JP2014087075A - Rotor of embedded magnet synchronous motor - Google Patents

Rotor of embedded magnet synchronous motor Download PDF

Info

Publication number
JP2014087075A
JP2014087075A JP2012231338A JP2012231338A JP2014087075A JP 2014087075 A JP2014087075 A JP 2014087075A JP 2012231338 A JP2012231338 A JP 2012231338A JP 2012231338 A JP2012231338 A JP 2012231338A JP 2014087075 A JP2014087075 A JP 2014087075A
Authority
JP
Japan
Prior art keywords
rotor
magnetic
magnet
metal plate
synchronous motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012231338A
Other languages
Japanese (ja)
Inventor
Hideo Suyama
英夫 陶山
Yoichi Ito
洋一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012231338A priority Critical patent/JP2014087075A/en
Publication of JP2014087075A publication Critical patent/JP2014087075A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To use a neodymium magnet having a low dysprosium content for a rotor core having centrifugal force resistance strength.SOLUTION: A rotor of an embedded magnet synchronous motor comprises a rotor core 31 in which a magnetic steel plate 12 and a non-ferromagnetic metal plate 13 are laminated in a hybrid structure. A neodymium magnet is held only by the non-ferromagnetic metal plate 13 formed so as to be wide from an outer periphery, have high tensile strength and to be projected in magnet embedding holes 18 and 19. A magnetic flux of a reverse polarity magnetic field due to an armature current is leaked in magnetic-flux short-circuit prevention holes 24 and 25 formed long in a radial direction regardless of a frequency and without heat dissipation, allowing a high frequency component to be attenuated in metal plates 36 and 37 molded so as to be bent according to unevenness inside a magnetic pole head core 28 to suppress the reverse polarity magnetic field and a temperature rise in the neodymium magnet.

Description

本発明は、埋込磁石同期電動機の回転子に関するものである。 The present invention relates to a rotor of an embedded magnet synchronous motor.

磁性鋼板(電磁鋼板)が積層された回転子の各磁極に永久磁石が埋め込まれ、マグネットトルクに加え、リラクタンストルクも利用する埋込磁石同期電動機(別称として埋込磁石同期モータ、あるいはIPMモータなど)がハイブリッド自動車や電気自動車などに用いられ、非特許文献1や特許文献1で開示されている。 Permanent magnets are embedded in each magnetic pole of a rotor on which magnetic steel plates (magnetic steel plates) are laminated, and an embedded magnet synchronous motor that uses reluctance torque in addition to magnet torque (also known as embedded magnet synchronous motor or IPM motor) ) Is used in hybrid vehicles and electric vehicles, and is disclosed in Non-Patent Document 1 and Patent Document 1.

図16で示される従来例の埋込磁石同期電動機は、磁性鋼板が積層されて形成された回転子コア1にネオジム磁石(NdFeB系焼結磁石)2がV字状に浅く埋設され、径方向に浅い磁束短絡防止孔3や、あらかじめネオジム磁石の磁束で磁気飽和されたブリッジ部5、および径方向ブリッジ部6での電機子電流による逆極性磁場にともなう同方向の磁束の漏洩が少ないため、多くがネオジム磁石2に加わり、渦電流損による温度上昇も大きくなる。また、ネオジム磁石2と回転子コア1の間に打ち抜き加工の隙間を生じることでパーミアンス係数が小さくなることからも、ネオジム磁石の耐熱性の確保には大きい保磁力Hcjのネオジム磁石が必要とされる。 A conventional embedded magnet synchronous motor shown in FIG. 16 has a neodymium magnet (NdFeB-based sintered magnet) 2 shallowly embedded in a V shape in a rotor core 1 formed by laminating magnetic steel plates, and is radially Since there is little leakage of the magnetic flux in the same direction due to the reverse magnetic field due to the armature current in the shallow magnetic flux short-circuit prevention hole 3, the bridge portion 5 magnetically saturated with the magnetic flux of the neodymium magnet in advance, and the radial bridge portion 6, Many are added to the neodymium magnet 2 and the temperature rise due to eddy current loss also increases. Further, since a permeance coefficient is reduced by forming a punching gap between the neodymium magnet 2 and the rotor core 1, a neodymium magnet having a large coercive force Hcj is required to ensure the heat resistance of the neodymium magnet. The

埋込磁石同期電動機は、弱め磁束制御によって高回転速度に対応することができる。高回転速度に対する耐遠心力強度を持たせるため、ブリッジ部5と径方向ブリッジ部6の幅を大きくすることは、ネオジム磁石の磁束漏れが大きくなり、マグネットトルクが低下する問題が生じる。 The embedded magnet synchronous motor can cope with a high rotational speed by the magnetic flux weakening control. Increasing the width of the bridge portion 5 and the radial bridge portion 6 in order to provide a centrifugal strength strength against a high rotational speed increases the magnetic flux leakage of the neodymium magnet and causes a problem that the magnet torque decreases.

ハイブリッド自動車などでは、エンジンからの熱や、固定子や回転子での銅損や鉄損で摂氏200度ほどにもなる温度環境下においても、ネオジム磁石に不可逆減磁を生じさせないことが必須になる。ネオジム磁石の耐熱性のために大きい保磁力Hcjを持たせるには、重希土類元素であるジスプロシウム(Dy)の含有率が8wt%(重量パーセント)から10wt%ほどにされたネオジム磁石が用いられる。しかし、残留磁束密度Brは低下し、産地や入手が制約されて高価なジスプロシウムを多く用いることになる。 In hybrid vehicles, it is essential not to cause irreversible demagnetization in neodymium magnets even in a temperature environment of about 200 degrees Celsius due to heat from the engine, copper loss and iron loss in the stator and rotor. Become. In order to provide a large coercive force Hcj for the heat resistance of the neodymium magnet, a neodymium magnet having a heavy rare earth element dysprosium (Dy) content of about 8 wt% (weight percent) to about 10 wt% is used. However, the residual magnetic flux density Br decreases, and the production area and availability are restricted, so that expensive dysprosium is often used.

ジスプロシウムを避けるため、ジスプロシウム添加とほぼ同様の耐熱性と磁気特性の変化を示すテルビウム(Tb)添加のネオジム磁石を用いることもできる。テルビウムはジスプロシウムより資源量がさらに希少であり、産地も重なる。他には、サマリウム・コバルト磁石が用いられることもある。サマリウム・コバルト磁石は耐熱性に優れ、温度による磁気特性の変化が小さく、鉄の含有率を高くしてジスプロシウム含有率の高いネオジム磁石に近似するエネルギー積も可能である。サマリウム(Sm)はネオジムに比べて資源量が少ない。コバルト(Co)は鉄(Fe)に較べて高価格である。 In order to avoid dysprosium, a terbium (Tb) -added neodymium magnet that exhibits substantially the same heat resistance and magnetic property changes as dysprosium can be used. Terbium is a rarer resource than dysprosium and overlaps with localities. In other cases, samarium-cobalt magnets may be used. Samarium-cobalt magnets are excellent in heat resistance, change in magnetic properties with temperature is small, and can have an energy product similar to neodymium magnets with high dysprosium content by increasing the iron content. Samarium (Sm) has less resources than neodymium. Cobalt (Co) is more expensive than iron (Fe).

耐遠心力性を持たせる構成が、特許文献2に開示されている。高強度部材の鋼板と軟磁性材料の鋼板(磁性鋼板)を積層し、いずれの鋼板においても、周方向の両側に連続した空孔を有する磁石孔(磁石埋設孔)に挿入された永久磁石を、主に、高強度部材の鋼板で遠心力から保つ。 A configuration for imparting centrifugal force resistance is disclosed in Patent Document 2. Permanent magnets inserted into magnet holes (magnet embedding holes) having continuous holes on both sides in the circumferential direction are laminated on steel plates of high-strength members and soft magnetic materials (magnetic steel plates). , Mainly kept from centrifugal force with high strength steel plate.

異なる材質の鋼板が積層され、接着や機械的締め付けで互いの鋼板が強く固定されると、熱変化時での線膨張の差による歪み応力が大きくなり、磁性鋼板の磁気特性の劣化や、回転子の破壊に到る可能性がある。また、互いの鋼板が強く固定されず、ずれ移動が可能な場合、互いの磁石埋設用孔における外周側端部の位置関係が、温度変化による膨張の差や、機械的、組立の公差などで、特定されず、高強度部材が永久磁石に当たらないで永久磁石を遠心力から保持するのに寄与せず、軟磁性材料の鋼板で保持する場合には耐遠心力強度に問題が生じる。 When steel plates of different materials are laminated and each other's steel plates are firmly fixed by bonding or mechanical tightening, the strain stress due to the difference in linear expansion at the time of thermal change increases, and the magnetic properties of the magnetic steel plate deteriorate or rotate. The child may be destroyed. Also, if the steel plates are not firmly fixed and can be displaced, the positional relationship of the outer peripheral side ends of the mutual magnet embedding holes is due to differences in expansion due to temperature changes, mechanical and assembly tolerances, etc. If not held, the high-strength member does not hit the permanent magnet and does not contribute to holding the permanent magnet from the centrifugal force. If the high-strength member is held by a steel plate made of a soft magnetic material, a problem arises in the strength against centrifugal force.

回転子コアでの永久磁石の磁束漏洩と、耐遠心力強度(剛性強度)とのバランスをとる構成が、特許文献3で開示されている。磁極間での短絡防止部が打ち抜かれて幅狭のブリッジ部を有する第1の磁性鋼板と、短絡防止部が打ち抜かれることなく幅広な円環状の連結部が形成されている第2の磁性鋼板が、所定の割合で交互に積み重ねられる。第2の磁性鋼板単独で耐遠心力強ため、全体としての耐遠心力強度が大きくなるわけでない。 Patent Document 3 discloses a configuration that balances magnetic flux leakage of a permanent magnet in a rotor core and anti-centrifugal strength (rigid strength). A first magnetic steel plate having a narrow bridge portion formed by punching a short-circuit preventing portion between magnetic poles, and a second magnetic steel plate having a wide annular connecting portion formed without punching the short-circuit preventing portion. Are alternately stacked at a predetermined rate. Since the second magnetic steel plate alone is strong in centrifugal force, the overall centrifugal force strength is not necessarily increased.

高強度材のみで耐遠心力の役割を果たし、永久磁石からの磁束漏洩を少なくする方法が、特許文献4で開示されている。永久磁石の外側の磁極頭部コアは構造的にも磁気的にも隣接する磁極頭部コアから分離されたもので、磁極頭部コアの積層方向に貫通された複数本のピンを介して各磁極の永久磁石とともに、複数枚の高強度材の部分で固定、支持される。永久磁石の磁束漏洩を少なくするには有利ではあるが、引張強度に較べて破断強度は弱いため、ピンで保持する構造は耐遠心力強度が小さく、高回転速度の用途には向かない。 Patent Document 4 discloses a method that plays a role of anti-centrifugal force with only a high-strength material and reduces magnetic flux leakage from a permanent magnet. The magnetic pole head core outside the permanent magnet is separated from the adjacent magnetic pole head core, both structurally and magnetically, and is connected to each other through a plurality of pins penetrating in the stacking direction of the magnetic pole head core. Along with the permanent magnet of the magnetic pole, it is fixed and supported by a plurality of high strength material portions. Although it is advantageous to reduce the magnetic flux leakage of the permanent magnet, since the breaking strength is weaker than the tensile strength, the structure held by the pin has a low anti-centrifugal strength and is not suitable for high rotational speed applications.

永久磁石を用いないリラクタンスモータにおいて、高回転速度での遠心力に耐えることができる電動機のロータ(回転子)が、特許文献5で開示されている。積層され、分割された磁路の複数の凹凸部で嵌合された電磁鋼板の間に非磁性の板を配置し、互いが面接着されることでロータの各分割磁路が遠心力で飛び出すのを押さえる。オーステナイト系ステンレスなどの非磁性の金属板を用いることになり、磁性鋼板で、電機子電流のq軸成分で生じるq軸磁束が流れ易くするための複数の分割磁路が径方向に分離されていても、電磁鋼板と強く固着されることで、運転温度の範囲が大きい場合には、径とほぼ直交する方向での線膨張の差による歪み応力が非常に大きく、磁気特性の劣化や破壊に到る可能性がある。 In a reluctance motor that does not use a permanent magnet, a rotor (rotor) of an electric motor that can withstand centrifugal force at a high rotational speed is disclosed in Patent Document 5. A non-magnetic plate is disposed between magnetic steel plates that are stacked and fitted with a plurality of uneven portions of a divided magnetic path, and each divided magnetic path of the rotor is ejected by centrifugal force by surface-bonding each other. Hold down. A non-magnetic metal plate such as austenitic stainless steel is used, and a magnetic steel plate has a plurality of divided magnetic paths separated in the radial direction to facilitate the flow of q-axis magnetic flux generated by the q-axis component of the armature current. However, when the operating temperature range is large due to strong adhesion to the magnetic steel sheet, the strain stress due to the difference in linear expansion in the direction almost perpendicular to the diameter is very large, which causes deterioration and destruction of magnetic properties. There is a possibility.

非特許文献2、3で示されるように、結晶粒微細化や粒界面制御によってジスプロシウムの添加なしで大幅に低減して1.6MA/m(20kOe)ほどの保磁力Hcjを確保したことが報告されている。しかし、高い温度環境下に晒されるハイブリッド自動車などでは、図16のような従来の回転子の構成のままで、ネオジム磁石を入れ替えるだけでは不可逆減磁に耐えられる保証はない。 As shown in Non-Patent Documents 2 and 3, it was reported that the coercive force Hcj of about 1.6 MA / m (20 kOe) was secured by greatly reducing the grain refinement and grain interface control without adding dysprosium. Has been. However, in a hybrid vehicle exposed to a high temperature environment, there is no guarantee that it can withstand irreversible demagnetization simply by replacing the neodymium magnet with the conventional rotor configuration as shown in FIG.

回転子コア(ロータコア)の外周と永久磁石の間に非磁性部(磁束短絡防止孔に相当)を設けて、減磁界を通して永久磁石の端部で生じる減磁を抑える方法が特許文献6に開示されている。永久磁石に加わる着磁磁化と反対方向の逆極性磁場を大きく低減するには、径方向に長く、ある程度幅狭の空隙で漏洩を大きくすることが必要である。また、磁極頭部コアの質量増加に対応できる耐遠心力強度を確保することは、永久磁石の磁束漏洩を増加し、マグネットトルクの低下をもたらす。 Patent Document 6 discloses a method of providing a nonmagnetic portion (corresponding to a magnetic flux short-circuit prevention hole) between the outer periphery of a rotor core (rotor core) and a permanent magnet to suppress demagnetization that occurs at the end of the permanent magnet through demagnetization. Has been. In order to greatly reduce the reverse polarity magnetic field in the direction opposite to the magnetization magnetization applied to the permanent magnet, it is necessary to increase leakage with a gap that is long in the radial direction and narrow to some extent. In addition, securing the strength of centrifugal force that can cope with the increase in the mass of the magnetic pole head core increases the leakage of magnetic flux of the permanent magnet and causes a decrease in magnet torque.

永久磁石の上下に導電板が密着して配置され、加わる磁場を導電板の誘導電流による誘導磁場で打ち消す構成が、特許文献7に開示されている。回転子鉄心(コア)の各磁極に2個の固定磁力磁石と、間に可変磁力磁石が埋設され、固定磁力磁石の上下に導電板が配置される。可変磁力磁石の磁化電流による磁場が導電板を貫通すると、導電板に誘導電流が流れ、磁場が発生する。この磁場が固定磁力磁石を通る磁化電流による磁場と打ち消し合い、磁化電流により発生する磁場を可変磁力磁石に集中し、効率的に磁化を行う。永久磁石の着磁磁化と反対方向の固定子の電機子電流による逆極性磁場を減衰させるものではない。 Patent Document 7 discloses a configuration in which conductive plates are disposed in close contact with upper and lower sides of a permanent magnet, and an applied magnetic field is canceled by an induced magnetic field generated by an induced current of the conductive plate. Two fixed magnetic magnets and a variable magnetic magnet are embedded in each magnetic pole of the rotor core (core), and conductive plates are arranged above and below the fixed magnetic magnet. When the magnetic field due to the magnetizing current of the variable magnetic magnet penetrates the conductive plate, an induced current flows through the conductive plate, and a magnetic field is generated. This magnetic field cancels out the magnetic field generated by the magnetizing current passing through the fixed magnetic magnet, concentrates the magnetic field generated by the magnetizing current on the variable magnetic magnet, and efficiently magnetizes the magnetic field. It does not attenuate the reverse polarity magnetic field due to the armature current of the stator in the direction opposite to the magnetization direction of the permanent magnet.

ケースに収められて外気から閉ざされた回転子と固定子が空気流で直接冷却される方法がある。特許文献8では、回転子と固定子のいずれにも貫通された通風穴を通して空気が循環され、請求項9では、外部に設けられた熱交換器と回転子の内側を通して空気が循環される。 There is a method in which a rotor and a stator, which are enclosed in a case and closed from outside air, are directly cooled by an air flow. In Patent Document 8, air is circulated through a ventilation hole penetrating both the rotor and the stator. In claim 9, air is circulated through a heat exchanger provided outside and the inside of the rotor.

永久磁石のがたつきを抑えるため、板ばねを永久磁石の内方向磁極面と磁石支持孔(磁石埋設用孔)の内周面の間に配置する方法が、特許文献10で開示されている。放熱やパーミアンス係数が考慮されていないため、軟磁性の板ばねで接触面積を大きくし、磁気空隙を小さくする工夫がなされていない。 In order to suppress rattling of the permanent magnet, Patent Document 10 discloses a method of disposing a leaf spring between the inner magnetic pole surface of the permanent magnet and the inner peripheral surface of the magnet support hole (magnet embedding hole). . Since heat dissipation and permeance coefficient are not taken into account, no effort has been made to increase the contact area with a soft magnetic leaf spring and reduce the magnetic gap.

回転子コアに埋め込まれた永久磁石の浅い部分が電機子電流による局所磁場で不可逆減磁されないため、特許文献11のように、永久磁石の浅く埋め込まれた部分を厚さ方向に対して傾斜した異方性を形成する構成や、特許文献12のように、磁石厚を大きくする方法がある。いずれも各磁極に埋め込まれる永久磁石の必要な部分に実効的に高い保磁力を持たせる方法であるが、効果が少なく、構成が複雑になる。 Since the shallow portion of the permanent magnet embedded in the rotor core is not irreversibly demagnetized by the local magnetic field due to the armature current, the shallowly embedded portion of the permanent magnet is inclined with respect to the thickness direction as in Patent Document 11. There are a configuration for forming anisotropy and a method for increasing the magnet thickness as in Patent Document 12. In either method, a necessary portion of the permanent magnet embedded in each magnetic pole is effectively given a high coercive force, but the effect is small and the configuration becomes complicated.

回転子コアに浅く埋め込まれた永久磁石での渦電流損を少なくする構成が、特許文献13で開示されている。埋め込まれる深さに応じて幅を変えて断面積を小さくし、渦電流損と、それによる発熱を抑制しようとする構成であるが、磁石の断面積の低減には制約があるため製造し難く、効果も少ない。 Patent Document 13 discloses a configuration that reduces eddy current loss in a permanent magnet that is shallowly embedded in a rotor core. The cross-sectional area is reduced by changing the width according to the embedded depth to suppress eddy current loss and the resulting heat generation, but it is difficult to manufacture due to limitations in reducing the cross-sectional area of the magnet. There is little effect.

特開2006−238553号公報JP 2006-238553 A 特開2010−035264号公報JP 2010-035264 A 特開2001−157396号公報JP 2001-157396 A US4469970US4469970 特開平9−191618号公報Japanese Patent Laid-Open No. 9-191618 特開2000−050543号公報JP 2000-050543 A 特開2010−148179号公報JP 2010-148179 A 特開平11―146585号公報Japanese Patent Laid-Open No. 11-146585 特開2008−125234号公報JP 2008-125234 A 特開2004−357418号公報JP 2004-357418 A 特開2009−254143号公報JP 2009-254143 A 特開2009―053240号公報JP 2009-053240 A US6703743B2US6703743B2

TOYOTA Technical Review Vol.54 No.1 Aug.2005TOYOTA Technical Review Vol. 54 No. 1 Aug. 2005 S.Sugimoto : the 21st Int.Workshop on Rare Earth Perma−nent Magnet & their Applications,(2010.9.1 Bled−Slovenia)S. Sugimoto: the 21st Int. Works on Rare Earth Permanent Magnet & ther Applications, (2010.9.1 Bled-Slovenia) C.Mishima et al. :Proc. the 21st Int.Workshop on Rare Earth Perma−nent Magnets & their Applications,(Bled−Slovenia) ed.S.Kobe,P.T.McGunines,pp.253−256(2010)C. Misima et al. : Proc. the 21st Int. Works on Rare Earth Permanent Magnets & ther Applications, (Bled-Slovenia) ed. S. Kobe, P .; T.A. McGunenes, pp. 253-256 (2010)

本発明の埋込磁石同期電動機の回転子の主たる課題は、磁性鋼板と非強磁性金属板が交互に積層されたハイブリッド構成の回転子コアが、幅広の外周部で高い引張強度を有する非強磁性金属板のみで遠心力の作用するネオジム磁石(希土類磁石)を保持することで大きい耐遠心力強度を有し、耐遠心力強度を根拠とする複数の手段を用いることで、ネオジム磁石(希土類磁石)に加わる電機子電流による逆極性磁場を小さくし、ネオジム磁石(希土類磁石)の温度上昇を抑制する。 The main problem of the rotor of the interior permanent magnet synchronous motor of the present invention is that the rotor core having a hybrid structure in which magnetic steel plates and non-ferromagnetic metal plates are alternately laminated has a high tensile strength at the wide outer peripheral portion. By holding a neodymium magnet (rare earth magnet) on which a centrifugal force acts only by a magnetic metal plate, it has a large centrifugal strength strength, and by using a plurality of means based on the centrifugal strength strength, a neodymium magnet (rare earth) The reverse polarity magnetic field due to the armature current applied to the magnet) is reduced, and the temperature rise of the neodymium magnet (rare earth magnet) is suppressed.

遠心力が作用するネオジム磁石(希土類磁石)を保持しない磁性鋼板が耐遠心力強度に余裕を有すことで、高回転速度に対応しながら、磁極頭部コアを大きくしてネオジム磁石を深く埋め込み、磁気的短絡を一部で断つための磁束短絡防止孔を径方向に長く穿設して、ネオジム磁石の着磁磁化と反対方向の電機子電流による逆極性磁場にともなう磁束を周波数に無関係に熱損失なく漏洩させて、ネオジム磁石での逆極性磁場と温度上昇を抑制する。 The magnetic steel plate that does not hold the neodymium magnet (rare earth magnet) that acts on the centrifugal force has a margin in the anti-centrifugal strength, so that the magnetic pole head core is enlarged and the neodymium magnet is embedded deeply while supporting high rotational speed. A magnetic flux short-circuit prevention hole for breaking a magnetic short-circuit in part is formed long in the radial direction, so that the magnetic flux due to the reverse polarity magnetic field due to the armature current in the direction opposite to the magnetization magnetization of the neodymium magnet is independent of the frequency. It leaks without heat loss and suppresses reverse polarity magnetic field and temperature rise in neodymium magnets.

磁性鋼板と非強磁性金属板のハイブリッド構成の回転子コアにすることで、打ち抜き加工で穿設される磁石埋設用孔における磁性鋼板とネオジム磁石の磁極面の隙間を小さくすることが容易になり、パーミアンス係数を大きめに維持し、ネオジム磁石を不可逆減磁されにくくする。 By using a rotor core with a hybrid configuration of a magnetic steel plate and a non-ferromagnetic metal plate, it becomes easy to reduce the gap between the magnetic steel plate and the magnetic pole surface of the neodymium magnet in the magnet embedding hole drilled by punching. , Keep the permeance coefficient large and make the neodymium magnet less susceptible to irreversible demagnetization.

非強磁性金属板が突出された磁極頭部コア内側の凹凸面とネオジム磁石の外方向磁極面の間に屈曲成形された金属板が配置することで、電機子電流による逆極性磁場の高い周波数成分を減衰させ、渦電流損として金属板で発生するジュール熱を磁極頭部コア側に多く非対称に熱伝導して、ネオジム磁石に加わる逆極性磁場とネオジム磁石の温度上昇を抑制する。 High frequency of reverse polarity magnetic field due to armature current by placing bent metal plate between uneven surface inside magnetic pole head core from which non-ferromagnetic metal plate protrudes and outward magnetic pole surface of neodymium magnet The components are attenuated, and Joule heat generated in the metal plate as eddy current loss is thermally transferred asymmetrically to the core side of the magnetic pole head to suppress the temperature increase of the reverse polarity magnetic field applied to the neodymium magnet and the neodymium magnet.

耐遠心力強度の余裕で大きくできる磁極頭部コアに比較的大きい貫通孔を穿設し、貫通孔を通して回転子の内側で熱交換部を途中に介して空気循環することでネオジム磁石の温度上昇を抑制する。この構成と複数の前記手段を合わせて、ジスプロシウム含有率の低いネオジム磁石を搭載した埋込磁石同期電動機を、ハイブリッド自動車など、高い温度環境下で用いる。 A relatively large through hole is drilled in the magnetic pole head core that can be increased with a margin of anti-centrifugal strength, and the temperature of the neodymium magnet rises by circulating air through the heat exchange part inside the rotor through the through hole. Suppress. By combining this configuration with a plurality of the above means, an embedded magnet synchronous motor equipped with a neodymium magnet having a low dysprosium content is used in a high temperature environment such as a hybrid vehicle.

磁束短絡防止孔などでのネオジム磁石の磁束漏洩の増加分を、ジスプロシウム含有率の低減と温度上昇の抑制により残留磁束密度Brを大きめに保持することで補償し、マグネットトルクを大きめに維持する。 The increase in the magnetic flux leakage of the neodymium magnet at the magnetic flux short-circuit prevention hole is compensated by maintaining the residual magnetic flux density Br large by reducing the dysprosium content and suppressing the temperature rise, thereby maintaining the magnet torque large.

断面積を大きくできる磁極頭部コアでの鉄損低減とq軸インダクタンス低下の緩和、および、磁束短絡防止孔での漏洩で小さくなる逆極性磁場ネオジム磁石と近傍での熱損失低減で、高効率の運転領域を広げる。 High efficiency by reducing the iron loss and q-axis inductance at the magnetic pole head core that can increase the cross-sectional area, and reducing the heat loss in the vicinity of the reverse polarity magnetic field neodymium magnet that becomes smaller due to leakage at the magnetic flux short-circuit prevention hole. To expand the driving range.

本発明の埋込磁石同期電動機の回転子は、耐遠心力強度を大きくするため、請求項1のように、磁性鋼板と非強磁性金属板が交互に積み重ねられた回転子コアにおいて、円環状に幅広の外周部を有する引張強度の大きい非強磁性金属板のみで遠心力の作用する希土類磁石が保持される。磁性鋼板の第1の磁石埋設用孔と非強磁性金属板の第2の磁石埋設用孔が、回転子の各磁極での重なる位置に穿設され、第2の磁石埋設用孔における第2の外周側端部が、第1の磁石埋設用孔における第1の外周側端部より回転軸の位置する中心方向に突出される。非強磁性金属板の第2の外周側端部だけが希土類磁石の外方向磁極面に当たるようにされる。 The rotor of the embedded magnet synchronous motor according to the present invention has an annular shape in a rotor core in which magnetic steel plates and non-ferromagnetic metal plates are alternately stacked as described in claim 1 in order to increase the centrifugal strength. The rare earth magnet on which the centrifugal force acts is held only by a non-ferromagnetic metal plate having a wide outer peripheral portion and a high tensile strength. The first magnet embedding hole of the magnetic steel plate and the second magnet embedding hole of the non-ferromagnetic metal plate are drilled at the overlapping positions of the magnetic poles of the rotor, and the second magnet embedding hole is the second in the second magnet embedding hole. The outer peripheral side end portion of the first protrusion is protruded in the central direction where the rotation axis is located from the first outer peripheral side end portion of the first magnet embedding hole. Only the second outer peripheral side end portion of the non-ferromagnetic metal plate is made to contact the outward magnetic pole surface of the rare earth magnet.

電機子電流による逆極性磁場にともなう磁束を周波数に無関係に熱損失なしに分岐、漏洩し、ネオジム磁石に加わる逆極性磁場を低減するため、さらに請求項1では、耐遠心力強度で余裕のある磁性鋼板の第1の磁石埋設用孔の周方向端部の近傍から、径方向に延長された磁束短絡防止孔が穿設される。 In order to reduce the reverse polarity magnetic field applied to the neodymium magnet by branching and leaking the magnetic flux accompanying the reverse polarity magnetic field due to the armature current without any heat loss regardless of the frequency, further, in claim 1, the centrifugal strength strength is sufficient. A magnetic flux short-circuit prevention hole extended in the radial direction is formed from the vicinity of the circumferential end of the first magnet embedding hole of the magnetic steel plate.

資源豊富な軽希土類元素のネオジム(Nd)を用いて、大きいエネルギー積の磁石として利用するため、請求項2では、希土類磁石にネオジム磁石が用いられる。 In order to use a resource-rich light rare earth element neodymium (Nd) as a magnet with a large energy product, in claim 2, a neodymium magnet is used as the rare earth magnet.

磁性鋼板がネオジム磁石の位置決めと保持の役割から解放されることで、ネオジム磁石の位置決め、保持を非強磁性金属板だけで行い、ネオジム磁石の磁極面と磁性鋼板の間の隙間の部分を小さくしてパーミアンス係数を大きめに保つため、請求項3のように、非強磁性金属板の第2の磁石埋設用孔での第2の外周側端部と、第2の外周側端部から円弧状角部を介して連続する側端部、および第2の径方向ブリッジ部の側端部で、角が面取りされたネオジム磁石の外方向磁極面と側部を止める。第1の磁石埋込用孔が穿設される磁性鋼板とネオジム磁石の磁極面の間には大きい隙間が作られることなく平行に近接される。 Since the magnetic steel plate is released from the role of positioning and holding the neodymium magnet, the positioning and holding of the neodymium magnet is performed only by the non-ferromagnetic metal plate, and the gap between the magnetic pole surface of the neodymium magnet and the magnetic steel plate is reduced. In order to keep the permeance coefficient large, the second outer peripheral end of the second magnet embedding hole of the non-ferromagnetic metal plate and the second outer peripheral end as shown in FIG. The outer end magnetic pole surface and the side portion of the neodymium magnet whose corners are chamfered are stopped at the side end portion that is continuous through the arc-shaped corner portion and the side end portion of the second radial bridge portion. A large gap is not made between the magnetic steel plate in which the first magnet embedding hole is drilled and the magnetic pole surface of the neodymium magnet, and the magnets are close to each other in parallel.

磁極頭部コアとネオジム磁石の外方向磁極面の間に配置される金属板で、電機子電流による逆極性磁場の高い周波数成分を熱損失で減衰させ、磁極頭部コアに熱を伝導させるため、請求項4のように、磁性鋼板の第1の外周側端部が連続した積層面と、突出された非強磁性金属板から成る磁極頭部コア内側の凹凸形状の積層面に合わせて金属板が山部と谷部を有する形状に屈曲成形され、山部が磁極頭部コア側に、谷部が突出した非強磁性金属板の第2の外周側端部とネオジム磁石の外方向磁極面側に当たるようにされる。 A metal plate placed between the magnetic pole head core and the outer magnetic pole face of the neodymium magnet to attenuate the high frequency component of the reverse polarity magnetic field due to the armature current by heat loss and conduct heat to the magnetic pole head core. According to claim 4, the metal is aligned with the laminated surface in which the first outer peripheral end of the magnetic steel plate is continuous and the uneven laminated surface inside the magnetic pole head core made of the protruding non-ferromagnetic metal plate. The outer peripheral magnetic pole of the neodymium magnet and the second outer peripheral side end of the non-ferromagnetic metal plate in which the plate is bent and formed into a shape having a crest and a trough, and the crest is on the magnetic pole head core side. It is made to hit the surface side.

電機子電流による逆極性磁場を減衰させることにより金属板で発熱するジュール熱を磁極頭部コア側に多く、ネオジム磁石側に少ない非対称な熱伝導を行わせるため、請求項5のように、山部が面積の大きい平坦状にされて磁極頭部コア側に、谷部が小さい面積でネオジム磁石の外方向磁極面に当たるようにされる。 In order to cause Joule heat generated by the metal plate to be increased on the magnetic pole head core side and to reduce asymmetric heat transfer on the neodymium magnet side by attenuating the reverse polarity magnetic field caused by the armature current, The portion is flattened with a large area, and the valley portion is made to hit the outward magnetic pole surface of the neodymium magnet with a small area on the magnetic pole head core side.

金属板が磁性鋼板の第1の外周側端部の積層面である磁極頭部コア側に常に当接されるようにするため、請求項6のように、金属板の複数箇所に形成される片持ち弾性部が、金属板の谷部と山部の高さの差より大きく山部の平坦状の面から谷部方向に出され、片持ち弾性部の弾性力で山部が磁極頭部コア側に当てられる。 In order to always contact the magnetic plate head core side, which is the laminated surface of the first outer peripheral side end portion of the magnetic steel plate, the metal plate is formed at a plurality of locations of the metal plate as in claim 6. The cantilevered elastic part is larger than the difference between the height of the trough and the crest of the metal plate, and is projected from the flat surface of the crest to the trough, and the crest is poled by the elastic force of the cantilevered elastic part. It is applied to the core side.

電機子電流による逆極性磁場の減衰を大きくし、パーミアンス係数を大きめに維持するため、請求項7のように、磁極頭部コアとネオジム磁石の外方向磁極面の間に透磁率の大きい軟磁性の金属板が配置される。 In order to increase the attenuation of the reverse polarity magnetic field due to the armature current and maintain a large permeance coefficient, the soft magnetism having a high permeability between the magnetic pole head core and the outer magnetic pole face of the neodymium magnet as in claim 7 The metal plate is arranged.

電機子電流による逆極性磁場を大きく減衰させるために金属板全体の厚さを大きくしても、磁極頭部コアとネオジム磁石の間隔の変動に追随して柔軟に形状の変形が可能になるため、請求項8のように、屈曲成形された金属板が複数枚重ねて配置される。 Even if the overall thickness of the metal plate is increased to greatly attenuate the reverse polarity magnetic field caused by the armature current, the shape can be flexibly deformed following the variation in the distance between the magnetic pole head core and the neodymium magnet. As in claim 8, a plurality of bent metal plates are arranged in a stacked manner.

屈曲成形された金属板が、第1の磁石埋設孔と第2の磁石埋設用孔が交互に配置される貫通された共通の磁石埋設用孔で位置を決められて、安定されるため、請求項9のように、非強磁性金属板が、突出された第2の外周側端部と対向する位置に谷部が重なるように配置されて、外広がりのスリットが外縁部に形成される。 Since the bent metal plate is stabilized by being positioned by a common magnet-embedding hole penetrating the first magnet-embedding hole and the second magnet-embedding hole alternately, As in Item 9, the non-ferromagnetic metal plate is disposed so that the valley portion overlaps at a position facing the protruding second outer peripheral side end portion, and an outwardly extending slit is formed at the outer edge portion.

遠心力の作用するネオジム磁石を非強磁性金属板のみで常に保持できるようにするため、請求項10のように、磁性鋼板の第1の外周側端部に対する非強磁性金属板の第2の外周側端部の中心方向への突出量が、室温と最高運転温度の温度差で回転軸の中心からそれぞれの外周側端部までの長さに対する線膨張の差分に、機械加工や組立の公差を加算した値以上にされる。 In order to be able to always hold the neodymium magnet on which the centrifugal force acts only with the non-ferromagnetic metal plate, the second non-ferromagnetic metal plate with respect to the first outer peripheral side end of the magnetic steel plate as in claim 10. The amount of protrusion in the center direction of the outer edge is the difference in linear expansion with respect to the length from the center of the rotating shaft to the outer edge of each axis due to the temperature difference between the room temperature and the maximum operating temperature. It is made more than the value which added.

電機子電流による逆極性磁場にともなう磁束をネオジム磁石に加わる前に分岐、漏洩させる磁束短絡防止孔は、請求項11では、第1の磁石埋設用孔の周方向端部から連続して外周に位置するブリッジ部まで径方向に延長して穿設される。請求項12では、第1の磁石埋設用孔の第1の外周側端部から連続し、第1の磁石埋設用孔の周方向端部の近傍のブリッジ部から外周まで径方向に延長して穿設される。 The magnetic flux short-circuit prevention hole for branching and leaking the magnetic flux accompanying the reverse polarity magnetic field due to the armature current before applying to the neodymium magnet is continuously connected to the outer periphery from the circumferential end of the first magnet embedding hole. It is drilled by extending in the radial direction to the bridge portion. In the twelfth aspect, the first magnet embedding hole is continuous from the first outer peripheral side end portion, and extends from the bridge portion in the vicinity of the first magnet embedding hole in the circumferential direction to the outer periphery in the radial direction. Drilled.

従来の埋込磁石同期電動機の実績に基づいて、金属板による減衰分は考慮せず、磁束短絡防止孔で逆極性磁場にともなう磁束を漏洩させてネオジム磁石に入る磁束量を適正にすることで、ジスプロシウムの含有率が5wt%より低いネオジム磁石を高い温度環境下で用いる可能性に導くため、請求項13と請求項14では、ネオジム磁石に加わる電機子電流による逆極性磁場にともなう磁束量が、磁極頭部コアの入口から入る磁束量の3分の2より小さくなる構成にされる。 Based on the results of conventional embedded magnet synchronous motors, the amount of magnetic flux entering the neodymium magnet is made appropriate by leaking the magnetic flux associated with the reverse polarity magnetic field in the magnetic flux short-circuit prevention hole without considering the attenuation due to the metal plate. In order to lead to the possibility of using a neodymium magnet having a dysprosium content lower than 5 wt% in a high temperature environment, the amount of magnetic flux accompanying the reverse polarity magnetic field due to the armature current applied to the neodymium magnet is The magnetic head is configured to be smaller than two thirds of the magnetic flux entering from the entrance of the magnetic pole head core.

積層厚比率の大きい磁性鋼板と積層厚比率の小さい非強磁性金属板で、隙間なく積層された回転子コアにするため、請求項15では、磁性鋼板が凹凸状の嵌合部で一体化され、非強磁性金属板の対向する位置には嵌合部に当たらない逃げ孔が穿設される。 In order to form a rotor core that is laminated with a gap between a magnetic steel plate having a large lamination thickness ratio and a non-ferromagnetic metal plate having a small lamination thickness ratio, the magnetic steel sheets are integrated by an uneven fitting portion. An escape hole that does not hit the fitting portion is formed at a position facing the non-ferromagnetic metal plate.

積層された回転子コアの位置決めとトルク伝達を強固にし、ネオジム磁石の後挿入を可能にしてネオジム磁石の端面を押さえることができるように、請求項16では、回転子コアの内周部から突出したキーを回転軸と一体化された回転子ハブの外周部の対応する位置に設けられたキー溝に嵌合し、径の外方向に複数の突出部を有するエンドプレートで端面を押さえ、円環状リングを嵌め込んで積層方向に固定する。 In order to strengthen positioning and torque transmission of the laminated rotor cores and enable post-insertion of the neodymium magnets to hold down the end faces of the neodymium magnets, the protrusions protrude from the inner periphery of the rotor cores. The key is fitted into a key groove provided at a corresponding position on the outer peripheral portion of the rotor hub integrated with the rotary shaft, and the end surface is pressed by an end plate having a plurality of protruding portions outward in the diameter, An annular ring is fitted and fixed in the stacking direction.

ネオジム磁石を後から組み込む工程を容易にするため、請求項17では、周方向の等角度間隔の位置に重ねて配置された第1の磁石埋込用孔と第2の磁石埋設用孔が、エンドプレートの一定角度回転によってエンドプレートに対向する状態と対向しない状態が選択できるようにされる。 In order to facilitate the process of incorporating a neodymium magnet later, in claim 17, the first magnet embedding hole and the second magnet embedding hole disposed so as to overlap each other at equal angular intervals in the circumferential direction, A state of facing the end plate and a state of not facing the end plate can be selected by rotating the end plate at a predetermined angle.

回転子コアでの積層方向に加わる圧力を緩和して、磁性鋼板と非強磁性金属板の熱膨張時の残留応力を小さくして磁気特性の劣化を少なくするため、請求項18では、回転子コアの端面から突出する嵌合部とエンドプレートが、エンドプレート一定角度の回転で、互いに当接する状態と当接しない状態を選択できるようにされる。 In order to alleviate the pressure applied in the laminating direction at the rotor core and reduce the residual stress at the time of thermal expansion of the magnetic steel plate and the non-ferromagnetic metal plate to reduce the deterioration of magnetic properties, A state in which the fitting portion protruding from the end surface of the core and the end plate are in contact with each other by rotation of the end plate at a predetermined angle can be selected.

ネオジム磁石を空気流で冷却できるようにするため、請求項19のように、回転子の主たる回転方向に開口部を有する空気取入れ部が、磁極頭部コアに埋め込まれたネオジム磁石周辺の貫通孔の位置に合わせて回転子の端面に固定される。 In order to allow the neodymium magnet to be cooled by an air flow, a through-hole around the neodymium magnet in which an air intake portion having an opening in the main rotation direction of the rotor is embedded in the magnetic pole head core as in claim 19 It is fixed to the end face of the rotor according to the position of.

防水、防塵、防音のために外気から閉じられたケース内で回転子に埋め込まれたネオジム磁石を効率的に冷却するため、請求項20のように、空気取入れ部で貫通孔に流し込まれる空気が回転子コアの内側を途中に熱交換部を介して循環される。 In order to efficiently cool the neodymium magnet embedded in the rotor in a case closed from the outside air for waterproofing, dustproofing, and soundproofing, the air flowing into the through-hole in the air intake portion as in claim 20 It is circulated through the inside of the rotor core through the heat exchange part.

空気の熱交換部での熱交換の効率と、径方向の流動を促進するため、請求項21では、回転軸の中心を回転対称中心とする渦形状の一部からなる複数のフィンを有する熱交換部が回転子の端面に対向して配置される。 In order to promote the efficiency of heat exchange in the heat exchange section of air and the flow in the radial direction, in claim 21, heat having a plurality of fins composed of a part of a spiral shape with the center of the rotation axis as the center of rotational symmetry An exchange part is arranged to face the end face of the rotor.

主に発電用途の場合、誘導電流による不可逆減磁を避けるため、請求項22のように、(磁極数×回転速度)の逆数で規定される半周期より短い周期で電機子巻線の端子間が電気的に断続される。 In order to avoid irreversible demagnetization due to induced current mainly in power generation applications, as in claim 22, between the terminals of the armature winding in a cycle shorter than a half cycle defined by the reciprocal of (number of magnetic poles × rotational speed) Is electrically interrupted.

スイッチング損失を少なくしながら効果的に逆極性磁場を減衰させるため、請求項23では、埋込磁石同期電動機の所定の位置での温度が高い時に、電機子巻線の端子間の電気的な断続の平均の周期が短くされる。 In order to effectively attenuate the reverse polarity magnetic field while reducing the switching loss, according to claim 23, when the temperature at a predetermined position of the embedded magnet synchronous motor is high, the electrical connection between the terminals of the armature winding The average period of is shortened.

本発明の構成において、埋め込まれるエネルギー積の大きいネオジム磁石にテルビウム(Tb)添加のネオジム磁石を用いてもよい。 In the configuration of the present invention, a terbium (Tb) -added neodymium magnet may be used as the embedded neodymium magnet having a large energy product.

本発明の構成において、ネオジム磁石の代わりにサマリウム・コバルト磁石を用いてもよい。 In the configuration of the present invention, a samarium / cobalt magnet may be used instead of the neodymium magnet.

積層厚比率の大きい磁性鋼板と積層厚比率の小さい非強磁性金属板でハイブリッド構成に積層された回転子コアは、外周から幅広にされて引張強度の大きい非強磁性金属板のみで遠心力の作用するネオジム磁石が保持されることで、大きい耐遠心力強度を有すことになる。 A rotor core laminated in a hybrid configuration with a magnetic steel plate with a high lamination thickness ratio and a non-ferromagnetic metal plate with a low lamination thickness ratio has a centrifugal force that is wide only from the outer periphery and has a high tensile strength. By holding the acting neodymium magnet, it has a high strength against centrifugal force.

磁性鋼板は、遠心力の作用するネオジム磁石を保持することから解放されるため、耐遠心力強度に余裕を有し、その分だけでも断面積の大きい磁極頭部コアを用いることができる。ネオジム磁石を深く埋め込む磁性鋼板の一部に磁気的短絡を断ち、同時に電機子電流による逆極性磁場にともなう磁束の一部を漏洩させるため、ネオジム磁石の周方向端部の近傍から径方向に長く磁束短絡防止孔を穿設できる。 Since the magnetic steel sheet is released from holding a neodymium magnet to which centrifugal force acts, a magnetic pole head core having a sufficient anti-centrifugal strength and having a large cross-sectional area can be used. Longer in the radial direction from the vicinity of the circumferential end of the neodymium magnet in order to break a magnetic short circuit in a part of the magnetic steel sheet that embeds the neodymium magnet deeply and at the same time leaks a part of the magnetic flux accompanying the reverse polarity magnetic field due to the armature current. A magnetic flux short-circuit prevention hole can be formed.

磁性鋼板はネオジム磁石の位置決めから解放されるため、ネオジム磁石の磁極面と磁性鋼板との間に大きい隙間を設けなくても打ち抜き加工が容易になり、パーミアンス係数を大きめに維持できるため、不可逆減磁を回避しやすい。また、B−H減磁曲線における動作点での磁束密度Bdを大きく確保できる。 Since the magnetic steel plate is released from the positioning of the neodymium magnet, punching becomes easy without providing a large gap between the magnetic pole surface of the neodymium magnet and the magnetic steel plate, and the permeance coefficient can be maintained large, so the irreversible reduction is achieved. Easy to avoid magnetism. In addition, a large magnetic flux density Bd at the operating point in the BH demagnetization curve can be secured.

径方向に長く穿設できる磁束短絡防止孔で電機子電流による逆極性磁場にともなう磁束を周波数に無関係に、熱損失なく分岐、漏洩することで、ネオジム磁石に加わる逆極性磁場とネオジム磁石でのジュール熱による温度上昇を抑制できる。 A magnetic flux short-circuit prevention hole that can be drilled long in the radial direction. The magnetic flux associated with the reverse polarity magnetic field due to the armature current branches and leaks without heat loss regardless of the frequency, so that the reverse polarity magnetic field applied to the neodymium magnet and the neodymium magnet Temperature rise due to Joule heat can be suppressed.

非強磁性金属板が突出された磁極頭部コア内側の凹凸な面に合わせて屈曲成形された金属板がネオジム磁石の磁極面に配置されることで、電機子電流による逆極性磁場の高い周波数成分がネオジム磁石に入る前に熱損失で減衰され、磁極頭部コアに当たる側の面積が大きくされた非対称な熱伝導を行う金属板で発生するジュール熱が磁極頭部コアに多く伝導されることで、ネオジム磁石に加わる逆極性磁場とネオジム磁石の温度上昇を抑制できる。 A metal plate that is bent to match the uneven surface inside the core of the magnetic pole head from which the non-ferromagnetic metal plate protrudes is placed on the magnetic pole surface of the neodymium magnet. Before the component enters the neodymium magnet, it is attenuated by heat loss, and a large amount of Joule heat is generated in the magnetic pole head core that is generated by the metal plate that performs asymmetrical heat conduction with the area on the side facing the magnetic pole head core increased. Thus, the reverse polarity magnetic field applied to the neodymium magnet and the temperature rise of the neodymium magnet can be suppressed.

耐遠心力強度の余裕から大きくできる磁極頭部コアに穿設された比較的大きい貫通孔と回転子の内側で熱交換部を介して空気を循環させることでネオジム磁石を冷却できる。前記複数の手段と組み合わせることで、ジスプロシウム含有率の低いネオジム磁石をハイブリッド自動車などの埋込磁石同期電動機に使用できる。 The neodymium magnet can be cooled by circulating air through the heat exchange section inside the rotor and the relatively large through-hole formed in the magnetic pole head core that can be increased from the margin of centrifugal strength. By combining with the plurality of means, a neodymium magnet having a low dysprosium content can be used for an embedded magnet synchronous motor such as a hybrid vehicle.

ネオジム磁石の磁束の磁束短絡防止孔などでの漏洩増加分を、ジスプロシウム含有率の低減とネオジム磁石の温度上昇で大きめに保持できる残留磁束密度Brで補うことで、マグネットトルクを大きめに維持できる。 By supplementing the increase in leakage of the magnetic flux of the neodymium magnet through the magnetic flux short-circuit prevention hole with the residual magnetic flux density Br that can be kept large by reducing the dysprosium content and increasing the temperature of the neodymium magnet, the magnet torque can be kept large.

断面積を大きくできる磁極頭部コアでの低鉄損とq軸インダクタンスの低下の抑制、さらに磁束短絡防止孔での熱損失なしの磁束によるネオジム磁石や近傍での損失低下で、高効率な運転領域を広くできる。 High-efficiency operation with low iron loss and q-axis inductance reduction in the magnetic pole head core that can increase the cross-sectional area, and loss reduction in the neodymium magnet and nearby due to magnetic flux without heat loss in the magnetic flux short-circuit prevention hole Can widen the area.

ハイブリッド構成の回転子コアでの非強磁性金属鋼板の積層厚比率を大きくすることで耐遠心力強度をより向上し、回転子の最高回転速度を大きくできる。 By increasing the lamination thickness ratio of the non-ferromagnetic metal steel plate in the rotor core of the hybrid configuration, the centrifugal strength can be further improved and the maximum rotation speed of the rotor can be increased.

本発明の埋込磁石同期電動機の回転子の実施例1を一部拡大した端面で示す。Example 1 of the rotor of the interior permanent magnet synchronous motor of the present invention is shown by a partially enlarged end face. 実施例1を、電機子を含む全体図で示す。Example 1 is shown with the whole figure including an armature. 実施例1の磁性鋼板と非強磁性金属板の形状を示す。The shape of the magnetic steel plate of Example 1 and a nonferromagnetic metal plate is shown. 実施例1の回転子コアの分解構成図を示す。The exploded block diagram of the rotor core of Example 1 is shown. 実施例1の磁束経路を説明する図である。It is a figure explaining the magnetic flux path | route of Example 1. FIG. 実施例1に金属板を付加した断面を拡大して示す。The cross section which added the metal plate to Example 1 is expanded and shown. 実施例1に異なる金属板を付加した断面を拡大して示す。The cross section which added the different metal plate to Example 1 is expanded and shown. 実施例1に重ねた金属板を付加した断面を拡大して示す。The cross section which added the metal plate piled up on Example 1 is expanded and shown. 実施例1の端面の構成を示す。The structure of the end surface of Example 1 is shown. 実施例1の冷却構成の一部を示す。A part of cooling structure of Example 1 is shown. 実施例1の冷却構成の断面を示す。The cross section of the cooling structure of Example 1 is shown. 実施例1の冷却構成の他の一部を示すThe other part of the cooling structure of Example 1 is shown. 本発明の実施例2を、一部拡大した積層方向の端面で示す。Example 2 of the present invention is shown by a partially enlarged end face in the stacking direction. 実施例2の回転子コアの分解構成図を示す。The exploded block diagram of the rotor core of Example 2 is shown. 本発明の実施例3を、一部拡大した積層方向の端面で示す。Example 3 of the present invention is shown by a partially enlarged end face in the stacking direction. 従来の埋込磁石同期電動機の回転子を示す。The rotor of the conventional interior magnet synchronous motor is shown. 従来のネオジム磁石の特性を示す。The characteristic of the conventional neodymium magnet is shown.

本発明の埋込磁石同期電動機の回転子は、耐遠心力強度を大きくする構成と、耐遠心力強度が大くできることに基づいてネオジム磁石での逆極性磁場と温度上昇を抑制する手段を、(0063)の項から(0080)の項までを前提にして、実施の形態で示す。 The rotor of the interior permanent magnet synchronous motor of the present invention is configured to increase the anti-centrifugal strength and means for suppressing the reverse polarity magnetic field and temperature rise in the neodymium magnet based on the fact that the anti-centrifugal strength can be increased. The embodiment will be described on the assumption of the items (0063) to (0080).

ハイブリッド自動車などの埋込磁石同期電動機の用途には、耐遠心力強度と広い高効率領域とともに耐熱性が必要で、永久磁石を埋め込む回転子の構成で対応することが求められる。 The use of an embedded magnet synchronous motor such as a hybrid vehicle requires heat resistance as well as anti-centrifugal strength and a wide high-efficiency region, and is required to cope with the configuration of a rotor in which a permanent magnet is embedded.

磁石の磁気特性は磁化曲線(ヒステリシスループ)で示され、磁束密度Bは、加えられる磁場Hと磁石の磁気分極Jの和で表される。
B=μH+J
B:磁束密度(T、テスラ)、H:磁場(A/m)、J:磁気分極(T)、
μ:真空の透磁率
磁化曲線の第2象限の部分で示される減磁曲線は、磁場Hにより変化する磁気分極Jの大きさを示すJ−H減磁曲線と、磁場Hに磁石の磁気分極Jを加えた全体の磁束密度Bを示すB−H減磁曲線がある。
The magnetic characteristics of the magnet are indicated by a magnetization curve (hysteresis loop), and the magnetic flux density B is represented by the sum of the applied magnetic field H and the magnetic polarization J of the magnet.
B = μH + J
B: Magnetic flux density (T, Tesla), H: Magnetic field (A / m), J: Magnetic polarization (T),
μ: The demagnetization curve shown in the second quadrant of the vacuum permeability magnetization curve is a JH demagnetization curve indicating the magnitude of the magnetic polarization J that varies with the magnetic field H, and the magnetic polarization of the magnet in the magnetic field H. There is a BH demagnetization curve showing the total magnetic flux density B plus J.

J−H減磁曲線における磁場H=0での磁気分極Jが残留磁気分極Jrに、磁気分極J=0になる磁場の値が保磁力Hcjとなる。また、B−H減磁曲線における磁場H=0での磁束密度Bが残留磁束密度Brとなる。第2象限の部分で、パーミアンス係数を負の傾きとした動作線とB−H減磁曲線との交点である動作点での磁束密度はBdで示される。保磁力Hcjが大きいほど耐熱性があり、温度が上昇するほど保磁力Hcjと残留磁束密度Br(あるいは残留磁気分極Jr)が低下する。磁束密度Bdを大きくし、また温度上昇時にも不可逆減磁を起こし難くするためには、パーミアンス係数を大きくする必要がある。 The magnetic polarization J at the magnetic field H = 0 in the JH demagnetization curve is the residual magnetic polarization Jr, and the magnetic field value at which the magnetic polarization J = 0 is the coercive force Hcj. Further, the magnetic flux density B at the magnetic field H = 0 in the BH demagnetization curve becomes the residual magnetic flux density Br. In the second quadrant, the magnetic flux density at the operating point that is the intersection of the operating line with the permeance coefficient having a negative slope and the BH demagnetization curve is indicated by Bd. The greater the coercive force Hcj, the more heat resistant, and the higher the temperature, the lower the coercive force Hcj and the residual magnetic flux density Br (or residual magnetic polarization Jr). In order to increase the magnetic flux density Bd and make it difficult to cause irreversible demagnetization even when the temperature rises, it is necessary to increase the permeance coefficient.

埋込磁石同期電動機はインバータでPWM(Pulse Width Modulation)駆動される。電気角周期の逆数に対して相対的に高いキャリア周波数で、電流ベクトル制御の自由度の大きい正弦波電流駆動が一般的に用いられる。ネオジム磁石に加わる電機子電流による磁場は、電機子巻線のインダクタンスや抵抗の影響でキャリア周波数以外の周波数成分を含むが、1kHz近傍を主な成分とするPWMキャリア周波数を基本波として有している。 The embedded magnet synchronous motor is PWM (Pulse Width Modulation) driven by an inverter. A sinusoidal current drive with a relatively high carrier frequency relative to the reciprocal of the electrical angular period and a large degree of freedom in current vector control is generally used. The magnetic field generated by the armature current applied to the neodymium magnet includes frequency components other than the carrier frequency due to the influence of the inductance and resistance of the armature winding, but has a PWM carrier frequency whose main component is around 1 kHz as a fundamental wave. Yes.

埋込磁石同期電動機の小型化にはエネルギー積の大きいネオジム磁石が有利であり、ハイブリッド自動車などに用いられるためには耐熱性の向上が必要で、高い保磁力Hcjを持たせるために、重希土類元素のジスプロシウムが添加される。しかし、ジスプロシウムの高価格や入手の制約、および残留磁束密度Br低下の理由でジスプロシウム含有率を低減するためには、ネオジム磁石に加わる着磁磁化と反対方向の逆極性磁場を小さくし、ネオジム磁石での温度上昇を抑制することが必要になる。 Neodymium magnets with a large energy product are advantageous for downsizing embedded magnet synchronous motors, and heat resistance needs to be improved for use in hybrid vehicles and the like, and heavy rare earths are required to have a high coercive force Hcj. The elemental dysprosium is added. However, in order to reduce the dysprosium content because of the high price and availability of dysprosium and the decrease in residual magnetic flux density Br, the reverse polarity magnetic field in the opposite direction to the magnetization magnetization applied to the neodymium magnet is reduced, and the neodymium magnet It is necessary to suppress the temperature rise at

磁気抵抗が最も大きい方向で、永久磁石によって発生する巻線鎖交磁束の方向をd軸に、磁気抵抗が最小でd軸と電気角で直交する磁極間の方向をq軸にすることで、固定子に静止していた3相巻線は、永久磁石が埋設された回転子に同期して回転する2つのd、q巻線に変換されて静止しているのと等価となり、それぞれ抵抗とインダクタンスを有する電気的に独立した2つの直流回路とみなされることで、電流ベクトル制御が容易になる。 In the direction in which the magnetic resistance is the largest, the direction of the winding flux linkage generated by the permanent magnet is the d axis, and the direction between the magnetic poles having the minimum magnetic resistance and orthogonal to the electrical angle is the q axis, The three-phase windings that are stationary on the stator are equivalent to two d and q windings that rotate in synchronization with the rotor in which the permanent magnets are embedded and are stationary, Current vector control is facilitated by being regarded as two electrically independent DC circuits having inductance.

埋込磁石同期電動機は、永久磁石と電機子電流による電機子鎖交磁束の変化によってエネルギー変換が行われることによるマグネットトルクと、磁気的な突極性で回転位置による電機子巻線のインダクタンスの変化で空隙に貯えられる磁気エネルギーが機械エネルギーに変換されることによるリラクタンストルクを、電機子電流でベクトル制御することでトルクや効率を選択できる。 An embedded-magnet synchronous motor is a magnet torque generated by energy conversion due to a change in the armature flux linkage caused by the permanent magnet and armature current, and a change in the inductance of the armature winding due to the rotational position due to the magnetic saliency. The reluctance torque generated by converting the magnetic energy stored in the air gap into mechanical energy can be controlled by vector control with the armature current, so that the torque and efficiency can be selected.

トルクは電流ベクトルと電機子鎖交磁束ベクトルの外積より求まる。トルクTを示す式は、永久磁石によって発生するマグネットトルクを第1項、インダクタンスの差によって発生するリラクタンストルクを第2項にして、以下の式で表される。
T=Pn・ψa・iq+Pn・(Ld−Lq)id・iq
=Pn{ψa・Ia・cosβ+1/2・(Lq−Ld)Ia・Ia・sin2β}
Pn:対極数
ψa:永久磁石による電機子鎖交磁束の実効値
id、iq:電機子電流のd、q軸成分
Ld:d軸電機子巻線の自己インダクタンス(d軸インダクタンス)
Lq:q軸電機子巻線の自己インダクタンス(q軸インダクタンス)
Ia:電機子電流の振幅(電流ベクトルの大きさ)
β :電機子電流のq軸からの進み角(電流位相)
Torque is obtained from the outer product of the current vector and the armature flux linkage vector. The equation representing the torque T is expressed by the following equation, where the magnet torque generated by the permanent magnet is the first term and the reluctance torque generated by the difference in inductance is the second term.
T = Pn · ψa · iq + Pn · (Ld−Lq) id · iq
= Pn {ψa · Ia · cos β + 1/2 · (Lq−Ld) Ia · Ia · sin 2β}
Pn: number of counter poles ψa: effective value id of armature flux linkage by permanent magnet, iq: d of armature current, q-axis component Ld: self-inductance (d-axis inductance) of d-axis armature winding
Lq: q-axis armature winding self-inductance (q-axis inductance)
Ia: Armature current amplitude (current vector magnitude)
β: Armature current advance angle from q-axis (current phase)

埋込磁石同期電動機(モータ)の電機―機械変換の効率は、負荷と回転数に対応した電流ベクトル制御で高めに確保される必要がある。弱め磁束制御で誘起電圧を抑えながら、高回転速度まで定出力の領域を広げ、高い効率で運転するためには、リラクタンストルクに大きく依存することになる。また、最大トルク制御の定トルク領域のように、低い回転速度においても大きいトルクを得るためにはリラクタンストルクが用いられる。結果、電機子電流の電流位相βに依存するd軸電流(電機子電流のd軸成分)を流すことでネオジム磁石の着磁滋化と反対方向の負のd軸電気子反作用磁束-Ld・idがネオジム磁石を減磁する。ネオジム磁石に加わる電機子電流による逆極性磁場にともなう磁束、あるいは、逆極性磁場を小さくする対応が、不可逆減磁を生じさせないジスプロシウム含有率の範囲を主に決める。 The efficiency of the machine-mechanical conversion of the embedded magnet synchronous motor (motor) needs to be ensured to be high by current vector control corresponding to the load and the rotational speed. In order to expand the constant output range up to a high rotation speed while suppressing the induced voltage by the magnetic flux weakening control and to operate with high efficiency, it relies heavily on the reluctance torque. In addition, reluctance torque is used to obtain a large torque even at a low rotational speed as in the constant torque region of the maximum torque control. As a result, by passing a d-axis current (d-axis component of the armature current) that depends on the current phase β of the armature current, a negative d-axis electron reaction magnetic flux −Ld · id demagnetizes neodymium magnets. The magnetic flux accompanying the reverse polarity magnetic field due to the armature current applied to the neodymium magnet, or the response to reducing the reverse polarity magnetic field mainly determines the range of the dysprosium content rate that does not cause irreversible demagnetization.

電機子巻線に流れる電流による銅損は、高負荷で運転する場合には全体の損失においての比率が大きくなる。低負荷では渦電流損を主とした鉄損の比率が大きい。鉄損は、固定子においては固定子歯で多く生じ、回転子においては回転子コアのq軸磁路(q軸磁束の磁路)における断面積の小さい部分で多く生じる。固有抵抗の小さいネオジム磁石においては、電機子電流のd軸成分(d軸電流)による高い周波数成分の逆極性磁場で渦電流損が生じる。 The copper loss due to the current flowing through the armature winding increases in the overall loss ratio when operating at a high load. At low loads, the ratio of iron loss, mainly eddy current loss, is large. In the stator, iron loss is often generated in the stator teeth, and in the rotor, the iron loss is frequently generated in a portion having a small cross-sectional area in the q-axis magnetic path (q-axis magnetic flux path) of the rotor core. In a neodymium magnet having a small specific resistance, eddy current loss occurs in a reverse polarity magnetic field having a high frequency component due to the d-axis component (d-axis current) of the armature current.

リラクタンストルクを大きくするためには、電機子電流のq軸からの進み角(電流位相)βを大きくするが、効率が最大となる電流位相βは、電機子電流が最小で銅損が最小となる電流位相と、総合の電機子鎖交磁束が最小で鉄損が最小となる電流位相の間に存在する。結果、電流位相方向の電機子電流の振幅Ia(電流ベクトルの大きさ)のd軸成分であるidが対応して大きくなり、電機子電流による逆極性磁場にともなう磁束と等価であるd軸電機子反作用磁束-Ld・idも相応に大きくなる。 In order to increase the reluctance torque, the advance angle (current phase) β of the armature current from the q-axis is increased, but the current phase β at which the efficiency is maximized is the minimum armature current and the minimum copper loss. And the current phase at which the total armature flux linkage is minimized and the iron loss is minimized. As a result, the d-axis component id of the amplitude Ia (the magnitude of the current vector) of the armature current in the current phase direction correspondingly increases and is equivalent to the magnetic flux accompanying the reverse polarity magnetic field caused by the armature current. The child reaction magnetic flux -Ld · id also increases correspondingly.

ネオジム磁石の着磁磁化と反対方向の逆極性磁場には、電機子巻線に生じる誘起電流による逆極性磁場もある。高回転速度ほど誘起電流にともなう誘起電圧が高くなるため、一定電圧を越えないように-Ld・idを大きくすることで誘起電圧を抑える弱め磁束制御で高回転速度まで対応できるようにされる。 A reverse polarity magnetic field in the direction opposite to the magnetization magnetization of the neodymium magnet includes a reverse polarity magnetic field caused by an induced current generated in the armature winding. Since the induced voltage associated with the induced current increases as the rotational speed increases, it is possible to cope with a high rotational speed by a weak magnetic flux control that suppresses the induced voltage by increasing -Ld · id so as not to exceed a certain voltage.

ネオジム磁石には他の逆極性磁場が加わる可能性がある。駆動しているインバータの保護機能の作動でシャットダウンしたときに発生する誘起電圧や、スイッチング素子のオフ時のスパイク電圧などであるが、高い周波数成分が多く、図16で示される従来の埋込磁石同期電動機での実績から、より深くネオジム磁石が磁極頭部コアに埋め込まれる本発明の実施例では、ネオジム磁石の不可逆減磁は生じないとして扱う。逆極性磁場の記述は、電機子電流のd軸成分(d軸電流)による逆極性磁場と、回転時の誘起電流による逆極性磁束を意味し、電機子電流による逆極性磁場としてまとめて記述される。誘起電流による逆極性磁場の主な周波数成分は500Hz以下で低いことが一般的である。 Neodymium magnets may be subjected to other reverse polarity magnetic fields. The induced voltage generated when the inverter is shut down due to the operation of the protective function of the driving inverter, the spike voltage when the switching element is turned off, etc., which have many high frequency components and the conventional embedded magnet shown in FIG. In the embodiment of the present invention in which the neodymium magnet is embedded deeper in the magnetic pole head core, it is treated that the irreversible demagnetization of the neodymium magnet does not occur. The description of the reverse polarity magnetic field means the reverse polarity magnetic field due to the d-axis component (d-axis current) of the armature current and the reverse polarity magnetic flux due to the induced current during rotation, and is described collectively as the reverse polarity magnetic field due to the armature current. The In general, the main frequency component of the reverse polarity magnetic field caused by the induced current is 500 Hz or less and low.

回転子の耐遠心力強度が確保されると、高回転速度においても、ネオジム磁石の外方向磁極面からd軸方向に配置される磁極頭部コアの大きさと形状を選ぶ余裕が生じ、電機子電流による逆極性磁場をネオジム磁石以外の経路で熱損失なしに分岐、漏洩させる磁束短絡防止孔を径方向に長く設けてネオジム磁石に加わる逆極性磁場を低減できる。また、磁極頭部コアの断面積を大きくできることで磁気飽和を緩和し、q軸インダクタンスLqの低減を抑制できるなど、選択幅が広くなる。 When the anti-centrifugal strength of the rotor is ensured, even at a high rotational speed, there is a margin for selecting the size and shape of the magnetic pole head core disposed in the d-axis direction from the outer magnetic pole surface of the neodymium magnet. The reverse polarity magnetic field applied to the neodymium magnet can be reduced by providing a magnetic flux short-circuit prevention hole that branches and leaks the reverse polarity magnetic field due to the current in a path other than the neodymium magnet without heat loss. In addition, since the cross-sectional area of the magnetic pole head core can be increased, the magnetic saturation can be relaxed and the reduction of the q-axis inductance Lq can be suppressed.

磁極頭部コアに深めに埋め込まれたネオジム磁石は、透磁率が空気と同じほどであっても固有抵抗が小さく、磁石厚が数mm(ミリメートル)ほどに厚くされるため、比較的低い周波数の逆極性磁場でも渦電流として大きく減衰されるまでジュール熱に変換され、自らの温度を上げることになる。ネオジム磁石の温度をできるだけ上げないためには、ネオジム磁石に加わる高い周波数成分を中心とした逆極性磁場を小さくする必要がある。 Neodymium magnets embedded deeply in the magnetic pole head core have a low specific resistance even when the permeability is the same as that of air, and the magnet thickness is increased to a few millimeters (millimeters). Even polar magnetic fields are converted to Joule heat until they are greatly attenuated as eddy currents, raising their temperature. In order not to raise the temperature of the neodymium magnet as much as possible, it is necessary to reduce the reverse polarity magnetic field centering on the high frequency component applied to the neodymium magnet.

電機子電流による逆極性磁場をネオジム磁石に加わる直前で低減する方法として、金属板、特に軟磁性の金属板をネオジム磁石の外方向磁極面に配置する方法がある。逆極性磁場の高い周波数成分を表皮効果によるジュール熱損失で減衰させる。 As a method of reducing the reverse polarity magnetic field due to the armature current immediately before being applied to the neodymium magnet, there is a method of disposing a metal plate, particularly a soft magnetic metal plate, on the outer magnetic pole face of the neodymium magnet. A high frequency component of the reverse polarity magnetic field is attenuated by Joule heat loss due to the skin effect.

表面が絶縁処理され、導電率が相対的に低く、高い透磁率を有する磁性鋼板である硅素鋼板が積層された回転子コアや、その一部である磁極頭部コアにおいては、電機子電流による逆極性磁場の減衰は少ないとして扱う。減衰があるとする場合には、ネオジム磁石に加わる電機子電流による逆極性磁場をさらに小さくでき、その分、ジスプロシウム含有率や保磁力Hcjに余裕が生じる。 In the rotor core in which the silicon steel plate, which is a magnetic steel plate having a surface with insulation treatment, relatively low conductivity, and high magnetic permeability, is laminated, or in the magnetic pole head core that is a part thereof, the armature current Treated as low attenuation of reverse polarity magnetic field. If there is attenuation, the reverse polarity magnetic field caused by the armature current applied to the neodymium magnet can be further reduced, and there is a margin in the dysprosium content and the coercive force Hcj.

固定子は、電機子巻線での銅損や固定子歯などでの鉄損で発熱量が大きくなりやすいが、外側で固定されているため、容易に冷やされる。回転子は回転軸で支えられているだけで、エアギャップを相対的に高速流動する空気を介して回転子と固定子の間で熱が伝導されるが、積層された回転子コアは積層方向の熱伝導はよくないため、ネオジム磁石の温度を固定子歯の温度より低くすることは簡単ではない。 The stator tends to generate a large amount of heat due to copper loss in the armature winding or iron loss in the stator teeth, but it is easily cooled because it is fixed on the outside. The rotor is only supported by the rotating shaft, and heat is conducted between the rotor and the stator through the air that flows at a relatively high speed through the air gap. Therefore, it is not easy to make the temperature of the neodymium magnet lower than the temperature of the stator teeth.

以下、図に基づいて本発明の磁石埋込同期電動機の回転子について説明する。図1から図12までは本発明の実施例1を、図13と図14は実施例2を、図15は実施例3を、図16は従来の磁石埋込同期電動機の回転子を、図17は従来のネオジム磁石の特性を説明する図である。異なる図において、同じ部分は原則的に同じ符号で示される。 Hereinafter, a rotor of a magnet-embedded synchronous motor according to the present invention will be described with reference to the drawings. 1 to 12 show a first embodiment of the present invention, FIGS. 13 and 14 show a second embodiment, FIG. 15 shows a third embodiment, FIG. 16 shows a rotor of a conventional magnet-embedded synchronous motor, and FIG. 17 is a diagram for explaining the characteristics of a conventional neodymium magnet. In the different figures, the same parts are in principle indicated by the same reference numerals.

図1は、本発明の回転子の実施例1を、固定子とともに拡大した一部を軸方向(積層方向)の端面で示すものである。回転子11は、複数枚重ねられた磁性鋼板12と、磁性鋼板12で大半が隠された非強磁性金属板13が交互に積層され、回転子ハブ14に嵌合されて形成される。固定子15の固定子歯16と回転子11の間にエアギャップ17が設けられる。 FIG. 1 shows a part of the rotor according to the first embodiment of the present invention, which is enlarged together with the stator, as an end face in the axial direction (stacking direction). The rotor 11 is formed by alternately laminating a plurality of stacked magnetic steel plates 12 and a non-ferromagnetic metal plate 13 that is mostly hidden by the magnetic steel plates 12 and fitting the rotor 11 into the rotor hub 14. An air gap 17 is provided between the stator teeth 16 of the stator 15 and the rotor 11.

磁性鋼板12と非強磁性金属板13の各磁極に相当する位置には、それぞれV字状に穿設された第1の磁石埋設用孔18、19と、第2の磁石埋設用孔20、21が重なる位置に設けられ、エネルギー積の大きいネオジム磁石(NdFeB系焼結磁石)22、23が埋設されて配置される。 At positions corresponding to the magnetic poles of the magnetic steel plate 12 and the non-ferromagnetic metal plate 13, first magnet embedding holes 18 and 19 that are respectively drilled in a V shape, and a second magnet embedding hole 20, 21 is provided at the overlapping position, and neodymium magnets (NdFeB-based sintered magnets) 22 and 23 having a large energy product are embedded and arranged.

外周の幅が大きい磁性鋼板12の一部における磁気的短絡を断つために、磁束短絡防止孔24、25が第1の磁石埋込用孔18、19の周方向の端部から連続して径方向に外周部のブリッジ部26、27まで延長されて穿設される。磁極頭部コア28は、周方向の両端で磁束短絡防止孔24、25と接し、V字状配置のネオジム磁石22、23と対向する外側の位置に形成され、ブリッジ部26、27および第1の径方向ブリッジ部29で保持される。非強磁性金属板13は大きい引張強度を得るために、磁束短絡防止孔24、25に相当する孔は穿設されず、外周から幅広の円環状の部分が形成されることで、ネオジム磁石22、23を保持しても高速回転時の耐遠心力強度を有すことになる。 In order to break a magnetic short circuit in a part of the magnetic steel sheet 12 having a large outer periphery width, the magnetic flux short circuit prevention holes 24 and 25 have diameters continuously from the circumferential ends of the first magnet embedding holes 18 and 19. It extends in the direction to the bridge portions 26 and 27 at the outer peripheral portion. The magnetic pole head core 28 is in contact with the magnetic flux short-circuit prevention holes 24 and 25 at both ends in the circumferential direction, and is formed at an outer position facing the V-shaped arrangement of the neodymium magnets 22 and 23. Is held by the radial bridge portion 29. In order to obtain a high tensile strength, the non-ferromagnetic metal plate 13 is not provided with holes corresponding to the magnetic flux short-circuit prevention holes 24 and 25, and a wide annular portion is formed from the outer periphery, so that the neodymium magnet 22 is formed. , 23, the centrifugal strength strength during high-speed rotation is maintained.

磁性鋼板12は遠心力が作用するネオジム磁石22、23を保持する必要がないため、その分の余裕で大きくされる磁極頭部コア28の中央部には、円弧状の外周と、ネオジム磁石22、23のV字状の外方向磁極面にほぼ沿った逆三角近似の貫通孔30が磁性鋼板12と非強磁性金属板13に共通に比較的大きい断面積で穿設される。回転子11の一方の端面から貫通孔30に空気が入り、他方の端面から流れ出るようにされる。貫通孔30は、逆三角近似でなくてもよいが、磁極頭部コア28におけるq軸磁束の磁束経路の断面積は大きくされる必要がある。 Since the magnetic steel plate 12 does not need to hold the neodymium magnets 22 and 23 on which the centrifugal force acts, there is an arc-shaped outer periphery and the neodymium magnet 22 at the center of the magnetic pole head core 28 that is enlarged with a margin. , 23 through-holes 30 having an inverted triangular approximation substantially along the V-shaped outer magnetic pole face are formed in the magnetic steel plate 12 and the non-ferromagnetic metal plate 13 in common with a relatively large cross-sectional area. Air enters the through hole 30 from one end face of the rotor 11 and flows out from the other end face. Although the through hole 30 does not have to be an inverse triangle approximation, the cross-sectional area of the magnetic flux path of the q-axis magnetic flux in the magnetic pole head core 28 needs to be increased.

非強磁性金属板13の第2の磁石埋設用孔20、21での第2の外周側端部32、33が、磁性鋼板12の第1の磁石埋設用孔18、19での第1の外周側端部34、35より回転軸が位置する中心方向に突出される。金属板36、37は、ネオジム磁石22、23の外方向磁極面と磁極頭部コア28の間に配置され、第1の外周側端部34、35の積層連続面である磁極頭部コア28の内側の面と、突出された非強磁性金属板13の第2の外周側端部32、33、および、ネオジム磁石22、23の外方向磁極面のいずれにも当接できるように屈曲成形される。 The second outer peripheral end portions 32 and 33 in the second magnet embedding holes 20 and 21 of the non-ferromagnetic metal plate 13 correspond to the first magnet embedding holes 18 and 19 in the magnetic steel plate 12. It protrudes from the outer peripheral side ends 34 and 35 toward the center where the rotation axis is located. The metal plates 36 and 37 are disposed between the outer magnetic pole surface of the neodymium magnets 22 and 23 and the magnetic pole head core 28, and are the magnetic pole head core 28 that is a laminated continuous surface of the first outer peripheral side end portions 34 and 35. Of the non-ferromagnetic metal plate 13 and the outer peripheral side end portions 32 and 33 of the protruding non-ferromagnetic metal plate 13 and the outer magnetic pole surfaces of the neodymium magnets 22 and 23 so as to be in contact with each other. Is done.

非強磁性金属板13の第2の磁石埋設用孔20、21での第2の外周側端部32、33が、磁性鋼板12における第1の磁石埋設用孔18、19での第1の外周側端部34、35から回転軸が位置する中心方向に判別できるほどに突出して示されているが、その突出量は、室温で0.3mm程度にされる。また、厚さ0.3mmほどの金属板36、37が厚めの断面で示されている。 The second outer peripheral side end portions 32 and 33 in the second magnet embedding holes 20 and 21 of the non-ferromagnetic metal plate 13 are the first magnet embedding holes 18 and 19 in the magnetic steel plate 12. Although protruding so that it can be discriminated from the outer peripheral side end portions 34 and 35 in the central direction where the rotation axis is located, the protruding amount is set to about 0.3 mm at room temperature. Moreover, the metal plates 36 and 37 about 0.3 mm thick are shown by the thick cross section.

ネオジム磁石22、23の内方向磁極面と第1の磁石埋設用孔18、19での第1の内周側端部38、39の間に、軟磁性ばね板40、41が配置される。厚さが0.3mmほどの軟磁性ばね板40、41が厚めの断面で示されている。 Soft magnetic spring plates 40 and 41 are disposed between the inner magnetic pole surfaces of the neodymium magnets 22 and 23 and the first inner peripheral side end portions 38 and 39 in the first magnet embedding holes 18 and 19. Soft magnetic spring plates 40 and 41 having a thickness of about 0.3 mm are shown in thicker sections.

ネオジム磁石22、23は、非強磁性金属板13に穿設された第2の磁石埋設用孔20、21で位置決めされる。非強磁性金属板13における第2の磁石埋設用孔20、21での第2の外周側端部32、33、および、第2の外周側端部32、33から円弧状の角部を介して連続する周方向の側端部と第2の径方向ブリッジ部42の側端部で、角部が面取りされたネオジム磁石22、23の外方向磁極面と側部が隙間を少なくされて、位置決めされる。図16の従来の埋込磁石同期電動機の回転子に較べ、ネオジム磁石22、23の磁極面と磁性鋼板12の間の一部に相対的に大きい隙間が形成されないため、パーミアンス係数を大きめに維持し、ネオジム磁石22、23を有効に利用することができる。パーミアンス係数を大きめに維持することで、ネオジム磁石22、23が不可逆減磁され難くなる。 The neodymium magnets 22 and 23 are positioned by the second magnet embedding holes 20 and 21 formed in the non-ferromagnetic metal plate 13. The second outer peripheral side end portions 32 and 33 in the second magnet embedding holes 20 and 21 in the non-ferromagnetic metal plate 13 and the second outer peripheral side end portions 32 and 33 through arc-shaped corners. In the circumferential side end portion and the side end portion of the second radial bridge portion 42 that are continuous with each other, the gap between the outer magnetic pole surface and the side portion of the neodymium magnets 22 and 23 whose corner portions are chamfered is reduced, Positioned. Compared to the rotor of the conventional embedded magnet synchronous motor of FIG. 16, a relatively large gap is not formed in a part between the magnetic pole surfaces of the neodymium magnets 22 and 23 and the magnetic steel sheet 12, so that the permeance coefficient is kept large. In addition, the neodymium magnets 22 and 23 can be used effectively. By maintaining a large permeance coefficient, the neodymium magnets 22 and 23 are hardly irreversibly demagnetized.

角が面取りされていないネオジム磁石を用いる場合には、非強磁性金属板13の第2の磁石埋設用孔は打ち抜き加工できる形状で、ネオジム磁石の外方向磁極面と端部を位置決めできればよい。磁性鋼板は、ネオジム磁石の内方向磁極面以外は当たらないようにされ、ネオジム磁石の磁極面との間は平行にされて大きい隙間がないようにされる。 In the case of using a neodymium magnet whose corners are not chamfered, it is sufficient that the second magnet embedding hole of the non-ferromagnetic metal plate 13 has a shape that can be punched and can position the outer magnetic pole face and the end of the neodymium magnet. The magnetic steel plate is made not to hit anything other than the inward magnetic pole surface of the neodymium magnet, and is made parallel to the magnetic pole surface of the neodymium magnet so that there is no large gap.

回転子11の回転時にネオジム磁石22、23に作用する遠心力は、非強磁性金属板13の第2の磁石埋設用孔20、21の突出した第2の外周側端部32、33で殆どが、また、第2の磁石埋設用孔20、21での側端部で一部が保持され、磁性鋼板12では保持されない。ネオジム磁石22、23と自らに作用する遠心力を受ける非強磁性金属板13は、大きい引張強度を有するように外周から幅広の円環状の部分が形成され、隣接する第2の磁石埋設用孔20と43、および21と44の間の、積層された磁性鋼板12の磁極間コア52、53の下に隠された、幅広の径方向支持部を経て、同じく、積層された磁性鋼板12のバックコア54の下に隠された、内周から幅広で円環状の部分に連結されるため、大きい耐遠心力強度を有すことになる。強度安全率を十分に取った場合でも、回転子コア31における非強磁性金属板13の磁性鋼板12に対する積層厚の比率を小さくできる。 Centrifugal force acting on the neodymium magnets 22 and 23 when the rotor 11 rotates is almost at the projecting second outer peripheral end portions 32 and 33 of the second magnet embedding holes 20 and 21 of the non-ferromagnetic metal plate 13. However, a part is hold | maintained at the side edge part in the 2nd magnet embedding holes 20 and 21, and it is not hold | maintained with the magnetic steel plate 12. FIG. The non-ferromagnetic metal plate 13 that receives the centrifugal force acting on the neodymium magnets 22 and 23 is formed with a wide annular portion from the outer periphery so as to have a large tensile strength, and is adjacent to the second magnet embedding hole. 20 and 43, and 21 and 44 through the wide radial support portions hidden under the inter-pole cores 52 and 53 of the laminated magnetic steel sheet 12, and similarly, Since it is connected from the inner periphery to a wide and annular portion hidden under the back core 54, it has a high strength against centrifugal force. Even when the strength safety factor is sufficient, the ratio of the lamination thickness of the non-ferromagnetic metal plate 13 to the magnetic steel plate 12 in the rotor core 31 can be reduced.

磁性鋼板12のみに穿設された磁束短絡防止孔24、25は、ネオジム磁石22、23を深く埋めることで生じる磁性鋼板12の磁気的短絡の断面積の増大を防ぐ目的で穿設されるが、結果的に磁束短絡防止孔24、25でネオジム磁石22、23の着磁磁化と反対方向の電機子電流による逆極性磁場にともなう磁束を、ネオジム磁石22、23に加える前に分岐、漏洩させることになる。ただし、ネオジム磁石22、23からの磁束をあまり多く漏洩しないことが求められる。 The magnetic flux short-circuit prevention holes 24 and 25 drilled only in the magnetic steel plate 12 are drilled for the purpose of preventing an increase in the cross-sectional area of magnetic short-circuiting of the magnetic steel plate 12 caused by burying the neodymium magnets 22 and 23 deeply. As a result, the magnetic flux accompanying the reverse polarity magnetic field due to the armature current in the direction opposite to the magnetization magnetization of the neodymium magnets 22 and 23 is branched and leaked before being applied to the neodymium magnets 22 and 23 through the magnetic flux short-circuit prevention holes 24 and 25. It will be. However, it is required not to leak much magnetic flux from the neodymium magnets 22 and 23.

ネオジム磁石22、23の内方向磁極面は、磁性鋼板12の第1の磁石埋設用孔18、19の第1の内周側端部38、39の積層面と、軟磁性ばね板40、41を間に介して当接される。非強磁性金属板13の第2の磁石埋設用孔20、21の破線で示される第2の内周側端部は、磁性鋼板12における第1の内周側端部38、39より回転軸の位置する中心方向へ窪んで形成される。 The inward magnetic pole surfaces of the neodymium magnets 22 and 23 are laminated surfaces of the first inner peripheral side end portions 38 and 39 of the first magnet embedding holes 18 and 19 of the magnetic steel plate 12, and the soft magnetic spring plates 40 and 41. Between the two. A second inner peripheral side end portion indicated by a broken line of the second magnet embedding holes 20 and 21 of the non-ferromagnetic metal plate 13 is a rotational axis from the first inner peripheral side end portions 38 and 39 of the magnetic steel plate 12. It is formed so as to be depressed toward the center where it is located.

ネオジム磁石22、23は、磁極頭部コア28によって深めに埋設され、固定子15の複数の固定子歯16の先端から大きく離される。複数の固定子歯16を跨いで巻かれた電機子巻線(図示されず)の電流で、固定子歯16の先端部近傍で生じる局所磁場はネオジム磁石22、23に加わる際には小さくされる。実施例1では分布巻で示されているが、集中巻の構成では、隣接する固定子歯の間における先端部近傍では大きい局所磁場が発生し易く、永久磁石が深く埋められることよって不可逆減磁が生じにくくされることは既知である。 The neodymium magnets 22 and 23 are embedded deeply by the magnetic pole head core 28 and are largely separated from the tips of the plurality of stator teeth 16 of the stator 15. The local magnetic field generated in the vicinity of the tip of the stator tooth 16 due to the current of the armature winding (not shown) wound across the plurality of stator teeth 16 is reduced when applied to the neodymium magnets 22 and 23. The In the first embodiment, distributed winding is shown. However, in the concentrated winding configuration, a large local magnetic field is likely to occur near the tip between adjacent stator teeth, and irreversible demagnetization is achieved by deeply embedding the permanent magnet. It is known that is less likely to occur.

図2は、本発明の埋込磁石同期電動機の回転子を、固定子を含む端面全体で示す。回転子11は、4対極数に対応する数のネオジム磁石が埋め込まれ、V字状にネオジム磁石が配置された各磁極において、隣接する磁極のネオジム磁石22、23と45、46が径方向に異なる着磁極性にされる。回転子コア31は、突出した複数のキー47の部分がキー溝48に合わされて回転子ハブ14に嵌合されることで固定され、回転軸49で回転自在にされる。 FIG. 2 shows the rotor of the interior permanent magnet synchronous motor of the present invention over the entire end face including the stator. In the rotor 11, the number of neodymium magnets corresponding to the number of four counter poles is embedded, and in each magnetic pole in which the neodymium magnets are arranged in a V shape, the adjacent neodymium magnets 22, 23, 45, and 46 are in the radial direction. Different poled properties. The rotor core 31 is fixed by a portion of the plurality of protruding keys 47 fitted in the key groove 48 and fitted into the rotor hub 14, and is rotatable by the rotation shaft 49.

固定子15は形状を簡略化して示され、分布巻の電機子巻線が省いてある。ひとつの磁極において、V字状のネオジム磁石22、23の外方向磁極面から出る磁束の多くは、磁極頭部コア28からエアギャップ17を跨いで複数の固定子歯16に入り、固定子15を回り込んで複数の固定子歯50、51を通り、エアギャップ17を再度跨いで磁極間コア52、53に入り、バックコア54からネオジム磁石22、23の内方向磁極面に戻る。複数の固定子歯16を鎖交する磁束の流れは電機子鎖交磁束としてマグネットトルクに寄与する。 The stator 15 is shown in a simplified form, and distributed armature windings are omitted. In one magnetic pole, most of the magnetic flux emitted from the outward magnetic pole surfaces of the V-shaped neodymium magnets 22 and 23 enters the plurality of stator teeth 16 across the air gap 17 from the magnetic pole head core 28, and the stator 15. , Passes through the plurality of stator teeth 50 and 51, crosses the air gap 17 again, enters the inter-magnetic pole cores 52 and 53, and returns from the back core 54 to the inward magnetic pole surfaces of the neodymium magnets 22 and 23. The flow of magnetic flux interlinking the plurality of stator teeth 16 contributes to the magnet torque as armature interlinkage magnetic flux.

ネオジム磁石22、23の外方向磁極面から磁極頭部コア28に入る磁束の一部は、外周部のブリッジ部26、27と第1の径方向ブリッジ部29を磁気飽和状態まで通る磁束と、打ち抜かれた部分が空気のために透磁率が小さい磁束短絡防止孔24、25を跨いで漏れる磁束として回転子コア31の内部で閉じた経路を形成する。これらの磁束はトルクには寄与しない。 Part of the magnetic flux that enters the magnetic pole head core 28 from the outer magnetic pole face of the neodymium magnets 22 and 23 is a magnetic flux that passes through the outer bridge portions 26 and 27 and the first radial bridge portion 29 to a magnetic saturation state. The punched portion forms a closed path inside the rotor core 31 as a magnetic flux that leaks across the magnetic flux short-circuit prevention holes 24 and 25 having a low magnetic permeability because of air. These magnetic fluxes do not contribute to torque.

図3は、ハイブリッド構成に積層される磁性鋼板と非強磁性金属板の形状を示すものである。図3(a)は、積層厚の比率が大きい磁性鋼板12の形状を示し、図3(b)は、積層厚の比率が小さい非強磁性金属板13の形状を示すものである。磁性鋼板12には、各磁極に対応して、第1の磁石埋設用孔18、19、および、第1の磁石埋設用孔18、19の周方向の端部から連続する磁束短絡防止孔24、25が径方向に延長されて穿設される。非強磁性金属板13には、磁性鋼板12の第1の磁石埋設用孔18、19と重なる位置に、第2の磁石埋設用孔20、21が形成される。 FIG. 3 shows the shapes of magnetic steel plates and non-ferromagnetic metal plates stacked in a hybrid configuration. 3A shows the shape of the magnetic steel plate 12 having a large lamination thickness ratio, and FIG. 3B shows the shape of the non-ferromagnetic metal plate 13 having a small lamination thickness ratio. In the magnetic steel plate 12, corresponding to each magnetic pole, the first magnet embedding holes 18, 19 and the magnetic flux short-circuit prevention holes 24 continuous from the circumferential ends of the first magnet embedding holes 18, 19 are provided. 25 are extended in the radial direction. In the non-ferromagnetic metal plate 13, second magnet embedding holes 20, 21 are formed at positions overlapping the first magnet embedding holes 18, 19 of the magnetic steel plate 12.

非強磁性金属板13に穿設された第2の磁石埋設用孔20、21における第2の外周側端部32、33は、磁性鋼板12に穿設された第1の磁石埋設用孔18、19における第1の外周側端部34、35に対してほぼ平行で、回転軸の位置する中心方向に0.3mmほど突出される。回転時に遠心力が作用するネオジム磁石は、突出した第2の外周側端部32、33を有する非強磁性金属板13のみによって保持される。 The second outer peripheral side end portions 32 and 33 in the second magnet embedding holes 20 and 21 drilled in the non-ferromagnetic metal plate 13 are the first magnet embedding holes 18 drilled in the magnetic steel plate 12. , 19 is substantially parallel to the first outer peripheral side end portions 34, 35 and protrudes by about 0.3 mm in the central direction where the rotation axis is located. The neodymium magnet to which the centrifugal force acts during rotation is held only by the non-ferromagnetic metal plate 13 having the protruding second outer peripheral end portions 32 and 33.

ネオジム磁石と自らに作用する遠心力を受ける非強磁性金属板13は、外周から幅広の円環状で大きい引張強度を有する部分55と、隣接する第2の磁石埋設用孔20と43、21と44の間の幅広の径方向支持部56、57、および内周から幅広の円環状で大きい引張強度を有する部分58が一体化されて、積層厚の比率が小さくても耐遠心力強度を有する構成にされる。 The non-ferromagnetic metal plate 13 that receives the centrifugal force acting on the neodymium magnet and itself has a wide annular portion 55 having a large tensile strength from the outer periphery, and adjacent second magnet embedding holes 20, 43, and 21. Wide radial support portions 56 and 57 between 44 and a portion 58 having a large annular strength from the inner periphery and having a high tensile strength are integrated to have a centrifugal strength strength even if the ratio of the laminated thickness is small. Made up.

非強磁性金属板13における第2の磁石埋設用孔20、21の側端部59、60、および61、62は、第2の外周側端部32、33から円弧状の角部63、64、および、65、66を介して連続して形成され、角が面取りされたネオジム磁石が各側部との隙間を小さくして位置決めされる。角が面とりされてないネオジム磁石を用いる場合は、第2の外周側端部32、33、および側端部59から62に対応する位置決め部が形成されるが、円弧状の角部63から66に対応する部分は、第2の外周側端部32、33の一部を凹状に食い込む形状にされる。 Side end portions 59, 60, 61, 62 of the second magnet embedding holes 20, 21 in the non-ferromagnetic metal plate 13 are arcuate corner portions 63, 64 from the second outer peripheral side ends 32, 33. And the neodymium magnet formed continuously through 65 and 66 and having chamfered corners is positioned with a small gap between each side portion. In the case of using a neodymium magnet whose corners are not chamfered, positioning portions corresponding to the second outer peripheral side end portions 32 and 33 and the side end portions 59 to 62 are formed. The part corresponding to 66 is formed into a shape in which a part of the second outer peripheral side end portions 32, 33 is recessed.

磁性鋼板12と非強磁性金属板13の内周部はほぼ同じ径の円にされ、突出した複数のキー47と67が複数の同じ位置に形成されて、位置決めとトルク伝達が可能にされる。外周は必ずしも同じ径の円にされる必要はないが、非強磁性金属板13に大きい引張強度を持たせるためには、磁性鋼板12の外周の径より少し小さいか、同じ径の円にされるとよい。 The inner peripheral portions of the magnetic steel plate 12 and the non-ferromagnetic metal plate 13 are formed into circles having substantially the same diameter, and a plurality of protruding keys 47 and 67 are formed at a plurality of the same positions to enable positioning and torque transmission. . The outer circumference does not necessarily have to be a circle with the same diameter. However, in order to give the non-ferromagnetic metal plate 13 a high tensile strength, the outer circumference of the magnetic steel plate 12 is slightly smaller than the outer diameter or the same diameter. Good.

磁性鋼板12には、硅素(Si)の含有率が3%ほどの硅素鋼板が、高透磁率、低導電率、小ヒステリシスおよび打ち抜き性のバランスにおいて適当であるが、引張強度を求めるあまり硅素の含有率を大きくして打ち抜き加工での金型消耗が激しい材料を選択する必要はない。また、非強磁性金属板13には、オーステナイト系ステンレス鋼の板が、非磁性、低い導電率、大きい引張強度、加工しやすさ、および汎用性において適する材料の一例である。 For the magnetic steel sheet 12, a silicon steel sheet having a silicon (Si) content of about 3% is suitable in terms of the balance of high magnetic permeability, low electrical conductivity, small hysteresis, and punchability. There is no need to select a material whose content is increased and the mold consumption during punching is severe. Further, as the non-ferromagnetic metal plate 13, an austenitic stainless steel plate is an example of a material suitable for non-magnetism, low electrical conductivity, high tensile strength, ease of processing, and versatility.

磁性鋼板12に硅素鋼板が、非強磁性金属板13にオーステナイト系ステンレス鋼の板が用いられる場合、それぞれの線膨張係数は13(×10マイナス6乗/K)と17.3(×10マイナス6乗/K)であるため、例として、中心から65mmの長さでは、常温と最高運転温度が摂氏200度の温度差で約0.05mmの線膨張の差分だけオーステナイト系ステンレス鋼の板が大きく伸びる。常温で位置が揃っていると、常に露出して突出すべき第2の外周側端部32、33は、高温度時において、第1の外周側端部34、35の位置より中心からの距離が大きくなって回転子コアに埋もれてしまう。 When a silicon steel plate is used for the magnetic steel plate 12 and an austenitic stainless steel plate is used for the non-ferromagnetic metal plate 13, the respective linear expansion coefficients are 13 (× 10 minus 6 / K) and 17.3 (× 10 minus). As an example, at a length of 65 mm from the center, the austenitic stainless steel plate has a linear expansion difference of about 0.05 mm with a temperature difference of 200 degrees Celsius from the normal temperature and the maximum operating temperature. It grows greatly. When the positions are aligned at normal temperature, the second outer peripheral end portions 32 and 33 that should always be exposed and protruded are at a higher distance from the center than the positions of the first outer peripheral end portions 34 and 35 at a high temperature. Becomes larger and buried in the rotor core.

常温において、非強磁性金属板13の第2の外周側端部32、33が、磁性鋼板12の第1の外周側端部34、35の位置から、室温(摂氏20度)と最高運転温度の温度差で生じる回転軸の中心からの長さの線膨張の差分より大きく中心方向に突出され、さらに、機械加工の公差や組立の公差を加算した値を突出量に加えることで、想定運転温度の範囲において非強磁性金属板13の第2の外周側端部32、33で、遠心力の作用するネオジム磁石を保持することができる。 At normal temperature, the second outer peripheral end portions 32, 33 of the non-ferromagnetic metal plate 13 are at room temperature (20 degrees Celsius) and the maximum operating temperature from the position of the first outer peripheral end portions 34, 35 of the magnetic steel sheet 12. Projected in the center direction, larger than the difference in linear expansion of the length from the center of the rotating shaft caused by the temperature difference, and added to the projection amount by adding the machining tolerance and assembly tolerance to the projection amount In the temperature range, the second outer peripheral side end portions 32 and 33 of the non-ferromagnetic metal plate 13 can hold the neodymium magnet on which the centrifugal force acts.

磁性鋼板12に硅素鋼板を、非強磁性金属板13にニッケル・クロム金属の板を用いる場合には、互いの線膨張係数は近似しているため、線膨張の差を殆ど考慮することなく、機械加工の公差や、組立の公差を加算した値より大きく、第1の外周側端部34、35の位置から中心方向へ突出させる第2の外周側端部32、33で遠心力の作用するネオジム磁石を回転時の遠心力から保持する。 When a silicon steel plate is used for the magnetic steel plate 12 and a nickel-chromium metal plate is used for the non-ferromagnetic metal plate 13, the linear expansion coefficients of the two are approximated. Centrifugal force is applied to the second outer peripheral end portions 32 and 33 that protrude from the position of the first outer peripheral end portions 34 and 35 toward the center, which is larger than the value obtained by adding the machining tolerance and the assembly tolerance. Holds neodymium magnet from centrifugal force during rotation.

図4は、本発明の実施例1における回転子コアの構成を示すものである。磁性鋼板の積層厚の比率は、非強磁性金属板の積層厚の比率より大きくされる。回転子コアの内部に埋め込まれるネオジム磁石の磁束や、電機子電流のq軸成分によるq軸磁束(q軸電機子反作用磁束)によって回転子コアで磁気飽和が生じにくくされることが必要である。ネオジム磁石を遠心力から保持する非強磁性金属板の積層厚の比率は、非強磁性金属板の形状と材料強度、ネオジム磁石の質量と埋め込み位置、回転子の外径、最高回転速度、および強度安全率などを考慮して決められる。 FIG. 4 shows the configuration of the rotor core according to the first embodiment of the present invention. The ratio of the laminated thickness of the magnetic steel plates is set to be larger than the ratio of the laminated thickness of the non-ferromagnetic metal plates. It is necessary that magnetic saturation is difficult to occur in the rotor core due to the magnetic flux of a neodymium magnet embedded in the rotor core and the q-axis magnetic flux (q-axis armature reaction magnetic flux) due to the q-axis component of the armature current. . The ratio of the lamination thickness of the non-ferromagnetic metal plate that holds the neodymium magnet from centrifugal force is the shape and material strength of the non-ferromagnetic metal plate, the mass and embedding position of the neodymium magnet, the outer diameter of the rotor, the maximum rotation speed, and Determined by considering the safety factor.

図4(a)は、回転子ハブ14に嵌合された積層状態の回転子コア31と、回転子コア31に埋め込まれる部材を示す。図4(b)は、ハイブリッド構成に積層される前の磁性鋼板12と非強磁性金属板13の単位構成を、0.3mm厚の磁性鋼板が21枚、0.3mm厚の非強磁性金属板が3枚重ねられた状態で示す。磁性鋼板と非強磁性金属板の積層厚の比率が7対1ほどにされている。積層厚の比較においては、磁性鋼板12の表面に形成される絶縁処理層や接着層の厚さは省いてある。 FIG. 4A shows the rotor core 31 in a stacked state fitted to the rotor hub 14 and the members embedded in the rotor core 31. FIG. 4B shows a unit configuration of the magnetic steel plate 12 and the non-ferromagnetic metal plate 13 before being stacked in a hybrid configuration, including 21 0.3 mm-thick magnetic steel plates and a 0.3 mm-thick non-ferromagnetic metal. Shown in a state where three plates are stacked. The ratio of the laminated thickness of the magnetic steel plate and the non-ferromagnetic metal plate is set to about 7: 1. In the comparison of the laminated thickness, the thickness of the insulating treatment layer and the adhesive layer formed on the surface of the magnetic steel plate 12 is omitted.

回転子11の外径を150mm、最高回転数を14000rpm、埋め込まれる個々のネオジム磁石の断面を5.6mm×19mmとし、V字状配置のネオジム磁石の周方向端部での埋め込み深さを9.0mm、ブリッジ部26、27の幅を2.2mm、第1の径方向ブリッジ部29の幅を1.4mmとした場合において、硅素の含有率3wt%の硅素鋼板を用いた磁性鋼板12と、オーステナイト系ステンレス鋼の板を用いた非強磁性金属板13との積層厚の比率の例を示すものである。 The outer diameter of the rotor 11 is 150 mm, the maximum rotational speed is 14000 rpm, the cross section of each embedded neodymium magnet is 5.6 mm × 19 mm, and the embedding depth at the circumferential end of the V-shaped neodymium magnet is 9 When the width of the bridge portions 26 and 27 is 2.2 mm and the width of the first radial bridge portion 29 is 1.4 mm, The example of the ratio of lamination | stacking thickness with the non-ferromagnetic metal plate 13 using the plate of austenitic stainless steel is shown.

図4(b)で、磁性鋼板12には周方向の複数箇所に凹凸状の嵌合部68が設けられ、圧着されて複数枚が一体化される。非強磁性金属板13には、磁性鋼板12の嵌合部68と積層時に対向する位置に逃げ孔69が設けられる。単位構成の磁性鋼板12と非強磁性金属板13が重ねられた際に、互いの面の間に隙間が生じにくいようにされる。 In FIG. 4B, the magnetic steel plate 12 is provided with concave and convex fitting portions 68 at a plurality of locations in the circumferential direction, and the plurality of plates are integrated by pressure bonding. The non-ferromagnetic metal plate 13 is provided with a relief hole 69 at a position facing the fitting portion 68 of the magnetic steel plate 12 during lamination. When the magnetic steel plate 12 and the non-ferromagnetic metal plate 13 having a unit configuration are overlapped, a gap is hardly formed between the surfaces.

ネオジム磁石の外方向磁極面に当接して保持する非強磁性金属板13の第2の外周側端部32、33は、磁性鋼板12の第1の外周側端部34、35が積層された連続面に対してほぼ平行で、中心方向に突出される。磁性鋼板12には磁束短絡防止孔24、25が穿設されるが、非強磁性金属板13には形成されない。 The second outer peripheral side end portions 32 and 33 of the non-ferromagnetic metal plate 13 held in contact with the outer magnetic pole surface of the neodymium magnet are laminated with the first outer peripheral side end portions 34 and 35 of the magnetic steel plate 12. It is substantially parallel to the continuous surface and protrudes toward the center. Magnetic magnetic steel sheet 12 is provided with magnetic flux short-circuit prevention holes 24 and 25, but is not formed in non-ferromagnetic metal plate 13.

磁極頭部コア28は磁性鋼板12を打ち抜いて形成され、端の幅の狭いブリッジ部26、27、および、中央の第1の径方向ブリッジ部29で回転時の遠心力や磁気力から保持され、各ブリッジ部を介して磁極間コア52、53と幅広で円環状に連続するバックコア54と一体化される。 The magnetic pole head core 28 is formed by punching the magnetic steel plate 12 and is held by centrifugal force and magnetic force during rotation by the narrow bridge portions 26 and 27 and the central first radial bridge portion 29. These are integrated with the cores 52 and 53 between the magnetic poles via the bridge portions and the back core 54 which is wide and annularly continuous.

非強磁性金属板13は、外周と内周から幅広い円環状の構成にされることで大きい引張強度で耐遠心力強度を有することになる。また、非磁性であるため、磁気漏洩にほとんど関係なく、回転時に遠心力の作用するネオジム磁石を少ない枚数で保持できるように引張強度を中心に材料を選択することができる。 The non-ferromagnetic metal plate 13 has an anticentrifugal strength with a large tensile strength by having a wide annular configuration from the outer periphery and the inner periphery. In addition, since it is non-magnetic, it is possible to select a material centering on the tensile strength so that a small number of neodymium magnets to which centrifugal force acts during rotation can be held regardless of magnetic leakage.

非強磁性金属板13の積層厚が、固定子(図示されず)と回転子コア31の間に形成される0.5mmから0.6mmほどのエアギャップに較べて大きくなると、非強磁性金属板13と対向する部分において実効エアギャップが大きくなる部分が生じる。固定子歯の先端は、電機子巻線が巻かれる部分に較べて周方向に相対的に幅が大きくされ、先端部の周方向端の近傍を除いて磁気飽和が生じにくくされるため、非強磁性金属板13の積層厚が0.9mmほどではエアギャップが大きくなる問題はない。 When the laminated thickness of the non-ferromagnetic metal plate 13 becomes larger than the air gap of 0.5 mm to 0.6 mm formed between the stator (not shown) and the rotor core 31, the non-ferromagnetic metal A portion where the effective air gap is increased in a portion facing the plate 13 occurs. The tip of the stator tooth is relatively wide in the circumferential direction compared to the portion where the armature winding is wound, and magnetic saturation is less likely to occur except in the vicinity of the circumferential end of the tip portion. When the laminated thickness of the ferromagnetic metal plate 13 is about 0.9 mm, there is no problem that the air gap becomes large.

積層厚の比率が大きい磁性鋼板12に対して非強磁性金属板13が7対1の積層厚の比率で交互に積層された回転子コア31の場合、積層方向で平均化された回転子コア31の飽和磁束密度は12%ほど低くなる。磁極頭部コア28とブリッジ部26、27、第1の径方向ブリッジ部29、さらに、磁極間コア52、53、バックコア54においても同様に低くなる。 In the case of the rotor core 31 in which the non-ferromagnetic metal plates 13 are alternately laminated at a ratio of the lamination thickness of 7 to 1 with respect to the magnetic steel plate 12 having a large lamination thickness ratio, the rotor core averaged in the lamination direction. The saturation magnetic flux density of 31 is reduced by about 12%. Similarly, the magnetic pole head core 28 and the bridge portions 26 and 27, the first radial bridge portion 29, the inter-magnetic cores 52 and 53, and the back core 54 are similarly lowered.

磁極頭部コア28は、非強磁性金属板13を含むハイブリッド構成で積層されることによる12%ほどの飽和磁束密度の低下があっても、周方向の両端の部分が大きい傾斜で磁束短絡防止孔24、25に沿って深く、断面が大きくされることで、電機子電流による磁束、特にq軸磁束で磁気飽和が生じにくくされる。また、磁束短絡防止孔24、25の幅は比較的小さくされるため、固定子からの磁束が回転子11の外周部から邪魔されずに入りやすい。 Even if the magnetic pole head core 28 is laminated in a hybrid configuration including the non-ferromagnetic metal plate 13 and the saturation magnetic flux density is reduced by about 12%, the magnetic flux heads are prevented from being short-circuited by a large slope at both ends in the circumferential direction. By making the cross section deeper along the holes 24 and 25, magnetic saturation is less likely to occur due to magnetic flux caused by the armature current, particularly q-axis magnetic flux. In addition, since the widths of the magnetic flux short-circuit prevention holes 24 and 25 are relatively small, the magnetic flux from the stator is likely to enter without being obstructed from the outer peripheral portion of the rotor 11.

磁極間コア52、53においては、積層方向に平均化された飽和磁束密度の低下があっても、隣接する磁極のネオジム磁石から逆向きの磁束が通ることで互いに打ち消し合うため、電機子電流のq軸成分(q軸電流)によるq軸磁束だけでは飽和は生じにくい。結果、q軸インダクタンスの低下が緩和され、高回転速度までリラクタンストルクを確保できる。当然ながら鉄損も小さくなる。マグネットトルクが確保できている前提で、弱め磁束制御の方法を取り入れることにより、広い運転領域で大きい出力と高効率な特性を得ることができる。 In the cores 52 and 53 between the magnetic poles, even if there is a decrease in the saturation magnetic flux density averaged in the stacking direction, the magnetic fluxes of the opposite magnetic poles cancel each other out because the opposite magnetic fluxes pass from each other. Saturation is unlikely to occur only with the q-axis magnetic flux due to the q-axis component (q-axis current). As a result, the reduction in q-axis inductance is alleviated and reluctance torque can be ensured up to a high rotational speed. Of course, iron loss is also reduced. By adopting the magnetic flux weakening control method on the premise that the magnet torque can be secured, a large output and a high efficiency characteristic can be obtained in a wide operation region.

対照として、図16で示される従来例の磁極頭部コア4は、磁性鋼板のみで積層され、積層方向に平均化された飽和磁束密度は相対的に大きいが、V字状に配置されたネオジム磁石2の周方向端部が浅くて断面積が小さいため、q軸磁束による磁気飽和でq軸インダクタンスの低下が生じやすい。結果、リラクタンストルクが低下したり効率低下がおきる。 In contrast, the magnetic pole head core 4 of the conventional example shown in FIG. 16 is laminated only with magnetic steel plates, and the saturation magnetic flux density averaged in the lamination direction is relatively large, but neodymium arranged in a V shape. Since the circumferential end of the magnet 2 is shallow and the cross-sectional area is small, the q-axis inductance is likely to decrease due to magnetic saturation caused by the q-axis magnetic flux. As a result, reluctance torque decreases and efficiency decreases.

非強磁性金属板13が積層されることで、磁性鋼板12のブリッジ部26、27、および第1の径方向ブリッジ部29での飽和磁束密度が12%ほど積層方向において平均的に小さくされることは、ブリッジ部26、27、および第1の径方向ブリッジ部29から漏れる磁束の量が12パーセントほど少なくなることに相当し、ネオジム磁石の磁束を有効利用するには望ましいことである。その分、磁性鋼板12の磁極頭部コア28自身に作用する遠心力に対する強度を上げるため、磁性鋼板12のブリッジ部26、27、および第1の径方向ブリッジ部29の幅を大きくし、あるいは回転子コア31に埋め込まれるネオジム磁石22、23を少なくすることに振り向ける余裕が生じる。 By laminating the non-ferromagnetic metal plate 13, the saturation magnetic flux density at the bridge portions 26 and 27 of the magnetic steel plate 12 and the first radial bridge portion 29 is reduced by about 12% on the average in the lamination direction. This corresponds to the amount of magnetic flux leaking from the bridge portions 26 and 27 and the first radial bridge portion 29 being reduced by about 12%, which is desirable for effectively using the magnetic flux of the neodymium magnet. Accordingly, in order to increase the strength against the centrifugal force acting on the magnetic pole head core 28 itself of the magnetic steel plate 12, the widths of the bridge portions 26 and 27 and the first radial bridge portion 29 of the magnetic steel plate 12 are increased, or There is a margin for turning to reducing the number of neodymium magnets 22 and 23 embedded in the rotor core 31.

図4(a)で、図4(b)で示された磁性鋼板12の第1の磁石埋設用孔18、19、および非強磁性金属板13の第2の磁石埋設用孔20、21が積層されて出来る貫通した磁石埋設用孔に埋め込まれるネオジム磁石22、23は、それぞれ2つに分割されて示され、回転子コア31の積層方向の厚さに近い長さにされる。挿入されるネオジム磁石22、23の外方向磁極面と磁極頭部コア28の間には、屈曲成形された金属板36、37が配置される。ネオジム磁石22、23の内方向磁極面と回転子コア31の間には、軟磁性ばね板40、41が配置される。軟磁性ばね板40、41は、外縁部が中央部と段差を有し、弾性変形可能にされて、ネオジム磁石22、23の内方向磁極面と回転子コア31に当接される。 In FIG. 4A, the first magnet embedding holes 18 and 19 of the magnetic steel plate 12 and the second magnet embedding holes 20 and 21 of the non-ferromagnetic metal plate 13 shown in FIG. The neodymium magnets 22 and 23 embedded in the through-holes for magnet embedding that are formed by lamination are divided into two parts, respectively, and have a length close to the thickness of the rotor core 31 in the lamination direction. Between the outward magnetic pole surface of the neodymium magnets 22 and 23 to be inserted and the magnetic pole head core 28, bent metal plates 36 and 37 are arranged. Soft magnetic spring plates 40 and 41 are disposed between the inner magnetic pole surfaces of the neodymium magnets 22 and 23 and the rotor core 31. The soft magnetic spring plates 40 and 41 have stepped outer edges and a step, are made elastically deformable, and come into contact with the inner magnetic pole surfaces of the neodymium magnets 22 and 23 and the rotor core 31.

図5は、本発明の実施例1におけるネオジム磁石からの磁束の経路、あるいは電機子電流による逆極性磁場にともなう磁束と等価な、電機子電流のd軸成分(d軸電流)による磁束の経路を説明するためのものである。ネオジム磁石22、23の外方向磁極面から出る磁束は、磁極頭部コア28からエアギャップ17を跨いで、磁極頭部コア28に対向する複数の固定子歯16を鎖交し、固定子15を回り込み、磁極間コア52、53に対向する固定子歯50、51を鎖交し、エアギャップ17を再度跨いで、磁極間コア52、53に入り、バックコア54からネオジム磁石22、23の内方向磁極面に到る第1の磁束経路、 FIG. 5 shows the path of the magnetic flux from the neodymium magnet according to the first embodiment of the present invention, or the path of the magnetic flux due to the d-axis component (d-axis current) of the armature current equivalent to the magnetic flux due to the reverse polarity magnetic field due to the armature current. It is for explaining. The magnetic flux that emerges from the outer magnetic pole surfaces of the neodymium magnets 22 and 23 straddles the air gap 17 from the magnetic pole head core 28, and links the plurality of stator teeth 16 facing the magnetic pole head core 28. , The stator teeth 50 and 51 facing the cores 52 and 53 between the magnetic poles are interlinked, and the air gap 17 is straddled again to enter the cores 52 and 53 between the magnetic poles, and from the back core 54 to the neodymium magnets 22 and 23. A first magnetic flux path to the inward magnetic pole surface,

磁極頭部コア28から磁束短絡防止孔24、25で漏れて磁極間コア52、53に入り、バックコア54からネオジム磁石22、23の内方向磁極面に到る第2の磁束経路、さらには、磁極頭部コア28からブリッジ部26、27および第1の径方向ブリッジ部29を磁気飽和状態まで流れて、バックコア54からネオジム磁石22、23の内方向磁極面に到る第3の磁束経路、の3つの磁束経路に主に分岐される。 A second magnetic flux path that leaks from the magnetic pole head core 28 through the magnetic flux short-circuit prevention holes 24 and 25, enters the inter-magnetic cores 52 and 53, and extends from the back core 54 to the inward magnetic pole surfaces of the neodymium magnets 22 and 23; The third magnetic flux flows from the magnetic pole head core 28 through the bridge portions 26 and 27 and the first radial bridge portion 29 to the magnetic saturation state and reaches from the back core 54 to the inner magnetic pole surfaces of the neodymium magnets 22 and 23. The path is mainly branched into three magnetic flux paths.

複数の固定子歯16を鎖交する第1の磁束経路での磁束は電機子鎖交磁束となり、トルクに寄与する。回転子コア12の内で閉じる第2の磁束経路、および第3の磁束経路はトルクに寄与しない経路である。ネオジム磁石22、23にとって、磁束短絡防止孔24、25はエアギャップ面積の拡大と等価と見なされ、ネオジム磁石22、23の磁極面と第1の磁石埋設用孔18、19との隙間の拡大で小さくなるパーミアンス係数の低下を補完する。ネオジム磁石22、23の磁束で無駄に減少した分を補償しないとマグネットトルクは低下する。 The magnetic flux in the first magnetic flux path interlinking the plurality of stator teeth 16 becomes an armature interlinkage magnetic flux and contributes to torque. The second magnetic flux path and the third magnetic flux path that are closed in the rotor core 12 are paths that do not contribute to torque. For the neodymium magnets 22 and 23, the magnetic flux short-circuit prevention holes 24 and 25 are regarded as equivalent to the expansion of the air gap area, and the clearance between the magnetic pole surface of the neodymium magnets 22 and 23 and the first magnet embedding holes 18 and 19 is expanded. Compensates for the decrease in permeance coefficient, which decreases with. Unless the amount of useless reduction due to the magnetic fluxes of the neodymium magnets 22 and 23 is compensated, the magnet torque decreases.

電機子電流のd軸成分(d軸電流)による磁束は、ネオジム磁石22、23の着磁磁化を減磁させる方向を向く逆極性磁場にともなう磁束となる。この電機子電流による逆極性磁場にともなう磁束は、複数の固定子歯16からエアギャップ17を跨いで磁極頭部コア28に入り、磁束短絡防止孔24、25で漏れる磁束と、ネオジム磁石22、23に入る磁束とに分岐される。他には、磁極頭部コア28に深く入るほど減衰される磁束と、回転子コア31の外へ漏れる磁束であるが、これら2種類の磁束の減衰と漏洩はないとして扱う。後でその影響を考慮しても、ネオジム磁石のジスプロシウム含有率を低くすることはあっても、高くすべき結論にはならない。 The magnetic flux due to the d-axis component (d-axis current) of the armature current is a magnetic flux with a reverse polarity magnetic field that is directed to demagnetize the magnetization magnetization of the neodymium magnets 22 and 23. The magnetic flux accompanying the reverse polarity magnetic field by the armature current enters the magnetic pole head core 28 across the air gap 17 from the plurality of stator teeth 16, the magnetic flux leaking from the magnetic flux short-circuit prevention holes 24, 25, the neodymium magnet 22, Branching to the magnetic flux entering 23. In addition, although it is the magnetic flux attenuate | damped, so that it goes into the magnetic pole head core 28 deeply, and the magnetic flux which leaks out of the rotor core 31, it treats that these two types of magnetic flux do not have attenuation | damping and leakage. Even if the influence is taken into consideration later, the dysprosium content of the neodymium magnet may be lowered, but the conclusion should not be raised.

ブリッジ部26、27、および第1の径方向ブリッジ部29は、あらかじめネオジム磁石22、23からの磁束でほぼ磁気飽和の状態にされているため、ネオジム磁石22、23の着磁磁化を減磁する方向の磁束である電機子電流による逆極性磁場にともなう磁束は、ブリッジ部26、27、および第1の径方向ブリッジ部29での磁気飽和の磁化の向きと同じ極性の向きになるため磁気飽和状態にプラスされる余地はなく、ほとんど通らない。 Since the bridge portions 26 and 27 and the first radial bridge portion 29 are preliminarily magnetically saturated with the magnetic flux from the neodymium magnets 22 and 23, the magnetization magnetization of the neodymium magnets 22 and 23 is demagnetized. The magnetic flux due to the reverse polarity magnetic field due to the armature current, which is the magnetic flux in the direction of the magnetic field, has the same polarity as the magnetization direction of the magnetic saturation in the bridge portions 26 and 27 and the first radial bridge portion 29. There is no room for saturation and almost no passage.

磁極頭部コア28は、高透磁率で、導電率が相対的に低く、薄い硅素鋼板が絶縁されて積層されているため、電機子電流による逆極性磁場の減衰は小さい。磁極頭部コア28の内で、ブリッジ部26、27、および第1の径方向ブリッジ部29の近傍を除いた磁極頭部コア28の周方向端部、および、第1の磁石埋設用孔18、19の第1の外周側端部34、35での磁位は近似的に等しいとする。 Since the magnetic pole head core 28 has a high magnetic permeability, a relatively low electrical conductivity, and thin silicon steel plates are insulated and laminated, the reverse magnetic field attenuation by the armature current is small. Of the magnetic pole head core 28, the circumferential end of the magnetic pole head core 28 excluding the vicinity of the bridge portions 26, 27 and the first radial bridge portion 29, and the first magnet embedding hole 18. , 19 are assumed to be approximately equal in magnetic potential at the first outer peripheral end portions 34, 35.

ネオジム磁石の透磁率は空気とほぼ同じであるため、構成の寸法のみによる磁気抵抗の比に応じて、複数の固定子歯16から磁極頭部コア28に入る電機子電流による逆極性磁場にともなう磁束は、磁束短絡防止孔24、25で漏れて磁極間コア52、53に入る1の磁束経路と、ネオジム磁石22、23に入り、バックコア54に到る2の磁束経路に分岐される。 Since the permeability of the neodymium magnet is almost the same as that of air, it is accompanied by a reverse polarity magnetic field caused by an armature current that enters the magnetic pole head core 28 from the plurality of stator teeth 16 according to the ratio of the magnetic resistance based only on the configuration dimensions. The magnetic flux is branched into one magnetic flux path that leaks through the magnetic flux short-circuit prevention holes 24 and 25 and enters the cores 52 and 53 between the magnetic poles, and two magnetic flux paths that enter the neodymium magnets 22 and 23 and reach the back core 54.

意図することは、ハイブリッド自動車に用いられる図16の従来の埋込磁石同期電動機に、保磁力Hcjが2.4MA/m(30kOe)ほどで、ジスプロシウム含有率が8wt%から10wt%のネオジム磁石が用いられている実績に基づいて、また、ネオジム磁石の厚さ、回転子の径、および磁石開き角(磁束短絡防止孔の最外周部の間隔が回転軸の中心となす角)がほぼ同じとする。金属板36、37での減衰はないものとして、ネオジム磁石22、23に加わる電機子電流による逆極性磁場を低減するために、逆極性磁場にともなう磁束を周波数に関係なく磁束短絡防止孔24、25から漏洩させ、1.6MA/m(20kOe)より小さい保磁力の、あるいは、ジスプロシウム含有率が5wt%より低いネオジム磁石を使える可能性に導くことである。 The intention is that the conventional embedded magnet synchronous motor of FIG. 16 used in a hybrid vehicle has a neodymium magnet having a coercive force Hcj of about 2.4 MA / m (30 kOe) and a dysprosium content of 8 wt% to 10 wt%. Based on the results used, the thickness of the neodymium magnet, the diameter of the rotor, and the magnet opening angle (the angle formed by the center of the rotating shaft is the distance between the outermost peripheral portions of the magnetic flux short-circuit prevention hole) are almost the same. To do. In order to reduce the reverse polarity magnetic field due to the armature current applied to the neodymium magnets 22 and 23, assuming that there is no attenuation at the metal plates 36 and 37, the magnetic flux accompanying the reverse polarity magnetic field is reduced to the magnetic flux short-circuit prevention hole 24, regardless of the frequency. This is to lead to the possibility of using a neodymium magnet having a coercive force smaller than 1.6 MA / m (20 kOe) or having a dysprosium content lower than 5 wt%.

電機子電流による逆極性磁場にともなう磁束が、複数の固定子歯16から磁極頭部コア28に入った後、磁束短絡防止孔24、25で漏れて磁極間コア52、53に入り込み、再び磁極間コア52、53に対向する複数の固定子歯50、51から固定子15に入る磁束経路において、磁束短絡防止孔24、25から磁束が漏れるほど、金属板36、37とネオジム磁石22、23に入る逆極性磁場にともなう磁束の量、および密度が小さくなる。結果、ネオジム磁石22、23を不可逆減磁する可能性が低くなる。 After the magnetic flux due to the reverse polarity magnetic field due to the armature current enters the magnetic pole head core 28 from the plurality of stator teeth 16, it leaks through the magnetic flux short-circuit prevention holes 24, 25 and enters the inter-magnetic cores 52, 53, and again the magnetic pole In the magnetic flux path entering the stator 15 from the plurality of stator teeth 50, 51 facing the intermediate cores 52, 53, the more the magnetic flux leaks from the magnetic flux short-circuit prevention holes 24, 25, the more the metal plates 36, 37 and the neodymium magnets 22, 23 The amount and density of the magnetic flux accompanying the reverse polarity magnetic field entering the magnetic field are reduced. As a result, the possibility of irreversibly demagnetizing the neodymium magnets 22 and 23 is reduced.

電機子電流による逆極性磁場にともなう磁束が、複数の電機子歯16から磁極頭部コア28に入った後、磁束短絡防止孔24、25を跨いで漏れる磁束の量と、金属板36、37を横切りネオジム磁石22、23に入る磁束の量の比率は、磁束短絡防止孔24、25の径方向中心の長さと、直交方向の平均の幅の関係で決まる1の磁気回路の並列の磁気抵抗と、ネオジム磁石22、23の外方向磁極面の(合計の)幅と、ネオジム磁石22、23を挟む磁性鋼板12の間隔である第1の磁石埋設用孔18、19の間隔から軟磁性の金属板の板厚および軟磁性ばね板40、41の合計の板厚の差分で決まる2の磁気回路での磁気抵抗の比で決まる。磁気抵抗の比に反比例して、磁束短絡防止孔24、25から漏れる磁束量と、金属板36、37、およびネオジム磁石22、23に入る磁束量の比率が決まる。 The amount of magnetic flux leaking across the magnetic flux short-circuit prevention holes 24 and 25 after the magnetic flux accompanying the reverse polarity magnetic field due to the armature current enters the magnetic pole head core 28 from the plurality of armature teeth 16, and the metal plates 36 and 37. The ratio of the amount of magnetic flux entering the neodymium magnets 22 and 23 across the magnetic field is determined by the relationship between the length of the center in the radial direction of the magnetic flux short-circuit prevention holes 24 and 25 and the average width in the orthogonal direction. And the (total) width of the outer magnetic pole faces of the neodymium magnets 22 and 23 and the interval between the first magnet embedding holes 18 and 19 which are the intervals between the magnetic steel plates 12 sandwiching the neodymium magnets 22 and 23, and soft magnetic It is determined by the ratio of magnetoresistance in the two magnetic circuits determined by the difference between the thickness of the metal plate and the total thickness of the soft magnetic spring plates 40 and 41. The ratio of the amount of magnetic flux leaking from the magnetic flux short-circuit prevention holes 24 and 25 and the amount of magnetic flux entering the metal plates 36 and 37 and the neodymium magnets 22 and 23 is determined in inverse proportion to the magnetic resistance ratio.

磁束短絡防止孔24、25の径方向中心でのブリッジ部26、27から近似する間隔が終わる位置までの長さL、直交方向の平均間隔D、ネオジム磁石22、23のそれぞれの外方向磁極面の合計の幅W、磁性鋼板12における第1の磁石埋設用孔18、19の間隔と軟磁性の金属板36、37および軟磁性ばね板40、41を合計した板厚の差分Tとする。磁束短絡防止孔24、25の最外周部の2箇所の位置70、71の間隔S(積層方向の単位長を乗じて面積)とする。磁極頭部コアの間隔Sの入り口から入る電機子電流による逆極性磁場にともなう磁束の量をΦとする。 The length L from the bridge portions 26 and 27 at the radial center of the magnetic flux short-circuit prevention holes 24 and 25 to the position where the approximate interval ends, the average interval D in the orthogonal direction, and the outer magnetic pole surfaces of the neodymium magnets 22 and 23, respectively. The total width W, the distance between the first magnet embedding holes 18 and 19 in the magnetic steel plate 12, and the difference T between the total thickness of the soft magnetic metal plates 36 and 37 and the soft magnetic spring plates 40 and 41. It is set as the space | interval S (area multiplied by the unit length of the lamination direction) of the two positions 70 and 71 of the outermost periphery part of the magnetic flux short circuit prevention holes 24 and 25. FIG. Let Φ be the amount of magnetic flux associated with the reverse polarity magnetic field caused by the armature current entering from the entrance of the gap S between the magnetic pole head cores.

磁束短絡防止孔24、25を跨ぐ並列の磁気抵抗と、ネオジム磁石22、23を跨ぐ磁気抵抗の比は、(D/2L):(T/W)となり、磁極頭部コア28の間隔Sの入り口から入る電機子電流による逆極性磁場にともなう磁束量のうち、磁束短絡防止孔24、25を跨ぐ磁束量と、金属板36、37を横切りネオジム磁石22、23に入る磁束量の比は、
(T/W):(D/2L) になる。
その結果、磁極頭部コア28の入り口である間隔Sから入る電機子電流による逆極性磁場にともなう磁束量Φのうち、
Φ×{(D/2L)/(D/2L+T/W)}の磁束量が金属板36、37とネオジム磁石22、23に入る。
The ratio of the parallel magnetic resistance straddling the magnetic flux short-circuit prevention holes 24 and 25 and the magnetic resistance straddling the neodymium magnets 22 and 23 is (D / 2L) :( T / W). The ratio of the amount of magnetic flux straddling the magnetic flux short-circuit prevention holes 24 and 25 and the amount of magnetic flux entering the neodymium magnets 22 and 23 across the metal plates 36 and 37 out of the amount of magnetic flux accompanying the reverse polarity magnetic field due to the armature current entering from the entrance is:
(T / W): (D / 2L)
As a result, of the magnetic flux amount Φ associated with the reverse polarity magnetic field due to the armature current entering from the interval S that is the entrance of the magnetic pole head core 28,
A magnetic flux amount of Φ × {(D / 2L) / (D / 2L + T / W)} enters the metal plates 36 and 37 and the neodymium magnets 22 and 23.

金属板36、37での減衰はないものとして、ネオジム磁石22、23に入る磁束量を磁極頭部コア28の入り口での磁束量の3分の2より小さくするためには、
Φ×{(D/2L)/(D/2L+T/W)}<(2/3)×Φ
を満たすことで、ジスプロシウム含有率が8wt%から10wt%のネオジム磁石を用いる図16の従来の埋込磁石同期電動機の実績から、保磁力2.4MA/m(30Oe)の3分の2より小さい、あるいはジスプロシウム含有率が5wt%より低いネオジム磁石をハイブリッド自動車に用いる可能性に導く。
In order to make the amount of magnetic flux entering the neodymium magnets 22 and 23 smaller than two thirds of the magnetic flux amount at the entrance of the magnetic pole head core 28, assuming that there is no attenuation at the metal plates 36 and 37,
Φ × {(D / 2L) / (D / 2L + T / W)} <(2/3) × Φ
By satisfying the above, from the results of the conventional embedded magnet synchronous motor of FIG. 16 using a neodymium magnet having a dysprosium content of 8 wt% to 10 wt%, the coercive force is less than two thirds of 2.4 MA / m (30 Oe). Alternatively, a neodymium magnet having a dysprosium content lower than 5 wt% is led to the possibility of being used in a hybrid vehicle.

実施例1の図5では、ネオジム磁石22、23の厚さは5.8mmほどにされる。ネオジム磁石22、23が厚いほどパーミアンス係数を大きくでき、パーミアンス係数を負の傾きとする動作線とB−H減磁曲線の交点である動作点での磁束密度Bdを大きくでき、不可逆減磁され難くなる。固定子15と回転子11の間のエアギャップ17が0.6mmの場合、ネオジム磁石22、23の厚さを5.8ミリメートルほどにすることで、ネオジム磁石22、23の磁束の磁束短絡防止孔24、25から漏れる比率が比較的小さくされ、電機子電流による逆極性磁場にともなう磁束の磁束短絡防止孔24、25を跨いで漏れる比率は大きくされ易い。図16の従来例での磁束短絡防止孔3では、ネオジム磁石2の端部に入った磁束が漏れる。 In FIG. 5 of the first embodiment, the thickness of the neodymium magnets 22 and 23 is set to about 5.8 mm. The thicker the neodymium magnets 22 and 23, the larger the permeance coefficient, and the larger the magnetic flux density Bd at the operating point that is the intersection of the operating line having the negative permeance coefficient slope and the BH demagnetization curve. It becomes difficult. When the air gap 17 between the stator 15 and the rotor 11 is 0.6 mm, the thickness of the neodymium magnets 22 and 23 is set to about 5.8 mm, thereby preventing magnetic flux short-circuiting of the magnetic fluxes of the neodymium magnets 22 and 23. The ratio of leakage from the holes 24 and 25 is relatively small, and the ratio of leakage across the magnetic flux short-circuit prevention holes 24 and 25 of the magnetic flux accompanying the reverse polarity magnetic field due to the armature current is easily increased. In the magnetic flux short-circuit prevention hole 3 in the conventional example of FIG. 16, the magnetic flux entering the end of the neodymium magnet 2 leaks.

磁束短絡防止孔24、25の径方向中心の長さLを6.0mm、直交方向の平均間隔Dを3.2mm、ネオジム磁石22、23の外方向磁極面の(合計の)幅Wを38mm、第1の磁石埋設用孔18、19の間隔と軟磁性の金属板36、37および軟磁性ばね板38、39の合計の板厚の差分Tを6.3mmにすると、磁束短絡防止孔24、25を跨ぐ磁気抵抗と、ネオジム磁石22、23を跨ぐ磁気抵抗の比は、(3.2/6.0)÷2:(6.3/38)、簡単にして1:0.62となる。電機子電流による逆極性磁場にともなう磁束は、磁極頭部コア28で分岐され、金属板36、37とネオジム磁石22、23を通る磁束量は、磁極頭部コア28に入る磁束量の3分の2より小さい62%ほどになる。 The length L of the center in the radial direction of the magnetic flux short-circuit prevention holes 24 and 25 is 6.0 mm, the average interval D in the orthogonal direction is 3.2 mm, and the (total) width W of the outer magnetic pole faces of the neodymium magnets 22 and 23 is 38 mm. If the difference T between the distance between the first magnet embedding holes 18 and 19 and the total thickness of the soft magnetic metal plates 36 and 37 and the soft magnetic spring plates 38 and 39 is 6.3 mm, the magnetic flux short-circuit prevention hole 24 , 25 and the ratio of magnetoresistance across the neodymium magnets 22 and 23 are (3.2 / 6.0) ÷ 2: (6.3 / 38). Become. The magnetic flux accompanying the reverse polarity magnetic field due to the armature current is branched by the magnetic pole head core 28, and the magnetic flux amount passing through the metal plates 36 and 37 and the neodymium magnets 22 and 23 is 3 minutes of the magnetic flux amount entering the magnetic pole head core 28. 62% which is smaller than 2.

図16で示される従来の埋込磁石同期電動機の回転子において、磁極頭部コア4の入り口の間隔S(積層方向の単位長を乗じて面積)に対し、ネオジム磁石の外方向磁極面の幅Wに相当する長さ(積層方向の単位長を乗じた面積)は0.94倍ほどにされ、本発明の実施例1の構成では0.93倍ほどにされている。図16の従来例の磁極頭部コア4、および図5の実施例1の磁極頭部コア28における電機子電流による逆極性磁場の減衰を考えず、金属板36、37での減衰も考慮しない場合、実施例1のネオジム磁石22、23に加わる電機子電流による逆極性磁場にともなう磁束の密度は0.62×(0.94/0.93)で、図16の従来例の磁極頭部コア4の入り口の間隔Sでの磁束の密度の0.63倍で、磁束密度でも3分の2より小さくなる。ただし、より深く埋め込まれることによる磁極頭部コアでの逆極性磁場の高い周波数成分の減衰を考慮すると、さらに磁束密度は小さくなる。 In the rotor of the conventional interior permanent magnet synchronous motor shown in FIG. 16, the width of the outer magnetic pole face of the neodymium magnet with respect to the interval S (area multiplied by the unit length in the stacking direction) of the entrance of the magnetic pole head core 4 The length corresponding to W (area multiplied by the unit length in the stacking direction) is about 0.94 times, and is about 0.93 times in the configuration of Example 1 of the present invention. 16 does not consider the attenuation of the reverse magnetic field due to the armature current in the magnetic pole head core 4 of the conventional example of FIG. 16 and the magnetic pole head core 28 of the first embodiment of FIG. 5, and does not consider the attenuation of the metal plates 36 and 37. 16 is 0.62 × (0.94 / 0.93), and the magnetic pole head of the conventional example shown in FIG. 16 has a magnetic flux density of 0.62 × (0.94 / 0.93). It is 0.63 times the magnetic flux density at the entrance S of the core 4 and the magnetic flux density is smaller than 2/3. However, the magnetic flux density is further reduced in consideration of attenuation of a high frequency component of the reverse polarity magnetic field in the magnetic pole head core due to deeper embedding.

図16の従来例と、図5の実施例1での磁束短絡防止孔の最外周部の間隔Sが回転軸中心となす角である磁石開き気角、ネオジム磁石の厚さ、および回転子の径が近似していることを前提にして、従来例で保磁力Hcjが2.4MA/m(30kOe)ほどのネオジム磁石が使用されていると、常温での比例計算で、金属板36、37での減衰を考慮せずに、実施例1においては2.4×0.63=1.51MA/m(19kOe)ほどの保磁力を有する、あるいは5wt%よりジスプロシウム含有率の低いネオジム磁石を用いることができることになる。磁束の密度が3分の2より小さくなることで、磁束の密度の自乗に比例し、磁石面積を乗じた発熱量が40%ほどに少なくなることでネオジム磁石の温度上昇を抑制し、温度が高くなるとジスプロシウム含有率の低いネオジム磁石の保磁力Hcjの低下が大きくなることを補償する。 The gap S between the outermost peripheral portion of the magnetic flux short-circuit prevention hole in the conventional example of FIG. 16 and the magnetic flux short-circuit prevention hole in Example 1 of FIG. 5 is the angle formed by the rotation axis center, the thickness of the neodymium magnet, and the rotor If a neodymium magnet having a coercive force Hcj of about 2.4 MA / m (30 kOe) is used in the conventional example on the assumption that the diameters are approximate, the metal plates 36 and 37 are proportionally calculated at room temperature. In Example 1, a neodymium magnet having a coercive force of about 2.4 × 0.63 = 1.51 MA / m (19 kOe) or having a dysprosium content lower than 5 wt% is used. Will be able to. When the magnetic flux density is smaller than two thirds, the heat generation amount multiplied by the magnet area is reduced to about 40% in proportion to the square of the magnetic flux density, and the temperature rise of the neodymium magnet is suppressed. It is compensated that the decrease in the coercive force Hcj of a neodymium magnet having a low dysprosium content increases as the value increases.

従来のネオジム磁石の温度による磁気特性を図17で示す。図17(a)では、温度変化にともなう保磁力Hcj(MA/m)の値の変化を、図17(b)では、残留磁束密度Br(T:テスラ)の値の変化を表す。ジスプロシウム含有率が、●印は零wt%、○印は2wt%、△印は5wt%、および、*印は10wt%、のネオジム(焼結)磁石での値を示す。 FIG. 17 shows the magnetic characteristics depending on the temperature of a conventional neodymium magnet. 17A shows a change in the value of the coercive force Hcj (MA / m) accompanying a change in temperature, and FIG. 17B shows a change in the value of the residual magnetic flux density Br (T: Tesla). The values for neodymium (sintered) magnets with the dysprosium content being zero wt%, ◯ is 2 wt%, Δ is 5 wt%, and * is 10 wt%.

保磁力Hcjに関しては、常温では*印のジスプロシウム含有率10wt%の保磁力に対して、△印の5wt%の保磁力は64パーセント(約2/3)、●印の零wt%の保磁力は33%(約1/3)に小さくなる。 Regarding the coercive force Hcj, at a normal temperature, the coercive force of 5 wt. Becomes 33% (about 1/3).

残留磁束密度Brに関しては、常温では*印のジスプロシウム含有率10wt%の残留磁束密度に対して、△印の5wt%の残留磁束密度は15%、また、●印の零wt%の残留磁束密度は25%大きくなる。 Regarding the residual magnetic flux density Br at room temperature, the residual magnetic flux density of 5 wt% indicated by △ is 15%, and the residual magnetic flux density indicated by zero wt% indicated by ● is compared to the residual magnetic flux density of 10 wt% dysprosium. Increases by 25%.

ネオジム磁石の保磁力Hcjを大きくするには、重希土類元素のジスプロシウム(Dy)を添加して焼結するのが一般的である。ジスプロシウム含有率が零wt%、5wt%、および10wt%の含有率では、それぞれの保磁力は0.8MA/m(10kOe)、1.6MA/m(20kOe)、および2.4MA/m(30kOe)ほどになる。ジスプロシウム含有率が高いほど、温度が高くなった場合の保磁力の低下率が小さくなる傾向がある。摂氏200度ほどの最高運転温度が想定されるハイブリッド自動車では、ジスプロシウム含有率が8wt%から10wt%で、保磁力が2.4MA/m(30kOe)ほどのネオジム磁石が用いられる。 In order to increase the coercive force Hcj of a neodymium magnet, it is common to add dysprosium (Dy), a heavy rare earth element, and sinter. For dysprosium content of 0 wt%, 5 wt%, and 10 wt%, the respective coercive forces are 0.8 MA / m (10 kOe), 1.6 MA / m (20 kOe), and 2.4 MA / m (30 kOe). ) The higher the dysprosium content, the lower the coercivity reduction rate when the temperature is higher. In a hybrid vehicle assumed to have a maximum operating temperature of about 200 degrees Celsius, a neodymium magnet having a dysprosium content of 8 wt% to 10 wt% and a coercive force of about 2.4 MA / m (30 kOe) is used.

ジスプロシウム含有率が高いと、その分だけ軽希土類元素のネオジム(Nd)の含有率が低くされる。Nd2Fe14B相のネオジウムの一部をジスプロシウムで置換することにより主相の結晶磁気異方性を高め、それにより保磁力を高めている。ところがジスプロシウム置換した(Nd、Dy)2Fe14B相はネオジムとジスプロシウムのスピンが反平行に結合し、フェリ磁性的となり、磁化が下がってしまう。ジスプロシウムが10wt%と、ジスプロシウムを含まないネオジム磁石の残留磁束密度Brの大きさの違いは、前者は後者に対して25%ほど小さくなる。ネオジム磁石からの磁束の漏洩を意図的に大きくし、磁石量を大きくしない場合には、ネオジム磁石のジスプロシウム含有率を大幅に低くして残留磁束密度Brを大きくし、あるいはネオジム磁石の温度上昇を抑制して、一定のパーミアンス係数を負の傾きとする動作線とB−H減磁曲線の交点である動作点の磁束密度Bdを大きくすることを前提にしないと、マグネットトルクの大きさを維持できない。 If the dysprosium content is high, the content of the light rare earth element neodymium (Nd) is lowered accordingly. By replacing part of neodymium in the Nd2Fe14B phase with dysprosium, the magnetocrystalline anisotropy of the main phase is increased, thereby increasing the coercive force. However, the (Nd, Dy) 2Fe14B phase substituted with dysprosium is combined with anti-parallel spins of neodymium and dysprosium, becomes ferrimagnetic, and lowers the magnetization. The difference in the magnitude of the residual magnetic flux density Br of the neodymium magnet not containing dysprosium is 10 wt%, and the former is about 25% smaller than the latter. If the leakage of magnetic flux from the neodymium magnet is intentionally increased and the amount of magnet is not increased, the dysprosium content of the neodymium magnet is greatly reduced to increase the residual magnetic flux density Br, or to increase the temperature of the neodymium magnet. If the magnetic flux density Bd at the operating point, which is the intersection of the operating line with a negative slope of the constant permeance coefficient and the BH demagnetization curve, is not presupposed, the magnitude of the magnet torque is maintained. Can not.

実施例1の構成例で5wt%のネオジム磁石を用いた場合には、図16の従来例でジスプロシウム含有率が10wt%のネオジム磁石が用いられるのと比較すると、残留磁束密度Brが15%ほど大きい。ネオジム磁石の面積が1%ほど小さくなることを差し引くと、14%ほど電機子鎖交磁束が大きくなる余裕が生じる。マグネットトルクを同じ大きさで対応する場合、ネオジム磁石22、23で生じる磁束量の14%ほどを磁束短絡防止孔24、25から漏洩させてよいことになり、増加する漏洩は13%ほどであるため、マグネットトルクが小さくなることはない。さらにネオジム磁石の温度上昇を少なくすることによる残留磁束密度Brの低下を抑制することでマグネットトルクを大きめに維持することができる。 When a 5 wt% neodymium magnet is used in the configuration example of Example 1, the residual magnetic flux density Br is about 15% as compared to the conventional example of FIG. 16 where a neodymium magnet having a dysprosium content of 10 wt% is used. large. When subtracting that the area of the neodymium magnet is reduced by about 1%, there is a margin for increasing the armature flux linkage by about 14%. When the magnet torque is handled with the same magnitude, about 14% of the magnetic flux generated in the neodymium magnets 22 and 23 may be leaked from the magnetic flux short-circuit prevention holes 24 and 25, and the increased leakage is about 13%. For this reason, the magnet torque is not reduced. Furthermore, the magnet torque can be kept large by suppressing the decrease in the residual magnetic flux density Br caused by reducing the temperature rise of the neodymium magnet.

ジスプロシウム含有率が5wt%より低い、あるいはジスプロシウムを含まないネオジム磁石22、23を使用できるようにするには、ネオジム磁石での逆極性磁場と温度上昇をさらに低減する構成にすることを1の対応に、保磁力Hcjの向上を磁石材料で可能にすることを2の対応として解決する必要がある。ネオジム磁石が不可逆減磁されないためには、1の対応と2の対応を組み合わせることが有効である。 In order to be able to use neodymium magnets 22 and 23 having a dysprosium content lower than 5 wt% or not containing dysprosium, it is possible to use a configuration that further reduces the reverse polarity magnetic field and temperature rise in the neodymium magnet. In addition, it is necessary to solve the problem of 2 that the coercive force Hcj can be improved with a magnet material. In order for the neodymium magnet not to be irreversibly demagnetized, it is effective to combine the correspondence of 1 and the correspondence of 2.

1の対応としては、実施例1の図1で示された磁束短絡防止孔を穿設する他に、逆極性磁場を減衰させる金属板をネオジム磁石の外方向磁極面に付加し、さらにネオジム磁石を冷却する構成を組み込むことである。2の対応としては、結晶粒微細化や粒界面制御などでジスプロシウムを含まずに1.6MA/mほどの保磁力Hcjを有するネオジム磁石を用いることである。 In addition to drilling the magnetic flux short-circuit prevention hole shown in FIG. 1 of the first embodiment, the metal plate for attenuating the reverse polarity magnetic field is added to the outer magnetic pole face of the neodymium magnet. Incorporating a cooling structure. As a countermeasure for 2, the use of a neodymium magnet having a coercive force Hcj of about 1.6 MA / m without containing dysprosium for crystal grain refinement or grain interface control.

図6は、減衰用の金属板を付加した構成の断面を拡大して示す。図6(a)は、図1の回転軸方向(積層方向)に平行でネオジム磁石22の磁極面に対して直交方向に切断された断面図である。金属板36の表皮効果による減衰で、電機子電流による逆極性磁場をネオジム磁石22に加える前に減衰させ、ネオジム磁石22でのジュール熱の発生を少なくする。 FIG. 6 shows an enlarged cross-sectional view of a configuration to which a metal plate for attenuation is added. FIG. 6A is a cross-sectional view taken in a direction perpendicular to the magnetic pole surface of the neodymium magnet 22 in parallel with the rotation axis direction (stacking direction) in FIG. The attenuation due to the skin effect of the metal plate 36 attenuates the reverse polarity magnetic field due to the armature current before applying it to the neodymium magnet 22, thereby reducing the generation of Joule heat in the neodymium magnet 22.

表皮効果は、無限近似の導体に垂直方向から交番磁場が加わった際、表面で多く、内部に行くにしたがって指数関数的に減少する電流が、加わる交番磁場を打ち消す方向に流れる。この電流が渦電流として表面における電流密度の0.368倍に減少するまでの深さは電流浸透深さδと呼ばれ、1/(π×μ×σ×f)の平方根で表される。
μ:透磁率 σ:導電率 f:周波数
また、導体表面から電流浸透深さδまでの間で、発熱量の86パーセントが発熱する。透磁率μの大きい軟鉄を用いると、500Hzで1.4mm、1kHzで0.84mm、3kHzで0.4mm、10kHzで0.19mmほどのδになり、導電率σは大きいが透磁率が1で小さい銅のδより大きい値になる。ただし、透磁率の大きさは数kHz以上で頭打ちになり、ネオジム磁石の大きい磁束密度が加わることで小さくなることもある。
The skin effect is that when an alternating magnetic field is applied to an infinitely approximated conductor from the vertical direction, a large amount of current flows on the surface and decreases exponentially as it goes inside, and flows in a direction that cancels the applied alternating magnetic field. The depth until this current is reduced to 0.368 times the current density on the surface as an eddy current is called a current penetration depth δ, and is expressed by a square root of 1 / (π × μ × σ × f).
μ: Magnetic permeability σ: Conductivity f: Frequency Also, 86% of the heat generation amount is generated between the conductor surface and the current penetration depth δ. When using soft iron with a large magnetic permeability μ, the δ is 1.4 mm at 500 Hz, 0.84 mm at 1 kHz, 0.4 mm at 3 kHz, 0.19 mm at 10 kHz, and the conductivity σ is large but the magnetic permeability is 1. It becomes larger than δ of small copper. However, the magnitude of the magnetic permeability reaches a peak at several kHz or more, and may be reduced by adding a large magnetic flux density of the neodymium magnet.

金属板36に、軟磁性の金属板である、厚さ0.3mmほどの軟磁性の鉄板を用いる。リラクタンストルクを用いて高回転速度で運転する場合には、大きい逆極性磁場が必然的に生じるため、ネオジム磁石22に加わる前に逆極性磁場の高い周波数成分を金属板36でフィルター的に減衰させることが効果的になる。パーミアンス係数を負の傾きとする動作線とB−H減磁曲線での動作点の磁束密度Bdで生じる磁束が加わる軟磁性の鉄板の透磁率μは、最大透磁率の数分の1ほどにされるが、表皮効果によってネオジム磁石22に加わる電機子電流による逆極性磁場は、1kHzにおいて25%ほど、3kHzで40%ほど低減される。周波数に関係なく、熱損失もない磁束短絡防止孔での漏洩と、金属板36での高い周波数成分の減衰を合わせることで、ネオジム磁石22に加わる逆極性磁場は小さくされ、ネオジム磁石22での温度上昇も少なくされる。 As the metal plate 36, a soft magnetic metal plate having a thickness of about 0.3 mm is used. When operating at a high rotational speed using reluctance torque, a large reverse polarity magnetic field is inevitably generated, and therefore, a high frequency component of the reverse polarity magnetic field is attenuated in a filter manner by the metal plate 36 before being applied to the neodymium magnet 22. It becomes effective. The permeability μ of the soft magnetic iron plate to which the magnetic flux generated by the magnetic flux density Bd at the operating point on the operating line having a negative permeance coefficient and the BH demagnetizing curve is about a fraction of the maximum magnetic permeability. However, the reverse polarity magnetic field due to the armature current applied to the neodymium magnet 22 by the skin effect is reduced by about 25% at 1 kHz and by about 40% at 3 kHz. Regardless of the frequency, the reverse polarity magnetic field applied to the neodymium magnet 22 is reduced by combining the leakage in the magnetic flux short-circuit prevention hole, which has no heat loss, and the attenuation of the high frequency component in the metal plate 36. Temperature rise is also reduced.

軟磁性の金属板に硅素鋼板(FeSi)を用いてもよい。硅素鋼板は、透磁率が大きいため電流浸透深さδが小さく、減衰の効果は大きい。しかし、屈曲形成や柔軟な変形に対応するには固い。また、パーマロイ(FeNi)は、透磁率が大きいが飽和磁束密度はやや小さいため、ネオジム磁石の磁極面に直接当てられると透磁率は大幅に低下し、減衰の効果は相対的に小さくなる。 A silicon steel plate (FeSi) may be used as the soft magnetic metal plate. Since the silicon steel sheet has a high magnetic permeability, the current penetration depth δ is small, and the damping effect is large. However, it is hard to cope with bending formation and flexible deformation. In addition, permalloy (FeNi) has a large magnetic permeability but a slightly low saturation magnetic flux density. Therefore, when directly applied to the magnetic pole surface of a neodymium magnet, the magnetic permeability is greatly reduced, and the damping effect becomes relatively small.

逆極性磁場を金属板36で多く減衰させるほど、金属板36での渦電流損としてジュール熱が多く生じる。金属板36で生じる熱を磁極頭部コア28側に多く伝導させ、ネオジム磁石22側への伝導が少ない非対称な熱伝導を行う構成にできれば、ネオジム磁石22での温度上昇をさらに抑制することができる。 The more the reverse polarity magnetic field is attenuated by the metal plate 36, the more Joule heat is generated as the eddy current loss in the metal plate 36. If a configuration in which a large amount of heat generated in the metal plate 36 is conducted to the magnetic pole head core 28 side and asymmetrical heat conduction with little conduction to the neodymium magnet 22 side can be performed, the temperature rise in the neodymium magnet 22 can be further suppressed. it can.

金属板36を非対称な熱伝導を行う構成にするため、磁極頭部コア28の内側である磁性鋼板12の第2の外周側端部32の積層面には幅広の山部72が大きい面積で、ネオジム磁石22の外方向磁極面には幅狭の谷部73が小さい面積で当たるように金属板36が屈曲成形される。幅広の山部72で電機子電流による逆極性磁場の多くが減衰され、発生するジュール熱は磁極頭部コア28側に多く伝導される。 In order to make the metal plate 36 perform asymmetrical heat conduction, a wide peak portion 72 has a large area on the laminated surface of the second outer peripheral side end portion 32 of the magnetic steel plate 12 inside the magnetic pole head core 28. The metal plate 36 is bent and formed so that the narrow valley portion 73 hits the outer magnetic pole surface of the neodymium magnet 22 with a small area. Much of the reverse polarity magnetic field due to the armature current is attenuated by the wide crest portion 72, and the generated Joule heat is largely conducted to the magnetic pole head core 28 side.

軟磁性の鉄板である金属板36の谷部73から山部72に到る傾斜した部分74は、ネオジム磁石22からの磁束で磁気飽和されて実効的な透磁率は小さくなり、表皮効果による逆極性磁場の低減は多く望めないが、非強磁性金属板13の突出部75に近接した空間に位置するため、逆極性磁場は相対的に小さくなっている。したがって、傾斜した部分74での逆極性磁場の減衰と発熱は少ない。 The inclined portion 74 from the valley portion 73 to the peak portion 72 of the metal plate 36, which is a soft magnetic iron plate, is magnetically saturated by the magnetic flux from the neodymium magnet 22, and the effective permeability is reduced. Although much reduction in the polar magnetic field cannot be expected, the reverse polarity magnetic field is relatively small because it is located in the space close to the protrusion 75 of the non-ferromagnetic metal plate 13. Accordingly, the attenuation and heat generation of the reverse polarity magnetic field in the inclined portion 74 are small.

ネオジム磁石22で生じた熱は、非強磁性金属板13と金属板36の傾斜した部分74から熱伝導で磁極頭部コア28の方へ放熱される。しかし、金属板36での発熱が多く、高い温度の状態であると、ネオジム磁石22は高い温度を維持することになりかねない。また、非強磁性金属板13に熱伝導の低いオーステナイト系ステンレスが用いられた場合などでは、ネオジム磁石22から磁極頭部コアへの熱伝導はあまり大きくできない。 The heat generated by the neodymium magnet 22 is radiated from the inclined portions 74 of the non-ferromagnetic metal plate 13 and the metal plate 36 toward the magnetic pole head core 28 by heat conduction. However, if the metal plate 36 generates a lot of heat and is in a high temperature state, the neodymium magnet 22 may maintain a high temperature. Further, when austenitic stainless steel having low thermal conductivity is used for the non-ferromagnetic metal plate 13, the thermal conduction from the neodymium magnet 22 to the magnetic pole head core cannot be increased so much.

回転時の遠心力でネオジム磁石22が磁性鋼板12の第1の内周側端部38から浮いた熱伝導の悪い状態を避けるため、ネオジム磁石22の内方向磁極面と磁性鋼板12の第1の内周側端部38の間に軟磁性ばね板40を配置することで、ネオジム磁石22の熱を磁性鋼板12の第1の内周側端部38から回転子コアに放熱される。また、埋め込まれた各磁石埋設用孔でのネオジム磁石22のがたつきも抑制される。熱伝導率を優先し、パーミアンス係数の多少の減少が許容される場合には銅板などを使用してもよい。 In order to avoid a poor heat conduction state in which the neodymium magnet 22 floats from the first inner peripheral side end 38 of the magnetic steel plate 12 due to the centrifugal force during rotation, the inward magnetic pole surface of the neodymium magnet 22 and the first of the magnetic steel plate 12 By disposing the soft magnetic spring plate 40 between the inner peripheral side end portions 38, the heat of the neodymium magnet 22 is radiated from the first inner peripheral side end portion 38 of the magnetic steel plate 12 to the rotor core. Further, rattling of the neodymium magnet 22 in each embedded magnet embedding hole is also suppressed. If priority is given to thermal conductivity and a slight decrease in permeance coefficient is allowed, a copper plate or the like may be used.

屈曲成形された軟磁性の鉄板である金属板36の剛性とばね弾性は、高回転速度時にネオジム磁石22に作用する遠心力に対して小さい。屈曲形状の金属板36がつぶされて、形状やばね弾性を維持できなくなることを避けるには、谷部73の部分において非強磁性金属板13の突出した部分75で支持されることが必要になる。パーミアンス係数とのバランスから、非強磁性金属板13の突出量は0.3mmほどにされる。透磁率と飽和磁束密度の大きい軟磁性の鉄板を金属板36に用いることで、金属板36の厚さはパーミアンス係数を低下させない。 The rigidity and spring elasticity of the metal plate 36, which is a soft magnetic iron plate formed by bending, is small with respect to the centrifugal force acting on the neodymium magnet 22 at a high rotational speed. In order to avoid that the bent metal plate 36 is crushed and the shape and spring elasticity cannot be maintained, it is necessary to be supported by the protruding portion 75 of the non-ferromagnetic metal plate 13 in the valley portion 73. Become. From the balance with the permeance coefficient, the amount of protrusion of the non-ferromagnetic metal plate 13 is set to about 0.3 mm. By using a soft magnetic iron plate having a large magnetic permeability and saturation magnetic flux density as the metal plate 36, the thickness of the metal plate 36 does not lower the permeance coefficient.

図6(b)は、金属板36を、長さ方向を切り欠き、中央を短縮した平面図で示すものである。金属板36の外縁部には、図6(a)の非強磁性金属板13の第2の外周側端部である突出した部分75と対向する位置76に外広がりのスリット77が形成される。スリット77が非強磁性金属板13の第2の磁石埋設用孔の端部にはめ込まれることで、金属板36の位置が決められる。 FIG. 6B shows the metal plate 36 in a plan view in which the length direction is cut out and the center is shortened. On the outer edge of the metal plate 36, an outwardly extending slit 77 is formed at a position 76 facing the protruding portion 75 which is the second outer peripheral side end of the non-ferromagnetic metal plate 13 of FIG. . The position of the metal plate 36 is determined by fitting the slit 77 into the end of the second magnet embedding hole of the non-ferromagnetic metal plate 13.

図7は、図6の金属板と異なる構成で、本発明の実施例1を一部拡大して示す。図7(a)は、回転軸方向に平行でネオジム磁石22の磁極面に対して直交方向に切断された断面図である。電機子電流による逆極性磁場を減衰させる金属板78が、山部79と谷部80を有する屈曲形状にされてネオジム磁石22の外方向磁極面と磁極頭部コア28の間に配置されることは同じである。また、谷部80がネオジム磁石22と相対的に小さい面積で当接し、平坦状の山部79が磁極頭部コア28の下面である磁性鋼板12の第2の外周側端部の積層面と大きい面積で接することで、金属板78に生じる熱を磁極頭部コア28側に多く非対称に熱伝導させることも同じである。 FIG. 7 is a partially enlarged view of the first embodiment of the present invention, which is different from the metal plate of FIG. FIG. 7A is a cross-sectional view taken in a direction perpendicular to the magnetic pole surface of the neodymium magnet 22 and parallel to the rotational axis direction. The metal plate 78 that attenuates the reverse polarity magnetic field caused by the armature current is formed into a bent shape having a peak portion 79 and a valley portion 80 and is disposed between the outer magnetic pole surface of the neodymium magnet 22 and the magnetic pole head core 28. Are the same. In addition, the valley portion 80 is in contact with the neodymium magnet 22 in a relatively small area, and the flat crest portion 79 is the bottom surface of the magnetic pole head core 28 and the laminated surface of the second outer peripheral side end portion of the magnetic steel plate 12. It is also the same that heat generated in the metal plate 78 is asymmetrically thermally conducted to the magnetic pole head core 28 side by contacting with a large area.

組立後、特にネオジム磁石22が着磁された後に、ネオジム磁石22と内周側端部38との吸着力によって軟磁性ばね板40が配置される空隙が潰され、金属板78が磁極頭部コア28から離れて、金属板78から磁極頭部コア28側への熱伝導の悪い状態を避ける必要がある。金属板78の山部79の複数箇所に形成される片持ち弾性部81が屈曲変形で金属板78の面から谷部80と同じ方向に出る構成にされ、谷部80と山部79の差より高くされることで、片持ち弾性部81の先端部が組立時に最初にネオジム磁石22の外方向磁極面に、また組立後にも常に当接される。片持ち弾性部81の弾性力で、金属板78の山部79が磁極頭部コア28に接触された状態が維持され、金属板78で発生する熱を磁極頭部コア28側へ多く熱伝導する非対称な熱伝導が維持される。 After the assembly, particularly after the neodymium magnet 22 is magnetized, the space where the soft magnetic spring plate 40 is disposed is crushed by the attractive force between the neodymium magnet 22 and the inner peripheral side end portion 38, and the metal plate 78 becomes the pole head. It is necessary to avoid a state of poor heat conduction away from the core 28 from the metal plate 78 to the magnetic pole head core 28 side. The cantilever elastic portions 81 formed at a plurality of locations of the peak portions 79 of the metal plate 78 are configured to be bent and deformed in the same direction as the valley portions 80 from the surface of the metal plate 78, and the difference between the valley portions 80 and the peak portions 79. By making it higher, the tip end portion of the cantilever elastic portion 81 is first brought into contact with the outer magnetic pole surface of the neodymium magnet 22 at the time of assembly and always after the assembly. The state in which the peak portion 79 of the metal plate 78 is in contact with the magnetic pole head core 28 is maintained by the elastic force of the cantilever elastic portion 81, and a large amount of heat generated in the metal plate 78 is transferred to the magnetic pole head core 28 side. Asymmetric heat conduction is maintained.

図7(b)は、軟磁性の鉄板である金属板78を、長さ方向を切り欠き、幅方向を短縮した平面図で示すものである。金属板78の山部79の複数箇所には片持ち弾性部81が形成される。片持ち弾性部81が屈曲変形され、その一部である先端部82の近傍がネオジム磁石の外方向磁極面に接触し、適当な弾性で金属板78の山部79が磁極頭部コア28側に常に当接するようにされる。 FIG. 7B shows a plan view of a metal plate 78, which is a soft magnetic iron plate, with the length direction cut away and the width direction shortened. Cantilever elastic portions 81 are formed at a plurality of locations of the peak portions 79 of the metal plate 78. The cantilever elastic portion 81 is bent and deformed, and the vicinity of the tip portion 82 which is a part of the cantilever elastic portion 81 comes into contact with the outer magnetic pole face of the neodymium magnet. It is made to always contact | abut.

図8は、複数枚の金属板を重ねた構成の本発明の実施例1を一部拡大して示す。磁極頭部コア28とネオジム磁石22の外方向磁極面の間に、幅広の山部83と幅狭の谷部84に屈曲成形された金属板85、86が2層重ねて配置される。変形し易くされた金属板85の山部84と金属板86の谷部が、磁極頭部コア28側とネオジム磁石22側に必ず当接される。磁極頭部コア28側に銅などの導電率σが大きく非磁性の金属板85が、ネオジム磁石22側に軟鉄などの軟磁性の金属板86が用いられてもよい。 FIG. 8 shows a partially enlarged embodiment 1 of the present invention having a configuration in which a plurality of metal plates are stacked. Between the magnetic pole head core 28 and the outward magnetic pole face of the neodymium magnet 22, two layers of metal plates 85 and 86 bent and formed in a wide crest 83 and a narrow trough 84 are disposed. The peak portion 84 of the metal plate 85 and the valley portion of the metal plate 86 that are easily deformed are always in contact with the magnetic pole head core 28 side and the neodymium magnet 22 side. A nonmagnetic metal plate 85 having a high conductivity σ such as copper may be used on the magnetic pole head core 28 side, and a soft magnetic metal plate 86 such as soft iron may be used on the neodymium magnet 22 side.

大きい遠心力が作用するネオジム磁石22の外方向磁極面で非強磁性金属板13の突出部75に押し当てられた場合に、重ねられた相対的に薄い金属板85と金属板86は変形しやすく、非強磁性金属板13の突出部75の突出量に変化があっても、山部83と磁極頭部コア28側との接触を維持しやすい。金属板86に図7で示される片持ち弾性部81を設けて、重ねられた金属板85と金属板86が、常に、それぞれ磁極頭部コア28側とネオジム磁石22側に当接されるようにしてもよい。非回転時に金属板85と金属板86のそれぞれの山部が離れていても、高回転速度時には自らに作用する遠心力や、ネオジム磁石22の遠心力によって相互が密着することになる。 When the outer magnetic pole face of the neodymium magnet 22 to which a large centrifugal force acts is pressed against the protrusion 75 of the non-ferromagnetic metal plate 13, the relatively thin metal plate 85 and the metal plate 86 that are overlapped are deformed. It is easy to maintain contact between the peak portion 83 and the magnetic pole head core 28 side even if the amount of protrusion of the protrusion 75 of the non-ferromagnetic metal plate 13 changes. The cantilever elastic portion 81 shown in FIG. 7 is provided on the metal plate 86 so that the stacked metal plate 85 and metal plate 86 are always in contact with the magnetic pole head core 28 side and the neodymium magnet 22 side, respectively. It may be. Even if the crests of the metal plate 85 and the metal plate 86 are separated at the time of non-rotation, they are brought into close contact with each other by the centrifugal force acting on the metal plate 85 or the neodymium magnet 22 at a high rotation speed.

図9は、実施例1における回転子31の端面の構成を示す。耐遠心力強度の余裕から大きくできる磁極頭部コア28の比較的大きい断面積の貫通孔30に空気を流し込む構成を主に説明するものである。図9(a)はエンドプレート87が、各磁極でV字状に穿設された第1の磁石埋設用孔18、19を覆うことなく、嵌合部68(隠されて示されず)の凸側の部分に当接され、円環状リング88で固定される。図9(a)の状態の回転子11の構成で、ネオジム磁石22、23が挿入される。図9(b)は、エンドプレート87が回転軸を中心にして適当な角度だけ回されて、突出した部分89で第1の磁石埋設用孔18、19の一部を覆い、挿入されたネオジム磁石22、23の端面を止めて、ネオジム磁石22、23が外へ飛び出ない構成にされる。 FIG. 9 shows the configuration of the end face of the rotor 31 in the first embodiment. The configuration in which air is poured into the through-hole 30 having a relatively large cross-sectional area of the magnetic pole head core 28 that can be increased from the margin of centrifugal strength is mainly described. In FIG. 9A, the end plate 87 does not cover the first magnet embedding holes 18 and 19 that are formed in V-shapes at the respective magnetic poles, and the projection of the fitting portion 68 (not shown hidden). It abuts on the side portion and is fixed by an annular ring 88. With the configuration of the rotor 11 in the state of FIG. 9A, neodymium magnets 22 and 23 are inserted. FIG. 9B shows the neodymium in which the end plate 87 is rotated by an appropriate angle around the rotation axis so that the protruding portion 89 covers part of the first magnet embedding holes 18 and 19 and is inserted. The end surfaces of the magnets 22 and 23 are stopped so that the neodymium magnets 22 and 23 do not jump out.

エンドプレート87が、隠された凸状の嵌合部68に当接した図9(a)の状態から、エンドプレート87が回されて凸状の嵌合部68に当接しない図9(b)の状態にされることで、円環状リング88で回転軸方向(積層方向)に加わった強い圧力状態から開放される。交互に積層された磁性鋼板12と非強磁性金属板が温度差で線膨張に差が生じても、互いのずれ移動が可能にされる。また、磁性鋼板に大きい残留応力が残らず、磁気特性の劣化が生じないようにされる。 From the state of FIG. 9A in which the end plate 87 is in contact with the hidden convex fitting portion 68, the end plate 87 is not rotated and in contact with the convex fitting portion 68. ) Is released from the strong pressure applied by the annular ring 88 in the rotation axis direction (stacking direction). Even if the magnetic steel plates 12 and the non-ferromagnetic metal plates laminated alternately have a difference in linear expansion due to a temperature difference, they can be displaced from each other. Further, no large residual stress remains on the magnetic steel sheet, so that the magnetic properties are not deteriorated.

凸状の嵌合部68が高すぎる場合、逃げ孔を有する非強磁性金属板を端面に配置することで、逃げ孔から出る凸状の嵌合部68を低くし、嵌合部68に当接していたエンドプレート87が回転されて、嵌合部68からはずれて強い圧力状態から解放された時に、磁性鋼板12と非強磁性金属板の間が過度に緩くなることを防ぐことができる。 When the convex fitting part 68 is too high, the convex fitting part 68 coming out from the escape hole is lowered by placing a non-ferromagnetic metal plate having a relief hole on the end face, When the end plate 87 that has been in contact is rotated and released from the fitting portion 68 and released from the strong pressure state, it is possible to prevent the magnetic steel plate 12 and the non-ferromagnetic metal plate from becoming excessively loose.

図9(b)で示されるように、磁極頭部コア28の中央の貫通孔30に強制的に空気を取り込む部分が設けられる。エンドプレート87の突出した部分89の一部に、主たる回転方向に開口部90を有する空気取入れ部91が設けられる。固定子(図示されず)と回転子11の間のエアギャップで相対的に高速流動する空気による熱伝導に依存するだけでは、回転子コア31は固定子歯(図示されず)の温度より低い温度にされにくいため、貫通孔30に空気を流して冷却する方法が導入される。 As shown in FIG. 9B, a portion for forcibly taking in air is provided in the central through hole 30 of the magnetic pole head core 28. An air intake portion 91 having an opening 90 in the main rotation direction is provided in a part of the protruding portion 89 of the end plate 87. The rotor core 31 is lower than the temperature of the stator teeth (not shown) only by relying on heat conduction by air that flows at a relatively high speed in the air gap between the stator (not shown) and the rotor 11. Since it is difficult to make the temperature low, a method of cooling the through hole 30 by introducing air is introduced.

回転子11の回転時に、空気取入れ部91の開口部90から空気が取り込まれた空気は、貫通孔30に空気が強制的に流し込まれる。貫通孔30を乱流として流れる空気が磁極頭部コア28から熱を受け取る。空気取入れ部91は、厚いエンドプレート87の一部でなく、薄い板材を用いて形成されることで、風損や風切り音を低減してもよい。磁極頭部コア28が冷やされることで、ネオジム磁石22、23の温度上昇が小さくされる。 During the rotation of the rotor 11, the air that has been taken in from the opening 90 of the air intake portion 91 is forced to flow into the through hole 30. Air flowing as a turbulent flow through the through hole 30 receives heat from the magnetic pole head core 28. The air intake portion 91 may be formed by using a thin plate material instead of a part of the thick end plate 87, thereby reducing windage loss and wind noise. As the magnetic pole head core 28 is cooled, the temperature rise of the neodymium magnets 22 and 23 is reduced.

図10は、本発明の実施例1の冷却構成の一部を示す。実施例1の図4までの回転子11における回転軸周りの構成と異なるが、回転子コアが共通構成であるため、対応する箇所には同じ符号が付与される。防水、防塵、防音のため、外気から閉じられたケースの中に固定子と回転子が収められる。磁性鋼板と非強磁性金属板がハイブリッド構成に積層された回転子コア31の各磁極の磁極頭部コア28に穿設された貫通孔30に空気を強制的に流し込むため、主たる回転方向に開口部92を有する空気取入れ部93がエンドプレート94の複数箇所に設けられて、回転子11の一方の端面95に固定される。 FIG. 10 shows a part of the cooling configuration of the first embodiment of the present invention. Although different from the configuration around the rotation axis in the rotor 11 up to FIG. 4 in the first embodiment, the same reference numerals are given to corresponding portions because the rotor core has a common configuration. The stator and rotor are housed in a case closed from the outside air for waterproofing, dustproofing and soundproofing. In order to force air to flow into the through hole 30 formed in the magnetic pole head core 28 of each magnetic pole of the rotor core 31 in which the magnetic steel plate and the non-ferromagnetic metal plate are laminated in a hybrid configuration, the air is opened in the main rotation direction. Air intake portions 93 having portions 92 are provided at a plurality of locations on the end plate 94 and are fixed to one end surface 95 of the rotor 11.

空気取入れ部93は貫通孔30を覆う位置に配置され、回転子11の回転にともない空気取入れ部93の開口部92から取り込まれた空気は、貫通孔30へ強制的に流し込まれて乱流として流れることで磁極頭部コア28から熱を吸収し、他方の端面96から排出される。ネオジム磁石22、23を冷やすためには、空気取り入れ部93に入る空気の温度が相対的に低いことが必要になる。 The air intake portion 93 is disposed at a position covering the through hole 30, and the air taken in from the opening 92 of the air intake portion 93 as the rotor 11 rotates is forced to flow into the through hole 30 as turbulent flow. By flowing, heat is absorbed from the magnetic pole head core 28 and discharged from the other end face 96. In order to cool the neodymium magnets 22 and 23, the temperature of the air entering the air intake portion 93 needs to be relatively low.

回転子11の他方の端面96に対向して配置される熱交換部99は、回転子11の他方の端面96から軸方向に平行に離されて表示される。貫通孔30から排出されて回転方向に運動量を有する空気は、回転軸の中心を回転対称中心として主たる回転方向に外から中心方向へ収斂する渦形状の一部からなるフィン98を有する熱交換部99に当たることで熱交換される。渦形状の溝100に沿って内部101に案内された空気は流れる方向を変えられて、回転子11の内側を通り、回転子11の一方の端面95に戻され、空気取入れ部93から貫通孔30に再度入る循環が繰り返される。循環は、回転子11の径の内側で主に行われる。 The heat exchanging portion 99 disposed to face the other end surface 96 of the rotor 11 is displayed separated from the other end surface 96 of the rotor 11 in parallel in the axial direction. The heat exchanging portion having fins 98 formed of a part of a vortex shape in which air discharged from the through hole 30 and having momentum in the rotational direction converges from the outside to the central direction in the main rotational direction with the center of the rotational axis as the rotational symmetry center. Heat is exchanged by hitting 99. The direction of the air guided to the inside 101 along the vortex-shaped groove 100 is changed, passes through the inner side of the rotor 11, is returned to one end face 95 of the rotor 11, and passes through the through hole from the air intake portion 93. The cycle of reentering 30 is repeated. Circulation is mainly performed inside the diameter of the rotor 11.

図11は、本発明の実施例1の冷却構成を断面で示す。固定子15と回転子11は、防水、防塵、防音のため閉ざされたケース97、109の中に配置される。回転子11の一方の端面95の貫通孔30を覆う位置に空気取入れ部93が固定され、他方の端面96に対向して回転子11の回転から独立した熱交換部99が配置される。開口部92から入り込み、空気取入れ部93によって貫通孔30に流し込まれ、熱交換部99に当たる空気は、回転子ハブ102の内側に設けられた還流孔103を通り、熱交換部108で当たることで内から外側に流れを変えられフィン105と溝106に沿って空気取入れ部93から貫通孔30に流し込まれて還流される。 FIG. 11 is a cross-sectional view of the cooling configuration of the first embodiment of the present invention. The stator 15 and the rotor 11 are disposed in cases 97 and 109 which are closed for waterproofing, dustproofing and soundproofing. An air intake portion 93 is fixed at a position covering the through hole 30 on one end face 95 of the rotor 11, and a heat exchanging portion 99 independent of the rotation of the rotor 11 is disposed facing the other end face 96. Air that enters from the opening 92 and flows into the through hole 30 by the air intake portion 93 and hits the heat exchange portion 99 passes through the reflux hole 103 provided inside the rotor hub 102 and hits the heat exchange portion 108. The flow is changed from the inside to the outside, and flows into the through-hole 30 from the air intake portion 93 along the fins 105 and the grooves 106 to be refluxed.

フィン98に空気が大きい面積で当たるようにされた熱交換部99が相対的に低い温度に維持されるように、熱交換部99が一体化されるケース97に冷却用の油路107が設けられる。同様に、フィン105に空気が大きい面積で当たるようにされた熱交換部108が相対的に低い温度に維持されるように、熱交換部108が一体化されるケース109に外気で冷やすための外に突出された外フィン110を設けてもよい。さらには、熱電変換素子がケース109に取り付けられてもよい。当然ながら、水冷や液冷(油冷)の構成にされてもよい。 An oil passage 107 for cooling is provided in a case 97 in which the heat exchanging unit 99 is integrated so that the heat exchanging unit 99 that is exposed to the fin 98 with a large area is maintained at a relatively low temperature. It is done. Similarly, in order to cool the heat exchange unit 108 integrated with the case 109 in which the heat exchange unit 108 is integrated with the outside air so that the heat exchange unit 108 that is exposed to the fin 105 in a large area is maintained at a relatively low temperature. You may provide the outer fin 110 protruded outside. Furthermore, a thermoelectric conversion element may be attached to the case 109. Of course, a water cooling or liquid cooling (oil cooling) configuration may be used.

回転子11の径より外の固定子15の方に空気が循環しないようにする。熱交換部99の渦形状の外周部に沿って円形状の壁面108がフィン98の高さ以上にして設けられる。同様に熱交換部108の渦形状の外周部に沿って円形状の壁面104がフィン105の高さ以上に設けられる。固定子15の方に流れる空気の量の比率を少なくすることで、固定子15で生じる銅損や鉄損の熱の影響を小さくし、集中的にネオジム磁石周辺を冷やす。 Air is prevented from circulating toward the stator 15 outside the diameter of the rotor 11. A circular wall surface 108 is provided at a height equal to or higher than the height of the fin 98 along the vortex-shaped outer peripheral portion of the heat exchange unit 99. Similarly, a circular wall surface 104 is provided above the height of the fin 105 along the vortex-shaped outer peripheral portion of the heat exchange unit 108. By reducing the ratio of the amount of air flowing toward the stator 15, the influence of heat of copper loss and iron loss generated in the stator 15 is reduced, and the periphery of the neodymium magnet is intensively cooled.

図12は、本発明の実施例1の冷却構成の一部を示す。回転子11の一方の端面95に対向して配置される熱交換部108が、全体を示すため、実際より一方の端面95から離れて展開される。熱交換部108は、ケース109に設けられ、回転軸の中心を回転対称中心として主たる回転方向に中心から外方向へ発散する渦形状の一部で形成されるフィン105と溝106を有する。空気は複数のフィン105と溝106に沿って内側から外方向へ流れ、多くが空気取入れ部93から貫通孔30に再度入る。空気の流れを導くため、熱交換部108の円形状の壁面104の内側と溝106の底部とはR曲面状に連結されることが望ましい。 FIG. 12 shows a part of the cooling configuration of the first embodiment of the present invention. The heat exchanging portion 108 disposed opposite to one end face 95 of the rotor 11 is developed away from the one end face 95 from the actual position in order to show the whole. The heat exchanging unit 108 is provided in the case 109 and has fins 105 and grooves 106 formed by a part of a vortex shape that diverges from the center to the outside in the main rotation direction with the center of the rotation axis as the center of rotational symmetry. Air flows from the inside to the outside along the plurality of fins 105 and the grooves 106, and most of the air enters the through hole 30 again from the air intake portion 93. In order to guide the air flow, it is desirable that the inside of the circular wall surface 104 of the heat exchanging portion 108 and the bottom portion of the groove 106 are connected in an R curved shape.

本発明のようなハイブリッド積層構成の回転子を用いて耐遠心力強度を持たせることで高回転速度でも磁極頭部コアを大きくでき、ネオジム磁石を深く埋め込むことができる。必然的に径方向に長くされる磁束短絡防止孔で電機子電流による逆極性磁場にともなう磁束を周波数に無関係に熱損失なく分岐、漏洩してネオジム磁石に加わる逆極性磁場を低減する。非対称な熱伝導を行う金属板がネオジム磁石の外方向磁極面に配置され、高い周波数成分の逆極性磁場を熱損失で減衰させて、ネオジム磁石に加わる前に逆極性磁場をさらに小さくする。金属板で生じる熱は、磁極頭部コア側に多く非対称に熱伝導されることで、ネオジム磁石の温度上昇が抑制される。耐遠心力強度の向上により大きくできる磁極頭部コアに設けられた断面積の大きい貫通孔と回転子の内側で熱交換部を介した空気循環がなされことで、ネオジム磁石の温度上昇が抑制される。耐遠心力強度に基づいた複数の手段によって、ジスプロシウム含有率が5wt%より低いネオジム磁石をハイブリッド自動車などの高回転速度用途の埋込磁石同期電動機の回転子に用いることができる。そして、結晶粒微細化や粒界面制御などで保磁力Hcjが向上されたネオジム磁石を用いることで、ジスプロシウムを含まないネオジム磁石を用いることも可能になる。 By giving a centrifugal strength strength using a rotor having a hybrid laminated structure as in the present invention, the magnetic pole head core can be enlarged even at a high rotational speed, and a neodymium magnet can be embedded deeply. The magnetic flux short-circuit prevention hole inevitably elongated in the radial direction divides and leaks the magnetic flux accompanying the reverse polarity magnetic field due to the armature current without heat loss regardless of the frequency, and reduces the reverse polarity magnetic field applied to the neodymium magnet. A metal plate that performs asymmetric heat conduction is disposed on the outer magnetic pole face of the neodymium magnet to attenuate the high frequency component reverse polarity magnetic field with heat loss, further reducing the reverse polarity magnetic field before being applied to the neodymium magnet. A large amount of heat generated in the metal plate is asymmetrically conducted to the magnetic pole head core side, so that the temperature rise of the neodymium magnet is suppressed. The temperature rise of the neodymium magnet is suppressed by the air circulation through the heat exchange part inside the through hole with a large cross-sectional area provided in the magnetic pole head core that can be increased by improving the centrifugal strength and the rotor. The By a plurality of means based on the centrifugal strength, a neodymium magnet having a dysprosium content lower than 5 wt% can be used for a rotor of an embedded magnet synchronous motor for high rotational speed applications such as a hybrid vehicle. Then, by using a neodymium magnet whose coercive force Hcj is improved by crystal grain refinement or grain interface control, a neodymium magnet not containing dysprosium can be used.

図13は、本発明の埋込磁石同期電動機の回転子の実施例2を、拡大した端面の一部で示す。耐遠心力強度を有することに基づいて、ネオジム磁石を深く埋め込み、ネオジム磁石に加わる電機子電流による逆極性磁場を低減し、温度上昇を抑制する。各磁極にはV字状でなく、平行な形状のネオジム磁石111が埋め込まれ、磁極頭部コア112に貫通孔を有しないことが実施例1と異なる。実施例1の図10から図12で示された回転子の冷却構成を同様に採用して、ネオジム磁石の冷却を効果あるものにするには、磁極頭部コア112の中央に楕円形状の貫通孔を穿設するとよい。 FIG. 13 shows a second embodiment of the rotor of the interior permanent magnet synchronous motor according to the present invention in a part of the enlarged end face. Based on having anti-centrifugal strength, the neodymium magnet is embedded deeply, the reverse polarity magnetic field due to the armature current applied to the neodymium magnet is reduced, and the temperature rise is suppressed. Each magnetic pole is different from the first embodiment in that a parallel neodymium magnet 111 is embedded in each magnetic pole, and the magnetic pole head core 112 does not have a through hole. In order to adopt the cooling structure of the rotor shown in FIGS. 10 to 12 of the first embodiment in the same manner and to effectively cool the neodymium magnet, an elliptical penetration is formed in the center of the magnetic pole head core 112. A hole may be drilled.

回転子コア113は、複数枚の磁性鋼板114の積層部と、磁性鋼板114に大半が隠された非強磁性金属板115が、外周と内周の形状をほぼ共通にして積層され、回転子ハブ116に嵌合されることで回転子117が形成される。回転子117は、固定子118の固定子歯119との間にエアギャップ120を有している。磁性鋼板114と非強磁性金属板115には、いずれも打ち抜きで穿設された第1の磁石埋設用孔121と第2の磁石埋設用孔122の主要部が重ねて設けられ、エネルギー積の大きいネオジム磁石111が埋設される。 The rotor core 113 is formed by laminating a laminated portion of a plurality of magnetic steel plates 114 and a non-ferromagnetic metal plate 115 that is mostly concealed in the magnetic steel plates 114 so that the shapes of the outer periphery and the inner periphery are substantially the same. The rotor 117 is formed by being fitted to the hub 116. The rotor 117 has an air gap 120 between the stator 118 and the stator teeth 119 of the stator 118. The magnetic steel plate 114 and the non-ferromagnetic metal plate 115 are provided with the main portions of the first magnet embedding hole 121 and the second magnet embedding hole 122, both of which are punched by punching, so that the energy product is increased. A large neodymium magnet 111 is embedded.

非強磁性金属板115の第2の磁石埋設用孔122の第2の外周側端部123が、磁性鋼板114の第1の磁石埋設用孔121の第1の外周側端部125より回転軸が位置する中心方向に突出され、断面で示される金属板126を間に介して、ネオジム磁石111の外方向磁極面に当接するようにされる。図13では、第2の外周側端部123が第1の外周側端部125から大きく突出した状態で示されるが、突出量は室温において0.3mmほどにされる。 The second outer peripheral end portion 123 of the second magnet embedding hole 122 of the non-ferromagnetic metal plate 115 is rotated more than the first outer peripheral end portion 125 of the first magnet embedding hole 121 of the magnetic steel plate 114. Is protruded in the central direction where the magnet is located, and is in contact with the outer magnetic pole surface of the neodymium magnet 111 with a metal plate 126 shown in cross section therebetween. In FIG. 13, the second outer peripheral end 123 is shown protruding greatly from the first outer peripheral end 125, but the protruding amount is about 0.3 mm at room temperature.

回転子117の回転時に遠心力が作用するネオジム磁石111は、金属板126を間に介して突出した第2の外周側端部123によって保持される。ネオジム磁石111の遠心力と自らに作用する遠心力を受ける非強磁性金属板115は、外周から幅広で大きい引張強度を有する円環状にされ、隣接する第2の磁石埋設用孔122、127、および122、128の間の、積層された磁性鋼板114の下に隠された、幅広の径方向支持部を経て、内周から幅広で大きい引張強度を有する円環状の部分に一体化されることで、強度の安全率を十分に取った場合でも、非強磁性金属板115の積層厚の比率を小さくできる。 The neodymium magnet 111 on which the centrifugal force acts when the rotor 117 rotates is held by the second outer peripheral end 123 protruding through the metal plate 126 therebetween. The non-ferromagnetic metal plate 115 receiving the centrifugal force of the neodymium magnet 111 and the centrifugal force acting on itself is formed into an annular shape having a wide and large tensile strength from the outer periphery, and adjacent second magnet embedding holes 122, 127, And 122, 128, which are concealed under the laminated magnetic steel plate 114, and are integrated into an annular portion having a wide and large tensile strength from the inner periphery through a wide radial support portion. Thus, even when a sufficient safety factor of strength is obtained, the ratio of the laminated thickness of the non-ferromagnetic metal plate 115 can be reduced.

磁性鋼板114にのみ打ち抜かれた磁束短絡防止孔129、130が第1の磁石埋設用孔121から連続し、外周部に位置するブリッジ部131、132まで径方向に延長されて形成される。磁束短絡防止孔129、130は、磁性鋼板114の一部における磁気的短絡を断ち、電機子電流による逆極性磁場にともなう磁束を意図的に漏洩させるために形成されるが、ネオジム磁石111からの磁束をあまり多く漏洩しないことも求められる。 Magnetic flux short-circuit prevention holes 129 and 130 punched only in the magnetic steel plate 114 are formed continuously from the first magnet embedding hole 121 and extended in the radial direction to the bridge portions 131 and 132 located on the outer periphery. The magnetic flux short-circuit prevention holes 129 and 130 are formed to intentionally leak a magnetic flux accompanying a reverse polarity magnetic field due to an armature current by breaking a magnetic short circuit in a part of the magnetic steel plate 114, but from the neodymium magnet 111. It is also required not to leak much magnetic flux.

ネオジム磁石111は、回転時に作用する遠心力や加速力を保持され、位置が保たれるために、非強磁性金属板115に打ち抜かれた第2の磁石埋設用孔122の外方向磁極面と側面で位置決めされる。角部が面取りされたネオジム磁石111の側部は、第2の磁石埋設用孔122の第2の外周側端部123から円弧状角部を介して連続する側端部で、隙間を少なくされて位置決めされる。ネオジム磁石の角が面取りされていない場合でも、打ち抜き加工ができる形状でネオジム磁石の外方向磁極面と側面が、非強磁性金属板で保持、位置決めされることは可能である。 The neodymium magnet 111 retains the centrifugal force and acceleration force acting during rotation, and maintains its position. Therefore, the neodymium magnet 111 is formed with the outer magnetic pole surface of the second magnet embedding hole 122 punched into the non-ferromagnetic metal plate 115. Positioned on the side. The sides of the neodymium magnet 111 with the chamfered corners are side ends that continue from the second outer peripheral side end 123 of the second magnet embedding hole 122 through the arc-shaped corners, and the gap is reduced. Positioned. Even when the corners of the neodymium magnet are not chamfered, it is possible to hold and position the outer magnetic pole face and side face of the neodymium magnet with a non-ferromagnetic metal plate in a shape that can be punched.

ネオジム磁石111の内方向磁極面は、軟磁性ばね板133を間に介して第1の磁石埋設用孔121の第1の内周側端部134に当接するようにされる。非強磁性金属板115の第2の磁石埋設用孔122における破線で示される第2の内周側端部は、第1の内周側端部134より中心方向に窪んで置かれる。 The inward magnetic pole surface of the neodymium magnet 111 is in contact with the first inner peripheral side end portion 134 of the first magnet embedding hole 121 with the soft magnetic spring plate 133 interposed therebetween. A second inner peripheral side end portion indicated by a broken line in the second magnet embedding hole 122 of the non-ferromagnetic metal plate 115 is placed so as to be recessed in the center direction from the first inner peripheral side end portion 134.

ネオジム磁石111の外方向磁極面および内方向磁極面は、平行に打ち抜くことができる磁性鋼板114の第1の外周側端部125と第1の内周側端部134との間に隙間を少なくして配置されるため、パーミアンス係数の低下が小さく、ネオジム磁石111のB−H減磁曲線における動作点の磁束密度Bdを有効に利用することになる。また、不可逆減磁を避けるための効果もある。これは、図16の従来例のように磁性鋼板でネオジム磁石を位置決めする場合のように、打ち抜き型の制約でネオジム磁石の端部の磁極面と回転子コア113の間に隙間がミリメートル単位で生じる構成に較べて有利である。 The outer magnetic pole surface and the inner magnetic pole surface of the neodymium magnet 111 have a small gap between the first outer peripheral end portion 125 and the first inner peripheral end portion 134 of the magnetic steel sheet 114 that can be punched in parallel. Therefore, the decrease in permeance coefficient is small, and the magnetic flux density Bd at the operating point in the BH demagnetization curve of the neodymium magnet 111 is used effectively. There is also an effect to avoid irreversible demagnetization. This is because, as in the case of positioning a neodymium magnet with a magnetic steel plate as in the conventional example of FIG. 16, the gap between the pole face at the end of the neodymium magnet and the rotor core 113 is in millimeters due to punching restrictions. It is advantageous compared to the resulting configuration.

ネオジム磁石111は磁極頭部コア112の内側に深めに埋設され、固定子118の固定子歯119の先端から大きく離されることで、複数の固定子歯119を跨いで巻かれた電機子巻線の電流で生じる局所磁場は弱められ、ネオジム磁石111に加わる際には小さくされる。 The neodymium magnet 111 is embedded deep inside the magnetic pole head core 112 and is largely separated from the tip of the stator tooth 119 of the stator 118, so that the armature winding is wound across the plurality of stator teeth 119. The local magnetic field generated by this current is weakened and reduced when applied to the neodymium magnet 111.

図14は、本発明の実施例2における回転子コアの分解構成図を示すものである。磁性鋼板の積層厚の比率は、非強磁性金属板の積層厚の比率より大きくされる。回転子コアの内部に埋め込まれるネオジム磁石の磁束や、電機子電流による磁束で、回転子コアの内において磁気飽和が生じにくくされることが必要である。ネオジム磁石を遠心力から保持する非強磁性金属板の積層厚の比率は、非強磁性金属板の形状と材料強度、ネオジム磁石の質量と埋め込み位置、回転子の外径、最高回転速度、および強度安全率などを考慮して決められる。 FIG. 14 is an exploded configuration diagram of the rotor core in the second embodiment of the present invention. The ratio of the laminated thickness of the magnetic steel plates is set to be larger than the ratio of the laminated thickness of the non-ferromagnetic metal plates. It is necessary to prevent magnetic saturation from occurring in the rotor core with the magnetic flux of the neodymium magnet embedded in the rotor core or the magnetic flux generated by the armature current. The ratio of the lamination thickness of the non-ferromagnetic metal plate that holds the neodymium magnet from centrifugal force is the shape and material strength of the non-ferromagnetic metal plate, the mass and embedding position of the neodymium magnet, the outer diameter of the rotor, the maximum rotation speed, and Determined by considering the safety factor.

図14(a)は、回転子ハブ116に嵌合された積層状態の回転子コア113と、埋め込まれる部材を示す。図14(b)と、図14(c)は、ハイブリッド構成に積層される前の単位構成を示し、図14(b)は、0.35ミリメートル厚の磁性鋼板135が10枚、0.5ミリメートル厚の非強磁性金属板136が1枚の単位構成であり、図14(c)は、0.3ミリメートル厚の磁性鋼板137が21枚、0.3ミリメートル厚の非強磁性金属板138が3枚重ねられた単位構成を示し、個々の単位構成が交互に積層されることで図14(a)のハイブリッド構成の回転子コア113にされる。単位構成の磁性鋼板135、137と非強磁性金属板136、138の積層厚比率はそれぞれ7対1ほどにされている。 FIG. 14A shows the rotor core 113 in a stacked state fitted to the rotor hub 116 and the members to be embedded. 14 (b) and 14 (c) show a unit configuration before being stacked in a hybrid configuration, and FIG. 14 (b) shows 10 pieces of 0.35-mm-thick magnetic steel plates 135, 0.5 The millimeter-thick non-ferromagnetic metal plate 136 has a single unit configuration, and FIG. 14C shows 21 pieces of 0.3 mm-thick magnetic steel plates 137 and 0.3 mm-thick non-ferromagnetic metal plates 138. Indicates a unit configuration in which three pieces are stacked, and individual unit configurations are alternately stacked to form a rotor core 113 having a hybrid configuration shown in FIG. The lamination thickness ratio of the magnetic steel plates 135 and 137 and the non-ferromagnetic metal plates 136 and 138 in the unit configuration is about 7 to 1, respectively.

図14(a)での回転子117の外径を150ミリメートル、最高回転数を14000rpm、ネオジム磁石111の断面を5.7ミリメートル×37ミリメートルとし、ネオジム磁石111の周方向端部の埋め込み深さを9.0ミリメートル、ブリッジ部131、132の幅を2.4ミリメートルとした場合に、図14(b)、図14(c)において、硅素の含有率が3wt%の硅素鋼板を用いた磁性鋼板135、137と、オーステナイト系ステンレス鋼の板を用いた非強磁性金属板136、138での積層厚の比率の例である。 The outer diameter of the rotor 117 in FIG. 14A is 150 millimeters, the maximum rotational speed is 14000 rpm, the section of the neodymium magnet 111 is 5.7 millimeters × 37 millimeters, and the embedding depth at the circumferential end of the neodymium magnet 111 is as follows. Is 9.0 millimeters, and the width of the bridge portions 131 and 132 is 2.4 millimeters. In FIGS. 14 (b) and 14 (c), a magnetic material using a silicon steel sheet having a silicon content of 3 wt% is used. It is an example of the ratio of the laminated thickness in the steel plates 135 and 137 and the non-ferromagnetic metal plates 136 and 138 using the austenitic stainless steel plate.

磁性鋼板135、137を打ち抜いて形成される磁極頭部コア139、140が、外周部の両端に幅の狭いブリッジ部で保持され、幅広の磁極間コア141、142、および143、144を介して幅広で円環状に連続するバックコア145、146と一体化される。磁極頭部コア139、140の周方向端部に接して、磁気的短絡を一部で断つための磁束短絡防止孔147、148、および149、150が穿設される。 The magnetic pole head cores 139 and 140 formed by punching the magnetic steel plates 135 and 137 are held by narrow bridge portions at both ends of the outer peripheral portion, and the wide magnetic pole cores 141, 142, and 143, 144 are interposed therebetween. It is integrated with a wide and annular back core 145, 146. Magnetic flux short-circuit prevention holes 147, 148, and 149, 150 are formed in contact with the circumferential ends of the magnetic pole head cores 139, 140 for breaking a magnetic short-circuit in part.

図14(a)で、磁性鋼板と非強磁性金属板の重なる位置に穿設された第1の磁石埋設用孔121と第2の磁石埋設用孔122に、2つに分割されたネオジム磁石111が挿入される。ネオジム磁石111の外方向磁極面と、第1の磁石埋設用孔121の第1の外周側端部、および第2の磁石埋設用孔122の第2の外周側端部の間に、屈曲成形された金属板126が配置される。ネオジム磁石111の内方向磁極面と第1の磁石埋設用孔121の第1の内周側端部の間に軟磁性ばね板133が配置される。 In FIG. 14A, the neodymium magnet divided into a first magnet embedding hole 121 and a second magnet embedding hole 122 drilled at a position where the magnetic steel plate and the non-ferromagnetic metal plate overlap. 111 is inserted. Between the outer magnetic pole surface of the neodymium magnet 111, the first outer peripheral end of the first magnet embedding hole 121, and the second outer peripheral end of the second magnet embedding hole 122 The metal plate 126 is disposed. A soft magnetic spring plate 133 is disposed between the inward magnetic pole surface of the neodymium magnet 111 and the first inner peripheral end of the first magnet embedding hole 121.

金属板126は、電機子電流による逆極性磁場を表皮効果で減衰させてネオジム磁石111に加わる逆極性磁場を小さくし、ネオジム磁石111でのジュール熱の発生を少なくする。磁極頭部コア112側に広い面積で、ネオジム磁石111の外方向磁極面側に小さい面積で当接する金属板126で、金属板に発熱する熱を非対称に熱伝導を行うように、幅広の山部と幅狭の谷部に屈曲成形される。また、金属板126の外縁部に形成される外広がりのスリット部を非強磁性金属板にはめ込むことで位置決めがなされ、金属板126の谷部が非強磁性金属板の第2の磁石埋設用孔122における突出した第2の外周側端部に合わせられる。 The metal plate 126 attenuates the reverse polarity magnetic field caused by the armature current by the skin effect to reduce the reverse polarity magnetic field applied to the neodymium magnet 111, thereby reducing the generation of Joule heat in the neodymium magnet 111. The metal plate 126 that has a large area on the magnetic pole head core 112 side and a small area on the outer magnetic pole surface side of the neodymium magnet 111 has a wide peak so that heat generated by the metal plate is asymmetrically conducted. It is bent and molded into a valley and a narrow valley. Further, positioning is performed by fitting an outwardly extending slit formed on the outer edge of the metal plate 126 into the non-ferromagnetic metal plate, and the valley of the metal plate 126 is used for embedding the second magnet of the non-ferromagnetic metal plate. The second outer peripheral end of the hole 122 is aligned.

金属板126には、例えば、厚さ0.3mmほどの軟磁性の鉄板が用いられる。電機子電流による逆極性磁場にともなう磁束は、磁束短絡防止孔129、130で一部が周波数に無関係に熱損失なく分岐、漏洩され、さらにネオジム磁石111に加わる前に軟磁性の金属板126で高い周波数成分が熱損失をともなって減衰される。 For the metal plate 126, for example, a soft magnetic iron plate having a thickness of about 0.3 mm is used. Magnetic flux due to the reverse polarity magnetic field due to the armature current is partially branched and leaked by the magnetic flux short-circuit prevention holes 129 and 130 without heat loss regardless of the frequency, and further applied to the neodymium magnet 111 before being applied to the soft magnetic metal plate 126. High frequency components are attenuated with heat loss.

磁極頭部コア112は、非強磁性金属板がハイブリッド構成の一部として積層されることによる12パーセントほどの飽和磁束密度の低下が平均的に生じても、周方向の両端の部分が大きい傾斜で磁束短絡防止孔129、130に沿って径方向に深く、断面積が大きくされるため、q軸磁束による磁気飽和が遅くなり、q軸インダクタンスの低下が抑制され、広い運転領域で高い効率を得ることができる。 The magnetic pole head core 112 has a large slope at both ends in the circumferential direction even if a decrease in saturation magnetic flux density of about 12% due to the non-ferromagnetic metal plates laminated as a part of the hybrid configuration occurs on average. Therefore, the magnetic saturation due to the q-axis magnetic flux is slowed down, the decrease in q-axis inductance is suppressed, and high efficiency is achieved in a wide operating range. Can be obtained.

電機子電流による逆極性磁場にともなう磁束が磁極頭部コア112に入った後、磁束短絡防止孔129、130を跨いで漏れる磁束量と、金属板126およびネオジム磁石111に入る磁束量の比率は、磁束短絡防止孔129、130の並列の磁気抵抗と、ネオジム磁石111を跨ぐ磁気抵抗の比に反比例する。 The ratio of the amount of magnetic flux leaking across the magnetic flux short-circuit prevention holes 129 and 130 to the amount of magnetic flux entering the metal plate 126 and the neodymium magnet 111 after the magnetic flux due to the reverse polarity magnetic field due to the armature current enters the magnetic pole head core 112 is The magnetic resistance in parallel with the magnetic flux short-circuit prevention holes 129 and 130 is inversely proportional to the ratio of the magnetic resistance straddling the neodymium magnet 111.

実施例2の構成例として、図13での磁束短絡防止孔129、130の径方向中心の長さLを6.0mm、直交方向の平均間隔Dを3.2mm、ネオジム磁石111の外方向磁極面の幅Wを35mm、第1の磁石埋設用孔121の間隔と金属板126および軟磁性ばね板133の合計の板厚との差分Tを6.3mm、磁極頭部コア112の入り口の間隔である磁束短絡防止孔129、130の最外周部の間隔S(積層方向の単位長さを乗じて面積)を40mmとして、間隔Sに入る電機子電流による逆極性磁場にともなう磁束量をΦとする。
Φ×{(D/2L)/(D/2L+T/W)}=0.60×Ф<(2/3)×Ф
を満たし、金属板126での減衰を考慮しなくても、ネオジム磁石111に加わる磁束量が磁極頭部コア112の入り口の間隔Sに加わる磁束量の3分の2より小さくなる。
As a configuration example of the second embodiment, the radial center length L of the magnetic flux short-circuit prevention holes 129 and 130 in FIG. 13 is 6.0 mm, the average interval D in the orthogonal direction is 3.2 mm, and the outer magnetic pole of the neodymium magnet 111 The width W of the surface is 35 mm, the difference T between the distance between the first magnet embedding holes 121 and the total thickness of the metal plate 126 and the soft magnetic spring plate 133 is 6.3 mm, and the distance between the entrances of the magnetic pole head core 112 The distance S between the outermost peripheral portions of the magnetic flux short-circuit prevention holes 129 and 130 (area multiplied by the unit length in the stacking direction) is 40 mm, and the amount of magnetic flux accompanying the reverse polarity magnetic field due to the armature current entering the distance S is Φ To do.
Φ × {(D / 2L) / (D / 2L + T / W)} = 0.60 × Ф <(2/3) × Ф
The amount of magnetic flux applied to the neodymium magnet 111 is smaller than two thirds of the amount of magnetic flux applied to the gap S at the entrance of the magnetic pole head core 112 without considering the attenuation at the metal plate 126.

ジスプロシウム含有率が8wt%から10wt%のネオジム磁石が使用されている図16の従来例のネオジム磁石2での磁束密度に較べて、ネオジム磁石111での磁束密度は3分の2より小さくなる。ネオジム磁石111の温度上昇が大きく抑制されることからも、ジスプロシウム含有率が5wt%より低いネオジム磁石を、ハイブリッド自動車などの埋込磁石同期電動機に用いる可能性に導く。ただし、入り口の間隔Sが回転軸の中心となす磁石開き角、ネオジム磁石の厚さ、および回転子の径は近似するものとする。また、図16の従来例の磁束短絡防止孔3にはネオジム磁石2の端部に入る逆極性磁場にともなう磁束が漏れるとする。 Compared with the magnetic flux density in the neodymium magnet 2 of the conventional example of FIG. 16 in which a neodymium magnet having a dysprosium content of 8 wt% to 10 wt% is used, the magnetic flux density in the neodymium magnet 111 is smaller than two thirds. Since the temperature rise of the neodymium magnet 111 is largely suppressed, it leads to the possibility of using a neodymium magnet having a dysprosium content rate lower than 5 wt% for an embedded magnet synchronous motor such as a hybrid vehicle. However, it is assumed that the opening angle S between the entrances and the center of the rotation axis, the thickness of the neodymium magnet, and the diameter of the rotor are approximate. Further, it is assumed that the magnetic flux due to the reverse polarity magnetic field entering the end of the neodymium magnet 2 leaks into the magnetic flux short-circuit prevention hole 3 of the conventional example of FIG.

実施例2のように、ハイブリッド構成の回転子を用いて耐遠心力強度を持たせることで高回転速度でも磁極頭部コアを大きくでき、ネオジム磁石を深く埋め込むことができる。径方向に長くされる磁束短絡防止孔で電機子電流による逆極性磁場にともなう磁束を周波数に無関係に熱損失なく分岐、漏洩してネオジム磁石に加わる逆極性磁場を低減する。非対称な熱伝導を行う金属板がネオジム磁石の外方向磁極面に配置され、高い周波数成分の逆極性磁場を熱損失で減衰させて、ネオジム磁石に加わる前に逆極性磁場をさらに小さくする。金属板で生じる熱は磁極頭部コア側に多く非対称に熱伝導されることで、ネオジム磁石の温度上昇が抑制される。必要に応じて、耐遠心力強度の向上により大きくできる磁極頭部コアに設けられた貫通孔と回転子の内側で熱交換部を介した空気循環がなされることで、ネオジム磁石の温度上昇が抑制される。大きい耐遠心力強度に基づいた複数の手段によって、ジスプロシウム含有率が5wt%より低いネオジム磁石をハイブリッド自動車などの高回転速度用途の埋込磁石同期電動機の回転子に用いることができる。さらに、結晶粒微細化や粒界面制御などで保磁力Hcjが向上されたネオジム磁石を用いることで、ジスプロシウムを含まないネオジム磁石を用いることも可能になる。 As in the second embodiment, the magnetic pole head core can be enlarged and the neodymium magnet can be embedded deeply even at a high rotational speed by giving a centrifugal force strength by using a hybrid rotor. The magnetic flux short-circuit prevention hole elongated in the radial direction branches and leaks the magnetic flux accompanying the reverse polarity magnetic field caused by the armature current without heat loss regardless of the frequency, thereby reducing the reverse polarity magnetic field applied to the neodymium magnet. A metal plate that performs asymmetric heat conduction is disposed on the outer magnetic pole face of the neodymium magnet to attenuate the high frequency component reverse polarity magnetic field with heat loss, further reducing the reverse polarity magnetic field before being applied to the neodymium magnet. A large amount of heat generated in the metal plate is asymmetrically conducted to the magnetic pole head core side, so that the temperature rise of the neodymium magnet is suppressed. If necessary, the temperature of the neodymium magnet is increased by air circulation through the heat exchange section inside the rotor and the through hole provided in the magnetic pole head core, which can be increased by improving the strength against centrifugal force. It is suppressed. By a plurality of means based on the high centrifugal strength, a neodymium magnet having a dysprosium content lower than 5 wt% can be used for a rotor of an embedded magnet synchronous motor for high rotational speed applications such as a hybrid vehicle. Furthermore, it becomes possible to use a neodymium magnet not containing dysprosium by using a neodymium magnet whose coercive force Hcj is improved by crystal grain refinement or grain interface control.

本発明の埋込磁石同期電動機の回転子の実施例3を、図15の一部拡大した積層方向の端面で示す。実施例1とは、磁束短絡防止孔の位置が異なり、固定子は集中巻きの構成で示されている。磁性鋼板155の磁気的短絡を一部で断つための磁束短絡防止孔151、152が、ネオジム磁石153、154が挿入される磁性鋼板155の第1の磁石埋設用孔156、157の第1の外周側端部164、165から連続するブリッジ部168、169から回転子158の外周まで径方向に延長されて形成される。 Embodiment 3 of the rotor of the interior permanent magnet synchronous motor of the present invention is shown by a partially enlarged end face in the stacking direction of FIG. The position of the magnetic flux short-circuit prevention hole is different from that of Example 1, and the stator is shown in a concentrated winding configuration. Magnetic flux short-circuit prevention holes 151 and 152 for partially breaking the magnetic short circuit of the magnetic steel sheet 155 are the first magnet embedding holes 156 and 157 of the magnetic steel sheet 155 into which the neodymium magnets 153 and 154 are inserted. It is formed to extend in the radial direction from the bridge portions 168 and 169 continuing from the outer peripheral side end portions 164 and 165 to the outer periphery of the rotor 158.

積層された磁性鋼板155に隠されて、内周と外周が磁性鋼板155と共通にされた非強磁性金属板159は、外周から幅広で大きい引張強度を有する円環状の構成にされる。また、第1の磁石埋設用孔156、157と重なる第2の磁石埋設用孔160、161が設けられる。さらに、第2の磁石埋設用孔160、161の第2の外周側端部162、163が、第1の磁石埋設用孔156、157の第1の外周側端部164、165より回転軸の位置する中心方向に突出され、屈曲成形された軟磁性の金属板166、167を間に介して、遠心力の作用するネオジム磁石153、154を保持する構成と効果は、実施例1と同じである。 The non-ferromagnetic metal plate 159 hidden by the laminated magnetic steel plates 155 and having the inner periphery and the outer periphery in common with the magnetic steel plates 155 has an annular configuration that is wide from the outer periphery and has a high tensile strength. In addition, second magnet embedding holes 160 and 161 overlapping the first magnet embedding holes 156 and 157 are provided. Furthermore, the second outer peripheral side ends 162 and 163 of the second magnet embedding holes 160 and 161 are more rotationally rotated than the first outer peripheral end portions 164 and 165 of the first magnet embedding holes 156 and 157. The configuration and effect of holding the neodymium magnets 153 and 154 on which the centrifugal force acts are interposed between the soft magnetic metal plates 166 and 167 that are protruded in the center direction and bent and formed in the same manner as in the first embodiment. is there.

電機子電流による逆極性磁場にともなう磁束が磁極頭部コア170に入った後、磁束短絡防止孔151、152を跨いで漏れる磁束量と、金属板166、167およびネオジム磁石153、154に入る磁束量の比率は、磁束短絡防止孔151、152の並列の磁気抵抗と、ネオジム磁石153、154を跨ぐ磁気抵抗の比に反比例する。 After the magnetic flux due to the reverse polarity magnetic field due to the armature current enters the magnetic pole head core 170, the amount of magnetic flux leaking across the magnetic flux short-circuit prevention holes 151 and 152, and the magnetic flux entering the metal plates 166 and 167 and the neodymium magnets 153 and 154 The ratio of the amount is inversely proportional to the ratio of the parallel magnetic resistance of the magnetic flux short-circuit prevention holes 151 and 152 and the magnetic resistance straddling the neodymium magnets 153 and 154.

ブリッジ部168、169から外周までの磁束短絡防止孔151、152の径方向中心の長さLを6.0mm、直交方向の平均間隔Dを3.2mm、ネオジム磁石153、154の外方向磁極面の合計の幅Wを37mm、第1の磁石埋設用孔156、157の間隔と金属板166、167、および軟磁性ばね板172、173の合計の板厚との差分Tを6.3mm、磁束短絡防止孔151、152の最外周部の間隔S(積層方向の単位長さを乗じて面積)を40mmとし、磁極頭部コア170の入り口の間隔Sに入る電機子電流による逆極性磁場にともなう磁束量をΦとする。
Φ×{(D/2L)/(D/2L+T/W)}=0.61×Φ<(2/3)×Φ
を満たし、金属板166、167での減衰を考慮しなくても、ネオジム磁石153、154に加わる磁束量が磁極頭部コア170の入り口の間隔Sに加わる磁束量の3分の2より小さくなる。
The length L of the center in the radial direction of the magnetic flux short-circuit prevention holes 151 and 152 from the bridge portions 168 and 169 to the outer periphery is 6.0 mm, the average interval D in the orthogonal direction is 3.2 mm, and the outer magnetic pole surface of the neodymium magnets 153 and 154 The total width W is 37 mm, the difference T between the distance between the first magnet embedding holes 156 and 157 and the total thickness of the metal plates 166 and 167 and the soft magnetic spring plates 172 and 173 is 6.3 mm, and the magnetic flux The distance S between the outermost peripheral portions of the short-circuit prevention holes 151 and 152 (area multiplied by the unit length in the stacking direction) is set to 40 mm, which is accompanied by a reverse polarity magnetic field caused by an armature current entering the distance S at the entrance of the magnetic pole head core 170. Let Φ be the amount of magnetic flux.
Φ × {(D / 2L) / (D / 2L + T / W)} = 0.61 × Φ <(2/3) × Φ
And the amount of magnetic flux applied to the neodymium magnets 153 and 154 is smaller than two thirds of the amount of magnetic flux applied to the interval S between the entrances of the magnetic pole head core 170 without considering attenuation at the metal plates 166 and 167. .

ジスプロシウム含有率が8wt%から10wt%のネオジム磁石が使用されている図16の従来例のネオジム磁石2での磁束密度に較べて、ネオジム磁石153、154での磁束密度は3分の2より小さくなる。ネオジム磁石153、154の温度上昇が抑制されることからも、ジスプロシウム含有率が5wt%より低いネオジム磁石を、ハイブリッド自動車などの埋込磁石同期電動機に用いる可能性に導く。ただし、入り口の間隔Sが回転軸の中心となす磁石開き角、ネオジム磁石の厚さ、および回転子の径は近似するものとする。 Compared with the magnetic flux density in the neodymium magnet 2 of the conventional example of FIG. 16 in which a neodymium magnet having a dysprosium content of 8 wt% to 10 wt% is used, the magnetic flux density in the neodymium magnets 153 and 154 is smaller than two thirds. Become. Since the rise in temperature of the neodymium magnets 153 and 154 is suppressed, a neodymium magnet having a dysprosium content lower than 5 wt% is led to the possibility of being used in an embedded magnet synchronous motor such as a hybrid vehicle. However, it is assumed that the opening angle S between the entrances and the center of the rotation axis, the thickness of the neodymium magnet, and the diameter of the rotor are approximate.

実施例3のように、ハイブリッド積層構成の回転子を用いて耐遠心力強度を持たせることで、高回転速度でも磁極頭部コアを大きくでき、ネオジム磁石を深く埋め込むことができる。必然的に径方向に長くされる磁束短絡防止孔で電機子電流による逆極性磁場にともなう磁束が周波数に無関係に熱損失なく分岐、漏洩して、ネオジム磁石に加わる逆極性磁場を低減する。非対称な熱伝導を行う金属板がネオジム磁石の外方向磁極面に配置され、高い周波数成分の逆極性磁場を熱損失で減衰させて、ネオジム磁石に加わる前の逆極性磁場をさらに小さくする。また、金属板で生じる熱は磁極頭部コアに多く非対称に熱伝導され、耐遠心力強度向上で大きくできる磁極頭部コアに設けられる貫通孔と回転子の内側で熱交換部を介して空気循環することでネオジム磁石での温度上昇がさらに抑制される。耐遠心力強度を有することに基づいた複数の手段によって、ジスプロシウム含有率が5wt%より低いネオジム磁石をハイブリッド自動車などの高回転速度用途の埋込磁石同期電動機の回転子に用いることができる。さらに、結晶粒微細化や粒界面制御などで保磁力Hcjが向上されたネオジム磁石を用いることで、ジスプロシウムを含まないネオジム磁石を用いることも可能になる。 As in the third embodiment, by providing a centrifugal strength strength using a rotor having a hybrid laminated structure, the magnetic pole head core can be enlarged even at a high rotational speed, and a neodymium magnet can be embedded deeply. The magnetic flux accompanying the reverse polarity magnetic field due to the armature current is inevitably branched and leaked without heat loss regardless of the frequency in the magnetic flux short-circuit prevention hole inevitably elongated in the radial direction, thereby reducing the reverse polarity magnetic field applied to the neodymium magnet. A metal plate that conducts asymmetrical heat conduction is disposed on the outer magnetic pole face of the neodymium magnet to attenuate the high-frequency component reverse polarity magnetic field with heat loss, thereby further reducing the reverse polarity magnetic field before being applied to the neodymium magnet. In addition, the heat generated in the metal plate is largely asymmetrically transferred to the magnetic pole head core, and can be increased by improving the strength of centrifugal force. By circulating, the temperature rise in the neodymium magnet is further suppressed. By a plurality of means based on having centrifugal strength, a neodymium magnet having a dysprosium content lower than 5 wt% can be used for a rotor of an embedded magnet synchronous motor for high rotational speed applications such as a hybrid vehicle. Furthermore, it becomes possible to use a neodymium magnet not containing dysprosium by using a neodymium magnet whose coercive force Hcj is improved by crystal grain refinement or grain interface control.

逆極性磁場と温度上昇の抑制で、ジスプロシウム含有率の低いネオジム磁石を搭載した埋込磁石同期電動機をハイブリッド自動車用途などに提供する。 Provided with embedded magnet synchronous motors equipped with neodymium magnets with a low dysprosium content by controlling the reverse polarity magnetic field and temperature rise for hybrid vehicle applications.

鉄損の低減とq軸インダクタンス低下の抑制で、高効率な運転領域の広い埋込磁石同期電動機を提供する。 Provided is an interior permanent magnet synchronous motor with a high efficiency and a wide operating range by reducing iron loss and suppressing q-axis inductance reduction.

ジスプロシウム含有率の低減と温度上昇の抑制で、マグネットトルクを大きめに維持できる埋込磁石同期電動機を提供する。 Provided is an embedded magnet synchronous motor that can maintain a large magnet torque by reducing the dysprosium content and suppressing temperature rise.

非強磁性金属板の積層厚比率を大きくすることで、高回転速度用途の埋込磁石同期電動機を提供できる。 By increasing the lamination thickness ratio of the non-ferromagnetic metal plate, an embedded magnet synchronous motor for high rotational speed applications can be provided.

11、117、158 回転子
12、114、135、137、155 磁性鋼板
13、115、136、138、159 非強磁性金属板
14、102、116 回転子ハブ
15、120 固定子
16、50、51、119 固定子歯
17、120 エアギャップ
18、19、121、156、157 第1の磁石埋設用孔
20、21、122、160、161 第2の磁石埋設用孔
22、23、111、153、154 ネオジム磁石
24、25、129、130、151、152 磁束短絡防止孔
26、27、131、132、168,169 ブリッジ部
28、112、170 磁極頭部コア
29 第1の径方向ブリッジ部
30、171 貫通孔
31、113、174 回転子コア
32、33、123、162、163 第2の外周側端部
34、35、125、164、165 第1の外周側端部
36、37、78、85、86、166、167 金属板
38、39、134 第1の内周側端部
40、41、133、153、154、172、173 軟磁性ばね板
42 第2の径方向ブリッジ部
47、67 キー
48 キー溝
49 回転軸
52、53、141、142、143、144 磁極間コア
54、140、146 バックコア
68 嵌合部
69 逃げ孔
72、79、83 山部
73、80、84 谷部
77 スリット部
81 片持ち弾性部
87、94 エンドプレート
88 円環状リング
90、92 開口部
91、93 空気取入れ部
97、109 ケース
98、105 フィン
99、108 熱交換部
103 還流孔
107 油路
110 外フィン
11, 117, 158 Rotor 12, 114, 135, 137, 155 Magnetic steel plate 13, 115, 136, 138, 159 Non-ferromagnetic metal plate 14, 102, 116 Rotor hub 15, 120 Stator 16, 50, 51 119 Stator teeth 17, 120 Air gaps 18, 19, 121, 156, 157 First magnet embedding holes 20, 21, 122, 160, 161 Second magnet embedding holes 22, 23, 111, 153, 154 Neodymium magnets 24, 25, 129, 130, 151, 152 Magnetic flux short-circuit prevention holes 26, 27, 131, 132, 168, 169 Bridge portions 28, 112, 170 Magnetic pole head core 29 First radial bridge portion 30, 171 Through holes 31, 113, 174 Rotor cores 32, 33, 123, 162, 163 Second outer peripheral side end portions 34, 35, 12 164,165 First outer peripheral side end portions 36, 37, 78, 85, 86, 166, 167 Metal plates 38, 39, 134 First inner peripheral side end portions 40, 41, 133, 153, 154, 172 , 173 Soft magnetic spring plate 42 Second radial bridge portion 47, 67 Key 48 Key groove 49 Rotating shaft 52, 53, 141, 142, 143, 144 Magnetic pole core 54, 140, 146 Back core 68 Fitting portion 69 Relief hole 72, 79, 83 Mountain part 73, 80, 84 Valley part 77 Slit part 81 Cantilever elastic part 87, 94 End plate 88 Annular ring 90, 92 Opening part 91, 93 Air intake part 97, 109 Case 98, 105 Fins 99 and 108 Heat exchanger 103 Recirculation hole 107 Oil passage 110 Outer fin

Claims (23)

積層された磁性鋼板からなる回転子コアの各磁極に希土類磁石が埋設された埋込磁石同期電動機の回転子において、
交互に積み重ねられた磁性鋼板と非強磁性金属板に第1の磁石埋設用孔と第2の磁石埋設用孔が重なる位置に穿設されて形成される貫通した磁石埋設用孔に希土類磁石が埋設され、前記第1の磁石埋設用孔における第1の外周側端部より回転軸の位置する中心方向に突出された前記第2の磁石埋設用孔における第2の外周側端部のみによって遠心力の作用する希土類磁石が保持され、前記第1の磁石埋設用孔の周方向端部の近傍から径方向に延長された磁束短絡防止孔が穿設される、
ことを特徴とする埋込磁石同期電動機の回転子。
In a rotor of an embedded magnet synchronous motor in which rare earth magnets are embedded in each magnetic pole of a rotor core made of laminated magnetic steel plates,
Rare earth magnets are inserted into the through hole for magnet embedding formed by forming the first magnet embedding hole and the second magnet embedding hole on the magnetic steel plates and non-ferromagnetic metal plates stacked alternately. Centrifugation is performed only by the second outer peripheral end portion of the second magnet embedding hole that is embedded and protrudes in the center direction where the rotation shaft is located from the first outer peripheral end portion of the first magnet embedding hole. A rare earth magnet on which a force acts is held, and a magnetic flux short-circuit prevention hole extending in the radial direction from the vicinity of the circumferential end of the first magnet embedding hole is formed.
The rotor of the interior permanent magnet synchronous motor characterized by the above-mentioned.
前記希土類磁石にネオジム磁石が用いられる、
ことを特徴とする請求項1に記載の埋込磁石同期電動機の回転子。
Neodymium magnet is used for the rare earth magnet,
The rotor of the interior permanent magnet synchronous motor of Claim 1 characterized by the above-mentioned.
前記非強磁性金属板に穿設された前記第2の磁石埋設用孔の前記第2の外周側端部と側端部、および第2の径方向ブリッジ部の側端部で、前記ネオジム磁石の外方向磁極面と側部が止められる、
ことを特徴とする請求項2に記載の埋込磁石同期電動機の回転子。
The neodymium magnet at the second outer peripheral side end and side end of the second magnet embedding hole drilled in the non-ferromagnetic metal plate and at the side end of the second radial bridge portion The outward magnetic pole face and side of the
The rotor of the interior permanent magnet synchronous motor of Claim 2 characterized by the above-mentioned.
前記磁性鋼板と前記非強磁性金属板が交互に積層された磁極頭部コアの凹凸形状の積層面と前記ネオジム磁石の外方向磁極面の間に、山部と谷部を有する屈曲成形された金属板が配置され、前記山部が前記第1の外周側端部の連続面に、谷部が前記非強磁性金属板の前記第2の外周側端部に当たるようにされる、
ことを特徴とする請求項2または請求項3に記載の埋込磁石同期電動機の回転子。
The magnetic steel plate and the non-ferromagnetic metal plate are alternately bent and bent between the concave and convex laminated surface of the magnetic pole head core and the outer magnetic pole surface of the neodymium magnet. A metal plate is disposed, and the peak portion is in contact with the continuous surface of the first outer peripheral side end portion, and the valley portion is in contact with the second outer peripheral side end portion of the non-ferromagnetic metal plate,
The rotor of the interior permanent magnet synchronous motor of Claim 2 or Claim 3 characterized by the above-mentioned.
前記山部が大きい面積の平坦状に、前記谷部が小さい面積にされる、
ことを特徴とする請求項4に記載の埋込磁石同期電動機の回転子。
The peak is flat with a large area, and the valley is small.
The rotor of the interior permanent magnet synchronous motor of Claim 4 characterized by the above-mentioned.
前記金属板の複数箇所に形成される片持ち弾性部が前記金属板の前記山部の平坦状の面から谷部方向に、前記山部と前記谷部の高さの差より大きく出る構成にされる、
ことを特徴とする請求項4または請求項5に記載の埋込磁石同期電動機の回転子。
A configuration in which the cantilevered elastic portions formed at a plurality of locations of the metal plate protrude from the flat surface of the peak portion of the metal plate in the direction of the valley portion to be larger than the difference in height between the peak portion and the valley portion. To be
The rotor of the interior permanent magnet synchronous motor of Claim 4 or Claim 5 characterized by the above-mentioned.
前記金属板が軟磁性の金属板である、
ことを特徴とする請求項4から請求項6までのいずれかに記載の埋込磁石同期電動機の回転子。
The metal plate is a soft magnetic metal plate,
The rotor of the interior permanent magnet synchronous motor according to any one of claims 4 to 6, wherein the rotor is an embedded magnet synchronous motor.
屈曲成形された前記金属板が複数枚重ねて配置される、
ことを特徴とする請求項4から請求項7までのいずれかに記載の埋込磁石同期電動機の回転子。
A plurality of the bent metal plates are arranged to be stacked;
The rotor of the interior permanent magnet synchronous motor according to any one of claims 4 to 7, wherein the rotor is an embedded magnet synchronous motor.
前記金属板の前記谷部が重なる前記非強磁性金属板の前記第2の外周側端部と対向する位置に外広がりのスリットが、前記金属板の外縁部において形成される、
ことを特徴とする請求項4から請求項8までのいずれかに記載の埋込磁石同期電動機の回転子。
An outwardly extending slit is formed at the outer edge of the metal plate at a position facing the second outer peripheral side end of the non-ferromagnetic metal plate where the valley of the metal plate overlaps.
The rotor of the interior permanent magnet synchronous motor according to any one of claims 4 to 8, wherein the rotor is an embedded magnet synchronous motor.
前記磁性鋼板の前記第1の外周側端部に対する前記非強磁性金属板の前記第2の外周側端部の中心方向への室温における突出量が、回転軸の中心から前記第1の外周側端部までの長さと前記第2の外周側端部までの長さに対する室温と最高運転温度の温度差での線膨張の差分と、機械加工の公差、および組立の公差を加算した値以上にされる、
ことを特徴とする請求項1または請求項2に記載の埋込磁石同期電動機の回転子。
The amount of protrusion at room temperature in the center direction of the second outer peripheral end of the non-ferromagnetic metal plate with respect to the first outer peripheral end of the magnetic steel plate is the first outer peripheral side from the center of the rotating shaft. More than the sum of the linear expansion difference at the temperature difference between the room temperature and the maximum operating temperature with respect to the length to the end and the length to the second outer peripheral end, the tolerance of machining, and the tolerance of assembly To be
The rotor of the interior permanent magnet synchronous motor according to claim 1, wherein the rotor is a permanent magnet synchronous motor.
前記磁性鋼板に穿設された前記第1の磁石埋設用孔の周方向端部から連続し、外周に位置するブリッジ部まで径方向に延長して磁束短絡防止孔が穿設される、
ことを特徴とする請求項1から請求項4までのいずれかに記載の埋込磁石同期電動機の回転子。
A magnetic flux short-circuit prevention hole is drilled continuously extending from the circumferential end of the first magnet embedding hole drilled in the magnetic steel plate and extending radially to the bridge portion located on the outer circumference.
The rotor of the interior permanent magnet synchronous motor according to any one of claims 1 to 4, wherein the rotor is embedded.
前記第1の磁石埋設用孔の周方向端部の近傍で、前記第1の外周側端部から連続して形成されて前記第1の磁石埋設用孔の周方向端部の近傍に位置するブリッジ部から外周まで径方向に延長して前記磁束短絡防止孔が穿設される、
ことを特徴とする請求項1から請求項4までのいずれかに記載の埋込磁石同期電動機の回転子。
In the vicinity of the circumferential end of the first magnet embedding hole, it is formed continuously from the first outer peripheral end and located near the circumferential end of the first magnet embedding hole. The magnetic flux short-circuit prevention hole is formed by extending in a radial direction from the bridge portion to the outer periphery,
The rotor of the interior permanent magnet synchronous motor according to any one of claims 1 to 4, wherein the rotor is embedded.
外周に位置する前記ブリッジ部から近似する幅が終わる位置までの磁束短絡防止孔の径方向中心の長さL、直交方向の平均間隔D、ネオジム磁石の外方向磁極面の幅W、および前記第1の磁石埋設用孔の間隔と前記第1の磁石埋設用孔における前記金属板を含む軟磁性の板厚との差分Tとし、前記磁極頭部コアにおける2箇所の前記磁束短絡防止孔の最外周部の間隔S、および前記間隔Sに入る電機子電流による逆極性磁場にともなう磁束量Φとし、条件、
Φ×{(D/2L)/(D/2L+T/W)}<(2/3)×Φ
を満たす構成にされる、
ことを特徴とする請求項11に記載の埋込磁石同期電動機の回転子。
The length L of the radial center of the magnetic flux short-circuit prevention hole from the bridge portion located on the outer periphery to the position where the approximate width ends, the average interval D in the orthogonal direction, the width W of the outer magnetic pole surface of the neodymium magnet, and the first The difference T between the interval between one magnet embedding hole and the thickness of the soft magnet including the metal plate in the first magnet embedding hole is defined as T, which is the maximum of the two magnetic flux short-circuit prevention holes in the magnetic pole head core. The distance S between the outer peripheral portions, and the amount of magnetic flux Φ associated with the reverse polarity magnetic field due to the armature current that enters the distance S, the condition,
Φ × {(D / 2L) / (D / 2L + T / W)} <(2/3) × Φ
Configured to meet,
The rotor of the interior permanent magnet synchronous motor according to claim 11.
前記第1の外周側端部から連続する前記ブリッジ部から外周まで径方向に延長された前記磁束短絡防止孔の径方向中心の長さL、直交方向の平均間隔D、ネオジム磁石の外方向磁極面の幅W、および前記第1の磁石埋設用孔の間隔と前記第1の磁石埋設用孔における前記金属板を含む軟磁性の板厚との差分Tとし、前記磁極頭部コアにおける2箇所の前記磁束短絡防止孔の最外周部の間隔S、および前記間隔Sに入る電機子電流による逆極性磁場にともなう磁束量Φとし、条件、
Φ×{(D/2L)/(D/2L+T/W)}<(2/3)×Φ
を満たす構成にされる、
ことを特徴とする請求項12に記載の埋込磁石同期電動機の回転子。
The length L of the center in the radial direction of the magnetic flux short-circuit prevention hole extending in the radial direction from the bridge portion that continues from the first outer peripheral end to the outer periphery, the average interval D in the orthogonal direction, and the outward magnetic pole of the neodymium magnet The surface width W and the difference T between the interval between the first magnet embedding holes and the thickness of the soft magnet including the metal plate in the first magnet embedding holes, and two locations on the magnetic pole head core The magnetic flux amount Φ associated with the reverse polarity magnetic field due to the armature current entering the interval S and the interval S of the outermost peripheral portion of the magnetic flux short-circuit prevention hole,
Φ × {(D / 2L) / (D / 2L + T / W)} <(2/3) × Φ
Configured to meet,
The rotor of the interior permanent magnet synchronous motor according to claim 12.
複数箇所に同一形状の同一形状の凹凸状の嵌合部を有する前記磁性鋼板が重ねられ、一体化され、前記非強磁性金属板において前記嵌合部と対向する位置に逃げ孔が設けられる、
ことを特徴とする請求項1または請求項2に記載の埋込磁石同期電動機の回転子。
The magnetic steel plates having the same shape uneven fitting portions of the same shape in a plurality of places are overlapped and integrated, and a relief hole is provided at a position facing the fitting portion in the non-ferromagnetic metal plate,
The rotor of the interior permanent magnet synchronous motor according to claim 1, wherein the rotor is a permanent magnet synchronous motor.
前記磁性鋼板と前記非強磁性金属板の円形状の内周部から突出したキー部が回転子ハブの外周部の対応する位置に設けられたキー溝に嵌め込まれて、前記回転子コアの径方向と周方向の位置決めがされ、径の外方向に前記第1の磁石埋設用孔の一部に到る複数の突出部を有するエンドプレートが前記回転子コアの端面に当接されて外側から円環状リングで固定される、
ことを特徴とする請求項1、請求項2、および請求項15のいずれかに記載の埋込磁石同期電動機の回転子。
A key portion protruding from a circular inner peripheral portion of the magnetic steel plate and the non-ferromagnetic metal plate is fitted into a key groove provided at a corresponding position on the outer peripheral portion of the rotor hub, and the diameter of the rotor core And an end plate having a plurality of projecting portions that reach a part of the first magnet embedding hole in the outer direction of the diameter and are in contact with the end face of the rotor core from the outside. Fixed with an annular ring,
The rotor of the interior permanent magnet synchronous motor according to any one of claims 1, 2, and 15.
前記回転子コアの端面において、周方向に等角度間隔の位置に重ねて配置された前記第1の磁石埋設用孔と前記第2の磁石埋設用孔が、前記端面に当接されたエンドプレートの一定角度の回転で、前記エンドプレートに対向する状態と対向しない状態が選択される、
ことを特徴とする請求項16に記載の埋込磁石同期電動機の回転子。
An end plate in which the first magnet embedding hole and the second magnet embedding hole disposed on the end surface of the rotor core so as to overlap each other at equal angular intervals in the circumferential direction are in contact with the end surface A state of facing the end plate and a state of not facing the end plate are selected by rotation at a certain angle of
The rotor of the interior permanent magnet synchronous motor of Claim 16 characterized by the above-mentioned.
前記回転子コアの端面において、周方向の等角度間隔の位置に形成された前記嵌合部の凸状の部分が、一定角度の回転で、前記エンドプレートに当たる状態と当たらない状態が選択される、
ことを特徴とする請求項16に記載の埋込磁石同期電動機の回転子。
On the end face of the rotor core, a state is selected in which the convex portions of the fitting portions formed at equal angular intervals in the circumferential direction are in contact with the end plate by rotation at a constant angle. ,
The rotor of the interior permanent magnet synchronous motor of Claim 16 characterized by the above-mentioned.
回転子の主たる回転方向に開口部を有する空気取入れ部が、前記回転子コアの端面におけるネオジム磁石周辺の貫通孔の位置に固定される、
ことを特徴とする請求項1から請求項3までのいずれかに記載の埋込磁石同期電動機の回転子。
An air intake portion having an opening in the main rotation direction of the rotor is fixed at a position of a through hole around the neodymium magnet in the end face of the rotor core.
The rotor of the interior permanent magnet synchronous motor according to any one of claims 1 to 3, wherein
固定子と回転子が外気からケースで閉じられ、前記貫通孔と前記回転子の内側で途中に熱交換部を介して空気が循環される、
ことを特徴とする請求項19に記載の埋込磁石同期電動機の回転子。
The stator and the rotor are closed with a case from the outside air, and air is circulated through the heat exchange part in the middle of the through hole and the rotor,
The rotor of the interior permanent magnet synchronous motor of Claim 19 characterized by the above-mentioned.
前記熱交換部が、回転軸の中心を回転対称中心とする渦形状の一部からなる複数のフィンを有し、前記回転子の端面に対向して配置される、
ことを特徴とする請求項20に記載の埋込磁石同期電動機の回転子。
The heat exchanging portion has a plurality of fins made of a part of a vortex shape with the center of the rotation axis as a rotational symmetry center, and is disposed to face the end face of the rotor;
The rotor of the interior permanent magnet synchronous motor of Claim 20 characterized by the above-mentioned.
電機子巻線の端子間が、回転子の磁極数と回転速度の積の逆数で規定される半周期より短い周期で電気的に断続される、
ことを特徴とする請求項4から請求項9までのいずれかに記載の埋込磁石同期電動機の回転子。
The terminals of the armature winding are electrically interrupted at a cycle shorter than a half cycle defined by the inverse of the product of the number of magnetic poles of the rotor and the rotational speed.
The rotor of the interior permanent magnet synchronous motor according to any one of claims 4 to 9, wherein the rotor is embedded.
電機子巻線の端子間が電気的に断続される平均の前記周期が、埋込磁石同期電動機の所定の位置における温度が高い時に、より短くされる、
ことを特徴とする請求項22に記載の埋込磁石同期電動機の回転子。
The average period in which the terminals of the armature winding are electrically interrupted is shortened when the temperature at a predetermined position of the embedded magnet synchronous motor is high.
The rotor of the interior permanent magnet synchronous motor according to claim 22.
JP2012231338A 2012-10-19 2012-10-19 Rotor of embedded magnet synchronous motor Pending JP2014087075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012231338A JP2014087075A (en) 2012-10-19 2012-10-19 Rotor of embedded magnet synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012231338A JP2014087075A (en) 2012-10-19 2012-10-19 Rotor of embedded magnet synchronous motor

Publications (1)

Publication Number Publication Date
JP2014087075A true JP2014087075A (en) 2014-05-12

Family

ID=50789700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012231338A Pending JP2014087075A (en) 2012-10-19 2012-10-19 Rotor of embedded magnet synchronous motor

Country Status (1)

Country Link
JP (1) JP2014087075A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109155577A (en) * 2016-05-25 2019-01-04 法雷奥电机设备公司 Rotary motor rotor including the rare-earth magnet with low dysprosium content
JP2019096868A (en) * 2017-11-24 2019-06-20 Tdk株式会社 Magnet and motor using the same
CN111092530A (en) * 2018-10-23 2020-05-01 本田技研工业株式会社 Rotating electrical machine and vehicle equipped with rotating electrical machine
CN112368919A (en) * 2018-06-29 2021-02-12 Abb瑞士股份有限公司 Induction motor
CN112385003A (en) * 2018-10-02 2021-02-19 日本制铁株式会社 Roll iron core
CN112531937A (en) * 2019-09-18 2021-03-19 丰田自动车株式会社 Magnet embedded motor and manufacturing method thereof
JP2021083286A (en) * 2019-11-22 2021-05-27 大同特殊鋼株式会社 Manufacturing method of permanent magnet rotor
JP2021083288A (en) * 2019-11-22 2021-05-27 大同特殊鋼株式会社 Permanent magnet rotor production method
EP3866304A1 (en) * 2020-02-12 2021-08-18 Toyota Jidosha Kabushiki Kaisha Rotor of rotary electric machine for vehicle
CN114257052A (en) * 2020-09-23 2022-03-29 丰田自动车株式会社 Method and device for manufacturing rotor for rotating electrical machine
JP2022072214A (en) * 2020-10-29 2022-05-17 本田技研工業株式会社 Rotor for rotary electric machine, and rotary electric machine
KR102483908B1 (en) * 2022-02-03 2023-01-04 유한회사 아르젠터보 Turbo blower apparatus

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109155577A (en) * 2016-05-25 2019-01-04 法雷奥电机设备公司 Rotary motor rotor including the rare-earth magnet with low dysprosium content
JP2019096868A (en) * 2017-11-24 2019-06-20 Tdk株式会社 Magnet and motor using the same
CN112368919A (en) * 2018-06-29 2021-02-12 Abb瑞士股份有限公司 Induction motor
CN112368919B (en) * 2018-06-29 2024-05-24 Abb瑞士股份有限公司 Induction Motor
CN112385003A (en) * 2018-10-02 2021-02-19 日本制铁株式会社 Roll iron core
CN112385003B (en) * 2018-10-02 2024-04-16 日本制铁株式会社 Coiled iron core
CN111092530A (en) * 2018-10-23 2020-05-01 本田技研工业株式会社 Rotating electrical machine and vehicle equipped with rotating electrical machine
CN111092530B (en) * 2018-10-23 2022-04-19 本田技研工业株式会社 Rotating electrical machine and vehicle equipped with rotating electrical machine
CN112531937B (en) * 2019-09-18 2024-02-09 丰田自动车株式会社 Magnet embedded motor and manufacturing method thereof
CN112531937A (en) * 2019-09-18 2021-03-19 丰田自动车株式会社 Magnet embedded motor and manufacturing method thereof
JP2021083286A (en) * 2019-11-22 2021-05-27 大同特殊鋼株式会社 Manufacturing method of permanent magnet rotor
JP2021083288A (en) * 2019-11-22 2021-05-27 大同特殊鋼株式会社 Permanent magnet rotor production method
EP3866304A1 (en) * 2020-02-12 2021-08-18 Toyota Jidosha Kabushiki Kaisha Rotor of rotary electric machine for vehicle
US11594925B2 (en) 2020-02-12 2023-02-28 Toyota Jidosha Kabushiki Kaisha Rotor of rotary electric machine for vehicle
CN114257052B (en) * 2020-09-23 2023-09-15 丰田自动车株式会社 Method and apparatus for manufacturing rotor for rotating electrical machine
CN114257052A (en) * 2020-09-23 2022-03-29 丰田自动车株式会社 Method and device for manufacturing rotor for rotating electrical machine
JP2022072214A (en) * 2020-10-29 2022-05-17 本田技研工業株式会社 Rotor for rotary electric machine, and rotary electric machine
KR102483908B1 (en) * 2022-02-03 2023-01-04 유한회사 아르젠터보 Turbo blower apparatus

Similar Documents

Publication Publication Date Title
JP2014087075A (en) Rotor of embedded magnet synchronous motor
US12074477B2 (en) Rotating electrical machine system
JP5305753B2 (en) Permanent magnet rotating electric machine
JP5159577B2 (en) Permanent magnet rotating electric machine
JP5085071B2 (en) Permanent magnet type rotating electrical machine rotor
JP5361261B2 (en) Permanent magnet rotating electric machine
JP5361260B2 (en) Permanent magnet rotary electric machine
JP4619585B2 (en) Reluctance type rotating electrical machine
JP2006280195A (en) Permanent magnet type rotary electric machine
US20200403468A1 (en) Rotating electrical machine
JP5355055B2 (en) Permanent magnet rotating electric machine
JP2008289300A (en) Permanent-magnet rotary electric machine
JP2013162557A (en) Electric rotary machine
JP5040441B2 (en) Electric motor
US12027929B2 (en) Rotating electrical machine
JP2011035997A (en) Rotor for ipm motors, and ipm motor
JP2014087077A (en) Rotor cooling configuration for embedded magnet synchronous motor
JP2013132124A (en) Core for field element
JP2012029563A (en) Permanent magnet type rotary electric machine
JP2012070608A (en) Magnet-excited rotary electric machine system
JP2011172432A (en) Rotor of embedded magnet synchronous motor
JP2015133825A (en) Rotor for rotary electric machine
JP5750995B2 (en) Synchronous motor
JP2014087076A (en) Rotor for embedded magnet synchronous motor
JP5793948B2 (en) Synchronous motor