3は、感温磁性材料の飽和磁束密度と温度特性の関係を示すグラフであり、横軸に温度(℃)、縦軸に飽和磁束密度(G)を示している。グラフが示すように、感温磁性材料は低温では磁束が通り易く、高温では磁束が通り難くなる特性を持つ。例えば、Tc=150℃の材料では、150℃以下ではフェリ磁性のため、磁気磁束を通すが、高温では常磁性になり空気層と同じ状態となる。それにより磁束を通し難くなる。ここで、Tcは、感温磁性材料のキュリー温度である。 The characteristics of the temperature-sensitive magnetic material 24 will be described with reference to FIG. FIG. 3 is a graph showing the relationship between the saturation magnetic flux density and the temperature characteristics of the temperature-sensitive magnetic material, in which the horizontal axis shows the temperature (° C.) and the vertical axis shows the saturation magnetic flux density (G). As shown in the graph, the temperature-sensitive magnetic material has a characteristic that magnetic flux easily passes through at low temperature and magnetic flux does not easily pass through at high temperature. For example, in a material having Tc = 150 ° C., since it is ferrimagnetic at 150 ° C. or lower, magnetic magnetic flux is passed through, but at high temperature, it becomes paramagnetic and becomes the same state as the air layer. This makes it difficult for magnetic flux to pass through. Here, Tc is the Curie temperature of the temperature-sensitive magnetic material.

そのために、図1に示したモータ1では、Tc以上の温度では、ステータ10側からの磁界は、感温磁性材料24の部分で通り難くなり、結果、永久磁石23への逆磁界が小さくなって、永久磁石23の減磁がし難くなる。感温磁性材料24を備えない場合には、高温高速回転の場合、永久磁石からの磁界が大きいため、磁石磁界を弱めるための磁界をステータ10側から同期をとって加えるという、弱め界磁が必要となる。 Therefore, in the motor 1 shown in FIG. 1, at a temperature of Tc or higher, the magnetic field from the stator 10 side becomes difficult to pass through the temperature-sensitive magnetic material 24, and as a result, the reverse magnetic field to the permanent magnet 23 becomes small. Therefore, it becomes difficult to demagnetize the permanent magnet 23. When the temperature-sensitive magnetic material 24 is not provided, the magnetic field from the permanent magnet is large in the case of high-temperature and high-speed rotation. You will need it.

本実施の形態でのモータ1では、低温での高速回転においては、従来と同様に、弱め界磁制御は必要であるが、高温になると前記したように感温磁性材料24が非磁性(常磁性)になるので、永久磁石23から磁束が出難くなり、必要な弱め界磁磁界を小さくすることができる。 In the motor 1 of the present embodiment, field weakening control is required for high-speed rotation at a low temperature as in the conventional case, but when the temperature becomes high, the temperature-sensitive magnetic material 24 is non-magnetic (paramagnetic) as described above. Therefore, it becomes difficult for magnetic flux to be generated from the permanent magnet 23, and the required weakening field magnetic field can be reduced.

次に、本実施の形態のモータ1における、感温磁性材料24の使用による最大逆磁界低減効果について説明する。図4および図5は、磁石保持力Hcjと磁石に掛かる最大逆磁界Hmaxの関係を示すグラフであり、図4は、感温磁性材料24を使用しない場合のグラフ、図5は、本実施の形態のモータ1の場合のグラフである。両グラフにおいて、
Hmax(kA/m):温度Tで永久磁石に掛かる最大逆磁界、
Hcj(kA/m):温度Tでの永久磁石の保磁力、
Tc:感温磁性材料のキュリー温度、
T1:高Br・低Hcj材の使用限界温度、
T2:低Br・高Hcj材の使用限界温度、
である。なお、Brは永久磁石での残留磁気密度の単位であり、Hcjは永久磁石そのものの磁化がゼロになる印加磁場の強さを示し、永久磁石の逆磁場に対する真の抵抗力を表す。
Next, the maximum reverse magnetic field reduction effect due to the use of the temperature-sensitive magnetic material 24 in the motor 1 of the present embodiment will be described. 4 and 5 are graphs showing the relationship between the magnet holding force Hcj and the maximum reverse magnetic field Hmax applied to the magnet, FIG. 4 is a graph when the temperature-sensitive magnetic material 24 is not used, and FIG. It is a graph in the case of the motor 1 of the form. In both graphs
Hmax (kA / m): Maximum reverse magnetic field applied to the permanent magnet at temperature T,
Hcj (kA / m): Coercive force of permanent magnet at temperature T,
Tc: Curie temperature of temperature-sensitive magnetic material,
T1: High Br / low Hcj material use limit temperature,
T2: Use limit temperature of low Br / high Hcj material,
Is. Br is a unit of the residual magnetic density of the permanent magnet, and Hcj indicates the strength of the applied magnetic field at which the magnetization of the permanent magnet itself becomes zero, and represents the true resistance force of the permanent magnet to the reverse magnetic field.

図4に示すように、従来技術、すなわち、感温磁性材料24を用いない場合には、最大逆磁界Hmax(kA/m)は温度に依らず一定なので、高保磁力材を用いて永久磁石23の耐熱性を確保することが必要となるが、本実施の形態のモータ1では、図5に示すように、感温磁性材料24を永久磁石23のステータ10側に配置することで、高温での最大逆磁界を低減することが可能となり、使用温度を高める、もしくは、永久磁石23として低保磁力材のものも使用可能になる利点がある。 As shown in FIG. 4, when the conventional technique, that is, the temperature-sensitive magnetic material 24 is not used, the maximum reverse magnetic field Hmax (kA / m) is constant regardless of the temperature, so that the permanent magnet 23 is made by using the high coercive force material. However, in the motor 1 of the present embodiment, as shown in FIG. 5, the temperature-sensitive magnetic material 24 is arranged on the stator 10 side of the permanent magnet 23 at a high temperature. It is possible to reduce the maximum demagnetizing field of the magnet, raise the operating temperature, or use a permanent magnet 23 as a permanent magnet with a low magnetic force.

次に、本実施の形態のモータ1における、感温磁性材料24の使用による磁石磁束低減効果について、図6を参照して説明する。図6において、横軸は温度(℃)、縦軸は磁石による無負荷磁束(B)を示す。図6に示すように、本実施の形態のモータ1では、ロータ20に感温磁性材料24を配置することで、Tc(キュリー温度)近傍で磁石磁束を小さくできるので弱め界磁電流を小さくできる。 Next, the effect of reducing the magnetic flux of the magnet by using the temperature-sensitive magnetic material 24 in the motor 1 of the present embodiment will be described with reference to FIG. In FIG. 6, the horizontal axis represents the temperature (° C.) and the vertical axis represents the no-load magnetic flux (B) due to the magnet. As shown in FIG. 6, in the motor 1 of the present embodiment, by arranging the temperature-sensitive magnetic material 24 in the rotor 20, the magnet magnetic flux can be reduced in the vicinity of Tc (Curie temperature), so that the field weakening current can be reduced. ..

また、従来の、すなわち感温磁性材料を用いない場合での、Tcにおける、磁石磁束をBj、弱め界磁電流をIj、弱め界磁による銅損をWj、とし、本実施の形態のモータ1における、磁石磁束をBh、弱め界磁電流をIh、弱め界磁による銅損をWh、とすると、Wh/Wj ∝ (Ih/Ij)^2 ∝ (Bh/Bj)^2、となり、弱め界磁による銅損を低減できることとなる。 Further, in the conventional case, that is, when the temperature-sensitive magnetic material is not used, the magnetic flux in Tc is Bj, the field weakening current is Ij, and the copper loss due to the field weakening is Wj. If the magnetic flux of the magnet is Bh, the field weakening current is Ih, and the copper loss due to the field weakening is Wh, then Wh / Wj ∝ (Ih / Ij) ^ 2 ∝ (Bh / Bj) ^ 2, which is the weakening field. The copper loss due to magnetism can be reduced.

特許文献2に記載されるもののように、液体の感温磁性材料を用いるものでは積層する電磁鋼板内に液体感温磁性材料を封入し、回転体内で、かつ温度変化に伴う繰返しの熱膨張収縮の中で、漏れが無いように長期間にわたり封入しておく構造が必要であり、ロータの製造および保証が容易ではない。 In the case of using a liquid temperature-sensitive magnetic material as described in Patent Document 2, the liquid temperature-sensitive magnetic material is sealed in the laminated electromagnetic steel sheet, and the thermal expansion and contraction is repeated in the rotating body and due to the temperature change. Therefore, it is necessary to have a structure in which the rotor is sealed for a long period of time so as not to leak, and it is not easy to manufacture and guarantee the rotor.

本実施の形態のモータ1では、感温磁性材料24として、直方体形状でありかつ平板状である感温磁性材料24を用いており、さらに、ロータに形成した軸方向の空間に直方体形状である永久磁石と感温磁性材料との径方向の積層体を挿入する構造であり、このことからも、ロータの製造が容易であり、かつ、長期信頼性の高いロータ構造である。 In the motor 1 of the present embodiment, the temperature-sensitive magnetic material 24 has a rectangular parallelepiped shape and a flat plate shape, and further, the temperature-sensitive magnetic material 24 has a rectangular parallelepiped shape in the axial space formed in the rotor. It has a structure in which a radial laminate of a permanent magnet and a temperature-sensitive magnetic material is inserted, which also makes it easy to manufacture a rotor and has a rotor structure with high long-term reliability.

さらに、感温磁性材料24は、Mn−Zn系のフェライト磁性材であり、鉄系の合金である感温磁性材料を用いる場合、鉄系の合金ではキュリー温度が高く、組成を変えて大きくキュリー温度を変える素材を得ることが難しいが、フェライト系感温磁性材料では比較的モータ制御に適する温度のキュリー温度を有するため、磁性を損なわずに組成を変えてキュリー温度の異なる素材を準備することは比較的容易である。そのために、制御温度に合せた素材選定が容易になるという利点がある。 Further, the temperature-sensitive magnetic material 24 is a Mn—Zn-based ferrite magnetic material, and when a temperature-sensitive magnetic material which is an iron-based alloy is used, the iron-based alloy has a high Curie temperature, and the Curie temperature is changed to a large Curie. It is difficult to obtain a material that changes the temperature, but since a ferrite-based temperature-sensitive magnetic material has a Curie temperature that is relatively suitable for motor control, it is necessary to prepare materials with different Curie temperatures by changing the composition without impairing the magnetism. Is relatively easy. Therefore, there is an advantage that the material selection according to the control temperature becomes easy.

さらに、感温磁性材料がフェライト磁性材料である場合、フェライト磁性材料はFeの鉄酸化物材料のため絶縁体であり、磁石と電磁鋼板の直接接触が妨げられ、磁石と電磁鋼板との接触界面での渦電流の発生が無くなり、渦電流損が無くなるという効果ももたらされる。 Further, when the temperature-sensitive magnetic material is a ferrite magnetic material, the ferrite magnetic material is an insulator because it is an iron oxide material of Fe 2 O 3 , and the direct contact between the magnet and the electromagnetic steel plate is hindered, and the magnet and the electromagnetic steel plate are used. The generation of eddy current at the contact interface of the magnet is eliminated, and the effect of eliminating the eddy current loss is also brought about.

1…モータ、
10…ステータ、
11…スロット、
12…ティース、
13…コイル、
20…ロータ、
22(22a、22b、22c)…直方体形状の空間、
23…永久磁石、
24…感温磁性材料。
1 ... Motor,
10 ... stator,
11 ... Slots,
12 ... Teeth,
13 ... Coil,
20 ... Rotor,
22 (22a, 22b, 22c) ... A rectangular parallelepiped space,
23 ... Permanent magnet,
24 ... Temperature-sensitive magnetic material.

Claims (2)

コイルを備えるステータと、直方体形状の永久磁石を備えるロータとからなるモータであって、
前記モータは、前記ロータの空間内の前記ロータの表面側に直方体形状のMn−Zn系のフェライト磁性材である感温磁性材料を備え、前記ロータの軸側に前記永久磁石を配置していることを特徴とするモータ。
A motor consisting of a stator equipped with a coil and a rotor equipped with a rectangular parallelepiped permanent magnet.
The motor is provided with a temperature-sensitive magnetic material which is a rectangular parallelepiped Mn—Zn-based ferrite magnetic material on the surface side of the rotor in the space of the rotor, and the permanent magnet is arranged on the shaft side of the rotor. A motor characterized by that.
前記ロータの前記空間が、前記ロータの周方向に等間隔に形成されており、前記ロータの前記空間が、前記ロータの外周縁近くにおいて前記ロータの中心軸からの径方向に延びる直線に直交する方向に形成されている空間22aと、前記空間22aよりも前記中心軸に近い位置において前記空間22aを両側から挟み込むようにして前記ステータ側が開いた逆ハ字状に形成されている空間22b及び空間22cとからなる空間組から選択される1つ以上であることを特徴とする、請求項1に記載のモータ。The space of the rotor is formed at equal intervals in the circumferential direction of the rotor, and the space of the rotor is orthogonal to a straight line extending in the radial direction from the central axis of the rotor near the outer peripheral edge of the rotor. A space 22a formed in the direction, and a space 22b and a space formed in an inverted C shape with the stator side open so as to sandwich the space 22a from both sides at a position closer to the central axis than the space 22a. The motor according to claim 1, wherein the motor is one or more selected from a space set consisting of 22c.
JP2017227775A 2017-11-28 2017-11-28 motor Active JP6939474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017227775A JP6939474B2 (en) 2017-11-28 2017-11-28 motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017227775A JP6939474B2 (en) 2017-11-28 2017-11-28 motor

Publications (2)

Publication Number Publication Date
JP2019103146A JP2019103146A (en) 2019-06-24
JP6939474B2 true JP6939474B2 (en) 2021-09-22

Family

ID=66974379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017227775A Active JP6939474B2 (en) 2017-11-28 2017-11-28 motor

Country Status (1)

Country Link
JP (1) JP6939474B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4165229B2 (en) * 2003-01-14 2008-10-15 トヨタ自動車株式会社 Permanent magnet temperature sensor, permanent magnet motor, permanent magnet motor drive system
JP2007174805A (en) * 2005-12-22 2007-07-05 Hitachi Ltd Magnetic adjuster rotary machine
JP5750987B2 (en) * 2011-04-20 2015-07-22 富士電機株式会社 Permanent magnet rotating electric machine
JP2013126272A (en) * 2011-12-13 2013-06-24 Samsung Electronics Co Ltd Motor
JP6544105B2 (en) * 2015-07-17 2019-07-17 日産自動車株式会社 Magnet temperature estimation system, motor, and magnet temperature estimation method

Also Published As

Publication number Publication date
JP2019103146A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
JP5159577B2 (en) Permanent magnet rotating electric machine
JP5305753B2 (en) Permanent magnet rotating electric machine
JP5889340B2 (en) Rotor of embedded permanent magnet electric motor, electric motor provided with the rotor, compressor provided with the electric motor, and air conditioner provided with the compressor
JP5361261B2 (en) Permanent magnet rotating electric machine
JP5085071B2 (en) Permanent magnet type rotating electrical machine rotor
JP5305887B2 (en) Permanent magnet rotating electric machine
JP5361260B2 (en) Permanent magnet rotary electric machine
JP5159171B2 (en) Permanent magnet rotating electric machine
JP5787673B2 (en) Permanent magnet type rotating electric machine
JP2014087075A (en) Rotor of embedded magnet synchronous motor
CN109687616A (en) Novel permanent magnetic saturable synchronous magnetic resistance motor
US10020716B2 (en) Transverse flux induction motor with passive braking system
JP2010130859A (en) Permanent magnet type dynamo electric machine
JP4735772B1 (en) Magnet excitation rotating electrical machine system
JP7047433B2 (en) motor
JP6939474B2 (en) motor
JP6962226B2 (en) motor
JP5544738B2 (en) Permanent magnet rotating electric machine
JP5750995B2 (en) Synchronous motor
JP5197551B2 (en) Permanent magnet rotating electric machine
JP5793948B2 (en) Synchronous motor
JP2017060240A (en) Embedded magnet type rotor magnetization method and embedded magnet type rotor
JP2011172432A (en) Rotor of embedded magnet synchronous motor
JP2020096482A (en) motor
JP2014225959A (en) Rotor of dynamo-electric machine and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210816

R151 Written notification of patent or utility model registration

Ref document number: 6939474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151