JP6935878B2 - 中性子減速照射装置及び延長コリメータ - Google Patents

中性子減速照射装置及び延長コリメータ Download PDF

Info

Publication number
JP6935878B2
JP6935878B2 JP2017061979A JP2017061979A JP6935878B2 JP 6935878 B2 JP6935878 B2 JP 6935878B2 JP 2017061979 A JP2017061979 A JP 2017061979A JP 2017061979 A JP2017061979 A JP 2017061979A JP 6935878 B2 JP6935878 B2 JP 6935878B2
Authority
JP
Japan
Prior art keywords
neutron
deceleration
collimator
inner member
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017061979A
Other languages
English (en)
Other versions
JP2018161449A (ja
Inventor
一輝 土田
一輝 土田
佐藤 和也
和也 佐藤
章 瓜谷
章 瓜谷
善明 鬼柳
善明 鬼柳
渡辺 賢一
渡辺  賢一
幸子 吉橋
幸子 吉橋
山▲崎▼ 淳
淳 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAGAMI CO., LTD.
Tokai National Higher Education and Research System NUC
Original Assignee
YAGAMI CO., LTD.
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAGAMI CO., LTD., Tokai National Higher Education and Research System NUC filed Critical YAGAMI CO., LTD.
Priority to JP2017061979A priority Critical patent/JP6935878B2/ja
Publication of JP2018161449A publication Critical patent/JP2018161449A/ja
Application granted granted Critical
Publication of JP6935878B2 publication Critical patent/JP6935878B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Particle Accelerators (AREA)
  • Radiation-Therapy Devices (AREA)

Description

本発明は、中性子源が発生した中性子線を減速して照射する中性子減速照射装置、及び、中性子減速照射装置に装着される着脱式の延長コリメータに関する。
がんを治療する放射線療法の一種に、ホウ素中性子捕捉療法(Boron Neutron Capture Therapy;BNCT)がある。ホウ素中性子捕捉療法は、がん細胞に選択的に蓄積させたホウ素化合物に中性子を照射し、10B(n,α)Liの核反応により生成するα粒子やリチウム原子核によってがん細胞を破壊する治療法である。α粒子やリチウム原子核の飛程は細胞の大きさと同程度であるため、ホウ素中性子捕捉療法によると、正常細胞を大きく損傷すること無く、がん細胞のみを選択的に破壊することが可能である。
ホウ素中性子捕捉療法においては、ホウ素10(10B)を含むホウ素化合物を患者に投与し、ホウ素化合物が集積されたがん細胞に中性子線を照射して治療を行う。中性子のエネルギが低いほど、反応断面積が大きくなり、正常細胞の損傷も避けることができる一方、患者の組織の深部に到達する程度の高いエネルギも必要である。そのため、治療に用いる中性子線は、熱外中性子の強度が高く、高速中性子の混入率が低く、且つ、熱外中性子束に対する熱中性子束の比率が低いことが要求される。
国際原子力機関(International Atomic Energy Agency;IAEA)は、ホウ素中性子捕捉療法に用いる中性子線について設計目標値を設定している。例えば、熱外中性子強度については、治療を短時間に効果的に行う観点から、1×10[n・cm−2・s−1]以上を推奨している。また、高速中性子混入率については、正常細胞の損傷を避ける観点から、2×10−13[Gy・cm]以下を推奨している。
近年、ホウ素中性子捕捉療法の中性子源は、研究用原子炉等から加速器に移行しつつあり、中性子源が出射した高速の中性子線は、熱外領域以下まで減速されて治療に用いられている。加速器を利用する中性子発生装置は、一般に、荷電粒子線を発生させる加速器と、荷電粒子線が照射されて中性子線を発生するターゲットと、ターゲットが発生した中性子線を減速して被照射体に照射する中性子減速照射装置とを備えている。
ホウ素中性子捕捉療法に用いられる一般的な中性子減速照射装置は、放射線を遮蔽する隔壁状のコリメータ部に貫通孔を有し、その貫通孔を通過する中性子を集束させて中性子線の照射野を整形する構造である。中性子減速照射装置が備える隔壁状のコリメータ部は、治療を受ける患者と平面で接する形状であるため、中性子線を照射して行う長時間にわたる治療の間に、患者が無理な体勢を強いられるという問題がある。そこで、コリメータ部の貫通孔を延長して突出させるため、延長コリメータが開発されている。
例えば、非特許文献1には、重水タンクの下流に黒鉛ライニングとビーム孔が設けられた中性子ビーム設備が開示されている(第3〜22頁参照)。ビーム孔は、LiF−ポリエチレン製等によるマルチリーフ形状の延長コリメータで軸方向に延長されている(第5〜6頁参照)。
中村剛実、堀口洋徳、柳衛宏宣、新居昌至、「JRR−4におけるホウ素中性子捕捉療法のための乳がん照射技術の開発」、JAEA Technology、日本原子力研究開発機構、2014年6月、2014−016、p3−22
非特許文献1に開示されるように、コリメータ部に延長コリメータを取り付け、貫通孔の出口を突出させると、患者が楽な体勢を採った状態で治療を行うことが可能になる。例えば、頭部や頸部等の治療を行うに際しても、適切な延長コリメータを設けることにより、患者の肩部等との干渉を避けることができるため、照射野の位置ずれを防止して、中性子線の照射をより精密に行うことができる。しかしながら、延長コリメータを取り付け、貫通孔の出口を突出させると、延長コリメータの出口において照射軸周りの中性子線強度が低くなる傾向がある。
ホウ素中性子捕捉療法に用いられる中性子減速照射装置は、性能が設計目標値を充足しているか否かが、多くの場合、コリメータ部の貫通孔の出口付近を検出位置として評価されている。延長コリメータを取り付けた状態で、患部に照射される中性子線の強度を確保するには、コリメータ部の出口付近で、より高い強度が確認される必要があるが、患者を被爆させるガンマ線等を低減しつつ熱外中性子線の強度を向上させることは容易ではない。
そこで、本発明は、中性子線を高い強度で精密に照射することが可能な中性子減速照射装置及び延長コリメータを提供することを目的とする。
前記課題を解決するために、本発明に係る中性子減速照射装置は、荷電粒子線が照射されて中性子源が発生した中性子線を減速させる減速部と、前記減速部の周囲を囲み中性子線を反射する反射部と、前記減速部によって減速された中性子線の照射野を整形するコリメータ部と、を備え、前記コリメータ部は、前記荷電粒子線の照射方向における前記減速部の下流側に配置され、前記照射方向に向かって縮径する孔部を有する隔壁部と、前記照射方向における前記隔壁部の下流側に配置され、前記孔部の周縁から前記照射方向に向かって突出し、中央に貫通孔を有するノズル部と、を有し、前記ノズル部は、前記貫通孔の内壁を成す反射材と、前記反射材の周囲を囲む遮蔽材と、を備え、前記反射材は、鉛又は鉛合金で構成された第1反射体と、ニッケル又はニッケル合金で構成された第2反射体と、からなり、前記第2反射体は、前記貫通孔の内壁に沿って前記第1反射体中に埋設して配置されている
また、本発明に係る延長コリメータは、中性子減速照射装置に装着される着脱式の延長コリメータであって、前記中性子減速照射装置は、荷電粒子線が照射されて中性子源が発生した中性子線を減速させる減速部と、前記減速部の周囲を囲む反射部と、前記減速部によって減速された中性子線の照射野を整形するコリメータ部と、を備え、前記延長コリメータは、中央に貫通孔を有する本体部を有し、前記貫通孔の内壁を成す反射材と、前記反射材の周囲を囲む遮蔽材と、を備え、前記コリメータ部に着脱自在に固定され、前記反射材は、鉛又は鉛合金で構成された第1反射体と、ニッケル又はニッケル合金で構成された第2反射体と、からなり、前記第2反射体は、前記貫通孔の内壁に沿って前記第1反射体中に埋設して配置されている
本発明によれば、中性子線を高い強度で精密に照射することが可能な中性子減速照射装置及び延長コリメータを提供することができる。
中性子発生装置の概略構成を示す図である。 本発明の第1実施形態に係る中性子減速照射装置及び延長コリメータの縦断面図である。 本発明の第2実施形態に係る中性子減速照射装置の縦断面図である。 本発明の第3実施形態に係る中性子減速照射装置の縦断面図である。 本発明の第4実施形態に係る中性子減速照射装置の縦断面図である。 本発明の第1実施形態に係る延長コリメータを拡大して示す縦断面図である。 延長コリメータの先端側内部材の軸方向の長さと、熱外中性子強度との関係を示す図である。 延長コリメータの先端側内部材の軸方向の長さと、高速中性子混入率及びガンマ線混入率との関係を示す図である。 延長コリメータの先端側内部材の軸方向の長さと、熱中性子比との関係を示す図である。 延長コリメータの先端側内部材の軸方向の長さと、カレント/フラックス比との関係を示す図である。 延長コリメータの先端側内部材の軸方向の長さと、中性子空間線量率分布との関係を示す図である。 延長コリメータの基端側内部材の材質と、熱外中性子強度との関係を示す図である。 延長コリメータの基端側内部材の材質と、高速中性子混入率及びガンマ線混入率との関係を示す図である。 延長コリメータの基端側内部材の材質と、熱中性子比との関係を示す図である。 延長コリメータの基端側内部材の材質と、カレント/フラックス比との関係を示す図である。 本発明の第2実施形態に係る中性子減速照射装置のノズル部を拡大して示す縦断面図である。 コリメータ部の下流側内部材の材質と、熱外中性子強度との関係を示す図である。 コリメータ部の下流側内部材の材質と、高速中性子混入率及びガンマ線混入率との関係を示す図である。 コリメータ部の下流側内部材の材質と、熱中性子比との関係を示す図である。 コリメータ部の下流側内部材の材質と、カレント/フラックス比との関係を示す図である。 ノズル部の貫通孔の入口径と、熱外中性子強度との関係を示す図である。 ノズル部の貫通孔の入口径と、高速中性子混入率及びガンマ線混入率との関係を示す図である。 ノズル部の貫通孔の入口径と、熱中性子比との関係を示す図である。 ノズル部の貫通孔の入口径と、カレント/フラックス比との関係を示す図である。 ノズル部の基端側の厚さと、熱外中性子強度との関係を示す図である。 ノズル部の基端側の厚さと、高速中性子混入率及びガンマ線混入率との関係を示す図である。 ノズル部の基端側の厚さと、熱中性子比との関係を示す図である。 ノズル部の基端側の厚さと、カレント/フラックス比との関係を示す図である。 ノズル部の貫通孔の入口径及び基端側の厚さと、中性子空間線量率分布との関係を示す図である。 反射体の配置と、熱外中性子強度との関係を示す図である。 反射体の配置と、高速中性子混入率及びガンマ線混入率との関係を示す図である。 反射体の配置と、熱中性子比との関係を示す図である。 反射体の配置と、カレント/フラックス比との関係を示す図である。
以下、本発明の一実施形態に係る中性子減速照射装置及び延長コリメータについて、図を参照しながら詳細に説明する。なお、各図において共通する構成については同一の符号を付して重複した説明を省略する。
[中性子発生装置]
はじめに、本実施形態に係る中性子減速照射装置を備えて構成される中性子発生装置の概略構成について説明する。
図1は、中性子発生装置の概略構成を示す図である。
図1に示すように、中性子発生装置100は、荷電粒子線発生装置1と、中性子減速照射装置2と、導管4と、中性子源としてのターゲット5と、を備えている。中性子源としてのターゲット5は、固体リチウムをターゲット材として保持している。この中性子発生装置100は、ホウ素中性子捕捉療法における中性子線源として好適に用いられる。
中性子発生装置100において、荷電粒子線発生装置1は、所定のエネルギの陽子線等(荷電粒子線6)を発生する。荷電粒子線6は、導管4を通じてターゲット5に到達し、ターゲット5は、荷電粒子線6を照射されて所定のエネルギ帯域の中性子線を発生させる。そして、中性子減速照射装置2は、ターゲット5が出射する中性子線を減速し、照射野が整形された中性子線9を出射する。中性子減速照射装置2から出射した中性子線9は、被照射体3に照射されて中性子捕獲反応を生じる。すなわち、ホウ素が集積している被照射体3としてのがん細胞に中性子線9が照射されると、核反応により生成したα線やリチウム粒子によってがん細胞が破壊される。
[荷電粒子線発生装置]
荷電粒子線発生装置1は、例えば、荷電粒子線として陽子線を発生する。陽子線を発生する荷電粒子線発生装置1は、図1に示すように、陽子を発生させるイオン源1aと、陽子を加速する加速器1bとを備えて構成される。
イオン源1aとしては、例えば、電子サイクロトロン共鳴(Electron Cyclotron Resonance;ECR)イオン源が用いられる。ECRイオン源は、強磁場下に水素ガスを導入し、高周波を印加して電子サイクロトロン共鳴を生じさせることにより、水素のプラズマを高密度に生成する。そして、生成した水素イオン()は、磁気ミラーによって集積されて引き出される。ECRイオン源は、無電極放電によるため長時間にわたり安定した運転が可能である。
加速器1bとしては、例えば、静電型加速器が用いられる。静電型加速器は、電極間に直流高電圧を印加し、一定した静電界の下で荷電粒子を加速する。静電型加速器によると、連続した荷電粒子線6を発生させることが可能である。静電型加速器としては、例えば、ダイナミトロン型加速器(IBA社製等)を用いることができる。また、コッククロフトウォルトン型、バンデグラフ型等の静電型加速器や、サイクロトロン、シンクロトロン等の高周波型加速器を用いることもできる。
[導管]
導管4は、荷電粒子線発生装置1と、ターゲット5との間を接続している。導管4は、荷電粒子線発生装置1が出射した荷電粒子線6を、ターゲット5に導く経路を形成している。導管4には、荷電粒子線6が幅方向に発散するのを抑制する集束レンズ7が設置される。集束レンズ7としては、例えば、複数の四重極電磁石を荷電粒子線6の照射方向に沿って設置し、それぞれの極性を反転させた配置とする。なお、導管4は、図1に示すような直線状の形態に限定されるものでは無く、曲線部を有する任意形状の経路を形成していてもよい。導管4の曲線部には、荷電粒子線6を偏向させる偏向電磁石等を設置することが可能である。
[ターゲット]
ターゲット5は、導管4の先端に設置されている。中性子源としてのターゲット5は、固体リチウムをターゲット材として保持する。固体リチウムからなるターゲット材は、例えば、タンタル、銅等を組み合わせて構成される金属基板上に保持される。金属基板上に保持された固体リチウムは、チタン製等の金属箔によって覆われて封止されることにより、荷電粒子線6の照射によって溶融したリチウムの漏出が防止される。金属基板の内部には、冷却水を通流させてターゲット材を冷却するための冷却材流路が形成される。
ターゲット材であるリチウムは、陽子線を照射されてLi(p,n)Beの核反応により中性子線を発生する。この核反応に必要となる入射陽子エネルギの閾値は、約1.88MeVである。そのため、荷電粒子線発生装置1においては、この閾値以上であり、且つ、エネルギが過大な中性子が発生しない程度の低いエネルギを持った荷電粒子線6を生成する。具体的には、荷電粒子線発生装置1が発生する荷電粒子線6のエネルギは、4.0MeV以下、好ましくは3.0MeV以下、より好ましくは2.8MeV以下の範囲である。また、電流値は、10mA以上100mA以下、ターゲット材に対する熱負荷を避ける観点から、より好ましくは10mA以上20mA以下とする。
[第1実施形態]
次に、本発明の第1実施形態に係る中性子減速照射装置及び延長コリメータの構成について説明する。
図2は、本発明の第1実施形態に係る中性子減速照射装置及び延長コリメータの縦断面図である。
図2に示すように、本実施形態に係る中性子減速照射装置2は、減速部21と、反射部22と、吸収部23と、コリメータ部(隔壁部)24と、補強材28と、を備えて構成されている。中性子減速照射装置2は、導管4(図1参照)の先端に設置された中性子源としてのターゲット5の周囲を囲んで配置されている。中性子減速照射装置2は、ターゲット5が発生した中性子線を減速し、主として熱外中性子線のエネルギ帯域まで減速して、被照射体3(図1参照)に中性子線9を照射する。
本実施形態に係る中性子減速照射装置2は、図2に示すように、コリメータ部(隔壁部)24に、着脱式の延長コリメータ(ノズル部)30が装着可能とされる。中性子減速照射装置2は、使用時にコリメータ部24に延長コリメータ30が固定され、延長コリメータ30の先端部から、線質が設定目標値を充足するように制御された中性子線を出射する。
ターゲット5が発生する中性子線は、そのエネルギに応じて、凡そ、熱中性子(Nther)と、熱外中性子(Nepi)と、高速中性子(Nfast)とに大別される。本明細書においては、エネルギが0.5eV以下の中性子を熱中性子(Nther)、0.5eVを超え10keV以下の中性子を熱外中性子(Nepi)、10keVを超える中性子を高速中性子(Nfast)と定義する。また、以下の説明において、「下流」及び「上流」の用語は、荷電粒子線6の照射方向(進行方向)における下流及び上流をそれぞれ意味するものとする。
(減速部)
減速部21は、主として、ターゲット5が発生した中性子線を熱外中性子線のエネルギ帯域まで減速させる。中性子減速照射装置2において、減速部21は、減速材本体21Aと、上流側減速材21Bと、下流側減速材21Cとによって構成されている。
減速材本体21Aは、ターゲット5の下流側に配置されている。ターゲット5は、減速材本体21Aの上流側端面の中央に配置されており、ターゲット5と減速材本体21Aとの間には、中性子を増幅するベリリウム製の増幅材105が配置されている。減速材本体21Aは、荷電粒子線6の照射軸及びターゲット5と同心となるように配置される。
減速材本体21Aは、例えば、円柱形状又は多角柱形状を有する単一体の減速材によって構成してもよいし、円柱形状又は多角柱形状を呈するように複数の減速材を組み合わせて構成してもよい。減速材本体21Aは、厚さ(荷電粒子線6の照射方向の長さ)を、例えば、16cm以上20cm以下とすることができる。また、減速材本体21Aは、直径(荷電粒子線6の照射軸に対する法線方向の長さ)を、例えば、40cm以上60cm以下とすることができる。
上流側減速材21Bは、減速材本体21Aの上流側端面から上流側に向けて配置されている。上流側減速材21Bは、減速材本体21Aの上流側端面から上流側に向けて延設されることにより、ターゲット5を内側に内包してターゲット5の周囲を囲んでいる。上流側減速材21Bは、減速材本体21Aや、荷電粒子線6の照射軸及びターゲット5と同心となるように配置される。上流側減速材21Bが設けられることにより、ターゲット5が荷電粒子線6の照射軸に対する法線方向や上流側に向けて出射した中性子線が、減速されながらコリメータ部24の孔部124に散乱して入射し、熱外中性子線の強度が高められるようになっている。
上流側減速材21Bは、例えば、円筒形状又は多角筒形状を有する単一体の減速材によって構成してもよいし、円筒形状又は多角筒形状を呈するように複数の減速材を組み合わせて構成してもよいし、減速材本体21Aと一体に形成してもよい。上流側減速材21Bは、周壁の厚さ(外半径と内半径との差)を、例えば、8cm以上10cm以下とすることができる。また、上流側減速材21Bは、荷電粒子線6の照射方向の長さを、例えば、16cm以上24cm以下とすることができる。
下流側減速材21Cは、減速材本体21Aの下流側端面から下流側に向けて配置されている。下流側減速材21Cは、円錐台形状を呈しており、コリメータ部24が有する孔部124の内側に配置されている。下流側減速材21Cの上流側端面は、減速材本体21Aの下流側端面に密接しており、下流側減速材21Cの円錐台形状の周面は、コリメータ部24の孔部124に密接している。下流側減速材21Cは、減速材本体21Aや、荷電粒子線6の照射軸及びターゲット5と同心となるように配置される。下流側減速材21Cが設けられることにより、ターゲット5が出射した中性子線を照射野を整形しながら減速させることが可能になるため、減速部21の全体の長さを短尺に設けることが可能となる。
下流側減速材21Cは、例えば、円錐台形状を有する単一体の減速材によって構成してもよいし、円錐台形状を呈するように複数の減速材を組み合わせて構成してもよいし、減速材本体21Aと一体に形成してもよい。下流側減速材21Cは、荷電粒子線6の照射方向の長さを、例えば、4cm以上8cm以下とすることができる。
減速部21は、フッ化マグネシウム(MgF)で構成することが好ましく、フッ化マグネシウムの単結晶体若しくは単結晶同士が焼結した焼結体で構成することが好ましい。フッ化マグネシウムは、真密度に対するかため嵩密度(相対密度)が、95%以上、好ましくは98%以上、より好ましくは99%以上とされる。
フッ化マグネシウムは、ターゲット5への入射陽子エネルギが10MeV以下である場合に、中性子をより効率的に減速させる。そのため、減速部21をフッ化マグネシウムで形成することにより、ターゲット5が出射した中性子線を熱外中性子線のエネルギ帯域まで効果的に減速し、高速中性子の大半については吸収させることが可能である。なお、減速材本体21A、上流側減速材21B、及び、下流側減速材21Cは、同一の材料で構成されてもよいし、互いに異なる材料で構成されてもよい。
(反射部)
反射部22は、主として、中性子源としてのターゲット5が出射した中性子線を反射する。中性子減速照射装置2において、反射部22は、減速材21を囲む第1反射材22A、第2反射材22B、及び、第3反射材22Cと、これらの外側に配された側部反射材22D、上流側反射材22E、及び、下流側反射材22Fによって構成されている。
第1反射材22A、第2反射材22B、及び、第3反射材22Cは、減速材21の外側を囲んでいる。詳細には、第1反射材22Aが、減速材本体21Aの周囲を囲み、第2反射材22Bが、上流側減速材21Bの周囲を囲み、第3反射材22Cが、上流側減速材21Bの上流側を囲んでいる。第3反射材22Cは、中央が開口しており、ターゲット5に至る荷電粒子線6の入射路が形成されている。減速部21を囲んで反射部(22A,22B,22C)が設けられることにより、ターゲット5が荷電粒子線6の照射軸に対する法線方向や上流側に向けて出射した中性子線が、コリメータ部24の孔部124に反射されて入射し、中性子線の強度が高められるようになっている。
側部反射材22D、上流側反射材22E、及び、下流側反射材22Fは、中性子減速照射装置2の側端、上流端及び下流端のそれぞれに配置されて外殻を形成している。中性子減速照射装置2の外側に反射部(22D,22E,22F)が設けられることにより、中性子減速照射装置2から中性子線等が漏洩するのが防止されるようになっている。
反射部22は、中性子の散乱断面積が大きい反射材によって形成される。反射部2の材料としては、例えば、鉛、黒鉛、鉄、ベリリウム、ビスマス等が挙げられる。反射部22の材料としては、熱外中性子の吸収が少なく、ガンマ線の遮蔽能も高い、鉛又は鉛−錫合金、鉛−アンチモン合金、鉛−ビスマス合金等の鉛合金が特に好ましい。なお、第1反射材22A、第2反射材22B、第3反射材22C、側部反射材22D、上流側反射材22E、及び、下流側反射材22Fは、同一の材料で構成されてもよいし、互いに異なる材料で構成されてもよい。
(吸収部)
吸収部23は、主として、中性子源としてのターゲット5が出射した中性子線のうちコリメータ部24の側に出射しない方向の成分を吸収する。中性子減速照射装置2において、吸収部23は、側部吸収材23Aと、上流側吸収材23Bとによって構成されている。
側部吸収材23Aは、第1反射材22A、第2反射材22B、第3反射材23C、及び、コリメータ部24の周囲を囲んでいる。また、上流側吸収材23Bは、第3反射材23Cの上流側を囲んでいる。側部吸収材23A及び上流側吸収材23Bの周囲は、側方反射材22Dによって、側部吸収材23Aの上流側端面は、上流側反射材22Fによって、上流側吸収材23Bの下流側端面は、流側反射材22Eによって、それぞれ覆われて中性子の漏洩が防止されている。
吸収部23は、中性子の吸収断面積が大きい遮蔽材によって形成される。吸収部23の材料としては、例えば、ホウ素−ポリエチレン、フッ化リチウム−ポリエチレン、パラフィン、炭化ホウ素をはじめとするホウ素化合物等が挙げられる。吸収材23の材料としては、中性子の遮蔽能が高く、成形性も良好なホウ素−ポリエチレンが特に好ましい。なお、側部吸収材23A及び上流側吸収材23Bは、同一の材料で構成されてもよいし、互いに異なる材料で構成されてもよい。
(コリメータ部)
コリメータ部24は、減速部21によって減速された中性子線の照射野を整形する。コリメータ部24は、減速部21の下流側に隔壁状に設けられており、減速部21と同心となるように孔部124を有している。孔部124は、コリメータ部24を貫通しており、荷電粒子線6の照射方向に向かうに連れてテーパ状に縮径している。中性子減速照射装置2において、コリメータ部24は、孔部124の上流側の内壁を成す上流側内部材24Aと、孔部124の下流側の内壁を成す下流側内部材24Bと、上流側内部材24A及び下流側内部材24Bの上流側を囲む上流側外部材24Cと、上流側内部材24A及び下流側内部材24Bの下流側を囲む下流側外部材24Dとによって構成されている。
上流側内部材24A及び下流側内部材24Bは、それぞれ、孔部124が貫通して設けられている。上流側内部材24A及び下流側内部材24Bの外面は、荷電粒子線6の照射方向に向かうに連れて孔部124と同様に縮径しており、上流側内部材24A及び下流側内部材24Bは、所定の厚さで孔部124の内壁を成している。孔部124の出口は、ガンマ線を遮蔽するための遮蔽材22Gにより覆われている。一方、上流側外部材24C及び下流側外部材24Dは、上流側内部材24A及び下流側内部材24Bと、側部吸収材23Aや上流側反射材22Fとの間に介在しており、減速部21及び第1反射材22Aの下流側に隔壁状に配置されている。
上流側内部材24A及び上流側外部材24Cは、中性子の散乱断面積が大きい反射材によって形成される。上流側内部材24A及び上流側外部材24Cの材料としては、例えば、鉛、黒鉛、鉄、ベリリウム、ビスマス等が挙げられる。上流側内部材24A及び上流側外部材24Cの材料としては、熱外中性子の吸収が少なく、ガンマ線の遮蔽能も高い、鉛又は鉛−錫合金、鉛−アンチモン合金、鉛−ビスマス合金等の鉛合金が特に好ましい。このような材料によると、孔部124の出口周辺における中性子線やガンマ線の空間線量を低減しつつ、出射される熱外中性子線の強度や直進性を高くすることができる。また、遮蔽材22Gの材料としては、鉛又は鉛合金が好ましい。
下流側内部材24B及び下流側外部材24Dは、中性子の吸収断面積が大きい遮蔽材によって形成される。下流側内部材24B及び下流側外部材24Dの材料としては、例えば、ホウ素−ポリエチレン、フッ化リチウム−ポリエチレン、パラフィン、炭化ホウ素をはじめとするホウ素化合物等が挙げられる。下流側内部材24B及び下流側外部材24Dの材料としては、高速中性子やガンマ線の遮蔽能が高いフッ化リチウム−ポリエチレンが特に好ましい。このような材料によると、出射される中性子線について、高速中性子やガンマ線の混入率を効果的に低減することができる。
上流側内部材24A、下流側内部材24B、上流側外部材24C、及び、下流側外部材24Dは、単一体の反射材や遮蔽材によって構成してもよいし、複数の反射材や遮蔽材を組み合わせて構成してもよいし、同一の材料については互いに一体に形成してもよい。
(補強材)
補強材28は、減速部21、反射部22、吸収部23及びコリメータ部24を支持し、中性子減速照射装置2の剛性を補強する。補強材28は、中性子減速照射装置2の上流側端面、下流側端面、及び、側面を覆うように配置されている。また、減速部(21A,21B,21C)、反射部(22A,22B,22C,22E,22F)、吸収部(23A,23B)及びコリメータ部(24C,24D)の側面と他の部材との間に介在するように配置されている。また、補強材28は、コリメータ部24の孔部124や、ターゲット5に至る荷電粒子線6の入射路に内張りされている。
補強材28は、例えば、炭素鋼、アルミ合金等の必要な機械的性質を備える材料によって形成される。補強材28としては、比較的安価で入手し易い一般構造用圧延鋼材、例えば、JIS G 3101に規定されるSS400等が好適に用いられる。
(延長コリメータ)
延長コリメータ30は、図2に示すように、コリメータ部24が有する孔部124の出口に装着される。延長コリメータ30は、本体部が、孔部124の出口の周縁から荷電粒子線6の照射方向に向かって突出した状態に装着される。延長コリメータ30の本体部は、側面が荷電粒子線6の照射方向に向かうに連れてテーパ状に縮径して円錐台形状を呈しており、中央に軸方向に貫通した貫通孔130を有している。延長コリメータ30は、貫通孔130がコリメータ部24が有する孔部124と同心になるように、ボルト締結等による不図示の固定部を介してコリメータ部24に着脱自在に固定される。
延長コリメータ30は、コリメータ部24の孔部124から出射される中性子線を集束する。延長コリメータ30が装着されることにより、隔壁状のコリメータ部から突出した位置から、集束された中性子線を出射させることが可能になる。延長コリメータ30は、貫通孔130の基端側の内壁を成す基端側内部材30Aと、貫通孔130の先端側の内壁を成す先端側内部材30Bと、基端側内部材30A及び先端側内部材30Bの周囲を囲む外筒部材30Cとを備えている。
基端側内部材30Aは、延長コリメータ30の外形と同様に円錐台形状を呈している。基端側内部材30Aは、中央に貫通孔130が設けられており、貫通孔130の基端側の内壁を成している。基端側内部材30Aの外面は、荷電粒子線6の照射方向に向かうに連れて延長コリメータ30の側面と同様に縮径している。基端側内部材30Aの基端側端面における内径は、下流側内部材24Bの下流側端面における内径と略同等である。また、基端側内部材30Aの基端側端面における外径は、下流側内部材24Bの下流側端面における外径と略同等である。
先端側内部材30Bは、円板形状を呈している。基端側内部材30Aは、中央に貫通孔130が設けられており、貫通孔130の先端側の内壁を成している。先端側内部材30Bは、基端側内部材30Aの先端側に、先端側端面を覆うように重なって配置されている。
外筒部材30Cは、先端側に向かうに連れて縮径する筒状を呈しており、内側に納めた基端側内部材30A及び先端側内部材30Bの周囲を囲んでいる。
基端側内部材30Aは、中性子の散乱断面積が大きい反射材によって形成される。基端側内部材30Aの材料としては、例えば、鉛、黒鉛、鉄、ベリリウム、ビスマス等が挙げられる。基端側内部材30Aの材料としては、熱外中性子の吸収が少なく、ガンマ線の遮蔽能も高い、鉛又は鉛−錫合金、鉛−アンチモン合金、鉛−ビスマス合金等の鉛合金が特に好ましい。このような材料によると、コリメータ部24の孔部124から出射される中性子線について、線質を大きく損なうこと無く、熱外中性子線の強度を高くすることができる。
先端側内部材30B及び外筒部材30Cは、中性子の吸収断面積が大きい遮蔽材によって形成される。先端側内部材30B及び外筒部材30Cの材料としては、例えば、ホウ素−ポリエチレン、フッ化リチウム−ポリエチレン、炭化ホウ素をはじめとするホウ素化合物等が挙げられる。先端側内部材30B及び外筒部材30Cの材料としては、高速中性子やガンマ線の遮蔽能が高いフッ化リチウム−ポリエチレンが特に好ましい。このような材料によると、延長コリメータ30の周辺における中性子線やガンマ線の空間線量を低減することができる。
以上の中性子減速照射装置2に装着可能な着脱式の延長コリメータ30によると、隔壁状のコリメータ部24よりも下流側に突出した位置から、集束された中性子線を出射させることが可能になる。ホウ素中性子捕捉療法による治療を受ける患者とは、延長コリメータ30の先端側で接する状態となるため、平面で接する場合と比較して患者の体勢の自由度が高くなり、身体的な負担が軽減される。また、患部に近接した位置から中性子線を出射させることが可能になり、中性子線の照射の精密性が向上する。また、延長コリメータ30の貫通孔130を通じて熱外中性子線が集束するため、コリメータ部24の孔部124の出口で評価される熱外中性子線の強度を患部付近まで保つことができる。よって、中性子線を高い強度で精密に照射することが可能な中性子減速照射装置及び延長コリメータを提供することが可能である。
[第2実施形態]
次に、本発明の第2実施形態に係るノズル付き中性子減速照射装置の構成について説明する。
図3は、本発明の第2実施形態に係る中性子減速照射装置の縦断面図である。
図3に示すように、本実施形態に係る中性子減速照射装置2Aは、前記の中性子減速照射装置2と同様に、減速部21と、反射部22と、吸収部23と、補強材28と、を備えている。
中性子減速照射装置2Aが、前記の中性子減速照射装置2と異なる主な点は、着脱式の延長コリメータ30が装着されるコリメータ部24に代えて、隔壁部241に非着脱式のコリメータ(ノズル部)242が延設されたコリメータ部(241,242)を備えるノズル付き中性子減速照射装置の形態とされている点である。
(隔壁部)
隔壁部241は、前記の中性子減速照射装置2と同様に、減速部21の下流側に隔壁状に設けられており、減速部21と同心となるように孔部124を有している。隔壁部241は、孔部124の上流側の内壁を成す上流側内部材24aと、孔部124の下流側の内壁を成す下流側内部材24bと、上流側内部材24a及び下流側内部材24bの上流側を囲む上流側外部材24cと、上流側内部材24a及び下流側内部材24bの下流側を囲む下流側外部材24dとによって構成されている。
上流側内部材24a、上流側外部材24c、及び、下流側外部材24dは、それぞれ、前記の中性子減速照射装置2が備える、上流側内部材24A、上流側外部材24C、下流側外部材24Dと同様に構成される。一方、下流側内部材24bは、中性子の散乱断面積が大きい反射材によって形成される。下流側内部材24bの材料としては、例えば、鉛、黒鉛、鉄、ベリリウム、ビスマス等が挙げられるが、鉛又は鉛合金が好ましい。下流側内部材24bは、単一体の反射材によって構成してもよいし、複数の反射材を組み合わせて構成してもよいし、上流側内部材24aと一体に形成してもよい。
(ノズル部)
ノズル部242は、前記の延長コリメータ30と同様に、孔部124の出口の周縁から荷電粒子線6の照射方向に向かって突出しており、側面が荷電粒子線6の照射方向に向かうに連れてテーパ状に縮径して円錐台形状を呈している。延長コリメータ30は、中央に軸方向に貫通した貫通孔224を有している。
ノズル部242は、隔壁部241の孔部124から出射される中性子線を集束する。ノズル部242は、前記の延長コリメータ30と同様に、貫通孔224の基端側の内壁を成す基端側内部材24eと、貫通孔224の先端側の内壁を成す先端側内部材24fと、基端側内部材24e及び先端側内部材24fの周囲を囲む外筒部材24gとを備えている。
基端側内部材24e、先端側内部材24f、及び、外筒部材24gは、それぞれ、前記の延長コリメータ30が備える、基端側内部材30A、先端側内部材30B、外筒部材30Cと同様に構成される。貫通孔224の入口は、ガンマ線を遮蔽するための遮蔽材24hにより覆われており、孔部124の出口周辺の部材が発生するガンマ線も遮蔽されるようになっている。
基端側内部材24eは、中性子の散乱断面積が大きい反射材によって形成される。基端側内部材24eの材料としては、例えば、鉛、黒鉛、鉄、ベリリウム、ビスマス等が挙げられる。基端側内部材24eの材料としては、熱外中性子の吸収が少なく、ガンマ線の遮蔽能も高い、鉛又は鉛−錫合金、鉛−アンチモン合金、鉛−ビスマス合金等の鉛合金が特に好ましい。
先端側内部材24f及び外筒部材24gは、中性子の吸収断面積が大きい遮蔽材によって形成される。先端側内部材24f及び外筒部材24gの材料としては、例えば、ホウ素−ポリエチレン、フッ化リチウム−ポリエチレン、炭化ホウ素をはじめとするホウ素化合物等が挙げられる。先端側内部材24f及び外筒部材24gの材料としては、高速中性子やガンマ線の遮蔽能が高いフッ化リチウム−ポリエチレンが特に好ましい。
以上のノズル付き中性子減速照射装置2Aによると、隔壁部241に非着脱式のノズル部242が延設されたコリメータ部(241,242)が備えられているため、隔壁部241よりも下流側に突出した位置から、集束された中性子線を出射させることが可能になる。患部に近接した位置から中性子線を出射させることが可能になり、中性子線の照射の精密性が向上する効果が得られる。また、ノズル部242の貫通孔224を通じて熱外中性子線が集束するため、熱外中性子線の強度を高くすることができる。よって、中性子線を高い強度で精密に照射することが可能な中性子減速照射装置を提供することが可能である。
特に、ノズル付き中性子減速照射装置2Aによると、ノズル部242が非着脱式であるため、孔部124の出口周辺に、フッ化リチウム−ポリエチレン等に代えて、鉛製等の部材を配置し得る。つまり、下流側内部材24bや遮蔽材24hを鉛又は鉛合金で構成することが可能になるため、出射される熱外中性子線の強度をより高くすることができるし、孔部124の出口周辺の部材が発生するガンマ線をより効果的に遮蔽することができる。
一般には、中性子減速照射装置の性能は、コリメータの出口付近、すなわち孔部124の出口を検出位置として設定し、この位置における線質が設計目標値を充足するか否かを評価する。しかし、非着脱式のノズル部242が延設された中性子減速照射装置2Aでは、下流側に突出したノズル部242の貫通孔224の出口で、出射される中性子線の線質を評価することができる。そのため、着脱式の延長コリメータを装着する場合と比較して、中性子減速照射装置の性能が設計目標値を充足しているか否かを、より正確に把握し、被照射体に照射される中性子線の線質を確実に保証することができる。
[第3実施形態]
次に、本発明の第3実施形態に係る中性子減速照射装置の構成について説明する。
図4は、本発明の第3実施形態に係る中性子減速照射装置の縦断面図である。
図4に示すように、本実施形態に係る中性子減速照射装置2Cは、前記の中性子減速照射装置2Aと同様に、減速部21と、反射部22と、吸収部23と、補強材28と、コリメータ部(241A,242A)と、を備えている。
中性子減速照射装置2Cが、前記の中性子減速照射装置2Aと異なる主な点は、コリメータ部(241A,242A)の反射材、すなわち、上流側内部材24a、下流側内部材24b、及び、基端側内部材24eが、それぞれ、鉛又は鉛合金で構成された第1反射体41と、ニッケル又はニッケル合金で構成された第2反射体42とからなり、第2反射体42が、貫通孔224の内壁に沿って第1反射体41中に埋設して配置されている点である。
第1反射体41は、上流側内部材24a及び下流側内部材24bにおいて、隔壁部241の貫通孔124の内壁を成しており、第2反射体42は貫通孔124の内壁に沿って第1反射体に埋設した状態に配置されている。また、基端側内部材24eにおいて、ノズル部242の貫通孔224の内壁を成しており、第2反射体42は貫通孔224の内壁に沿って第1反射体に埋設した状態に配置されている。
第2反射体42は、外形が筒状を呈しており、上流側内部材24a、下流側内部材24b、及び、基端側内部材24eのそれぞれにおいて、荷電粒子線6の照射方向に沿った長さの略全長に及ぶ長さに設けられている。また、第2反射体42は、荷電粒子線6の照射方向に向かうに連れてテーパ状に縮径し、隔壁部241の貫通孔124、及び、ノズル部242の貫通孔224のそれぞれにおいて中性子線を集束し得るように設けられている。
第2反射体42は、内面側が、貫通孔224との間に介在する第1反射体41によって囲まれる一方、外面側、及び、基端側内部材24eにおける下流側端面も、第1反射体41によって囲まれている。なお、第1反射体41や第2反射体42は、上流側内部材24a、下流側内部材24b、及び、基端側内部材24eのそれぞれにおいて、単一体の反射材によって構成してもよいし、複数の反射材を組み合わせて構成してもよい。
以上の中性子減速照射装置2Cによると、第2反射体42が、鉛等と比較して散乱断面積が大きいニッケル又はニッケル合金で構成されるため、貫通孔224から出射される熱外中性子線の強度や直進性が、前記の中性子減速照射装置2Aよりも高められる。また、第1反射体41が、第2反射体42のニッケル等と比較して二次的なガンマ線を発生し難い鉛又は鉛合金で構成されるため、貫通孔224の出口周辺におけるガンマ線の空間線量をより抑制することができる。よって、中性子線をより高い強度で精密に照射することが可能な中性子減速照射装置を提供することが可能である。
[第4実施形態]
次に、本発明の第4実施形態に係る中性子減速照射装置の構成について説明する。
図5は、本発明の第4実施形態に係る中性子減速照射装置の縦断面図である。
図5に示すように、本実施形態に係る中性子減速照射装置2Dは、前記の中性子減速照射装置2Cと同様に、反射部22と、吸収部23と、補強材28と、コリメータ部(241A,242A)と、を備えている。また、コリメータ部(241A,242A)の反射材は、第1反射体41と第2反射体42とにより構成されている。
中性子減速照射装置2Dが、前記の中性子減速照射装置2Cと異なる主な点は、減速部21が、フッ化マグネシウムで構成された複数の減速体21aと、カドミウム又はカドミウム合金で構成された第1遮蔽体26とを有し、複数の減速体21aが、第1遮蔽体26と共に荷電粒子線6の照射方向に沿って積層されている点である。
図5に示すように、中性子減速照射装置2Dにおいて、減速材本体21Aは、減速材として働くフッ化マグネシウムで構成された複数の減速体21aが組み合わされて形成されており、複数の減速体21aは、カドミウム又はカドミウム合金で構成された熱中性子を遮蔽する第1遮蔽体26を挟んで積層されている。また、下流側減速材21Cは、フッ化マグネシウムで構成された減速体21aの上流側と下流側とに、それぞれ第1遮蔽体26が配置されており、第1遮蔽体26に挟まれた積層状態で配置されている。
また、中性子減速照射装置2Dにおいて、下流側減速材21Cの下流側には、コリメータ部24の孔部124に密接して第2遮蔽体27が配置されている。第2遮蔽体27は、ガンマ線を遮蔽するカドミウム又はカドミウム合金で構成され、減速部21が二次的に発生するガンマ線を遮蔽するために備えられる。
以上の中性子減速照射装置2Dによると、減速部21が、フッ化マグネシウムで構成された減速体21aとカドミウム又はカドミウム合金で構成された第1遮蔽体26とを積層して構成されるため、熱中性子を遮蔽する第1遮蔽体26の合計の厚さを確保しつつ、第1遮蔽体26自体が発生する二次的なガンマ線の漏洩を抑制することができる。このような構成により、貫通孔224の出口周辺におけるガンマ線の空間線量を低減した状態で、出射される熱外中性子線の強度をより高めることが可能である。また、減速部21が複数の減速体21aを組み合わせて構成されるため、不良少なく作製することが可能な寸法が小さいフッ化マグネシウムによって、減速部21を形成することが可能である。
以上、本発明について説明したが、本発明は、前記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更が可能である。例えば、本発明は、必ずしも前記の実施形態が備える全ての構成を備えるものに限定されない。実施形態の構成の一部を他の構成に置き換えたり、実施形態の構成の一部を他の形態に追加したり、実施形態の構成の一部を省略したりすることができる。
例えば、前記の第1実施形態に、前記の第3実施形態の要部構成や、第4実施形態の要部構成を組み合わせたり、前記の第2実施形態に、前記の第3実施形態の要部構成や、第4実施形態の要部構成を組み合わせたりすることが可能である。
また、前記の中性子減速照射装置2,2A、2C,2D、及び、延長コリメータ30は、各部材の形状、配置、材質、寸法等を、本発明の趣旨を逸脱しない範囲において適宜のものとすることができる。中性子減速照射装置2,2A、2C,2Dや、延長コリメータ30の横断面形状を、円に代えて、多角形等にすることも可能である。また、延長コリメータ30やノズル部242の外形をその他の形状にしたり、延長コリメータ30やノズル部242を積層構造としたり、患者の患部に合わせて外形を換装可能に設けたりすることも可能である。
以下、実施例を示して本発明について具体的に説明するが、本発明の技術的範囲はこれに限定されるものではない。
中性子減速照射装置及び延長コリメータの減速照射能について、シミュレーションによる解析を行った結果を示す。なお、以下の解析においては、モンテカルロ法によって計算シミュレーションを行っている。
計算コードは、PHITS (ver.2.660)、核データは、ENDF/B−VII.1を使用した。中性子源としては、15cm径の平板のリチウムのターゲットを設定した。中性子のエネルギと出射角度とは、LIYILEDを用いて計算した。ターゲットとしては、上流側から下流側に向けて、チタン0.01mm、リチウム0.14mm、タンタル0.36mm、1.5mm、冷却材としての水5.0mm、銅3.0mm、ベリリウム39.99mmが順に積層された形態を設定した。
中性子減速照射装置及び延長コリメータの減速照射能は、中性子減速照射装置から出射され、「Tally」において計測される中性子線につき、IAEAが推奨している設計目標値を指標として評価した。具体的には、以下に挙げる、熱外中性子強度、混入率(高速中性子混入率、ガンマ線混入率)、熱中性子比、カレント/フラックス比、中性子空間線量率を評価した。計算粒子数は、評価項目の相対不確かさが3%未満となる10とし、統計が不十分な場合は、計算粒子数を増やして解析を行った。なお、「Tally」は、シミュレーション上の仮想的な検出部位である。
熱外中性子強度(Nepi)は、0.5eVより高く、10keV以下のエネルギーを持つ中性子束の積分値として定義される。熱外中性子強度(Nepi)の評価は、1×10[n・cm−2・s−1]以上を目標値とした。
高速中性子混入率(D)は、高速中性子が付与する吸収線量と熱外中性子束の比であり、次の数式1によって定義される。Nfastは、高速中性子強度、Kは、中性子カーマ系数である。高速中性子混入率(D)の評価は、2×10−13[Gy・cm]以下を目標値とした。
Figure 0006935878
ガンマ線混入率(D)は、ガンマ線が付与する吸収線量と熱外中性子束の比であり、次の数式2によって定義される。Gは、全エネルギにおけるガンマ線線量、Kは、ガンマ線カーマ系数である。ガンマ線混入率(D)の評価は、2×10−13[Gy・cm]以下を目標値とした。
Figure 0006935878
熱中性子比(Nt/e)は、熱中性子束と熱外中性子束の比であり、次の数式3によって定義される。熱中性子比(Nt/e)の評価は、0.05以下を目標値とした。
Figure 0006935878
カレント/フラックス比(C/F比)は、中性子線の直進性を示す指標であり、次の数式4によって定義される。θは、「Tally」への入射角に相当し、Tallyの法線と中性子線の入射方向とが成す角を示す。カレント/フラックス比(C/F比)の評価は、0.7以上を目標値とした。
Figure 0006935878
中性子空間線量率(S)は、コリメータ部の出口周辺の空間線量率分布を示す指標であり、次の数式5によって定義される。rは、「Tally」の中心を原点とする径方向の距離である。Wは、次の数式6によって定義される放射線加重係数である。
Figure 0006935878
Figure 0006935878
はじめに、前記の第1実施形態に係る着脱式の延長コリメータ30を装着した中性子減速照射装置2の減速照射能を、先端側内部材30Bの軸方向の長さを変数として解析した。
図6は、本発明の第1実施形態に係る延長コリメータを拡大して示す縦断面図である。
図6において、rは、延長コリメータ30の貫通孔130の基端側端面における入口径、すなわち基端側内部材30Aの基端側端面における内半径を示す。rは、貫通孔130の先端側端面における出口径を示す。Rは、延長コリメータ30の基端側端面における外半径を示す。Rは、延長コリメータ30の先端側端面における外半径を示す。Rは、基端側内部材30Aの基端側端面における外半径を示す。Rは、先端側内部材30Bの先端側端面における外半径を示す。Lは、延長コリメータ30の軸方向の長さを示す。tは、先端側内部材30Bの軸方向の長さを示す。
減速照射能の解析において、延長コリメータ30は、基端側内部材30A及び先端側内部材30Bの材質を鉛とフッ化リチウム−ポリエチレンから選択した。また、外筒部材30Cの材質をフッ化リチウム−ポリエチレンとした。
延長コリメータ30の貫通孔130の基端側端面における入口径(r)は7cm、貫通孔130の先端側端面における出口径(r)は5cmとした。また、延長コリメータ30の軸方向の長さ(L)は15cm、延長コリメータ30の基端側端面における外半径(R)は20cm、延長コリメータ30の先端側端面における外半径(R)は10cm、基端側内部材30Aの基端側端面における外半径(R)は17cm、先端側内部材30Bの先端側端面における外半径(R)は7cmとした。先端側内部材30Bの軸方向の長さ(t)を変えるとき、固定された全長の下で、基端側内部材30Aの軸方向の長さも共に変えた。
また、中性子減速照射装置2は、減速部21の材質をフッ化マグネシウム、反射部22の材質を鉛、吸収部23の材質をホウ素−ポリエチレン、上流側内部材24A及び上流側外部材24Cの材質を鉛、下流側内部材24B及び下流側外部材24Dの材質をフッ化リチウム−ポリエチレン、補強材28の材質をSS400とした。
図7Aは、延長コリメータの先端側内部材の軸方向の長さと、熱外中性子強度との関係を示す図である。図7Bは、延長コリメータの先端側内部材の軸方向の長さと、高速中性子混入率及びガンマ線混入率との関係を示す図である。図7Cは、延長コリメータの先端側内部材の軸方向の長さと、熱中性子比との関係を示す図である。図7Dは、延長コリメータの先端側内部材の軸方向の長さと、カレント/フラックス比との関係を示す図である。
図7A〜図7Dにおいて、「All PE」は、基端側内部材30A及び先端側内部材30Bの材質がフッ化リチウム−ポリエチレンの結果である。「PE+PE 1cm」、「PE+PE 2cm」、「PE+PE 3cm」は、基端側内部材30Aの材質が鉛、先端側内部材30Bの材質がフッ化リチウム−ポリエチレンであり、先端側内部材30Bの軸方向の長さ(t)が、それぞれ、1cm、2cm、3cmに設定された場合の結果である。図中の太線と矢印は、設計目標値と目標の方向を表している。
図7A〜図7Dに示すように、鉛製の反射材で形成された基端側内部材30Aを設けることにより、熱中性子やガンマ線の混入が低減されている。また、先端側内部材30Bの軸方向の長さ(t)が1cm、2cm、3cmのいずれの場合でも、カレント/フラックス比を大きく低下させること無く、熱外中性子強度が約1.4倍まで増大している。貫通孔130の内壁を反射材で構成した延長コリメータを装着することにより、フッ化リチウム−ポリエチレン等の遮蔽材のみで構成された延長コリメータと比較して、線質を大きく損なうこと無く、熱外中性子強度が向上することが確認される。
次に、前記の第1実施形態に係る着脱式の延長コリメータ30を装着した中性子減速照射装置2の開口124の出口周辺における空間線量を、先端側内部材30Bの軸方向の長さを変数として解析した。
図8は、延長コリメータの先端側内部材の軸方向の長さと、中性子空間線量率分布との関係を示す図である。
図8において、横軸は、コリメータ部24の開口124の中心軸からの径方向の距離[cm]、縦軸は、中性子線量率[Gy/s]を示す。また、「All PE−LiF」は、基端側内部材30A及び先端側内部材30Bの材質がフッ化リチウム−ポリエチレンの結果である。また、「1.0」、「2.0」、「3.0」は、基端側内部材30Aの材質が鉛、先端側内部材30Bの材質がフッ化リチウム−ポリエチレンであり、先端側内部材30Bの軸方向の長さ(t)が、それぞれ、1.0cm、2.0cm、3.0cmに設定された場合の結果である。中性子の検出位置は孔部124の出口である。
図8に示すように、コリメータ部24の開口124の出口周辺における中性子空間線量率は、先端側内部材30Bの軸方向の長さ(t)が1.0cm、2.0cm、3.0cmのいずれの場合でも、開口124の中心軸の付近で一定程度低減されている。先端側内部材30Bの軸方向の長さ(t)は、主として、延長コリメータ30の先端側端面の付近の空間線量を左右している。
次に、前記の第1実施形態に係る着脱式の延長コリメータ30を装着した中性子減速照射装置2の減速照射能を、基端側内部材30Aの材質を変えて解析した。
減速照射能の解析において、延長コリメータ30は、基端側内部材30Aの材質を鉛とビスマスと炭素から選択した。また、先端側内部材30B及び外筒部材30Cの材質をフッ化リチウム−ポリエチレンとした。先端側内部材30Bの軸方向の長さ(t)は、3cmとし、その他の寸法や、中性子減速照射装置2の構成は、前記の解析と同様に設定した。
図9Aは、延長コリメータの基端側内部材の材質と、熱外中性子強度との関係を示す図である。図9Bは、延長コリメータの基端側内部材の材質と、高速中性子混入率及びガンマ線混入率との関係を示す図である。図9Cは、延長コリメータの基端側内部材の材質と、熱中性子比との関係を示す図である。図9Dは、延長コリメータの基端側内部材の材質と、カレント/フラックス比との関係を示す図である。
図9A〜図9Dにおいて、「Pb」は、基端側内部材30Aの材質が鉛の結果、「Bi」は、基端側内部材30Aの材質がビスマスの結果、「C」は、基端側内部材30Aの材質が炭素の結果である。図中の太線と矢印は、設計目標値と目標の方向を表している。
図9A〜図9Dに示すように、鉛やビスマスで形成された基端側内部材30Aを設けることにより、熱中性子やガンマ線の混入が低減されている。鉛等の原子量が大きい反射材が貫通孔130の内壁を構成する材料として好適であることが確認される。
次に、前記の第2実施形態に係る中性子減速照射装置2Aの減速照射能を、下流側内部材24bの材質を変えて解析した。
図10は、本発明の第2実施形態に係る中性子減速照射装置のノズル部を拡大して示す縦断面図である。
図10において、rは、延長コリメータ(ノズル部242)の貫通孔224の基端側端面における入口径、すなわち基端側内部材24eの基端側端面における内半径を示す。rは、貫通孔224の先端側端面における出口径を示す。Rは、ノズル部242の基端側端面における外半径を示す。Rは、ノズル部242の先端側端面における外半径を示す。Rは、基端側内部材24eの基端側端面における外半径を示す。Rは、先端側内部材24fの先端側端面における外半径を示す。Lは、ノズル部242の軸方向の長さを示す。tは、先端側内部材24fの軸方向の長さを示す。
減速照射能の解析において、ノズル部242は、基端側内部材24eの材質を鉛、先端側内部材24f及び外筒部材24gの材質をフッ化リチウム−ポリエチレンとした。
ノズル部242の貫通孔224の基端側端面における入口径(r)は7cm、貫通孔224の先端側端面における出口径(r)は5cmとした。また、ノズル部242の軸方向の長さ(L)は15cm、ノズル部242の基端側端面における外半径(R)は20cm、ノズル部242の先端側端面における外半径(R)は10cm、基端側内部材24eの基端側端面における外半径(R)は17cm、先端側内部材24fの先端側端面における外半径(R)は7cmとした。
また、下流側内部材24bの材質を鉛とフッ化リチウム−ポリエチレンから選択した。また、減速部21の材質をフッ化マグネシウム、反射部22の材質を鉛、吸収部23の材質をホウ素−ポリエチレン、上流側内部材24A及び上流側外部材24Cの材質を鉛、下流側外部材24Dの材質をフッ化リチウム−ポリエチレン、補強材28の材質をSS400とした。
図11Aは、コリメータ部の下流側内部材の材質と、熱外中性子強度との関係を示す図である。図11Bは、コリメータ部の下流側内部材の材質と、高速中性子混入率及びガンマ線混入率との関係を示す図である。図11Cは、コリメータ部の下流側内部材の材質と、熱中性子比との関係を示す図である。図11Dは、コリメータ部の下流側内部材の材質と、カレント/フラックス比との関係を示す図である。
図11A〜図11Dにおいて、「PE」は、下流側内部材24bの材質がフッ化リチウム−ポリエチレンの結果、「Pb」は、下流側内部材24bの材質が鉛の結果である。図中の太線と矢印は、設計目標値と目標の方向を表している。
図11A〜図11Dに示すように、下流側内部材24bの材質を鉛とすることにより、熱中性子やガンマ線の混入が低減されている。また、カレント/フラックス比を大きく低下させること無く、熱外中性子強度が増大している。孔部124の内壁を反射材で構成することにより、フッ化リチウム−ポリエチレン等の遮蔽材で構成した場合と比較して、線質を大きく損なうこと無く、熱外中性子強度の向上が達成されている。中性子線の出射側に突出したノズル型のコリメータ部(241,242)が、被照射体への精密な照射に加え、熱外中性子強度の向上に有効であることが確認される。
次に、前記の第2実施形態に係る中性子減速照射装置2Aの減速照射能を、ノズル部242の貫通孔224の基端側端面における入口径(r)を変数として解析した。
減速照射能の解析において、ノズル部242は、基端側内部材24eの材質を鉛、先端側内部材24f及び外筒部材24gの材質をフッ化リチウム−ポリエチレンとした。ノズル部242の貫通孔224の基端側端面における入口径(r)は、4cmから10cmまで1cmずつ大きくして、それぞれ解析した。貫通孔224の基端側端面における入口径(r)を変えるとき、基端側内部材24eの厚さ(外半径と内半径との差)は10cmに固定した。なお、先端側内部材24fは、基端側端面の外縁と先端側端面の内縁とを通る曲面で分割される基端側の材質を鉛、先端側の材質をフッ化リチウム−ポリエチレンに変更した。その他の寸法や、中性子減速照射装置2Aの構成は、前記の解析と同様に設定した。
図12Aは、ノズル部の貫通孔の入口径と、熱外中性子強度との関係を示す図である。図12Bは、ノズル部の貫通孔の入口径と、高速中性子混入率及びガンマ線混入率との関係を示す図である。図12Cは、ノズル部の貫通孔の入口径と、熱中性子比との関係を示す図である。図12Dは、ノズル部の貫通孔の入口径と、カレント/フラックス比との関係を示す図である。
図12A〜図12Dに示すように、ノズル部242の貫通孔224の基端側端面における入口径(r)が4cmから10cmの範囲において、高速中性子混入率とカレント/フラックス比は、概ね目標値が達成されている。貫通孔224の基端側端面における入口径(r)を広げると、熱中性子比は低下するものの、熱外中性子強度は向上することが確認される。
次に、前記の第2実施形態に係る中性子減速照射装置2Aの減速照射能を、外筒部材24gの基端側端面における厚さ(外半径と内半径との差:R−R)を変数として解析した。
減速照射能の解析において、ノズル部242は、基端側内部材24eの材質を鉛、先端側内部材24f及び外筒部材24gの材質をフッ化リチウム−ポリエチレンとした。ノズル部242の外筒部材24gの基端側端面における厚さ(外半径と内半径との差:R−R)は、1cmから4cmまで1cmずつ大きくして、それぞれ解析した。外筒部材24gの基端側端面における厚さ(外半径と内半径との差:R−R)を変えるとき、ノズル部242の基端側端面における外半径(R)と、ノズル部242の先端側端面における外半径(R)とを固定し、固定された径の下で、基端側内部材24eの基端側端面における厚さ(外半径と内半径との差:R−r)も共に変えた。その他の寸法や、中性子減速照射装置2Aの構成は、前記の解析と同様に設定した。
図13Aは、ノズル部の基端側の厚さと、熱外中性子強度との関係を示す図である。図13Bは、ノズル部の基端側の厚さと、高速中性子混入率及びガンマ線混入率との関係を示す図である。図13Cは、ノズル部の基端側の厚さと、熱中性子比との関係を示す図である。図13Dは、ノズル部の基端側の厚さと、カレント/フラックス比との関係を示す図である。
図13A〜図13Dに示すように、ノズル部242の外筒部材24gの基端側端面における厚さ(外半径と内半径との差:R−R)が1cmから4cmの範囲において、高速中性子混入率とカレント/フラックス比は、概ね目標値が達成されている。外筒部材24gの基端側端面における厚さ(外半径と内半径との差:R−R)を薄くすると、熱中性子比と共に、熱外中性子強度が向上することが確認される。
次に、前記の第2実施形態に係る中性子減速照射装置2Aの貫通孔224の出口周辺における空間線量を、ノズル部242の貫通孔224の基端側端面における入口径と、ノズル部242の外筒部材24gの基端側端面における厚さとを変数として解析した。
図14は、ノズル部の貫通孔の入口径及び基端側の厚さと、中性子空間線量率分布との関係を示す図である。
図14において、上段は、ノズル部242の貫通孔224の基端側端面における入口径(r)と中性子空間線量率分布との関係、下段は、基端側端面における入口径(r)を10cmに固定した場合の、外筒部材24gの基端側端面における厚さ(外半径と内半径との差:R−R)と中性子空間線量率分布との関係である。横軸は、コリメータ部24の開口124の中心軸からの径方向の距離、縦軸は、中性子線量率[Gy/s]を示す。また、凡例は、それぞれ、入口径[cm]及び厚さ[cm]を変えた場合の結果である。但し、中性子の検出位置は、上段は、貫通孔224の出口、下段は、孔部124の出口よりも2.5cm外側(出口側)である。
図14に示すように、隔壁部241の開口124の出口周辺における中性子空間線量率は、ノズル部242の貫通孔224の基端側端面における入口径(r)が大きくなるほど、外筒部材24gの厚さが薄くなり、数値が高くなっている(上段参照)。これに対して、基端側端面における入口径(r)を10cmに固定した場合、中性子空間線量率は、外筒部材24gの基端側端面における厚さ(外半径と内半径との差:R−R)が厚くなるほど、基端側内部材24eの厚さが薄くなり、数値が低くなっている(下段参照)。よって、基端側端面における入口径(r)を10cmに固定した場合、外筒部材24gの基端側端面における厚さ(外半径と内半径との差:R−R)は2〜3cm程度が妥当であると確認される。
次に、前記の第3実施形態に係る中性子減速照射装置2Cの減速照射能を、ニッケル又はニッケル合金で構成された第2反射体42の配置を変えて解析した。
減速照射能の解析において、隔壁部241の上流側内部材24a及び下流側内部材24bと、ノズル部242の基端側内部材24eの材質は、鉛の第1反射体41とニッケルの第2反射体42とから選択した。また、先端側内部材24f及び外筒部材24gの材質をフッ化リチウム−ポリエチレンとした。また、ノズル部242の貫通孔224の基端側端面における入口径(r)は7cm、基端側内部材24eの基端側端面における厚さ(外半径と内半径との差:R−r)は7cm、外筒部材24gの基端側端面における厚さ(外半径と内半径との差:R−R)は3cmとした。ニッケルの第2反射体42は、基端側内部材24eの厚さの中央部に、基端側端面における厚さが2cm、貫通孔224から3cmの深さとなるように設けた。
図15Aは、反射体の配置と、熱外中性子強度との関係を示す図である。図15Bは、反射体の配置と、高速中性子混入率及びガンマ線混入率との関係を示す図である。図15Cは、反射体の配置と、熱中性子比との関係を示す図である。図15Dは、反射体の配置と、カレント/フラックス比との関係を示す図である。
図15A〜図15Dにおいて、「Only Pb」は、隔壁部241の上流側内部材24a及び下流側内部材24bと、ノズル部242の基端側内部材24eの材質が、いずれも鉛の結果、「with Ni at nozzle」は、ノズル部242の基端側内部材24eが、鉛の第1反射体41にニッケルの第2反射体42が埋設された構造である場合の結果、「with Ni at all colli」は、隔壁部241の上流側内部材24a及び下流側内部材24bと、ノズル部242の基端側内部材24eの両方が、鉛の第1反射体41にニッケルの第2反射体42が埋設された構造である場合の結果である。図中の太線と矢印は、設計目標値と目標の方向を表している。
図15A〜図15Dに示すように、隔壁部241やノズル部242を鉛の第1反射体41にニッケルの第2反射体42が埋設された構造とすることにより、熱中性子や高速中性子の混入が低減されている。また、隔壁部241とノズル部242の両方を埋設された構造とするほど熱外中性子強度がより増大している。第1反射体41にニッケルの第2反射体42が埋設された構造が、熱外中性子強度の向上に有効であることが確認される。
100 中性子発生装置
1 荷電粒子線発生装置
1a イオン源
1b 加速器
2 中性子減速照射装置
4 導管
5 ターゲット(中性子源)
6 荷電粒子線(陽子線)
7 集束レンズ
9 中性子線
21 減速部
21A 減速材本体
21B 上流側減速材
21C 下流側減速材
22 反射部
22A 第1反射材
22B 第2反射材
22C 第3反射材
22D 側部反射材
22E 上流側反射材
22F 下流側反射材
22G 出口反射材
23 吸収部
23A 側部吸収材
23B 上流側吸収材
24 コリメータ部
24A 上流側内部材
24B 下流側内部材
24C 上流側外部材
24D 下流側外部材
28 補強材
30 着脱式の延長コリメータ
30A 基端側内部材
30B 先端側内部材
30C 外筒部材
24a 上流側内部材
24b 下流側内部材
24c 上流側外部材
24d 下流側外部材
24e 基端側内部材
24f 先端側内部材
24g 外筒部材
24h 入口反射材
26 第1遮蔽体
27 第2遮蔽体
41 第1反射体
42 第2反射体
124 孔部
130 貫通孔
224 貫通孔
241 隔壁部
242 ノズル部

Claims (3)

  1. 荷電粒子線が照射されて中性子源が発生した中性子線を減速させる減速部と、
    前記減速部の周囲を囲み中性子線を反射する反射部と、
    前記減速部によって減速された中性子線の照射野を整形するコリメータ部と、を備え、
    前記コリメータ部は、前記荷電粒子線の照射方向における前記減速部の下流側に配置され、前記照射方向に向かって縮径する孔部を有する隔壁部と、前記照射方向における前記隔壁部の下流側に配置され、前記孔部の周縁から前記照射方向に向かって突出し、中央に貫通孔を有するノズル部と、を有し、
    前記ノズル部は、前記貫通孔の内壁を成す反射材と、前記反射材の周囲を囲む遮蔽材と、を備え
    前記反射材は、鉛又は鉛合金で構成された第1反射体と、ニッケル又はニッケル合金で構成された第2反射体と、からなり、
    前記第2反射体は、前記貫通孔の内壁に沿って前記第1反射体中に埋設して配置されている中性子減速照射装置。
  2. 前記減速部は、フッ化マグネシウムで構成された複数の減速体と、カドミウム又はカドミウム合金で構成された遮蔽体と、を有し、
    複数の前記減速体は、前記遮蔽体と共に前記照射方向に沿って積層されている請求項1に記載の中性子減速照射装置。
  3. 中性子減速照射装置に装着される着脱式の延長コリメータであって、
    前記中性子減速照射装置は、
    荷電粒子線が照射されて中性子源が発生した中性子線を減速させる減速部と、
    前記減速部の周囲を囲む反射部と、
    前記減速部によって減速された中性子線の照射野を整形するコリメータ部と、を備え、
    前記延長コリメータは、中央に貫通孔を有する本体部を有し、前記貫通孔の内壁を成す反射材と、前記反射材の周囲を囲む遮蔽材と、を備え、前記コリメータ部に着脱自在に固定され、前記反射材は、鉛又は鉛合金で構成された第1反射体と、ニッケル又はニッケル合金で構成された第2反射体と、からなり、前記第2反射体は、前記貫通孔の内壁に沿って前記第1反射体中に埋設して配置されている延長コリメータ。
JP2017061979A 2017-03-27 2017-03-27 中性子減速照射装置及び延長コリメータ Active JP6935878B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017061979A JP6935878B2 (ja) 2017-03-27 2017-03-27 中性子減速照射装置及び延長コリメータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017061979A JP6935878B2 (ja) 2017-03-27 2017-03-27 中性子減速照射装置及び延長コリメータ

Publications (2)

Publication Number Publication Date
JP2018161449A JP2018161449A (ja) 2018-10-18
JP6935878B2 true JP6935878B2 (ja) 2021-09-15

Family

ID=63859058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017061979A Active JP6935878B2 (ja) 2017-03-27 2017-03-27 中性子減速照射装置及び延長コリメータ

Country Status (1)

Country Link
JP (1) JP6935878B2 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020509919A (ja) * 2017-06-05 2020-04-02 南京中硼▲聯▼康医▲療▼科技有限公司Neuboron Medtech Ltd. 中性子捕捉治療用のビーム整形体
KR102118077B1 (ko) * 2018-11-06 2020-06-02 한국원자력의학원 중성자 포획 치료시스템용 콜리메이터
CN111821580A (zh) * 2019-04-17 2020-10-27 中硼(厦门)医疗器械有限公司 中子捕获治疗系统及用于中子捕获治疗系统的射束整形体
JP7312850B2 (ja) * 2019-04-17 2023-07-21 中硼(厦▲門▼)医▲療▼器械有限公司 中性子捕捉療法システム
KR102274044B1 (ko) * 2019-07-31 2021-07-09 주식회사 다원시스 환자 치료위치를 고려한 감속집합체
KR102400155B1 (ko) * 2019-12-26 2022-05-19 주식회사 다원시스 중성자 빔 선속 증가를 위한 후방 반사장치를 포함하는 감속집합체
JP7237877B2 (ja) * 2020-03-13 2023-03-13 株式会社東芝 イオン源装置
JP7292345B2 (ja) * 2021-03-11 2023-06-16 アデルファイ・テクノロジー・インコーポレイテッド 癌治療のためのビーム成形装置を有する中性子源
CN113724908A (zh) * 2021-08-11 2021-11-30 散裂中子源科学中心 一种热中子束流整形装置
CN114152635B (zh) * 2021-10-15 2024-05-31 中国人民解放军军事科学院军事医学研究院 中子外照射后人体血管内中子能谱的等效模拟装置
KR102665678B1 (ko) * 2021-11-30 2024-05-14 한국원자력의학원 중성자 포획치료를 위한 미로형 중성자 빔성형 장치
WO2023190523A1 (ja) * 2022-03-29 2023-10-05 住友重機械工業株式会社 中性子捕捉療法装置、及びコリメータ
JP2024000810A (ja) * 2022-06-21 2024-01-09 株式会社東芝 中性子及びガンマ線コリメータ、ラジオグラフィ装置
CN115103503B (zh) * 2022-08-26 2022-11-22 合肥中科离子医学技术装备有限公司 液体靶装置
CN221101709U (zh) * 2022-10-10 2024-06-07 中硼(厦门)医疗器械有限公司 射束整形体及中子捕获治疗系统
CN116392731B (zh) * 2023-06-07 2023-08-25 四川中物积庆医疗科技有限公司 一种bnct中子慢化准直系统超热中子能量调整系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4112548B2 (ja) * 2004-10-20 2008-07-02 三菱電機株式会社 放射線治療装置
JP4596392B2 (ja) * 2006-03-08 2010-12-08 三菱重工業株式会社 中性子発生装置及び中性子照射システム

Also Published As

Publication number Publication date
JP2018161449A (ja) 2018-10-18

Similar Documents

Publication Publication Date Title
JP6935878B2 (ja) 中性子減速照射装置及び延長コリメータ
JP6592135B2 (ja) 中性子捕捉療法用ビーム整形アセンブリ
JP6732244B2 (ja) 中性子減速照射装置
RU2717363C1 (ru) Блок формирования пучка для нейтрон-захватной терапии
JP2023002608A (ja) 中性子捕捉療法用のビーム成形体
US20120330084A1 (en) Neutron Source for Neutron Capture Therapy
JP6261919B2 (ja) 中性子照射装置
US10898733B2 (en) Beam shaping assembly for neutron capture therapy
RU2727576C1 (ru) Система нейтронозахватной терапии и мишень для устройства генерации пучка частиц
JP7357545B2 (ja) 中性子捕捉療法システム
JP5850362B2 (ja) 中性子線照射装置および当該装置の作動方法
JP2019522557A (ja) 中性子捕捉治療のためのビーム成形体
RU2745133C1 (ru) Система нейтрон-захватной терапии
CN109925607B (zh) 中子捕获治疗系统
CN109925610B (zh) 中子捕获治疗系统
KR102400155B1 (ko) 중성자 빔 선속 증가를 위한 후방 반사장치를 포함하는 감속집합체
JP2023542251A (ja) 中性子捕捉療法のための中性子ビームの生成、減速および構成のためのデバイス
CA3131697A1 (en) Beam target and beam target system
JP2024524357A (ja) 中性子捕捉療法システム

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210817

R150 Certificate of patent or registration of utility model

Ref document number: 6935878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150