JP3857017B2 - Permanent magnet type reluctance type rotating electrical machine - Google Patents

Permanent magnet type reluctance type rotating electrical machine Download PDF

Info

Publication number
JP3857017B2
JP3857017B2 JP2000095180A JP2000095180A JP3857017B2 JP 3857017 B2 JP3857017 B2 JP 3857017B2 JP 2000095180 A JP2000095180 A JP 2000095180A JP 2000095180 A JP2000095180 A JP 2000095180A JP 3857017 B2 JP3857017 B2 JP 3857017B2
Authority
JP
Japan
Prior art keywords
axis
permanent magnet
rotor
magnetic flux
rotating electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000095180A
Other languages
Japanese (ja)
Other versions
JP2001286109A (en
Inventor
伴之 服部
政憲 新
和人 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000095180A priority Critical patent/JP3857017B2/en
Publication of JP2001286109A publication Critical patent/JP2001286109A/en
Application granted granted Critical
Publication of JP3857017B2 publication Critical patent/JP3857017B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は小型・高出力で広範囲の運転が可能な、永久磁石を複合した永久磁石式リラクタンス型回転電機に関する。
【0002】
【従来の技術】
従来のリラクタンス型回転電機は回転子に界磁を形成するコイルが不要であり、図10に示すように回転子4は凹凸のある鉄心9のみで構成できる。このため、リラクタンス型回転電機は構造が簡素であり、かつ安価である特徴がある。
【0003】
このリラクタンス型回転電機の出力の発生原理は、次の通りである。リラクタンス型回転電機は回転子4に凹凸があることにより、その凸部で磁気抵抗が小となり、凹部では磁気抵抗が大となる。すなわち、凸部と凹部上の空隙部分で、電機子巻線3に電流を流すことにより蓄えられる磁気エネルギーが異なる。この磁気エネルギーの変化により、出力が発生する。また、凸部と凹部は幾何的に凹凸する形状のみでなく、磁気的に凹凸が形成できる形状(つまり、磁気抵抗、磁束密度分布が回転子の位置により異なる形状)であればよい。
【0004】
他の高性能な回転電機として、永久磁石回転電機がある。この永久磁石回転電機における電機子の構成はリラクタンス型回転電機と同様であるが、回転子にはそのほぼ全周にわたって永久磁石が配置されている。
【0005】
【発明が解決しようとする課題】
従来の回転電機には、次のような技術的課題があった。リラクタンス型回転電機は回転子鉄心の表面の凹凸により回転子の位置で磁気抵抗が異なり、空隙磁束密度も変化することになる。この変化により磁気エネルギーが変化して出力が得られる。
【0006】
しかし、電流が増加するのに伴って磁極となる回転子鉄心の凸部(d軸)において局部的な磁気飽和が拡大する。これにより、磁極間となる鉄心の凹み部分(q軸)に漏れる磁束が増加して有効な磁束が減少し、出力が低下する。これを磁気エネルギーの面から見てみると、回転子鉄心の凸部の磁気飽和で生じる漏れ磁束によって空隙磁束密度の変化が緩やかになり、磁気エネルギー変化が小となる。このため、電流に対して出力の増加率が低下し、やがて出力が飽和する。また、q軸の漏れ磁束は無効な電圧を誘起して力率を低下させる。
【0007】
一方、他の方式の高出力の回転電機として高磁気エネルギー積の希土類永久磁石を適用した永久磁石電動機の場合は、回転子鉄心の表面に高磁気エネルギー積の永久磁石を配置することによって高磁界を電動機の空隙に形成できるので、小型・高出力が可能である。
【0008】
しかし、永久磁石の磁束は一定であるので、電機子巻線に誘導される電圧は回転速度に比例して大きくなる。したがって、高速回転までの広範囲の可変速運転を行う場合、界磁磁束を減らすことができないため、電源電圧を一定とすると基底速度の2倍以上の定出力運転は困難である。
【0009】
本発明はかかる従来の技術的課題を解決するためになされたもので、小型・高出力で広範囲の可変速運転が可能な永久磁石式リラクタンス型回転電機を提供することを目的とする。
【0018】
【課題を解決するための手段】
請求項の発明の永久磁石式リラクタンス型回転電機は、電機子巻線を持つ固定子と、この固定子の内側にあって磁束の通りやすい部分(d軸)と磁束の通りにくい部分(q軸)とが交互に形成されるように複数の空洞を当該q軸それぞれに対して対称な配置となるように設けることにより複数の磁気障壁が設けられ、前記空洞のうち前記q軸に対してその両側の対称な位置の空洞それぞれに永久磁石を配置した回転子とを備え、磁気抵抗を前記q軸中心で最大とし、前記q軸に対し左右対称にし、かつ、固定子鉄心歯の回転子側の付け根における幅Lsは、スロット数Ns、回転子直径Rrとすると、0.45×πRr/Ns≦Ls≦0.65×πRr/Nsとしたものである。
【0019】
請求項の発明は、請求項1の永久磁石式リラクタンス型回転電機において、前記q軸方向に位置する空洞を、菱形もしくはそれに準ずる形状にしたものである。
請求項の発明の永久磁石式リラクタンス型回転電機は、電機子巻線を持つ固定子と、この固定子の内側にあって磁束の通りやすい部分(d軸)と磁束の通りにくい部分(q軸)とが交互に形成されるように複数の空洞を当該q軸それぞれに対して対称な配置となるように設けることにより複数の磁気障壁が設けられ、前記空洞のうち前記q軸に対してその両側の対称な位置の空洞それぞれに永久磁石を配置した回転子とを備え、磁気抵抗を前記q軸中心で最大とし、前記q軸に対し左右対称にし、かつ、回転子中心を中心にして前記d軸に最も接近し対称に配置した前記2つの永久磁石同士のなす角度をθとすると、当該角度θを0.28×360°/P≦θ≦0.4×360°/P(Pは極数)としたことを特徴とするものである。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を図に基づいて詳説する。
【0021】
[第1の実施の形態]
図1は、本発明の第1の実施の形態の永久磁石式リラクタンス型回転電機の径方向断面図である。固定子1は電磁鋼板を積層した固定子鉄心歯2と電機子巻線3から成る。図2に詳細に示すように、回転子4には複数の空洞が形成してあり、そのうちのV字に配置された空洞に永久磁石6が挿入してある。そして永久磁石6の挿入されていない空洞5は断面形状を菱形もしくはそれに準ずる形状にすることにより、磁束の通りにくいq軸方向で空洞幅が最大となり、q軸に対称に空洞幅が狭くなるようにしてある。
【0022】
次に、第1の実施の形態の永久磁石型リラクタンス型回転電機の動作について説明する。
【0023】
<トルクの発生>
回転子4には空洞5により磁気抵抗の凹凸が存在する。磁気抵抗の小さい個所では空隙磁束密度が高く、逆に磁気抵抗の大きい個所では空隙磁束密度が小さくなる。この磁束密度変化によりリラクタンストルクが発生する。
【0024】
このときq軸中心で磁気抵抗が最大となる構造にすることにより、顕著に空隙磁束密度の差を大きくすることができ、トルクを大きくできる。そのためには、永久磁石6の挿入されていない空洞5の形状を上述したように菱形もしくはそれに準ずる形状にするのが好ましい。そしてさらに、図3に示したように、q軸方向の空洞5が回転子鉄心の外周を突き抜けて空隙に開口するようにしたとき、空隙磁束密度の差はいっそう大きくでき、トルクも大きくできる。
【0025】
さらに、q軸となる磁気抵抗の大きい個所の回転子鉄心内には永久磁石6が配置されている。この永久磁石6は、q軸方向に分布するq軸電流による磁束を永久磁石6の磁束で相殺する。そのため、磁気抵抗の大きい個所では空隙磁束密度がさらに小さくなる。これにより、磁気抵抗の大きい個所と小さい個所の空隙磁束密度変化が大となり、リラクタンストルクが大きくなると共に力率も向上する。また、永久磁石6はV字状に配置されていることからq軸中心に磁化方向が向き、これによりq軸電流の磁束に対する永久磁石6の磁化力を高めることができる。
【0026】
本実施の形態の回転電機では、永久磁石6の空隙磁束密度の基本波の振幅値を、0.3〜0.6T、好ましくは、0.4〜0.5Tとする。このとき、定格負荷時にq軸電流による磁束と永久磁石6による磁束が相殺してq軸の鎖交磁束が0になる。これにより、少ない磁束で出力を発生するので、力率が高くなり、鉄損も減少する。同時に、磁気飽和も緩和されるので出力も向上する。
【0027】
<可変連運転と効率>
一般的な永久磁石電動機、埋め込み型永久磁石電動機(IPM)では永久磁石の空隙磁束密度が約1T程度も高く、誘起電圧も高くなる。また、鉄損も大である。これに対して本実施の形態の回転電機では、永久磁石6の鎖交磁束は0.4T程度であり、通常の永久磁石電動機の磁束の1/3〜1/2でも大きな出力が得られる。このため、次のような利点がある。
【0028】
高速回転で過大な誘起電圧が発生しないため、過電圧で電源であるインバータのパワー素子やコンデンサを破損することはない。
【0029】
本回転電機では、d軸電流が主に磁界を形成する励磁電流であり、q軸電流はトルク電流となる。したがって、高速回転になるにつれて励磁電流であるd軸電流を小さくすれば、一定電圧で高速回転まで容易に運転でき、永久磁石電動機のように永久磁石の磁束による過大な誘起電圧を打ち消すような弱め磁束のために大きな電流を流す必要はない。また、弱め磁束で生じる高周波鉄損も僅かである。
【0030】
また、本回転電機では、運転状態に応じてd軸の励磁電流とq軸のトルク電流を変化させることができ、最適な状態で運転できるので軽負荷から高負荷、低速から高速回転まで広範囲で効率が向上する。例えば、軽負荷時は励磁電流は小さくするので、d軸の磁束量が減少して鉄損が減少する。
【0031】
<信頼性>
永久磁石6は周囲を磁性材の回転子鉄心で覆われているため、磁石6内の反磁界は小であり、パーミアンス係数の高い領域で永久磁石6は動作している。このため永久磁石6は、電流による大きな減磁界が作用しても減磁し難い。さらに、200℃の高温でもNdFeB磁石を不可逆減磁することなく適用できる。
【0032】
また、永久磁石6による電機子巻線3の鎖交磁束は少ないので、巻線が電気的に短絡しても過大な短絡電流が流れなくて巻線を焼損することがない。さらに本回転電機を電気自動車、電車等の駆動電動機に適用した場合でも、短絡故障時に急ブレーキが作用することがなく、また、回転時のブレーキ力が僅かであるので、車両を牽引することができる。
【0033】
加えて、仮に永久磁石6が不可逆減磁しても、本回転電機ではリラクタンストルクが主であるので、出力は低下するが、純粋なリラクタンス電動機として駆動することができる。
【0034】
なお、上記実施の形態の永久磁石式リラクタンス型回転電機において、永久磁石6を等量用い、図2に示したように回転子中心Cを中心として、d軸に最も接近し対称に配置された2つの永久磁石6のなす角度をθとし、極数Pと係数Kを用いてθ=K×360°/Pで表わしたとき、角度係数Kとトルクとの関係は図4のようになる。
【0035】
この結果から、角度係数Kが0.28≦K≦0.4(好ましくは、0.30≦K≦0.35)においてトルクが顕著に上昇していることが分かる。つまり、角度θを0.28×360°/P≦θ≦0.4×360°/P(好ましくは、0.30×360°≦θ≦0.35×360°/P)に設定することにより、大きなトルクが得られるのである。
【0036】
なお、これは以下に説明する他の実施の形態すべてに適用することができるものである。
【0037】
[第2の実施の形態]
次に、本発明の第2の実施の形態の永久磁石式リラクタンス型回転電機について説明する。第2の実施の形態は、回転子4を分割構造にしたことを特徴とする。
【0038】
固定子1において、電機子巻線3は各々の固定子鉄心歯2に1個ずつ巻きつけられている。このような集中巻では、一般的に行われているスロットスキューが困難であり、大きなトルクリプルが生じる。またスロット数Ns、極数P、q=Ns/(3×P)としたとき、q=n+1/2の場合、隣り合ったスロットのスロット中心間距離(スロットピッチ)と同じ波長を持った空隙磁束密度分布については打ち消すことができるが、2次の調波成分を打ち消すことができない。
【0039】
そこで第2の実施の形態では、図5に示すように、回転子4を回転子A7と回転子B8とに分割し、両者間で永久磁石6や空洞5などをスロットピッチの1/4分だけ周方向にずらした構造にしている。
【0040】
これにより、図6のグラフに示すように2次調波成分が打ち消され、トルクリプルが低減できる。
【0041】
[第3の実施の形態]
第3の実施の形態の永久磁石式リラクタンス型回転電機は、固定子1における固定子鉄心歯の形状に特徴を有する。
【0042】
図7に示すように、固定子鉄心歯2の回転子側の付け根の幅をLsとする。そしてスロット数Ns、回転子半径Rrとし、Ls=J×πRr/Ns(Jは係数)としたときの、係数Jと発生トルクの関係について調べた。ただし、このときに電機子巻線3に流す電流の電流密度は一定とした。
【0043】
図8はその結果を示している。係数Jについて、J<0.45では、固定子鉄心歯2が磁気飽和してしまってトルクが減少している。また逆にJ>0.65では、スロット内に流せる電流値の合計が小さくなり、トルクが減少している。そして係数Jについて、0.45≦J≦0.65のときに安定して高いトルクを得ることができた。
【0044】
またこの結果は、図9に示すように固定子鉄心歯2に固定子最近接部でチップ2Aを付けた場合においても、そのチップ2Aの付け根部分の長さをLsとすれば、同様の結果が得られる。
【0045】
【発明の効果】
以上のように本発明の永久磁石式リラクタンス型回転電機では、回転子位置によりインダクタンスの差が大きな回転電機が得られ、さらにq軸電流による磁束を磁石で相殺してほぼ0にすることにより、高出力、高力率が可能である。
【0046】
本発明の永久磁石式リラクタンス型回転電機ではまた、永久磁石の磁束量が少なくても高出力が得られ、励磁電流により回転電機内の磁束量を調整できるために負荷に合わせた最適な状態で駆動でき、軽負荷から高負荷、低速から高速までの広範囲で効率の良い運転ができる。
【0047】
本発明の永久磁石式リラクタンス型回転電機ではさらに、永久磁石の減磁を抑えることができ、永久磁石の誘起電圧により電源であるインバータの破損する恐れがなく、また電機子巻線の短絡故障時に急ブレーキが作用することもなく、さらには永久磁石が減磁状態になっても駆動が可能である等の多々の面で信頼性が高い。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の永久磁石式リラクタンス型回転電機の径方向断面図。
【図2】上記の実施の形態における回転子の径方向拡大断面図。
【図3】上記の実施の形態における回転子の別の構造例の径方向拡大断面図。
【図4】上記の実施の形態において、永久磁石の配置位置による回転電機の発生するトルクの変化特性を示すグラフ。
【図5】本発明の第2の実施の形態における回転子の斜視図。
【図6】上記の実施の形態における回転子分割体それぞれの発生するトルクと回転子としての合成トルクの特性グラフ。
【図7】本発明の第3の実施の形態における固定子の径方向拡大断面図。
【図8】上記の実施の形態における固定子鉄心歯の幅とトルクとの関係を示した特性グラフ。
【図9】上記の実施の形態における固定子の別の構造例の径方向拡大断面図。
【図10】従来のリラクタンス回転電機の径方向断面図。
【符号の説明】
1…固定子
2…固定子鉄心歯
3…電機子巻線
4…回転子
5…空洞
6…永久磁石
7…回転子A
8…回転子B
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a permanent magnet type reluctance type rotating electrical machine that combines a permanent magnet and can be operated in a wide range with a small size and high output.
[0002]
[Prior art]
A conventional reluctance type rotating electrical machine does not require a coil for forming a field in the rotor, and the rotor 4 can be constituted only by an iron core 9 having irregularities as shown in FIG. For this reason, the reluctance type rotating electrical machine is characterized in that it has a simple structure and is inexpensive.
[0003]
The principle of generating the output of this reluctance type rotating electrical machine is as follows. In the reluctance type rotating electric machine, since the rotor 4 is uneven, the magnetic resistance is small at the convex portion, and the magnetic resistance is large at the concave portion. That is, the magnetic energy stored by passing a current through the armature winding 3 is different between the convex portion and the gap portion on the concave portion. This change in magnetic energy generates an output. Further, the convex portion and the concave portion are not limited to geometrically concave and convex shapes, but may be any shape that allows magnetic irregularities to be formed (that is, a shape in which the magnetic resistance and magnetic flux density distribution varies depending on the position of the rotor).
[0004]
Another high-performance rotating electrical machine is a permanent magnet rotating electrical machine. The configuration of the armature in this permanent magnet rotating electric machine is the same as that of the reluctance type rotating electric machine, but the permanent magnet is arranged on the entire rotor.
[0005]
[Problems to be solved by the invention]
Conventional rotating electrical machines have the following technical problems. In the reluctance type rotating electrical machine, the magnetic resistance differs at the position of the rotor due to the unevenness of the surface of the rotor core, and the gap magnetic flux density also changes. Due to this change, the magnetic energy changes and an output is obtained.
[0006]
However, as the current increases, local magnetic saturation increases at the convex portion (d-axis) of the rotor core that becomes the magnetic pole. As a result, the magnetic flux leaking to the recessed portion (q-axis) of the iron core between the magnetic poles increases, the effective magnetic flux decreases, and the output decreases. From the viewpoint of magnetic energy, the change in the gap magnetic flux density is moderated by the leakage magnetic flux generated by the magnetic saturation of the convex portion of the rotor core, and the change in magnetic energy becomes small. For this reason, the increase rate of the output with respect to the current decreases, and the output is eventually saturated. Further, the q-axis leakage magnetic flux induces an invalid voltage to lower the power factor.
[0007]
On the other hand, in the case of a permanent magnet motor using a rare earth permanent magnet with a high magnetic energy product as another type of high output rotating electrical machine, a high magnetic field is obtained by placing a permanent magnet with a high magnetic energy product on the surface of the rotor core. Can be formed in the gap of the electric motor, so that small size and high output are possible.
[0008]
However, since the magnetic flux of the permanent magnet is constant, the voltage induced in the armature winding increases in proportion to the rotation speed. Therefore, when performing variable speed operation over a wide range up to high speed rotation, the field magnetic flux cannot be reduced. Therefore, if the power supply voltage is constant, it is difficult to perform a constant output operation that is twice or more the base speed.
[0009]
The present invention has been made to solve the conventional technical problem, and an object of the present invention is to provide a permanent magnet type reluctance type rotating electrical machine that is compact and has high output and capable of wide-range variable speed operation.
[0018]
[Means for Solving the Problems]
The permanent magnet type reluctance type rotating electrical machine according to the first aspect of the present invention includes a stator having an armature winding, a portion inside the stator that is easy to pass magnetic flux (d-axis), and a portion that is difficult to pass magnetic flux (q A plurality of cavities are provided so as to be symmetrically arranged with respect to each of the q axes, and a plurality of magnetic barriers are provided with respect to the q axis of the cavities. A rotor in which permanent magnets are arranged in symmetric cavities on both sides thereof, the magnetic resistance is maximized at the center of the q-axis, is symmetric with respect to the q-axis, and is a rotor with stator core teeth. The width Ls at the base at the side is 0.45 × πRr / Ns ≦ Ls ≦ 0.65 × πRr / Ns where the number of slots is Ns and the rotor diameter is Rr.
[0019]
According to a second aspect of the present invention, in the permanent magnet type reluctance type rotating electric machine according to the first aspect, the cavity located in the q-axis direction is shaped like a rhombus or a shape equivalent thereto.
According to a third aspect of the present invention, there is provided a permanent magnet type reluctance type rotating electrical machine having a stator having an armature winding, a portion (d-axis) where the magnetic flux easily passes inside the stator and a portion where the magnetic flux hardly passes (q A plurality of cavities are provided so as to be symmetrically arranged with respect to each of the q axes, and a plurality of magnetic barriers are provided with respect to the q axis of the cavities. A rotor in which permanent magnets are arranged in symmetric cavities on both sides thereof, the magnetoresistance being maximized at the center of the q axis, symmetric with respect to the q axis, and centered on the rotor center When the angle between the two permanent magnets arranged closest to and symmetrically with the d-axis is θ, the angle θ is 0.28 × 360 ° / P ≦ θ ≦ 0.4 × 360 ° / P (P Is the number of poles).
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0021]
[First Embodiment]
FIG. 1 is a radial cross-sectional view of a permanent magnet type reluctance rotary electric machine according to a first embodiment of the present invention. The stator 1 includes a stator core tooth 2 and armature windings 3 on which electromagnetic steel plates are laminated. As shown in detail in FIG. 2, a plurality of cavities are formed in the rotor 4, and permanent magnets 6 are inserted into the cavities arranged in the V shape. The cavity 5 in which the permanent magnet 6 is not inserted has a rhombus or similar shape so that the cavity width is maximized in the q-axis direction where magnetic flux is difficult to pass, and the cavity width is narrowed symmetrically with respect to the q-axis. It is.
[0022]
Next, the operation of the permanent magnet type reluctance type rotating electrical machine of the first embodiment will be described.
[0023]
<Generation of torque>
The rotor 4 has magnetic resistance irregularities due to the cavity 5. The gap magnetic flux density is high at the portion where the magnetic resistance is small, and conversely, the gap magnetic flux density is small at the portion where the magnetic resistance is large. A reluctance torque is generated by this change in magnetic flux density.
[0024]
At this time, by adopting a structure in which the magnetic resistance is maximized at the center of the q axis, the gap magnetic flux density difference can be remarkably increased, and the torque can be increased. For that purpose, it is preferable that the shape of the cavity 5 in which the permanent magnet 6 is not inserted is a rhombus or a shape equivalent thereto as described above. Further, as shown in FIG. 3, when the cavity 5 in the q-axis direction penetrates the outer periphery of the rotor core and opens into the gap, the gap magnetic flux density difference can be further increased and the torque can be increased.
[0025]
Further, a permanent magnet 6 is arranged in the rotor core at a portion having a large magnetoresistance as the q axis. The permanent magnet 6 cancels the magnetic flux due to the q-axis current distributed in the q-axis direction with the magnetic flux of the permanent magnet 6. For this reason, the gap magnetic flux density is further reduced at locations where the magnetic resistance is large. As a result, the change in the gap magnetic flux density between the portion having the large magnetic resistance and the portion having the small magnetic resistance becomes large, and the reluctance torque is increased and the power factor is improved. Further, since the permanent magnet 6 is arranged in a V shape, the magnetization direction is directed to the center of the q-axis, thereby increasing the magnetizing force of the permanent magnet 6 with respect to the magnetic flux of the q-axis current.
[0026]
In the rotating electrical machine of the present embodiment, the amplitude value of the fundamental wave of the gap magnetic flux density of the permanent magnet 6 is set to 0.3 to 0.6 T, preferably 0.4 to 0.5 T. At this time, the magnetic flux by the q-axis current and the magnetic flux by the permanent magnet 6 cancel each other at the rated load, and the interlinkage magnetic flux of the q-axis becomes zero. Thereby, since an output is generated with a small magnetic flux, the power factor is increased and the iron loss is also reduced. At the same time, magnetic saturation is alleviated and output is improved.
[0027]
<Variable continuous operation and efficiency>
In a general permanent magnet motor and an embedded permanent magnet motor (IPM), the air gap magnetic flux density of the permanent magnet is as high as about 1 T, and the induced voltage is also high. Iron loss is also significant. On the other hand, in the rotating electrical machine of the present embodiment, the interlinkage magnetic flux of the permanent magnet 6 is about 0.4 T, and a large output can be obtained even with 1/3 to 1/2 of the magnetic flux of a normal permanent magnet motor. For this reason, there are the following advantages.
[0028]
Since an excessive induced voltage does not occur at high speed rotation, the power element and capacitor of the inverter that is the power source are not damaged by the overvoltage.
[0029]
In this rotating electrical machine, the d-axis current is an excitation current that mainly forms a magnetic field, and the q-axis current is a torque current. Therefore, if the d-axis current, which is the excitation current, is reduced as the rotation speed is increased, it can be easily operated up to a high speed rotation at a constant voltage, and is weakened so as to cancel the excessive induced voltage caused by the magnetic flux of the permanent magnet as in a permanent magnet motor. It is not necessary to pass a large current due to the magnetic flux. Moreover, the high-frequency iron loss caused by the weak magnetic flux is also small.
[0030]
Also, with this rotating electrical machine, the d-axis excitation current and the q-axis torque current can be changed according to the operating conditions, and since it can be operated in an optimal state, it can be used in a wide range from light load to high load, from low speed to high speed rotation. Efficiency is improved. For example, since the exciting current is reduced at light loads, the d-axis magnetic flux amount is reduced and the iron loss is reduced.
[0031]
<Reliability>
Since the periphery of the permanent magnet 6 is covered with a rotor core made of a magnetic material, the demagnetizing field in the magnet 6 is small, and the permanent magnet 6 operates in a region with a high permeance coefficient. For this reason, the permanent magnet 6 is not easily demagnetized even if a large demagnetizing field due to current acts. Furthermore, the NdFeB magnet can be applied even at a high temperature of 200 ° C. without irreversible demagnetization.
[0032]
Further, since the interlinkage magnetic flux of the armature winding 3 by the permanent magnet 6 is small, even if the winding is electrically short-circuited, an excessive short-circuit current does not flow and the winding is not burned. Furthermore, even when this rotating electrical machine is applied to a drive motor such as an electric vehicle or a train, sudden braking does not act at the time of a short circuit failure, and the braking force during rotation is slight, so that the vehicle can be pulled. it can.
[0033]
In addition, even if the permanent magnet 6 is irreversibly demagnetized, reluctance torque is mainly used in this rotating electrical machine, so that the output is reduced, but it can be driven as a pure reluctance motor.
[0034]
In the permanent magnet type reluctance type rotating electrical machine of the above-described embodiment, an equal amount of the permanent magnet 6 is used, and as shown in FIG. When the angle formed by the two permanent magnets 6 is θ, and represented by θ = K × 360 ° / P using the number of poles P and the coefficient K, the relationship between the angle coefficient K and the torque is as shown in FIG.
[0035]
From this result, it can be seen that the torque significantly increases when the angle coefficient K is 0.28 ≦ K ≦ 0.4 (preferably 0.30 ≦ K ≦ 0.35). That is, the angle θ is set to 0.28 × 360 ° / P ≦ θ ≦ 0.4 × 360 ° / P (preferably 0.30 × 360 ° ≦ θ ≦ 0.35 × 360 ° / P). Thus, a large torque can be obtained.
[0036]
This can be applied to all other embodiments described below.
[0037]
[Second Embodiment]
Next, a permanent magnet type reluctance type rotating electrical machine according to a second embodiment of the present invention will be described. The second embodiment is characterized in that the rotor 4 is divided.
[0038]
In the stator 1, one armature winding 3 is wound around each stator core tooth 2. In such concentrated winding, slot skew that is generally performed is difficult, and a large torque ripple is generated. When the number of slots Ns, the number of poles P, and q = Ns / (3 × P), when q = n + 1/2, the gap has the same wavelength as the distance between the slot centers (slot pitch) of adjacent slots. Although the magnetic flux density distribution can be canceled out, the secondary harmonic component cannot be canceled out.
[0039]
Therefore, in the second embodiment, as shown in FIG. 5, the rotor 4 is divided into a rotor A7 and a rotor B8, and the permanent magnet 6 and the cavity 5 are divided by a quarter of the slot pitch between them. The structure is shifted only in the circumferential direction.
[0040]
Thereby, as shown in the graph of FIG. 6, the secondary harmonic component is canceled, and the torque ripple can be reduced.
[0041]
[Third Embodiment]
The permanent magnet type reluctance type rotating electrical machine of the third embodiment is characterized by the shape of the stator core teeth in the stator 1.
[0042]
As shown in FIG. 7, the width of the root on the rotor side of the stator core teeth 2 is Ls. Then, the relationship between the coefficient J and the generated torque was examined when the slot number Ns and the rotor radius Rr were set to Ls = J × πRr / Ns (J is a coefficient). However, the current density of the current flowing through the armature winding 3 at this time was constant.
[0043]
FIG. 8 shows the result. When the coefficient J is J <0.45, the stator core teeth 2 are magnetically saturated and the torque is reduced. On the other hand, when J> 0.65, the total of current values that can flow in the slot is reduced, and the torque is reduced. As for the coefficient J, a high torque was stably obtained when 0.45 ≦ J ≦ 0.65.
[0044]
Further, as shown in FIG. 9, even when the tip 2A is attached to the stator core tooth 2 at the closest portion of the stator as shown in FIG. 9, if the length of the base portion of the tip 2A is Ls, the same result is obtained. Is obtained.
[0045]
【The invention's effect】
As described above, in the permanent magnet type reluctance type rotating electrical machine of the present invention, a rotating electrical machine having a large difference in inductance depending on the rotor position is obtained, and furthermore, the magnetic flux due to the q-axis current is canceled by the magnet so that it becomes almost zero. High output and high power factor are possible.
[0046]
In the permanent magnet type reluctance type rotating electrical machine of the present invention, a high output can be obtained even if the amount of magnetic flux of the permanent magnet is small, and the amount of magnetic flux in the rotating electrical machine can be adjusted by the excitation current. It can be driven and can operate efficiently in a wide range from light load to high load and from low speed to high speed.
[0047]
In the permanent magnet type reluctance type rotating electrical machine of the present invention, it is possible to further suppress demagnetization of the permanent magnet, there is no possibility of damaging the inverter as a power source due to the induced voltage of the permanent magnet, and at the time of short-circuit failure of the armature winding The reliability is high in many respects, such as that the sudden braking does not act and the permanent magnet can be driven even if it is demagnetized.
[Brief description of the drawings]
FIG. 1 is a radial cross-sectional view of a permanent magnet type reluctance rotary electric machine according to a first embodiment of the present invention.
FIG. 2 is a radially enlarged cross-sectional view of a rotor in the above embodiment.
FIG. 3 is an enlarged sectional view in the radial direction of another structural example of the rotor in the embodiment.
FIG. 4 is a graph showing a change characteristic of torque generated by a rotating electric machine according to the arrangement position of a permanent magnet in the embodiment.
FIG. 5 is a perspective view of a rotor according to a second embodiment of the present invention.
FIG. 6 is a characteristic graph of torque generated by each rotor divided body and combined torque as a rotor in the embodiment.
FIG. 7 is an enlarged radial sectional view of a stator according to a third embodiment of the present invention.
FIG. 8 is a characteristic graph showing the relationship between the width of the stator core teeth and the torque in the embodiment.
FIG. 9 is an enlarged sectional view in the radial direction of another structural example of the stator in the embodiment.
FIG. 10 is a radial sectional view of a conventional reluctance rotating electrical machine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Stator 2 ... Stator core tooth 3 ... Armature winding 4 ... Rotor 5 ... Cavity 6 ... Permanent magnet 7 ... Rotor A
8 ... Rotor B

Claims (3)

電機子巻線を持つ固定子と、
この固定子の内側にあって磁束の通りやすい部分(d軸)と磁束の通りにくい部分(q軸)とが交互に形成されるように複数の空洞を当該q軸それぞれに対して対称な配置となるように設けることにより複数の磁気障壁が設けられ、前記空洞のうち前記q軸に対してその両側の対称な位置の空洞それぞれに永久磁石を配置した回転子とを備え、
磁気抵抗を前記q軸中心で最大とし、前記q軸に対し左右対称にし、かつ、
固定子鉄心歯の回転子側の付け根における幅Lsは、スロット数Ns、回転子直径Rrとすると、0.45×πRr/Ns≦Ls≦0.65×πRr/Nsとしたことを特徴とする永久磁石式リラクタンス型回転電機。
A stator with armature windings;
A plurality of cavities are arranged symmetrically with respect to each of the q axes so that portions (d-axis) that are easy to pass magnetic flux and portions (q-axis) that are difficult to pass magnetic flux are alternately formed inside the stator. A plurality of magnetic barriers are provided, and a rotor in which permanent magnets are arranged in cavities at symmetrical positions on both sides of the cavity with respect to the q axis,
The magnetoresistance is maximized at the center of the q axis, symmetric with respect to the q axis, and
The width Ls at the root of the stator core teeth on the rotor side is 0.45 × πRr / Ns ≦ Ls ≦ 0.65 × πRr / Ns where the number of slots is Ns and the rotor diameter is Rr. Permanent magnet type reluctance type rotating electrical machine.
前記q軸方向に位置する空洞は、菱形もしくはそれに準ずる形状にしたことを特徴とする請求項1に記載の永久磁石式リラクタンス型回転電機。The permanent magnet type reluctance type rotating electrical machine according to claim 1, wherein the cavity positioned in the q-axis direction has a rhombus shape or a shape equivalent thereto. 電機子巻線を持つ固定子と、
この固定子の内側にあって磁束の通りやすい部分(d軸)と磁束の通りにくい部分(q軸)とが交互に形成されるように複数の空洞を当該q軸それぞれに対して対称な配置となるように設けることにより複数の磁気障壁が設けられ、前記空洞のうち前記q軸に対してその両側の対称な位置の空洞それぞれに永久磁石を配置した回転子とを備え、
磁気抵抗を前記q軸中心で最大とし、前記q軸に対し左右対称にし、かつ、
回転子中心を中心にして前記d軸に最も接近し対称に配置した前記2つの永久磁石同士のなす角度をθとすると、当該角度θを0.28×360°/P≦θ≦0.4×360°/P(Pは極数)としたことを特徴とする請求項1に記載の永久磁石式リラクタンス型回転電機。
A stator with armature windings;
A plurality of cavities are arranged symmetrically with respect to each of the q axes so that portions (d-axis) that are easy to pass magnetic flux and portions (q-axis) that are difficult to pass magnetic flux are alternately formed inside the stator. A plurality of magnetic barriers are provided, and a rotor in which permanent magnets are arranged in cavities at symmetrical positions on both sides of the cavity with respect to the q axis,
The magnetoresistance is maximized at the center of the q axis, symmetric with respect to the q axis, and
Assuming that an angle formed by the two permanent magnets arranged closest to and symmetrically with respect to the d-axis around the rotor center is θ, the angle θ is 0.28 × 360 ° / P ≦ θ ≦ 0.4. The permanent magnet type reluctance rotating electric machine according to claim 1, wherein x is 360 ° / P (P is the number of poles).
JP2000095180A 2000-03-30 2000-03-30 Permanent magnet type reluctance type rotating electrical machine Expired - Lifetime JP3857017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000095180A JP3857017B2 (en) 2000-03-30 2000-03-30 Permanent magnet type reluctance type rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000095180A JP3857017B2 (en) 2000-03-30 2000-03-30 Permanent magnet type reluctance type rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2001286109A JP2001286109A (en) 2001-10-12
JP3857017B2 true JP3857017B2 (en) 2006-12-13

Family

ID=18610116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000095180A Expired - Lifetime JP3857017B2 (en) 2000-03-30 2000-03-30 Permanent magnet type reluctance type rotating electrical machine

Country Status (1)

Country Link
JP (1) JP3857017B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4070674B2 (en) * 2003-07-31 2008-04-02 株式会社東芝 Reluctance rotor
JP4070673B2 (en) * 2003-07-31 2008-04-02 株式会社東芝 Reluctance rotor
JP4815967B2 (en) 2005-09-21 2011-11-16 トヨタ自動車株式会社 Permanent magnet rotating electric machine
JP4855747B2 (en) * 2005-09-28 2012-01-18 東芝産業機器製造株式会社 Permanent magnet type reluctance rotating electric machine
JP5451090B2 (en) * 2009-01-28 2014-03-26 本田技研工業株式会社 Rotating electric machine
CN106415992B (en) * 2014-06-09 2019-02-05 株式会社安川电机 The control method of rotating electric machine, the control device of rotating electric machine, rotating electric machine
US20220368203A1 (en) 2019-07-01 2022-11-17 Nidec Corporation Motor and motor unit
CN112994288B (en) * 2019-12-12 2022-06-14 中车永济电机有限公司 Permanent magnet motor rotor magnetic circuit topological structure

Also Published As

Publication number Publication date
JP2001286109A (en) 2001-10-12

Similar Documents

Publication Publication Date Title
JP3816727B2 (en) Permanent magnet type reluctance type rotating electrical machine
JP4619585B2 (en) Reluctance type rotating electrical machine
KR100609331B1 (en) Permanent Magnet Motor
JP4680442B2 (en) Motor rotor
US6268677B1 (en) Rotor for permanent magnet type rotating machine
KR200210795Y1 (en) Motor for Reclamated Eternatiy Magnet
JP2002112513A (en) Dynamo-electric machine
WO2010058576A1 (en) Permanent magnet type rotating electric machine
US6703744B2 (en) Generator-motor for vehicle
US7482724B2 (en) Ipm electric rotating machine
WO2008018354A1 (en) Permanent magnet type rotary electric device rotor
JP2008136298A (en) Rotator of rotary electric machine, and rotary electric machine
JPH11500897A (en) Polyphase brushless AC electric machine
JP3280896B2 (en) Permanent magnet type reluctance type rotating electric machine
JP6833907B2 (en) Rotor and rotating machine
JP2000245085A (en) Motor
JP3819211B2 (en) Permanent magnet type reluctance type rotating electrical machine
JP3172506B2 (en) Permanent magnet type reluctance type rotating electric machine
CN110112878A (en) A kind of extremely tangential excitation vernier magneto of alternating
JP3172497B2 (en) Permanent magnet type reluctance type rotating electric machine
JP3857017B2 (en) Permanent magnet type reluctance type rotating electrical machine
WO2001097363A1 (en) Permanent magnet synchronous motor
JP4735772B1 (en) Magnet excitation rotating electrical machine system
CN105337434A (en) Hybrid excitation permanent magnet brushless motor for electric vehicle
JP3193348B2 (en) Permanent magnet type reluctance type rotating electric machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060913

R151 Written notification of patent or utility model registration

Ref document number: 3857017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

EXPY Cancellation because of completion of term