JP4619585B2 - Reluctance type rotating electrical machine - Google Patents
Reluctance type rotating electrical machine Download PDFInfo
- Publication number
- JP4619585B2 JP4619585B2 JP2001270678A JP2001270678A JP4619585B2 JP 4619585 B2 JP4619585 B2 JP 4619585B2 JP 2001270678 A JP2001270678 A JP 2001270678A JP 2001270678 A JP2001270678 A JP 2001270678A JP 4619585 B2 JP4619585 B2 JP 4619585B2
- Authority
- JP
- Japan
- Prior art keywords
- cavity
- magnetic
- magnet
- rotor
- type rotating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Control Of Electric Motors In General (AREA)
- Synchronous Machinery (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、回転子に永久磁石を嵌設したリラクタンス型回転電機に関する。
【0002】
【従来の技術】
図12は従来のリラクタンス型回転電機の横断面図である。同図において、電機子1は、複数のスロットが設けられた電磁鋼板を積層してなる電機子鉄心2と、スロットにそれぞれ収められて電機子歯4に巻装された電機子コイル3とで構成されている。一方、電機子歯4に外周面が対向する回転子5は、磁界を形成するコイルを持たず、外周部に凹凸が形成された回転子鉄心6のみで構成されている。このためリラクタンス型回転電機は構成が簡素であり、製造コストも安価である。
【0003】
ここで、リラクタンス型回転電機の出力発生原理について説明する。リラクタンス型回転電機は回転子の外周部に凹凸を設けたことにより、電機子鉄心歯4からの磁界に対して、磁極となる凸部12の磁気抵抗は小さくなり、凹部13での磁気抵抗は大きくなる。従って、凸部と凹部の各空隙部分で電機子コイル3に電流を流すことによって蓄えられる随伴磁気エネルギーが異なる。この随伴磁気エネルギーの変化によって出力が発生する。
【0004】
なお、回転子の外周部に幾何学的な凸部と凹部とを形成するだけでなく、磁気抵抗、磁束密度分布が回転子の周方向位置によって異なるように、磁気的な凸部と凹部とを形成することもできる。
【0005】
他の高性能な回転電機として、永久磁石回転電機がある。その電機子はリラクタンス型回転電機と同様であるが、回転子のほぼ全周にわたって永久磁石が回転子鉄心の外周部に配置された表面配置型の回転電機と、回転子鉄心内に永久磁石が埋めこまれた埋め込み型永久磁石回転電機とがある。
【0006】
【発明が解決しようとする課題】
リラクタンス型回転電機は回転子鉄心表面の凹凸により回転子の位置で磁気抵抗が異なるため、空隙磁束密度も変化する。この変化により磁気エネルギーが変化して出力が得られる。
【0007】
しかし、電流が増加すると、磁極となる鉄心の凸部(以下、d軸とも言う)において局部的な磁気飽和が拡大する。これにより、磁極間となる鉄心の凹部(以下、q軸ともいう)に漏れる磁束が増加すると共に、磁極を通る有効な磁束が減少して出力は低下する。一方、磁気エネルギーから考えると、鉄心の凸部の磁気飽和によって生じる漏れ磁束により、空隙磁束密度の変化が緩やかになり、随伴磁気エネルギーの変化が小さくなる。このため、電流に対して出力の増加率が低下し、やがて出力は飽和する。また、q軸の漏れ磁束は無効な電圧を誘起して力率を低下させる。
【0008】
一方、永久磁石回転電機では小型・高出力化のために高磁気エネルギー積の希土類永久磁石が用いられる。希土類材料は資源的に少なく、従って、大量生産が行われる汎用機械に最適なものではなかった。これに対して、酸化鉄のフェライト磁石は材料としては豊富な資源であるため、安定的に供給することができる。しかし、フェライト磁石を回転電機の界磁に適用した場合には、二つの大きな問題がある。
【0009】
その一つは、フェライト磁石の磁気エネルギー積が希土類磁石の1/10程度であるため永久磁石の鎖交磁束と電流との積で生じるトルクは小さく、従って、体積当たりの出力も小さい。
【0010】
もう一つの問題は、小型高出力化する場合、比電気装荷(電機子内周の長さ当たりのアンペアターン)が高くなり、フェライト磁石の保磁力が小さいため、電機子の電機子反作用磁界でフェライト磁石が不可逆減磁する。特にフェライト磁石は20℃以下の低温で上記よりもさらに低い減磁界で不可逆減磁を生じるという大きな問題がある。
【0011】
可変速運転を考えた場合、さらに次の問題も生じる。すなわち、永久磁石の磁束は一定であるので電機子コイルに誘導される電圧は回転速度に比例して大きくなる。従って、高速回転までの広範囲の可変速運転を行う場合、表面磁石型回転電機は界磁磁束を減らすことができないため、電源電圧を一定とすると基底速度の2倍以上の定出力運転は困難である。埋め込み型永久磁石回転電機は、永久磁石の鎖交磁束が表面型永久磁石回転電機よりも少なくなるので、磁石の磁化方向と逆の減磁界を形成する電機子反作用を磁石に作用させて、磁石の鎖交磁束を減少させる方法がある。しかし、大きな減磁界を永久磁石にかける必要があるため、フェライト磁石では不可逆減磁を生じる。
【0012】
また、空転時において、上記の磁石の磁束を減少させるための電機子巻線に電流を流すため、ジュール熱による電力損失が発生して総合効率は低下する。
【0013】
本発明は上記の課題を解決するためになされたもので、第1の目的は不可逆減磁することなく、小型・高出力・高効率で広範囲の可変速運転を可能にするリラクタンス型回転電機を提供するにある。
【0014】
本発明の他の目的は、信頼性が高く、製造性に優れたリラクタンス型回転電機を提供するにある。
【0015】
【課題を解決するための手段】
請求項1に係る発明は、
電機子コイルを有する電機子と、周方向に磁気抵抗の異なる部位を有する回転子とを備えるリラクタンス型回転電機において、
前記回転子の磁気抵抗の大きい部位として、中央部とこの中央部に対して周方向の両側に連接して径方向外側に延出する側端部とを有し、この中央部の磁気抵抗よりも側端部の磁気抵抗の方が小さくなるようにするため、中央部の径方向の寸法よりも側端部の周方向の寸法が小さくなっている空洞と、
前記空洞の中央部に嵌装され、前記空洞を通る電機子電流の磁束を打ち消すように磁化されているフェライト磁石と、
を備え、しかも前記空洞の中央部の周方向の両側に位置する対向内側面は、それぞれ平面状に形成されると共に、回転中心に近い側の相互間隔と比較して径方向外側に離れた側の相互間隔がより狭く形成されることによって傾斜面をなしており、この傾斜面は回転時に前記フェライト磁石に作用する遠心力の一部を受けるようになっており、
更に、前記中央部の周方向の両側に連設して形成されている前記側端部は、中央部の径方向外側の内側面の延長線上に滑らかに連続する内側面を有するように形成され、これにより回転子鉄心の周縁と前記中央部及び前記側端部との間に滑らかな磁路が形成されるようにした、ことを特徴とする。
【0016】
請求項2に係る発明は、請求項1に記載のリラクタンス型回転電機において、側端部の周方向の寸法はエアギャップ長の5倍以上とすることを特徴とする。
【0017】
請求項3に係る発明は、請求項1又は2に記載のリラクタンス型回転電機において、フェライト磁石は、周方向の幅を基準にして径方向の厚みが0.3倍乃至1.0倍であることを特徴とする。
【0020】
請求項4に係る発明は、請求項1記載のリラクタンス型回転電機において、フェライト磁石の径方向外側面と、これと対向する空洞の内側面との間に隙間を設けたことを特徴とする。
【0021】
請求項5に係る発明は、請求項1乃至4のいずれか1項に記載のリラクタンス型回転電機において、空洞の中間部を通る中心線と回転子の外周との交点を基準にして、空洞の径方向外側の側面までの厚みが、側端部までの周方向距離の0.5倍以上であることを特徴とする。
【0022】
請求項6に係る発明は、請求項1乃至5のいずれか1項に記載のリラクタンス型回転電機において、空洞の中間部を通る中心線と回転子の外周との交差部に、凹形の窪みを形成したことを特徴とする。
【0023】
請求項7に係る発明は、請求項1乃至6のいずれか1項に記載の永久磁石式リラクタンス型回転電機において、回転子の磁気抵抗の小さい部位は鉄心のみの磁極で構成され、かつ、磁極の周方向幅は、磁極ピッチの0.15乃至0.35倍とすることを特徴とする。
【0024】
請求項8に係る発明は、請求項1乃至7のいずれか1項に記載の永久磁石式リラクタンス型回転電機において、空洞の各側端部にフェライト磁石より磁気エネルギーの高い永久磁石を嵌装したことを特徴とする。
【0028】
請求項9に係る発明は、請求項8記載のリラクタンス型回転電機において、永久磁石は樹脂と磁石紛から作られていることを特徴とする。
【0029】
請求項10に係る発明は、請求項1乃至9のいずれか1項に記載のリラクタンス型回転電機において、電機子巻線に鎖交するq軸磁束において、負荷時に電流による磁束とフェライト磁石又は永久磁石による磁束が相殺されて零となる状態で動作させることを特徴とする。
【0030】
【発明の実施の形態】
以下、本発明を図面に示す好適な実施形態に基づいて詳細に説明する。図1は本発明に係るリラクタンス型回転電機の第1の実施形態の構成を示す横断面図である。同図において、電機子1は、複数のスロットが設けられた電磁鋼板を積層してなる電機子鉄心2と、スロットにそれぞれ収められた電機子コイル3とで構成される。回転子5Aは、電磁鋼板を積層した回転子鉄心6と複数のフェライト磁石7とで構成される。この場合、回転子鉄心6には、周方向を例えば2n(nは整数)等分した各等分点に空洞8が形成されている。空洞8の周方向の中央部9の対向壁の径方向寸法(以下、q軸電機子磁束の通過方向を考慮して深さともいう)は大きく、空洞8の周方向の両側の側端部10は外周面に近づけて形成されると共に、周方向寸法(以下、q軸電機子磁束の通過方向を考慮して深さともいう)は小さく形成されている。
【0031】
図2は回転子5Aの磁極間の空洞部の近傍を拡大して示した部分断面図である。空洞8の側端部10の磁束の通過方向で見る深さをCsl、幅をCs2とし、空洞8の中央部9の磁束の通過方向で見た深さをCdとすると、本実施形態ではCs1=6×Lg,Cs2=0.5×Cdに形成している。ここで、Lgはエアギャップ長である。また、空洞8の中央部9にはフェライト磁石7が嵌装され、このフェライト磁石7は磁気抵抗の高い部分を通る電機子の磁束を打ち消すように磁化されている。さらに、空洞8の中央部9の周方向の両側に位置する対向内側面8sは、それぞれ平面状に形成されると共に、回転中心に近い側の相互間隔と比較して径方向外側に離れた側の相互間隔がより狭くされた傾斜面が形成され、フェライト磁石7もこれに嵌合するように、径方向外側が先細に形成されている。
【0032】
上記のように構成されたリラクタンス型回転電機における、耐減磁、トルク、永久磁石の保持及び可変速運転と効率について、図3をも参照して以下に説明する。
【0033】
a:耐減磁
隣り合う空洞8の間に存在する磁極部鉄心6aは磁気抵抗の低い主磁極を形成している。逆に、これらの磁極間に空洞8が存在するので、この磁極間の磁気抵抗は高くなる。空洞8が形成された部分に対するq軸電機子磁束は図3に示すように分布すると考えられる。すなわち、空洞8の中央部9は深さが大きいため、磁気抵抗はかなり大きくなり、空洞8の側端部10の磁気抵抗は中央部9よりも小さくなっている。このため、電流による減磁界は空洞8の側端部10において高く、磁束も集中する。一方、空洞8の中央部9に嵌装されたフェライト磁石7における減磁界は小さくなる。したがって、保磁力の小さなフェライト磁石7を使用しても負荷時に不可逆減磁を生じることはない。
【0034】
b:トルク
空洞8の中央部9は深さが大きいため磁気抵抗はかなり大きくなっている。従って、リラクタンストルクを大にすることができる。また、磁極部鉄心6aの幅Cs2は空洞8で制限されるが、空洞8が形成された部位の側端部10までの周方向幅及び空洞8の径方向外側の径方向幅は広くなっているため、鉄心の磁気飽和によるd軸インダクタンスの低下を緩和できる。ここで、図1に示したように、フェライト磁石7の径方向の寸法をMt、フェライト磁石7の周方向の寸法をMwとした場合、次式の関係、
0.3<磁石の厚み(磁化方向)Mt/磁石の幅Mw<1.0 …(1)
を持つ磁石形状にすると、電機子反作用磁束を効果的に相殺できる永久磁石の磁束を確保した上で、高磁気抵抗とすることができる。すなわち,高力率で大きなリラクタンストルクが得られる。より好ましくは、次式の関係、
0,4<磁石の厚みMt(磁化方向)/磁石の幅Mw<0.6 …(2)
を持つ磁石形状とすると、トルクと力率と可変速範囲(誘起電圧が小)の高い値が得られる。
【0035】
c:永久磁石の保持
回転時には永久磁石に遠心力が作用するので、磁石を保持する必要がある。本実施形態では,空洞8の周方向に対向する内側面8sは、中心部に近い側の相互間隔と比較して径方向外側に離れた側の相互間隔が狭く形成され、フェライト磁石7も空洞8の中央部9に、その半分程度が接触するように形成されているため、フェライト磁石7の遠心力を傾斜した内側面8sで受けることになり、フェライト磁石7による内側面8sの一部に応力が集中することを緩和することができ、鉄心が永久磁石7を強固に保持することができる。
【0036】
d:可変速運転と効率
一般的な永久磁石モータ、埋め込み型永久磁石モータ(IPM)では永久磁石のエアギャップの磁束密度は約1[T]程度と高く、誘起電圧も高くなる。また、鉄損も大である。本実施形態では、永久磁石のエアギャップ磁束密度は0.1〜0.2[T]程度であり、永久磁石モータの磁束の1/10〜1/5でも大きな出力が得られるため次のような利点がある。
【0037】
高速回転で過大な誘起電圧を発生しないため、過電圧でインバータのパワー素子やコンデンサを破損することはない。
【0038】
本実施形態では、d軸電流が主に磁界を形成する励磁電流であり、q軸電流はトルク電流となる。従って、高速回転になるにつれて、励磁電流であるd軸電流を小さくすれば一定電圧で高速回転まで容易に運転できる。従って、永久磁石モータのように永久磁石の磁束による過大な誘起電圧を打ち消すような弱め磁束のための大きな電流を流す必要はない。また、弱め磁束で生じる高周波鉄損も僅かである。
【0039】
運転状態に応じて、d軸の励磁電流とq軸のトルク電流を変化させることができ、最適な状態で運転できるので軽負荷から高負荷、低速から高速回転まで広範囲で効率が向上する。
【0040】
特に,外部から回転電機が空転させられている状態がある場合,永久磁石回転電機、埋め込み型永久磁石回転電機は、中・高速回転時に磁石の誘起電圧を電源電圧以下に抑制するための弱め磁束の電流を流し続けなければならない。つまり、出力を発生してないにもかかわらず電流を流すため、発生したジュール熱による電力の損失が積算されて総合運転効率が低下する。
【0041】
これに対して,本実施形態は誘起電圧が従来の永久磁石回転電機の1/10程度であるので、空転時に誘起電圧を低減する必要が無く、電流によるジュール熱による損失は発生しない。したがって、総合運転効率も向上できる。
【0042】
さらに、永久磁石回転電機は磁石磁束と電流で出力を発生するため、高い磁束を発生する希土類磁石を適用しなければならない。NdFeB等の希土類磁石は電気抵抗が小さいため、高調波磁界により磁石内に渦電流が発生して、損失が発生する。さらに、この損失のため磁石が高温になり不可逆減磁を起こす場合もある。一方,フェライト磁石の電気抵抗は希土類磁石の100倍程度もあるので,ほとんど渦電流が発生せず、総合運転効率を向上させることができる。また、回転子損失により永久磁石が熱減磁することもない。
【0043】
e:信頼性:
永久磁石7による巻線の鎖交磁束は少ないので、巻線が電気的に短絡した状態で回転しても過大な短絡電流は流れず、巻線を焼損することはない。さらに電気自動車、電車等の駆動モータに適用した場合でも、短絡故障時に急ブレーキが作用することが無く、また、回転時のブレーキ力は僅かであるので牽引することができる。
【0044】
仮に、永久磁石7が不可逆減磁しても、本実施形態ではリラクタンストルクが主であるので、出力は低下するが、純粋なリラクタンスモータとして駆動することができる。
【0045】
図4は本発明に係るリラクタンス型回転電機の第2の実施形態の回転子の構成を示す横断面図であり、図5は磁極間の空洞部の近傍を拡大して示した部分断面図である。ここで、回転子5Bは、回転子鉄心6の回転中心Oから見て空洞8の周方向の中心の延長上の外周面に凹形の窪み6cを形成したものである。ここで、回転子鉄心6の回転中心Oと、隣接する空洞8の中間部における側端部10の外縁とを直線的に結んだ範囲が主磁極幅Mwを形成している。なお、窪み6cを形成した以外は第1の実施形態と同一であるので、それぞれ同一の符号を付してその説明を省略する。
【0046】
この第2の実施形態のように、回転子鉄心6の空洞8の周方向の中心の延長上の外周面に凹形の窪み6cを形成することによって、磁極間のフェライト磁石7の外周部の磁気抵抗が、一層大きくされる。ここで、例えば、空洞8が形成された部位の径方向外側に形成した窪み6cの縁から側端部10までの周方向幅をWdb1とし、空洞8の径方向外側の幅をWbd2としたとき、Wbd2/Wdb1≧0.5のように構成する。
【0047】
これにより、d軸バイパス磁路6bは、空洞8の一方の側端部10から他方の側端部10までが磁気回路となる。このd軸バイパス磁路6bの外周部の磁束密度を1[T]とすると、d軸バイパス磁路6bの中央部(外周から一番深い箇所)では2[T]以下となるので磁気飽和の影響を緩和することができ、d軸の磁気抵抗が小となり、負荷時の電流が大きな運転領域でもインダクタンスは大きくなるので、大きなリラクタンストルクが得られる。
【0048】
すなわち、d軸とq軸のインダクタンスの差が大きくなり、q軸磁束の絶対値が小さくなると、電圧降下分も減少するので,力率の向上と電圧源で駆動しているときの最高回転数が伸びる。これにより、可変速範囲をさらに拡大できる。この場合、磁気抵抗の低い磁極部分6aは鉄心のみで構成され、磁極鉄心6aの周方向幅Mwは磁極ピッチの0.15〜0.35倍とすると良好な結果が得られた。
【0049】
図6は、第2の実施形態において主磁極の幅/磁極ピッチを変化させたときのリラクタンストルクの変化と、d軸インダクタンスからq軸のインダクタンスを引いたインダクタンス差の変化とを示している。主磁極の幅/磁極ピッチが0.15〜0.35の範囲で高いトルク、大きなインダクタンスの差が得られている。好ましくは、0.2〜0.3の範囲が最もよい値が得られることが分かる。
【0050】
図7は本発明に係るリラクタンス型回転電機の第3の実施形態の回転子の構成を示す部分横断面図である。図中、図5と同一の要素には同一の符号を付してその説明を省略する。この実施形態による回転子5Cは、フェライト磁石7の径方向外側の面と、その外側に位置する外周側鉄心、すなわち、d軸バイパス磁路6bとの間に間隙14を設けた点が第1及び第2の実施形態と構成を異にしている。
【0051】
図7において、フェライト磁石7の径方向外側に位置するd軸バイパス磁路6bは、d軸、すなわち、磁気抵抗の低い磁極の中心軸に沿った方向の磁束が周方向に通る磁路であり、磁気回路では磁極と並列に配置されるので、d軸磁束のバイパス磁路となる。なお,q軸は磁気抵抗の大きい領域となり、空洞の中心軸に沿った方向となる。フェライト磁石7とその外周側に位置するd軸バイパス磁路6b間に間隙14を設けたので、フェライト磁石7の遠心力がd軸バイパス磁路6bにかかることがなく、空洞8の中央部9の傾斜した内側面8sのみで受けることとなる。これによって、強度的に弱いd軸バイパス磁路6bを破損することを未然に防止することができる。
【0052】
図8は本発明に係るリラクタンス型回転電機の第4の実施形態の回転子の構成を示す部分横断面図である。図中、第2の実施形態を示す図5と同一の要素には同一の符号を付してその説明を省略する。この実施形態による回転子5Dは、空洞8の側端部10にフェライト磁石7より磁気エネルギーの高いNdFeB磁石11を嵌装したものである。ここで、NdFeB磁石llは保磁力が高く,例えばフェライト磁石7の保磁力は300kA/mであるのに対して、NdFeB磁石llは1000kA/mである。両者が同じ厚みの磁石であれば、約3〜4倍の電流による減磁界に耐え得る。また、空洞8の側端部10は電流による減磁界が高くなる。
【0053】
このように、第4の実施形態では空洞8の側端部10に保磁力の高いNdFeB磁石11を嵌装しているので、減磁することなく、永久磁石の磁束を増加させて永久磁石によるトルクを増加させることができる。空洞8の中央部9は磁気抵抗が大となり、リラクタンストルクが高くなり、同時にフェライト磁石7を厚くできるため、電流による減磁界に対しても強くなる効果が得られる。
【0054】
図9は本発明に係るリラクタンス形回転電機の第5の実施形態の回転子の構成を示す部分横断面図である。この実施形態による回転子5Eは、図8に示す第4の実施形態のうち、フェライト磁石7を除去し、空洞8の中央部9を空気のみとするか、ここに非磁性材(図示を省略)を挿入するかのいずれか一方を採用したものである。
【0055】
本発明に係る回転電機では、リラクタンストルクが主であり、永久磁石によるトルクは全トルクの10〜30%程度である。中央部9はフェライト磁石7を除去しても、磁気抵抗は略同じであるので、支配的なリラクタンストルクは僅かな減少となる。NdFeB磁石llはフェライト磁石7の10倍の磁気エネルギーを持つため、NdFeB磁石llの体積を図8に示したものより若干増加すれば、フェライト磁石7に相当する磁束を補って同等のトルクが得られる。
【0056】
図10は本発明に係るリラクタンス形回転電機の第6の実施形態の回転子の構成を示す横断面図である。図中、第2の実施形態を示す図4と同一の要素には同一の符号を付してその説明を省略する。この実施形態による回転子5Fは、空洞8Aの径方向内側の内面が平面をなし、径方向外側の内面がその外側に向かって凹状の円弧面をなし、さらに、周方向に相互に対向する内側面は放射状の平面をなしており、回転中心から見て末広がりの対向側面を形成している。そして、この空洞8Aの内部には径方向の内側及び外側が空洞8Aの内面に嵌合するが、周方向の側面は互いに平行に形成された樹脂成形磁石7bが嵌装されており、これによって側端部10が形成される。なお、樹脂成形磁石7Aは希土類永久磁石の紛を含んだ樹脂で成形したものである。そして、空洞の側面の鉄心6で樹脂成形磁石7Aを保持できないので、d軸バイパス磁路6bで樹脂成形磁石7Aを保持する。
【0057】
この第6の実施形態は、希土類永久磁石の紛を含んだ樹脂を回転子鉄心の空洞部8に注入することにより、磁石7Aの成形と挿入を同時に行う。これにより、樹脂成形磁石7Aの機械加工及び回転子鉄心の空洞部8Aへの磁石7の挿入工程が簡素化される。さらに量産性が向上する。
【0058】
この場合、電機子巻線に鎖交するq軸の磁束において、負荷時に電流による磁束と永久磁石による磁束が相殺されて零となる状態で動作させる。このときのトルクTを式で表現すると次のようになる。
【0059】
T=P×(Ld・Id・Iq−(Lq・Iq−ψm)Id) …(3)
ここで、
Ld,Lq:d軸,q軸のインダクタンス、
Id,Iq:d軸、q軸の電流、
ψm:永久磁石の鎖交磁束
である。この実施形態に係る回転電機では、q軸電流による磁束を永久磁石7の磁束で相殺して零とする。すなわち、
λq=Lq・Iq−ψm=0 …(4)
q軸磁束λqは0となるので、負荷時の電圧はd軸電圧のみとなり、力率を向上できる。同時に、(3)式から分かるようにq軸磁束λqは負のトルクを発生しており、空洞部8に漏れる磁束であるλqの磁束を減少させることにより、λqによる負のトルクを減少させてトルクも増加する。同時に、鉄心のコアバックを通る全磁束は少なくなるので、鉄心コアバックの磁気飽和も緩和されて出力も向上する。
【0060】
図11は本発明に係るリラクタンス形回転電機の第7の実施形態の回転子の構成を示す横断面図である。図中、第6の実施形態を示す図10と同一の要素には同一の符号を付してその説明を省略する。この実施形態における回転子5Gは空洞8Bの径方向内側の内面が、平面の中央部とその両側が径方向外側に向かう斜面との組み合わせになっている点が図10と異なっている。また、この形状に嵌合するような樹脂成形磁石7Bとした点が図10と異なるだけであり、これ以外は図10と同一に構成され、同様な作用、効果が得られる。
【0061】
【発明の効果】
以上の説明によって明らかなように、本発明によれば、不可逆減磁することなく、小型・高出力・高効率で広範囲の可変速運転を可能にするリラクタンス型回転電機を提供することができる。
【0062】
また、信頼性が高く、製造性に優れたリラクタンス型回転電機を提供することができる。
【図面の簡単な説明】
【図1】本発明に係るリラクタンス型回転電機の第1の実施形態の構成を示す横断面図。
【図2】図1に示した第1の実施形態の回転子の磁極間の空洞部の近傍を拡大して示した部分断面図。
【図3】図1に示した第1の実施形態の動作を説明するために、d軸、q軸の各電機子磁束の経路を示した説明図。
【図4】本発明に係るリラクタンス型回転電機の第2の実施形態の回転子の構成を示す横断面図。
【図5】図4に示した第2の実施形態の回転子の磁極間の空洞部の近傍を拡大して示した部分断面図。
【図6】本発明に係る第2の実施形態の動作を説明するために、主磁極の幅/磁極ピッチのと、トルク及びd軸,q軸のインダクタンス差との関係を示す線図。
【図7】本発明に係るリラクタンス型回転電機の第3の実施形態の回転子の構成を示す部分横断面図。
【図8】本発明に係るリラクタンス型回転電機の第4の実施形態の回転子の構成を示す部分横断面図。
【図9】本発明に係るリラクタンス形回転電機の第5の実施形態の回転子の構成を示す部分横断面図。
【図10】本発明に係るリラクタンス形回転電機の第6の実施形態の回転子の構成を示す横断面図。
【図11】本発明に係るリラクタンス形回転電機の第7の実施形態の回転子の構成を示す横断面図。
【図12】従来のリラクタンス型回転電機の横断面図。
【符号の説明】
1 電機子
2 電機子鉄心
3 電機子コイル
4 電機子歯
5,5A〜5G 回転子
6 回転子鉄心
6a 磁極部鉄心
6b d軸バイパス磁路
7 フェライト磁石
7A,7B 樹脂成形磁石
8,8A,8B 空洞
9 空洞の中央部
10 空洞の側端部
11 NdFeB磁石
12 回転子の凸部(磁極)
13 回転子の凹部
14 隙間[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reluctance type rotating electrical machine in which a permanent magnet is fitted to a rotor.
[0002]
[Prior art]
FIG. 12 is a cross-sectional view of a conventional reluctance type rotating electrical machine. In the figure, an armature 1 is composed of an
[0003]
Here, the principle of output generation of the reluctance type rotating electrical machine will be described. In the reluctance type rotating electric machine, since the outer periphery of the rotor is provided with projections and depressions, the magnetic resistance of the
[0004]
It should be noted that not only the geometrical convex part and concave part are formed on the outer peripheral part of the rotor, but also the magnetic convex part and concave part are arranged so that the magnetic resistance and magnetic flux density distribution varies depending on the circumferential position of the rotor. Can also be formed.
[0005]
Another high-performance rotating electrical machine is a permanent magnet rotating electrical machine. The armature is the same as a reluctance type rotating electric machine, but a surface-arranged type rotating electric machine in which a permanent magnet is arranged on the outer periphery of the rotor core over almost the entire circumference of the rotor, and a permanent magnet in the rotor core. There is an embedded permanent magnet rotating electrical machine.
[0006]
[Problems to be solved by the invention]
Since the reluctance type rotating electric machine has different magnetic resistance at the position of the rotor due to irregularities on the surface of the rotor core, the gap magnetic flux density also changes. Due to this change, the magnetic energy changes and an output is obtained.
[0007]
However, as the current increases, local magnetic saturation increases at the convex portion of the iron core (hereinafter also referred to as the d-axis) that becomes the magnetic pole. As a result, the magnetic flux leaking to the concave portion of the iron core (hereinafter also referred to as the q-axis) between the magnetic poles increases, and the effective magnetic flux passing through the magnetic poles decreases and the output decreases. On the other hand, in terms of magnetic energy, the change in the gap magnetic flux density becomes gentle and the change in the accompanying magnetic energy becomes small due to the leakage magnetic flux generated by the magnetic saturation of the convex portion of the iron core. For this reason, the increase rate of the output with respect to the current decreases, and the output is eventually saturated. Further, the q-axis leakage magnetic flux induces an invalid voltage to lower the power factor.
[0008]
On the other hand, rare earth permanent magnets with a high magnetic energy product are used in permanent magnet rotating electrical machines for miniaturization and high output. Rare earth materials are scarce in resources and are therefore not optimal for general purpose machines that are mass produced. On the other hand, since the ferrite magnet of iron oxide is an abundant resource as a material, it can be supplied stably. However, when a ferrite magnet is applied to the field of a rotating electrical machine, there are two major problems.
[0009]
For one, the magnetic energy product of the ferrite magnet is about 1/10 that of the rare earth magnet, so that the torque generated by the product of the interlinkage magnetic flux and current of the permanent magnet is small, and therefore the output per volume is also small.
[0010]
Another problem is that when the size is reduced and the output is increased, the specific electric load (ampere turn per inner armature length) increases and the coercive force of the ferrite magnet is small. Ferrite magnet is irreversibly demagnetized. In particular, ferrite magnets have a serious problem that they cause irreversible demagnetization at a low temperature of 20 ° C. or less and at a lower demagnetizing field than the above.
[0011]
When variable speed operation is considered, the following problem also occurs. That is, since the magnetic flux of the permanent magnet is constant, the voltage induced in the armature coil increases in proportion to the rotation speed. Therefore, when performing variable speed operation over a wide range up to high-speed rotation, the surface magnet type rotating electrical machine cannot reduce the field magnetic flux, so if the power supply voltage is constantbaseIt is difficult to operate at a constant output more than twice the speed. The embedded permanent magnet rotating electric machine has a smaller interlinkage magnetic flux of the permanent magnet than the surface type permanent magnet rotating electric machine, so that an armature reaction that forms a demagnetizing field opposite to the magnetizing direction of the magnet is applied to the magnet. There is a method for reducing the flux linkage. However, since it is necessary to apply a large demagnetizing field to the permanent magnet, irreversible demagnetization occurs in the ferrite magnet.
[0012]
In addition, during idling, a current is caused to flow through the armature winding for reducing the magnetic flux of the magnet, so that a power loss due to Joule heat occurs and the overall efficiency decreases.
[0013]
The present invention has been made to solve the above problems, and a first object is to provide a reluctance type rotating electric machine that enables variable speed operation over a wide range with a small size, high output and high efficiency without irreversible demagnetization. In offer.
[0014]
Another object of the present invention is to provide a reluctance type rotating electrical machine having high reliability and excellent manufacturability.
[0015]
[Means for Solving the Problems]
The invention according to claim 1
In a reluctance type rotating electrical machine comprising an armature having an armature coil and a rotor having a portion having different magnetic resistance in the circumferential direction,
As a portion having a large magnetic resistance of the rotor, it has a central portion and side end portions extending radially outwardly connected to both sides in the circumferential direction with respect to the central portion,In order to make the side side magnetoresistive smaller than the central magnetoresistive,CentralRadial dimensionA cavity having a smaller circumferential dimension at the side end than
A ferrite magnet fitted in the center of the cavity and magnetized to cancel the magnetic flux of the armature current through the cavity;
And the opposite inner side surfaces located on both sides in the circumferential direction of the central portion of the cavity are each formed in a planar shape, and are on the side farther outward in the radial direction compared to the mutual spacing near the center of rotation Are formed to have a slanted surface, and the slanted surface receives a part of the centrifugal force acting on the ferrite magnet during rotation.And
Further, the side end portions formed continuously on both sides in the circumferential direction of the central portion are formed so as to have an inner surface smoothly continuing on an extension line of the inner surface on the radially outer side of the central portion. In this way, a smooth magnetic path is formed between the peripheral edge of the rotor core and the central portion and the side end portion.It is characterized by that.
[0016]
The invention according to
[0017]
The invention according to
[0020]
The invention according to
[0021]
The invention according to claim 5 is the invention according to claims 1 to 4.In the reluctance type rotating electric machine according to any one of the above, the thickness to the side surface on the radially outer side of the cavity is based on the intersection of the center line passing through the middle part of the cavity and the outer periphery of the rotor, up to the side end part. It is characterized by being 0.5 times or more of the circumferential distance.
[0022]
The invention according to
[0023]
The invention according to
[0024]
The invention according to
[0028]
The invention according to
[0029]
The invention according to
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on preferred embodiments shown in the drawings. FIG. 1 is a cross-sectional view showing a configuration of a first embodiment of a reluctance type rotating electrical machine according to the present invention. In the figure, an armature 1 is composed of an
[0031]
FIG. 2 is an enlarged partial sectional view showing the vicinity of the cavity between the magnetic poles of the
[0032]
The anti-demagnetization resistance, torque, permanent magnet retention, variable speed operation and efficiency in the reluctance type rotating electrical machine configured as described above will be described below with reference to FIG.
[0033]
a: Demagnetization resistance
The magnetic pole
[0034]
b: Torque
Since the
0.3 <magnet thickness (magnetization direction) Mt / magnet width Mw <1.0 (1)
When the magnet shape having the shape of is used, the magnetic resistance of the permanent magnet capable of effectively canceling the armature reaction magnetic flux can be secured, and the high magnetic resistance can be obtained. That is, a large reluctance torque can be obtained at a high power factor. More preferably, the relationship of the following formula:
0,4 <magnet thickness Mt (magnetization direction) / magnet width Mw <0.6 (2)
If the magnet shape has, high values of torque, power factor and variable speed range (small induced voltage) can be obtained.
[0035]
c: Retention of permanent magnet
Since centrifugal force acts on the permanent magnet during rotation, it is necessary to hold the magnet. In the present embodiment, the
[0036]
d: Variable speed operation and efficiency
In a general permanent magnet motor and an embedded permanent magnet motor (IPM), the magnetic flux density of the air gap of the permanent magnet is as high as about 1 [T], and the induced voltage is also high. Iron loss is also significant. In this embodiment, the air gap magnetic flux density of the permanent magnet is about 0.1 to 0.2 [T], and a large output can be obtained even at 1/10 to 1/5 of the magnetic flux of the permanent magnet motor. There are significant advantages.
[0037]
Since an excessive induced voltage is not generated at high speed rotation, the inverter does not damage the power element or capacitor of the inverter.
[0038]
In the present embodiment, the d-axis current is an excitation current that mainly forms a magnetic field, and the q-axis current is a torque current. Therefore, if the d-axis current, which is the excitation current, is reduced as the rotation speed is increased, the operation can be easily performed at a constant voltage up to the high-speed rotation. Therefore, it is not necessary to flow a large current for the weak magnetic flux that cancels the excessive induced voltage due to the magnetic flux of the permanent magnet as in the permanent magnet motor. Moreover, the high-frequency iron loss caused by the weak magnetic flux is also small.
[0039]
The d-axis excitation current and the q-axis torque current can be changed according to the operation state, and the operation can be performed in an optimum state, so that the efficiency is improved over a wide range from a light load to a high load and from a low speed to a high speed rotation.
[0040]
In particular, when there is a state where the rotating electrical machine is idling from the outside, the permanent magnet rotating electrical machine and the embedded permanent magnet rotating electrical machine have a weak magnetic flux for suppressing the induced voltage of the magnet below the power supply voltage during medium and high speed rotation. The current must continue to flow. That is, since a current flows even though no output is generated, power loss due to the generated Joule heat is integrated, and the overall operation efficiency is lowered.
[0041]
On the other hand, in the present embodiment, the induced voltage is about 1/10 that of a conventional permanent magnet rotating electric machine. Therefore, it is not necessary to reduce the induced voltage during idling, and no loss due to Joule heat due to current occurs. Therefore, overall operation efficiency can be improved.
[0042]
Further, since the permanent magnet rotating electric machine generates an output with a magnetic flux and a current, a rare earth magnet that generates a high magnetic flux must be applied. Since rare earth magnets such as NdFeB have low electrical resistance, eddy currents are generated in the magnet due to the harmonic magnetic field, resulting in loss. Furthermore, this loss may cause the magnet to become hot and cause irreversible demagnetization. On the other hand, since the electric resistance of the ferrite magnet is about 100 times that of the rare earth magnet, almost no eddy current is generated, and the overall operation efficiency can be improved. Further, the permanent magnet is not thermally demagnetized due to the rotor loss.
[0043]
e: Reliability:
Since the interlinkage magnetic flux of the winding by the
[0044]
Even if the
[0045]
FIG. 4 is a cross-sectional view showing the configuration of the rotor of the second embodiment of the reluctance type rotating electric machine according to the present invention, and FIG. 5 is a partial cross-sectional view showing the vicinity of the cavity between the magnetic poles in an enlarged manner. is there. Here, the rotor 5 </ b> B is formed by forming a
[0046]
As in the second embodiment, by forming a
[0047]
As a result, the d-axis bypass
[0048]
That is, when the difference between the d-axis and q-axis inductance increases and the absolute value of the q-axis magnetic flux decreases, the voltage drop also decreases. Therefore, the maximum rotational speed when driving with a voltage source is improved. Will grow. Thereby, the variable speed range can be further expanded. In this case, a favorable result was obtained when the
[0049]
FIG. 6 shows changes in reluctance torque when the width of the main magnetic pole / magnetic pole pitch is changed in the second embodiment, and changes in the inductance difference obtained by subtracting the q-axis inductance from the d-axis inductance. A large torque and large inductance difference are obtained when the width / pole pitch of the main pole is in the range of 0.15 to 0.35. Preferably, it can be seen that the best value is obtained in the range of 0.2 to 0.3.
[0050]
FIG. 7 is a partial cross-sectional view showing the configuration of the rotor of the third embodiment of the reluctance type rotating electric machine according to the present invention. In the figure, the same elements as those in FIG. The
[0051]
In FIG. 7, a d-axis bypass
[0052]
FIG. 8 is a partial cross-sectional view showing the configuration of the rotor of the fourth embodiment of the reluctance type rotating electric machine according to the present invention. In the figure, the same elements as those in FIG. 5 showing the second embodiment are denoted by the same reference numerals, and the description thereof is omitted. The rotor 5 </ b> D according to this embodiment is configured such that an
[0053]
As described above, in the fourth embodiment, the
[0054]
FIG. 9 is a partial cross-sectional view showing the configuration of the rotor of the fifth embodiment of the reluctance type rotating electric machine according to the present invention. In the
[0055]
In the rotating electrical machine according to the present invention, reluctance torque is mainly used, and the torque by the permanent magnet is about 10 to 30% of the total torque. Even if the
[0056]
FIG. 10 is a cross-sectional view showing the configuration of the rotor of the sixth embodiment of the reluctance type rotating electric machine according to the present invention. In the figure, the same reference numerals are given to the same elements as those in FIG. 4 showing the second embodiment, and the description thereof is omitted. In the
[0057]
In the sixth embodiment, the resin containing the rare earth permanent magnet powder is injected into the
[0058]
In this case, the q-axis magnetic flux interlinking with the armature winding is operated in a state where the magnetic flux caused by the current and the magnetic flux caused by the permanent magnet cancel each other at the time of loading. The torque T at this time is expressed as follows.
[0059]
T = P × (Ld · Id · Iq− (Lq · Iq−ψm) Id) (3)
here,
Ld, Lq: d-axis and q-axis inductances,
Id, Iq: d-axis and q-axis currents,
ψm: Interlinkage magnetic flux of permanent magnet
It is. In the rotating electrical machine according to this embodiment, the magnetic flux due to the q-axis current is canceled by the magnetic flux of the
λq = Lq · Iq−ψm = 0 (4)
Since the q-axis magnetic flux λq is 0, the voltage at the time of loading is only the d-axis voltage, and the power factor can be improved. At the same time, as can be seen from the equation (3), the q-axis magnetic flux λq generates a negative torque. By reducing the magnetic flux of λq, which is a magnetic flux leaking into the
[0060]
FIG. 11 is a cross-sectional view showing the configuration of the rotor of the seventh embodiment of the reluctance type rotating electric machine according to the present invention. In the figure, the same elements as those in FIG. 10 showing the sixth embodiment are denoted by the same reference numerals, and the description thereof is omitted. The
[0061]
【The invention's effect】
As is apparent from the above description, according to the present invention, it is possible to provide a reluctance type rotating electrical machine that enables variable speed operation over a wide range with small size, high output, and high efficiency without irreversible demagnetization.
[0062]
In addition, a reluctance type rotating electrical machine with high reliability and excellent manufacturability can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of a first embodiment of a reluctance type rotating electric machine according to the present invention.
2 is an enlarged partial sectional view showing the vicinity of a cavity between magnetic poles of the rotor of the first embodiment shown in FIG. 1;
FIG. 3 is an explanatory diagram showing paths of armature magnetic fluxes of d-axis and q-axis in order to explain the operation of the first embodiment shown in FIG. 1;
FIG. 4 is a cross-sectional view showing a configuration of a rotor according to a second embodiment of a reluctance type rotating electric machine according to the present invention.
FIG. 5 is an enlarged partial cross-sectional view showing the vicinity of a cavity between magnetic poles of a rotor according to the second embodiment shown in FIG. 4;
FIG. 6 is a diagram showing the relationship between the main magnetic pole width / magnetic pole pitch and the torque and d-axis and q-axis inductance differences in order to explain the operation of the second embodiment according to the present invention;
FIG. 7 is a partial cross-sectional view showing a configuration of a rotor of a third embodiment of a reluctance type rotating electric machine according to the present invention.
FIG. 8 is a partial cross-sectional view showing a configuration of a rotor according to a fourth embodiment of a reluctance type rotating electric machine according to the present invention.
FIG. 9 is a partial cross-sectional view showing a configuration of a rotor of a fifth embodiment of a reluctance type rotating electric machine according to the present invention.
FIG. 10 is a cross-sectional view showing a configuration of a rotor of a sixth embodiment of a reluctance type rotating electric machine according to the present invention.
FIG. 11 is a cross-sectional view showing a configuration of a rotor of a seventh embodiment of a reluctance type rotating electric machine according to the present invention.
FIG. 12 is a cross-sectional view of a conventional reluctance type rotating electric machine.
[Explanation of symbols]
1 Armature
2 Armature core
3 Armature coil
4 Armature teeth
5,5A ~ 5G rotor
6 Rotor core
6a Iron core
6b d-axis bypass magnetic path
7 Ferrite magnet
7A, 7B resin molded magnet
8,8A, 8B cavity
9 Center of the cavity
10 Side edge of the cavity
11 NdFeB magnet
12 Convex part of rotor (magnetic pole)
13 Concave part of rotor
14 Clearance
Claims (10)
前記回転子の磁気抵抗の大きい部位として、中央部とこの中央部に対して周方向の両側に連接して径方向外側に延出する側端部とを有し、この中央部の磁気抵抗よりも側端部の磁気抵抗の方が小さくなるようにするため、中央部の径方向の寸法よりも側端部の周方向の寸法が小さくなっている空洞と、
前記空洞の中央部に嵌装され、前記空洞を通る電機子電流の磁束を打ち消すように磁化されているフェライト磁石と、
を備え、しかも前記空洞の中央部の周方向の両側に位置する対向内側面は、それぞれ平面状に形成されると共に、回転中心に近い側の相互間隔と比較して径方向外側に離れた側の相互間隔がより狭く形成されることによって傾斜面をなしており、この傾斜面は回転時に前記フェライト磁石に作用する遠心力の一部を受けるようになっており、
更に、前記中央部の周方向の両側に連設して形成されている前記側端部は、中央部の径方向外側の内側面の延長線上に滑らかに連続する内側面を有するように形成され、これにより回転子鉄心の周縁と前記中央部及び前記側端部との間に滑らかな磁路が形成されるようにした、
ことを特徴とするリラクタンス型回転電機。In a reluctance type rotating electrical machine comprising an armature having an armature coil and a rotor having a portion having different magnetic resistance in the circumferential direction,
As a large portion of the magnetic resistance of the rotor, and a central portion and side edge portions extending radially outwardly and connected to both sides of the circumferential direction with respect to the central portion, than the magnetic resistance of the central portion Also, in order to reduce the magnetic resistance of the side end portion, a cavity having a circumferential dimension of the side end portion smaller than a radial dimension of the central portion,
A ferrite magnet fitted in the center of the cavity and magnetized to cancel the magnetic flux of the armature current through the cavity;
And the opposite inner side surfaces located on both sides in the circumferential direction of the central portion of the cavity are each formed in a planar shape, and are on the side farther outward in the radial direction compared to the mutual spacing near the center of rotation Are formed with a narrower mutual interval, and this inclined surface receives a part of the centrifugal force acting on the ferrite magnet during rotation ,
Further, the side end portions formed continuously on both sides in the circumferential direction of the central portion are formed so as to have an inner surface smoothly continuing on an extension line of the inner surface on the radially outer side of the central portion. In this way, a smooth magnetic path is formed between the peripheral edge of the rotor core and the central portion and the side end portion.
A reluctance rotary electric machine characterized by that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001270678A JP4619585B2 (en) | 2001-09-06 | 2001-09-06 | Reluctance type rotating electrical machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001270678A JP4619585B2 (en) | 2001-09-06 | 2001-09-06 | Reluctance type rotating electrical machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003088071A JP2003088071A (en) | 2003-03-20 |
JP4619585B2 true JP4619585B2 (en) | 2011-01-26 |
Family
ID=19096302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001270678A Expired - Fee Related JP4619585B2 (en) | 2001-09-06 | 2001-09-06 | Reluctance type rotating electrical machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4619585B2 (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10357502A1 (en) * | 2003-12-09 | 2005-07-07 | BSH Bosch und Siemens Hausgeräte GmbH | Electric machine |
JP4580683B2 (en) * | 2004-05-17 | 2010-11-17 | 株式会社東芝 | Permanent magnet type reluctance type rotating electrical machine |
JP2006325348A (en) * | 2005-05-19 | 2006-11-30 | Nidec Shibaura Corp | Rotor |
US7705503B2 (en) | 2005-09-07 | 2010-04-27 | Kabushiki Kaisha Toshiba | Rotating electrical machine |
JP5303833B2 (en) * | 2006-12-14 | 2013-10-02 | ダイキン工業株式会社 | Motor rotor, motor and compressor |
JP5112219B2 (en) * | 2007-11-05 | 2013-01-09 | 株式会社東芝 | Permanent magnet motor, washing machine and control device |
JP2010063277A (en) * | 2008-09-04 | 2010-03-18 | Aisin Seiki Co Ltd | Rotor |
JP2010207067A (en) | 2009-03-06 | 2010-09-16 | Hyundai Motor Co Ltd | Magnet-embedded rotor |
US8072108B2 (en) * | 2009-10-30 | 2011-12-06 | Finkle Louis J | Electric motor or generator with mechanically tuneable permanent magnetic field |
US8952587B2 (en) | 2009-10-30 | 2015-02-10 | Louis J. Finkle | Windmill generator with mechanically tuneable permanent magnetic field |
US8288908B2 (en) * | 2009-10-30 | 2012-10-16 | Finkle Louis J | Reconfigurable inductive to synchronous motor |
JP5418467B2 (en) | 2010-11-02 | 2014-02-19 | 株式会社安川電機 | Rotating electric machine |
CN107342644B (en) | 2011-10-26 | 2020-11-17 | 三菱电机株式会社 | Rotor and permanent magnet embedded motor |
JP5891089B2 (en) * | 2012-03-29 | 2016-03-22 | 株式会社日立産機システム | Permanent magnet synchronous machine |
US9484794B2 (en) | 2012-04-20 | 2016-11-01 | Louis J. Finkle | Hybrid induction motor with self aligning permanent magnet inner rotor |
US9419504B2 (en) | 2012-04-20 | 2016-08-16 | Louis J. Finkle | Hybrid induction motor with self aligning permanent magnet inner rotor |
JP6319973B2 (en) * | 2012-10-19 | 2018-05-09 | 株式会社東芝 | Permanent magnet type rotating electric machine |
WO2015037127A1 (en) * | 2013-09-13 | 2015-03-19 | 三菱電機株式会社 | Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device |
US10998802B2 (en) | 2017-02-21 | 2021-05-04 | Louis J. Finkle | Hybrid induction motor with self aligning hybrid induction/permanent magnet rotor |
US10476363B2 (en) | 2014-01-09 | 2019-11-12 | Louis J. Finkle | Hybrid electric motor with self aligning permanent magnet and squirrel cage dual rotors magnetically coupled with permeant magnets and bars at synchronous speed |
US9923439B2 (en) | 2014-01-09 | 2018-03-20 | Motor Generator Technology, Inc. | Hybrid electric motor with self aligning permanent magnet and squirrel cage rotors |
US9923440B2 (en) | 2014-01-09 | 2018-03-20 | Motor Generator Technology, Inc. | Hybrid electric motor with self aligning permanent magnet and squirrel cage rotors |
GB2564263B (en) | 2016-03-25 | 2023-02-01 | Mitsubishi Electric Corp | Rotor, motor, compressor, and refrigeration air conditioner |
JP6634458B2 (en) * | 2018-01-11 | 2020-01-22 | 本田技研工業株式会社 | Rotating electric machine rotor |
WO2020067349A1 (en) * | 2018-09-28 | 2020-04-02 | 本田技研工業株式会社 | Rotor of electric rotary machine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000116085A (en) * | 1998-09-30 | 2000-04-21 | Toshiba Corp | Permanent magnet reluctance rotating electric machine |
JP2000209827A (en) * | 1999-01-18 | 2000-07-28 | Nissan Motor Co Ltd | Pm motor and centralized winding stator used in the same |
JP2000217287A (en) * | 1999-01-19 | 2000-08-04 | Toshiba Corp | Permanent magnet type motor and compressor |
JP2000270503A (en) * | 1999-03-17 | 2000-09-29 | Fujitsu General Ltd | Permanent magnet motor |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07312837A (en) * | 1994-03-25 | 1995-11-28 | Meidensha Corp | Rotor for permanent magnet motor |
JP3734889B2 (en) * | 1996-06-27 | 2006-01-11 | アイチエレック株式会社 | Brushless DC motor |
JP3308828B2 (en) * | 1996-10-18 | 2002-07-29 | 株式会社日立製作所 | Permanent magnet rotating electric machine and electric vehicle using the same |
JP3280896B2 (en) * | 1997-10-31 | 2002-05-13 | 株式会社東芝 | Permanent magnet type reluctance type rotating electric machine |
JP3658507B2 (en) * | 1997-09-29 | 2005-06-08 | 株式会社日立製作所 | Permanent magnet rotating electric machine and electric vehicle using the same |
-
2001
- 2001-09-06 JP JP2001270678A patent/JP4619585B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000116085A (en) * | 1998-09-30 | 2000-04-21 | Toshiba Corp | Permanent magnet reluctance rotating electric machine |
JP2000209827A (en) * | 1999-01-18 | 2000-07-28 | Nissan Motor Co Ltd | Pm motor and centralized winding stator used in the same |
JP2000217287A (en) * | 1999-01-19 | 2000-08-04 | Toshiba Corp | Permanent magnet type motor and compressor |
JP2000270503A (en) * | 1999-03-17 | 2000-09-29 | Fujitsu General Ltd | Permanent magnet motor |
Also Published As
Publication number | Publication date |
---|---|
JP2003088071A (en) | 2003-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4619585B2 (en) | Reluctance type rotating electrical machine | |
US8030817B2 (en) | Rotor of permanent-magnet-type rotating electrical machine | |
JP5398103B2 (en) | Permanent magnet rotating electric machine | |
JP4680442B2 (en) | Motor rotor | |
EP1643618B1 (en) | Rotor for rotary electric machine | |
US9692265B2 (en) | Variable magnetic flux-type rotary electric machine | |
JP5159171B2 (en) | Permanent magnet rotating electric machine | |
WO2020034637A1 (en) | Built-in hybrid permanent-magnet memory motor having partially parallel magnetic circuits | |
CN103066719B (en) | A kind of magneticfocusing stator permanent magnetic type vernier motor | |
JP2002112513A (en) | Dynamo-electric machine | |
WO2008023413A1 (en) | Permanent magnetic type electric motor | |
JP6833907B2 (en) | Rotor and rotating machine | |
JP2008136298A (en) | Rotator of rotary electric machine, and rotary electric machine | |
CN103973062A (en) | Flux-switching hybrid permanent magnet memory motor with high power density | |
JP3819211B2 (en) | Permanent magnet type reluctance type rotating electrical machine | |
CN115065212A (en) | Novel stator partition double salient pole memory motor | |
CN115118111A (en) | Novel hybrid excitation double-stator and double-salient permanent magnet motor | |
JP3172497B2 (en) | Permanent magnet type reluctance type rotating electric machine | |
JP2012029563A (en) | Permanent magnet type rotary electric machine | |
CN106787569B (en) | Magnetic suspension magnetic flux switching motor | |
CN110138165B (en) | Composite magnetic circuit stator split type axial permanent magnet motor | |
JP3857017B2 (en) | Permanent magnet type reluctance type rotating electrical machine | |
CN206650564U (en) | A kind of magnetic suspension flux switch motor | |
CN114301203A (en) | High torque density magnetic circuit series type rotor structure | |
JP4138406B2 (en) | Permanent magnet type reluctance type rotating electrical machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091023 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100326 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100524 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101001 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101027 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131105 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4619585 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131105 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |