JP6934712B2 - Semiconductor light emitting device and vehicle lighting equipment - Google Patents

Semiconductor light emitting device and vehicle lighting equipment Download PDF

Info

Publication number
JP6934712B2
JP6934712B2 JP2016183206A JP2016183206A JP6934712B2 JP 6934712 B2 JP6934712 B2 JP 6934712B2 JP 2016183206 A JP2016183206 A JP 2016183206A JP 2016183206 A JP2016183206 A JP 2016183206A JP 6934712 B2 JP6934712 B2 JP 6934712B2
Authority
JP
Japan
Prior art keywords
light emitting
phosphor layer
light
emitting element
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016183206A
Other languages
Japanese (ja)
Other versions
JP2018049875A (en
Inventor
原田 光範
光範 原田
佳織 立花
佳織 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2016183206A priority Critical patent/JP6934712B2/en
Publication of JP2018049875A publication Critical patent/JP2018049875A/en
Application granted granted Critical
Publication of JP6934712B2 publication Critical patent/JP6934712B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、発光素子からの光を波長変換部材により所望の波長の光に変換して照射する半導体発光装置及び車両用灯具に関する。 The present invention relates to a semiconductor light emitting device and a vehicle lamp that irradiate light from a light emitting element by converting it into light having a desired wavelength by a wavelength conversion member.

半導体発光素子から発せられた光を波長変換部材により波長変換して白色光を照射する半導体発光装置が知られている。このような半導体発光装置は、一般照明、街路灯、車両用灯具等の照明器具の光源として利用され、特に、車両用灯具等は、高い正面輝度が要求されることから、様々な半導体発光装置が提案されている。 A semiconductor light emitting device is known in which light emitted from a semiconductor light emitting element is wavelength-converted by a wavelength conversion member to irradiate white light. Such a semiconductor light emitting device is used as a light source for lighting equipment such as general lighting, street lights, and vehicle lighting equipment. In particular, since vehicle lighting equipment and the like are required to have high front brightness, various semiconductor light emitting devices are used. Has been proposed.

例えば、特許文献1には、発光素子と、外部に露出する発光面と発光面から連続する側面とを有し発光素子からの光を波長変換する光変換部材と、光反射性材料を含み少なくとも光変換部材の側面を被覆する被覆部材とを備えることで、実質的に発光面のみを発光装置における光の放出領域とすることで、正面輝度を向上させた発光装置が開示されている。 For example, Patent Document 1 includes at least a light emitting element, a light converting member having a light emitting surface exposed to the outside and a side surface continuous from the light emitting surface and converting the light from the light emitting element into wavelength, and a light reflecting material. A light emitting device having improved front luminance is disclosed by providing a covering member that covers a side surface of the light conversion member so that substantially only the light emitting surface is used as a light emitting region in the light emitting device.

また、特許文献2には、発光素子の上面に、発光素子の上面よりも大きい面を有する波長変換部材を接合し、波長変換部材の上面に発光素子の上面よりも大きい面積を有する透光性部材を配置し、発光素子の側面から波長変換部材の周縁下面に亘って側面導光部材を設け、少なくとも、波長変換部材、透光性部材及び側面導光部材のそれぞれの側面に光反射部材を配置し、波長変換部材の上面を透光性部材の下面よりも小さいか、または、発光素子の外側となる領域を発光素子の直上の領域よりも薄く形成することで、正面輝度を向上させた半導体発光装置が開示されている。 Further, in Patent Document 2, a wavelength conversion member having a surface larger than the upper surface of the light emitting element is bonded to the upper surface of the light emitting element, and the upper surface of the wavelength conversion member has a translucency having a larger area than the upper surface of the light emitting element. A member is arranged, a side light guide member is provided from the side surface of the light emitting element to the lower surface of the peripheral edge of the wavelength conversion member, and at least a light reflection member is provided on each side surface of the wavelength conversion member, the translucent member, and the side light guide member. The front brightness was improved by arranging the wavelength conversion member so that the upper surface of the wavelength conversion member was smaller than the lower surface of the translucent member or the region outside the light emitting element was formed thinner than the region directly above the light emitting element. A semiconductor light emitting device is disclosed.

特許第552682号公報Japanese Patent No. 552682 特開2016−72515号公報Japanese Unexamined Patent Publication No. 2016-72515

しかしながら、上述した特許文献1の半導体発光装置では、発光素子を包囲するように光反射材料を含む被覆部材が設けられていることから発光素子の側面からの光を遮断してしまうので、発光素子の側面発光を有効活用できず、発光効率が低下する。また、光変換部材が発光素子よりも大きい場合、光変換部材の発光素子より大きい部分から照射される光が他の部分に比してより波長変換された色に強調され、発光面において色ムラが発生してしまう。
特許文献2の半導体発光装置では、波長変換部材が発光素子の上面よりも大きい面を有していることから、発光面の周縁部近傍に色ムラが発生しやすい。また、発光素子の側面から照射される光は、発光素子上面から照射される光に比して波長変換部材に到達する距離が長いため、励起光率が低下する。
特許文献1及び特許文献2の何れも、発光素子の側面を光反射材料で被覆するため、発光面の周縁部近傍において額縁状の非発光領域が生じ、半導体発光装置を小型化することができない。
However, in the semiconductor light emitting device of Patent Document 1 described above, since a coating member containing a light reflecting material is provided so as to surround the light emitting element, light from the side surface of the light emitting element is blocked. The side emission of the light cannot be effectively utilized, and the luminous efficiency is lowered. Further, when the light conversion member is larger than the light emitting element, the light emitted from the portion larger than the light emitting element of the light conversion member is emphasized by the wavelength-converted color as compared with the other portions, and the color unevenness on the light emitting surface. Will occur.
In the semiconductor light emitting device of Patent Document 2, since the wavelength conversion member has a surface larger than the upper surface of the light emitting element, color unevenness is likely to occur in the vicinity of the peripheral edge of the light emitting surface. Further, the light emitted from the side surface of the light emitting element has a longer distance to reach the wavelength conversion member than the light emitted from the upper surface of the light emitting element, so that the excitation light ratio is lowered.
In both Patent Document 1 and Patent Document 2, since the side surface of the light emitting element is covered with a light reflecting material, a frame-shaped non-light emitting region is generated in the vicinity of the peripheral edge of the light emitting surface, and the semiconductor light emitting device cannot be miniaturized. ..

本発明は、上記事情に鑑みてなされたものであり、発光効率を向上させると共に発光面における色ムラを抑制することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to improve luminous efficiency and suppress color unevenness on a light emitting surface.

本発明の一態様は、上面及び側面に発光面を有する発光素子と、蛍光体を含有し、前記発光素子の前記上面を直接的または間接的に覆う第1の蛍光体層と、前記第1の蛍光体層よりも低濃度の蛍光体を含有し、少なくとも前記発光素子の前記側面を覆う第2の蛍光体層と、前記第1の蛍光体層及び前記第2の蛍光体層の上面に配置され、前記発光素子の上面よりも大きい面積を有する光透過性基板と、少なくとも前記第2の蛍光体層の側面を覆う光反射部材と、を備えた半導体発光装置半導体発光装置を提供する。 One aspect of the present invention includes a light emitting element having a light emitting surface on the upper surface and side surfaces, a first phosphor layer containing a phosphor and directly or indirectly covering the upper surface of the light emitting element, and the first. A second phosphor layer containing a phosphor having a concentration lower than that of the phosphor layer of No. 1 and covering at least the side surface of the light emitting element, and the upper surfaces of the first phosphor layer and the second phosphor layer. Provided is a semiconductor light emitting device, which comprises a light transmitting substrate which is arranged and has an area larger than the upper surface of the light emitting element, and a light reflecting member which covers at least the side surface of the second phosphor layer.

上記半導体発光装置は、第1の蛍光体層が前記発光素子の上面に設けられ、記第2の蛍光体層が発光素子の側面から第1の蛍光体層の側面及び上面に亘って設けられ、光透過性基板が第2の蛍光体層の上面に設けられていてもよい。
さらに、第2の蛍光体層が発光素子の側面から、発光素子の上面発光面及び第1の蛍光体層の側面に亘って設けられ、第1の蛍光体層が第2の蛍光体層の上面に設けられ、前記光透過性基板が第1の蛍光体層の上面に設けられていてもよい。
In the semiconductor light emitting device, a first phosphor layer is provided on the upper surface of the light emitting element, and a second phosphor layer is provided from the side surface of the light emitting element to the side surface and the upper surface of the first phosphor layer. , The light transmissive substrate may be provided on the upper surface of the second phosphor layer.
Further, a second phosphor layer is provided from the side surface of the light emitting element to the upper surface emitting surface of the light emitting element and the side surface of the first phosphor layer, and the first phosphor layer is the second phosphor layer. The light transmissive substrate may be provided on the upper surface and the light transmissive substrate may be provided on the upper surface of the first phosphor layer.

また、本発明の他の態様は、支持基板と該支持基板の上面に設けられた発光層を有する発光素子と、蛍光体を含有し、前記発光層の上面に設けられた第1の蛍光体層と、前記第1の蛍光体層よりも低濃度の蛍光体を含有し、前記発光層の側面と前記第1の蛍光体層の側面と前記支持基板の上面を覆う第2の蛍光体層と、前記第1の蛍光体層及び前記第2の蛍光体層の上面に配置され、前記発光素子の上面よりも大きい面積を有する光透過性基板と、少なくとも前記第2の蛍光体層の側面を覆う光反射部材と、を備えた半導体発光装置を提供する。
さらに、本発明の他の態様は、上記半導体発光装置を備えた車両用灯具を提供する。
In addition, another aspect of the present invention includes a support substrate, a light emitting element having a light emitting layer provided on the upper surface of the support substrate, and a phosphor, and a first phosphor provided on the upper surface of the light emitting layer. A second phosphor layer containing a layer and a phosphor having a concentration lower than that of the first phosphor layer, and covering the side surface of the light emitting layer, the side surface of the first phosphor layer, and the upper surface of the support substrate. A light transmissive substrate arranged on the upper surface of the first phosphor layer and the second phosphor layer and having an area larger than the upper surface of the light emitting element, and at least the side surface of the second phosphor layer. Provided is a semiconductor light emitting device including a light reflecting member covering the above.
Furthermore, another aspect of the present invention provides a vehicle lamp equipped with the above-mentioned semiconductor light emitting device.

本発明によれば、発光効率を向上させると共に発光面における色ムラを抑制することができる。 According to the present invention, it is possible to improve the luminous efficiency and suppress color unevenness on the light emitting surface.

本発明の第1の実施形態に係る半導体発光装置の概略構成を示し、(A)は断面図であり、(B)は上面図である。A schematic configuration of the semiconductor light emitting device according to the first embodiment of the present invention is shown, (A) is a cross-sectional view, and (B) is a top view. (A)〜(F)は、本発明の第1の実施形態に係る半導体発光装置を製造する工程の概略を示す説明図である。(A) to (F) are explanatory views which outline the process of manufacturing the semiconductor light emitting device which concerns on 1st Embodiment of this invention. (A)〜(H)は、本発明の第1の実施形態に係る半導体発光装置を製造する他の工程の概略を示す説明図である。(A) to (H) are explanatory views which show the outline of another process which manufactures the semiconductor light emitting device which concerns on 1st Embodiment of this invention. (A)及び(B)は、本発明の第1の実施形態の変形例1に係る半導体発光装置の概略構成を示す断面図である。(A) and (B) are cross-sectional views showing a schematic configuration of the semiconductor light emitting device according to the first modification of the first embodiment of the present invention. 本発明の第2の実施形態に係る半導体発光装置の概略構成を示し、(A)は断面図であり、(B)は上面図である。A schematic configuration of the semiconductor light emitting device according to the second embodiment of the present invention is shown, (A) is a cross-sectional view, and (B) is a top view. (A)〜(E)は、本発明の第2の実施形態に係る半導体発光装置を製造する工程の概略を示す説明図である。(A) to (E) are explanatory views which outline the process of manufacturing the semiconductor light emitting device which concerns on 2nd Embodiment of this invention. 本発明の第1の実施形態及び第2の実施形態の他の例に係る半導体発光装置を示す断面図であり、(A)は第2の蛍光体層13にスペーサ131が含まれている例、(B)は第2の蛍光体層13にスペーサ131が含まれていない例を示す。It is sectional drawing which shows the semiconductor light emitting apparatus which concerns on 1st Embodiment and 2nd Embodiment of this invention, (A) is the example which included the spacer 131 in the 2nd phosphor layer 13. , (B) show an example in which the spacer 131 is not included in the second phosphor layer 13. 本発明の第1の実施形態及び第2の実施形態の変形例に係る半導体発光装置の概略構成を示す上面図である。It is a top view which shows the schematic structure of the semiconductor light emitting device which concerns on the 1st Embodiment and 2nd Embodiment of this invention. 本発明の第1の実施形態及び第2の実施形態の他の変形例に係る半導体発光装置の概略構成を示し、(A)は図9(B)のA−A断面図であり、(B)は上面図である。A schematic configuration of a semiconductor light emitting device according to a first embodiment and another modification of the second embodiment of the present invention is shown, and FIG. 9A is a cross-sectional view taken along the line AA of FIG. 9B. ) Is a top view. (A)及び(B)は、本発明の第1の実施形態及び第2の実施形態の及び各変形例に係る半導体発光装置について、ダイシングカットを行う場合の例を示す上面図である。(A) and (B) are top views showing an example of a case where a dicing cut is performed on the semiconductor light emitting device according to the first embodiment and the second embodiment of the present invention and each modification. 本発明の第3の実施形態に係る半導体発光装置の概略構成を示し、(A)は断面図であり、(B)は上面図である。A schematic configuration of a semiconductor light emitting device according to a third embodiment of the present invention is shown, (A) is a cross-sectional view, and (B) is a top view. 本発明の第3の実施形態に係る半導体発光装置の概略構成を示し、(A)は断面図であり、(B)は上面図である。A schematic configuration of the semiconductor light emitting device according to the third embodiment of the present invention is shown, (A) is a cross-sectional view, and (B) is a top view. 本発明の第3の実施形態の他の例に係る半導体発光装置の概略構成を示す上面図である。It is a top view which shows the schematic structure of the semiconductor light emitting device which concerns on another example of 3rd Embodiment of this invention. (A)〜(F)は、本発明の第3の実施形態に係る半導体発光装置を製造する工程の概略を示す説明図である。(A) to (F) are explanatory views which outline the process of manufacturing the semiconductor light emitting device which concerns on 3rd Embodiment of this invention. (A)〜(H)は、本発明の第3の実施形態に係る半導体発光装置を製造する他の工程の概略を示す説明図である。(A) to (H) are explanatory views which show the outline of another process which manufactures the semiconductor light emitting device which concerns on 3rd Embodiment of this invention. (A)〜(E)は、本発明の第4の実施形態に係る半導体発光装置を製造する他の工程の概略を示す説明図である。(A) to (E) are explanatory views which show the outline of another process which manufactures the semiconductor light emitting device which concerns on 4th Embodiment of this invention. 本発明の第3の実施形態及び第4の実施形態の変形例に係る半導体発光装置の概略構成を示す上面図である。It is a top view which shows the schematic structure of the semiconductor light emitting device which concerns on the 3rd Embodiment of this invention and the modification of 4th Embodiment. 本発明の第3の実施形態及び第4の実施形態の変形例に係る半導体発光装置の概略構成を示す断面図であり、(A)は発光素子がフリップチップ型の場合、(B)は発光素子がワイヤボンディング型の場合を示す。It is sectional drawing which shows the schematic structure of the semiconductor light emitting device which concerns on the 3rd Embodiment of this invention and the modification of 4th Embodiment, (A) is the case where the light emitting element is a flip chip type, (B) is light emitting. The case where the element is a wire bonding type is shown. (A)及び(B)は、本発明の各実施形態の他の例に係る半導体発光装置の概略構成を示す断面図である。(A) and (B) are cross-sectional views showing a schematic configuration of a semiconductor light emitting device according to another example of each embodiment of the present invention.

以下、本発明の一実施形態について図面を参照して説明する。なお、以下に示す図面において、理解の容易及び視認性向上のため、断面図であってもハッチングを適宜省略している。また、以下の説明において、異なる実施形態や変形例である場合にも、同一の構成には同一の符号を付し、その説明を省略する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the drawings shown below, hatching is appropriately omitted even in the cross-sectional view for easy understanding and improvement of visibility. Further, in the following description, even when different embodiments or modifications are made, the same reference numerals are given to the same configurations, and the description thereof will be omitted.

(第1の実施形態)
本発明の第1の実施形態に係る半導体発光装置について説明する。
本実施形態に係る半導体発光装置は、上面及び側面に発光面を有する発光素子10と、蛍光体を含有し、発光素子10の上面を直接的または間接的に覆う第1の蛍光体層12と、第1の蛍光体層12よりも低濃度の蛍光体を含有し、少なくとも発光素子10の前記側面を覆う第2の蛍光体層13と、第1の蛍光体層12及び第2の蛍光体層13の上面に配置され、発光素子10の上面よりも大きい面積を有する光透過性基板14と、少なくとも第2の蛍光体層14の側面を覆う光反射部材14とを備えている。
(First Embodiment)
The semiconductor light emitting device according to the first embodiment of the present invention will be described.
The semiconductor light emitting device according to the present embodiment includes a light emitting element 10 having a light emitting surface on the upper surface and side surfaces, and a first phosphor layer 12 containing a phosphor and directly or indirectly covering the upper surface of the light emitting element 10. , A second phosphor layer 13, which contains a phosphor having a concentration lower than that of the first phosphor layer 12 and covers at least the side surface of the light emitting element 10, and a first phosphor layer 12 and a second phosphor. It includes a light transmitting substrate 14 which is arranged on the upper surface of the layer 13 and has an area larger than the upper surface of the light emitting element 10, and a light reflecting member 14 which covers at least the side surface of the second phosphor layer 14.

より具体的には、図1(A)は、本実施形態に係る半導体発光装置の断面図であり、(B)は上面図である。図1に示すように、半導体発光装置1は、発光素子10と、発光素子10を実装する実装基板11と、第1の蛍光体層12と、第2の蛍光体層13と、光透過性基板14とを備えている。
なお、以下の説明において示す半導体発光装置の上面図において、本来上面視では視認できない構成につては破線で示すと共に、説明の便宜上ハッチング等を付している。
More specifically, FIG. 1A is a cross-sectional view of the semiconductor light emitting device according to the present embodiment, and FIG. 1B is a top view. As shown in FIG. 1, the semiconductor light emitting device 1 includes a light emitting element 10, a mounting substrate 11 on which the light emitting element 10 is mounted, a first phosphor layer 12, a second phosphor layer 13, and light transmittance. It includes a substrate 14.
In the top view of the semiconductor light emitting device shown in the following description, a configuration that cannot be visually recognized from the top view is shown by a broken line, and hatching or the like is added for convenience of explanation.

発光素子10は、上面視で矩形状であり、透明基板101上に半導体層(図示せず)及び発光層102を積層し、給電用の電極を形成したものを反転させたフリップチップ構造を成している。発光素子10は、発光層102から照射された光を、透明基板101の上面101A及び側面101Bを介して外部へ照射する。従って、発光素子10においては、透明基板101の上面101A及び側面101Bが発光面となる。
発光素子10の電極は、バンプ16により実装基板11上の配線パターン(後述)に導通されている。バンプ16には、Auあるいはその合金等からなるバンプや、共晶ハンダ(AuSn)、PbSn、鉛フリーはんだ等を用いることができる。また、バンプ16に代えて、例えば導電ペースト等であってもよい。
The light emitting element 10 has a rectangular shape when viewed from above, and has a flip-chip structure in which a semiconductor layer (not shown) and a light emitting layer 102 are laminated on a transparent substrate 101 and an electrode for feeding is formed and inverted. doing. The light emitting element 10 irradiates the light emitted from the light emitting layer 102 to the outside via the upper surface 101A and the side surface 101B of the transparent substrate 101. Therefore, in the light emitting element 10, the upper surface 101A and the side surface 101B of the transparent substrate 101 serve as light emitting surfaces.
The electrodes of the light emitting element 10 are conducted by bumps 16 to a wiring pattern (described later) on the mounting substrate 11. For the bump 16, a bump made of Au or an alloy thereof, eutectic solder (AuSn), PbSn, lead-free solder, or the like can be used. Further, instead of the bump 16, for example, a conductive paste or the like may be used.

実装基板11は、本実施形態において、セラミックス材料で形成された板状体であり、窒化アルミニウムで形成された板状の基板を適用している。なお、基板は、一般に、ガラスエポキシ、樹脂、セラミックス等の絶縁性材料、又は絶縁性材料と金属部材との複合材料等によって形成される。基板としては、耐熱性及び耐候性の高いセラミックス又は熱硬化性樹脂を利用したものが好ましい。
なお、実装基板11には、図示しない配線パターンが形成されている。配線パターンは、主に、発光素子10の実装パターン及び発光素子10への電源供給のための電流引き回しパターンとして、実装基板11の表面に形成されている。配線パターンとしては、Al,Ni,Cu,Ag,Au等の導電性材料を用いることができる。
In the present embodiment, the mounting substrate 11 is a plate-shaped body made of a ceramic material, and a plate-shaped substrate made of aluminum nitride is applied. The substrate is generally formed of an insulating material such as glass epoxy, resin, or ceramics, or a composite material of an insulating material and a metal member. As the substrate, those using ceramics or thermosetting resin having high heat resistance and weather resistance are preferable.
A wiring pattern (not shown) is formed on the mounting board 11. The wiring pattern is mainly formed on the surface of the mounting substrate 11 as a mounting pattern of the light emitting element 10 and a current routing pattern for supplying power to the light emitting element 10. As the wiring pattern, a conductive material such as Al, Ni, Cu, Ag, Au or the like can be used.

第1の蛍光体層12は、発光素子10から照射された光を所望波長の光に変換する蛍光体を含み、発光素子10の上面に設けられている。より具体的には、第1の蛍光体層12には、例えば、蛍光体分散樹脂(スクリーン印刷や半硬化シート貼り付けなど)、透明接着剤を介した蛍光体分散ガラスや蛍光体セラミックプレートなどを適用することができる。本実施形態において、発光素子10は透明基板11の上面及び側面から光を発するので、第1の蛍光体層12は、実質的には透明基板11の上面に配置される。また、第1の蛍光体層12は、発光素子10の上面の発光面と略同一の大きさもしくはそれよりもやや小さい大きさを有することが好ましい。 The first phosphor layer 12 contains a phosphor that converts the light emitted from the light emitting element 10 into light having a desired wavelength, and is provided on the upper surface of the light emitting element 10. More specifically, on the first phosphor layer 12, for example, a phosphor-dispersed resin (screen printing, attaching a semi-curing sheet, etc.), a fluorescent-dispersed glass via a transparent adhesive, a fluorescent ceramic plate, or the like is used. Can be applied. In the present embodiment, since the light emitting element 10 emits light from the upper surface and the side surface of the transparent substrate 11, the first phosphor layer 12 is substantially arranged on the upper surface of the transparent substrate 11. Further, it is preferable that the first phosphor layer 12 has substantially the same size as the light emitting surface on the upper surface of the light emitting element 10 or a size slightly smaller than that.

第2の蛍光体層13は、第1の蛍光体層よりも低濃度の蛍光体を含有し、少なくとも発光素子10の側面を覆うように設けられ、本実施形態においては、発光素子10の側面から、第1の蛍光体層12の側面及び上面に亘って設けられている。第2の蛍光体層13は、例えば、予め所定濃度に調整された蛍光体およびギャップ調整用のスペーサ131(ガラスやシリコーン樹脂などからなる粒径の揃った真球状ビーズであり、粒径がギャップ調整機能を果たす)入りシリコーン樹脂で構成されている。 The second phosphor layer 13 contains a phosphor having a concentration lower than that of the first phosphor layer, and is provided so as to cover at least the side surface of the light emitting element 10. In the present embodiment, the side surface of the light emitting element 10 is provided. Therefore, it is provided over the side surface and the upper surface of the first phosphor layer 12. The second phosphor layer 13 is, for example, a spherical bead having a uniform particle size made of a phosphor adjusted to a predetermined concentration and a spacer 131 for gap adjustment (glass, silicone resin, or the like, and has a particle size gap). It is composed of a silicone resin containing (which fulfills the adjustment function).

第2の蛍光体層13は、スペーサ131を介して第1の蛍光体層12上部に位置する部分の厚みが調整され、後述する光透過性基板14の下面との表面張力によって、発光素子10側面、及び第1の蛍光体層12側面を覆うフィレット形状(逆テーパ形状)に調整される。なお、フィレット形状の逆テーパ面(傾斜面)は、湾曲していてもよい。また、ギャップ調整用のスペーサ131としては、例えば、真球シリコーンビーズ(宇部エクシモ製ハイプレシカTSN6NTAなど)を適用することができる。 The thickness of the portion of the second phosphor layer 13 located above the first phosphor layer 12 is adjusted via the spacer 131, and the light emitting element 10 is subjected to surface tension with the lower surface of the light transmissive substrate 14 described later. It is adjusted to a fillet shape (reverse taper shape) that covers the side surface and the side surface of the first phosphor layer 12. The fillet-shaped inverted tapered surface (inclined surface) may be curved. Further, as the spacer 131 for adjusting the gap, for example, spherical silicone beads (Hypressica TSN6NTA manufactured by Ube Exsymo Co., Ltd., etc.) can be applied.

光透過性基板14は、例えばガラス、サファイア、シリコーン樹脂などからなり、発光素子の上面よりも大きい面積を有し、第2の蛍光体層の上面に配置される。
光反射部材15は、光透過性基板14の側面と第2の蛍光体層13の側面とを覆うように、かつ、光透過性基板14の上面を外部に露出させるように設けられている。
The light transmissive substrate 14 is made of, for example, glass, sapphire, silicone resin, etc., has an area larger than the upper surface of the light emitting element, and is arranged on the upper surface of the second phosphor layer.
The light reflecting member 15 is provided so as to cover the side surface of the light transmitting substrate 14 and the side surface of the second phosphor layer 13, and to expose the upper surface of the light transmitting substrate 14 to the outside.

(製造方法)
続いて、このように構成された半導体発光装置の製造方法について図2を用いて説明する。なお、図2では、説明の便宜上発光素子10の発光体層、透明基板等の図示を省略している。
予め配線パターン(図示せず)が形成された実装基板11にフリップチップ型の発光素子10をAuバンプ16を介して実装する(図2(A))。
予め蛍光体濃度および厚みが調整された発光素子10の上面と略同サイズの半硬化蛍光体シートを発光素子10上面に搭載して、加熱溶着させ、第1の蛍光体層とする(図2(B))。
(Production method)
Subsequently, a method of manufacturing the semiconductor light emitting device configured as described above will be described with reference to FIG. In FIG. 2, for convenience of explanation, the light emitting body layer, the transparent substrate, and the like of the light emitting element 10 are not shown.
A flip-chip type light emitting element 10 is mounted via an Au bump 16 on a mounting substrate 11 on which a wiring pattern (not shown) is formed in advance (FIG. 2A).
A semi-cured phosphor sheet having substantially the same size as the upper surface of the light emitting element 10 whose phosphor concentration and thickness have been adjusted in advance is mounted on the upper surface of the light emitting element 10 and heat-welded to form a first phosphor layer (FIG. 2). (B)).

第2の蛍光体層13として、予めシリコーン樹脂に蛍光体およびギャップ調整用スペーサ131を所定濃度混合した混合液を第1の蛍光体層12の上面に所定量を凸状になるように塗布する(図2(C))。このとき、第2の蛍光体層13の塗布量は、次の工程の光透過性基板14を実装した際に、光透過性基板14下面と第1の蛍光体層12との間、発光素子10の側面、及び第1の蛍光体層の側面と、を覆い、かつ、フィレット形状を維持できる量に調整する。 As the second phosphor layer 13, a mixed solution in which a phosphor and a gap adjusting spacer 131 are mixed in advance with a silicone resin at a predetermined concentration is applied to the upper surface of the first phosphor layer 12 in a predetermined amount so as to be convex. (Fig. 2 (C)). At this time, the coating amount of the second phosphor layer 13 is the light emitting element between the lower surface of the light transmissive substrate 14 and the first phosphor layer 12 when the light transmissive substrate 14 of the next step is mounted. The amount is adjusted so as to cover the side surface of 10 and the side surface of the first phosphor layer and maintain the fillet shape.

次に、発光素子10サイズよりも大きい光透過性基板14を凸状に塗布された第2の蛍光体層13の上に搭載することで、光透過性基板14によって凸状に塗布された第2の蛍光体層13が押しつぶされ、第1の蛍光体層12と光透過性基板14との間から側面にはみ出てフィレット形状の第2の蛍光体層13が形成される(図2(D),(E))。この段階で加熱することで、半硬化状の第1の蛍光体層12、第2の蛍光体層13及びスペーサを含んだシリコーン樹脂が同時に硬化する。 Next, the light transmissive substrate 14 larger than the size of the light emitting element 10 is mounted on the second phosphor layer 13 coated in a convex shape, so that the light transmissive substrate 14 is coated in a convex shape. The phosphor layer 13 of 2 is crushed, and a fillet-shaped second phosphor layer 13 is formed so as to protrude from between the first phosphor layer 12 and the light transmissive substrate 14 to the side surface (FIG. 2 (D). ), (E)). By heating at this stage, the semi-curable first phosphor layer 12, the second phosphor layer 13, and the silicone resin containing the spacer are simultaneously cured.

次に、予めシリコーン樹脂に光反射性フィラー(例えば酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化亜鉛など、本実施形態では酸化チタン20wt%)を所定量混合したものを実装基板11上に、光透過性基板14の側面を完全に覆うまで流し込み、加熱硬化させ、所定サイズにダイシングカットすることで、光反射部材15が光透過性基板14の側面及び第2の蛍光体層13の側面を覆う構造として個片化された半導体発光装置を製造することができる(図2(F))。 Next, a predetermined amount of a light-reflecting filler (for example, titanium oxide, aluminum oxide, zirconium oxide, zinc oxide, etc., 20 wt% of titanium oxide in this embodiment) mixed with a silicone resin in advance is mixed on the mounting substrate 11 to transmit light. A structure in which the light reflecting member 15 covers the side surface of the light transmissive substrate 14 and the side surface of the second phosphor layer 13 by pouring until the side surface of the sex substrate 14 is completely covered, heat-curing, and dicing cut to a predetermined size. It is possible to manufacture an individualized semiconductor light emitting device (FIG. 2 (F)).

(他の製造方法)
次に、上述の半導体発光装置に係る他の製造方法について図3を用いて説明する。なお、図3では、説明の便宜上発光素子10の発光層、透明基板等の図示を省略している。
予め配線パターン(図示せず)が形成された実装基板11に複数のフリップチップ型発光素子10をAuバンプを介して実装する(図3(A))。次に、第1の蛍光体層12として、予め蛍光体濃度および厚みが調整された発光素子10の上面と同サイズの半硬化蛍光体シートを各発光素子上面に搭載して、加熱溶着させる(図3(B))。次に、第2の蛍光体層13として、予めシリコーン樹脂に蛍光体を所定濃度混合した混合液を各第1の蛍光体層12の上面に所定量を凸状になるように塗布する(図3(C))。このとき、第2の蛍光体層13が、フィレット形状となるように塗布量の調整を行う。
(Other manufacturing methods)
Next, another manufacturing method according to the above-mentioned semiconductor light emitting device will be described with reference to FIG. In FIG. 3, for convenience of explanation, the light emitting layer, the transparent substrate, and the like of the light emitting element 10 are not shown.
A plurality of flip-chip type light emitting elements 10 are mounted via Au bumps on a mounting substrate 11 on which a wiring pattern (not shown) is formed in advance (FIG. 3 (A)). Next, as the first phosphor layer 12, a semi-cured phosphor sheet having the same size as the upper surface of the light emitting element 10 whose phosphor concentration and thickness have been adjusted in advance is mounted on the upper surface of each light emitting element and heat-welded (. FIG. 3 (B). Next, as the second phosphor layer 13, a predetermined amount of a mixed solution in which a phosphor is mixed with a silicone resin at a predetermined concentration is applied to the upper surface of each of the first phosphor layers 12 so as to be convex (FIG. 3 (C)). At this time, the coating amount is adjusted so that the second phosphor layer 13 has a fillet shape.

次に、複数の発光素子10の最外形サイズよりも大きい光透過性基板14を凸状に塗布された第2の蛍光体層13の上に搭載することで、光透過性基板14によって凸状に塗布された未硬化の第2の蛍光体層13が押しつぶされて第1の蛍光体層12と光透過性基板14との間から側面にはみ出てフィレット形状の第2の蛍光体層13が形成される(図3(D)。この時、フィレット形状が形成されると同時に、光透過性基板14の下面と、第1の蛍光体層12との間には第2の蛍光体層13が、蛍光体粒子約1層分の厚みに調整される(図3(E))。この段階で加熱硬化することで、半硬化状の第1の蛍光体層12、および第2の蛍光体層13を含んだシリコーン樹脂が同時に硬化される。 Next, the light transmissive substrate 14 larger than the outermost size of the plurality of light emitting elements 10 is mounted on the second phosphor layer 13 coated in a convex shape, so that the light transmissive substrate 14 is convex. The uncured second phosphor layer 13 coated on the surface is crushed, and the fillet-shaped second phosphor layer 13 protrudes from between the first phosphor layer 12 and the light transmissive substrate 14 to the side surface. It is formed (FIG. 3 (D). At this time, the fillet shape is formed, and at the same time, the second phosphor layer 13 is formed between the lower surface of the light transmissive substrate 14 and the first phosphor layer 12. Is adjusted to the thickness of about one layer of the phosphor particles (FIG. 3 (E)). By heat-curing at this stage, the semi-cured first phosphor layer 12 and the second phosphor The silicone resin containing the layer 13 is cured at the same time.

次に、光反射部材15により光透過性基板14側面と第2の蛍光体層側面13を覆い、加熱硬化する(図3(F))。第2の蛍光体層12が光透過性基板14下面にフィレット形状にて到達する境界を目標に、光透過性基板14側からダイシングカットを行う(図3(G),(H))。この時、光透過性基板14を通して第1の蛍光体層12上面、および第2の蛍光体層13上面を画像認識カメラを用いてアライメントすることができるので、ダイシング装置のステージを所定ピッチで移動する際にカットラインの位置合わせが精度よく実施できる。このようにダイシングカットすることで、上面視において光反射部材が存在しない個片化された半導体発光装置を得ることができるので、装置の小型化には特に有効である。 Next, the light-transmitting member 15 covers the side surface of the light-transmitting substrate 14 and the side surface 13 of the second phosphor layer, and is heat-cured (FIG. 3 (F)). A dicing cut is performed from the light transmissive substrate 14 side with the target of the boundary where the second phosphor layer 12 reaches the lower surface of the light transmissive substrate 14 in a fillet shape (FIGS. 3 (G) and 3 (H)). At this time, since the upper surface of the first phosphor layer 12 and the upper surface of the second phosphor layer 13 can be aligned using the image recognition camera through the light transmissive substrate 14, the stage of the dicing apparatus can be moved at a predetermined pitch. When doing so, the alignment of the cut line can be performed accurately. By dicing cut in this way, it is possible to obtain an individualized semiconductor light emitting device in which the light reflecting member does not exist in the top view, which is particularly effective for miniaturization of the device.

このように構成された半導体発光装置は以下のように、所望波長の光を照射する。
発光素子10から出射した光のうち、上面101Aの発光面からの光と側面101Bの発光面からの光とは、異なる光路を経由して外部に照射される。すなわち、発光素子10上面101A発光面からの光は、発光素子10の上面101Aと略同じ大きさである第1の蛍光体層12及び第2の蛍光体層13によって波長変換され、光透過性基板14を透過して、光透過性基板14の上面から照射される。
The semiconductor light emitting device configured in this way irradiates light having a desired wavelength as follows.
Of the light emitted from the light emitting element 10, the light from the light emitting surface of the upper surface 101A and the light from the light emitting surface of the side surface 101B are irradiated to the outside via different optical paths. That is, the light from the light emitting surface 101A on the upper surface of the light emitting element 10 is wavelength-converted by the first phosphor layer 12 and the second phosphor layer 13 having substantially the same size as the upper surface 101A of the light emitting element 10, and is light transmissive. It passes through the substrate 14 and is irradiated from the upper surface of the light-transmitting substrate 14.

また、発光素子10側面101Bの発光面からの光は第2の蛍光体層12によって波長変換され、光反射部材15に反射されて光透過性基板14を透過して、光透過性基板14の上面から照射される。
このように発光素子10の上面101Aの発光面からの光及び側面101Bの発光面からの光は共に、光透過性基板14の上面から照射される。従って、発光素子10の側面からの光も光透過性基板14の上面から効率よく取り出すことができ、正面輝度を向上させることができる。
Further, the light from the light emitting surface of the light emitting element 10 side surface 101B is wavelength-converted by the second phosphor layer 12, reflected by the light reflecting member 15 and transmitted through the light transmitting substrate 14, and the light transmitting substrate 14 is transmitted. It is irradiated from the top surface.
In this way, both the light from the light emitting surface of the upper surface 101A of the light emitting element 10 and the light from the light emitting surface of the side surface 101B are emitted from the upper surface of the light transmissive substrate 14. Therefore, the light from the side surface of the light emitting element 10 can be efficiently taken out from the upper surface of the light transmissive substrate 14, and the front luminance can be improved.

第2の蛍光体層13は蛍光体濃度を調整することで、半導体発光装置全体の色度を調整することが可能である。具体的には、第1の蛍光体層12の蛍光体濃度及び厚みと、第2の蛍光体層13の蛍光体濃度、厚み(=スペーサ粒径)及びフィレット量の三者を組み合わせることで、発光素子10上面と側面の波長変換量を略同一にすることが可能であり、光透過性基板14上面から取り出される光の色を均一にすることができる。 The second phosphor layer 13 can adjust the chromaticity of the entire semiconductor light emitting device by adjusting the phosphor concentration. Specifically, by combining the phosphor concentration and thickness of the first phosphor layer 12 and the phosphor concentration, thickness (= spacer wavelength) and fillet amount of the second phosphor layer 13, by combining the three. The amount of wavelength conversion between the upper surface and the side surface of the light emitting element 10 can be made substantially the same, and the color of the light extracted from the upper surface of the light transmissive substrate 14 can be made uniform.

特に、本実施形態においては、第2の蛍光体層13は、第1の蛍光体層12よりも含有する蛍光体層の濃度が低濃度であり、かつ、スペーサ131によって厚みを調整している。このため、発光素子10の側面101Bからの光は、光透過性基板に至るまでの光路が長いものの、発光素子10の上面101Aから出射して第1の蛍光体層12により波長変換されて光透過性基板から照射される光と略同色に変換されている。従って、発光素子10上面と側面の波長変換量を略同一にすることができ、光透過性基板14上面から出射する光の色を均一にすることができる。 In particular, in the present embodiment, the concentration of the phosphor layer contained in the second phosphor layer 13 is lower than that of the first phosphor layer 12, and the thickness of the second phosphor layer 13 is adjusted by the spacer 131. .. Therefore, although the light from the side surface 101B of the light emitting element 10 has a long optical path to the light transmitting substrate, the light is emitted from the upper surface 101A of the light emitting element 10 and is wavelength-converted by the first phosphor layer 12 to be light. It is converted to almost the same color as the light emitted from the transmissive substrate. Therefore, the amount of wavelength conversion between the upper surface and the side surface of the light emitting element 10 can be made substantially the same, and the color of the light emitted from the upper surface of the light transmissive substrate 14 can be made uniform.

(第1の実施形態の変形例1)
上述した第1の実施形態における図1及び図2では、光透過性基板14を矩形状とし、その側面を実装基板に垂直となるように加工している。
図4(A)に示すように、光透過性基板14の側面を、上面に向かって広がるように傾斜を持たせたテーパ形状とし、第2の蛍光体層13の側面から連続する傾斜面とすることができる。この時、光透過性基板14の側面と第2の蛍光体層13の側面との傾斜角度は適宜定めることができるが、両者の傾斜角度が等しいことが好ましい。
(Modification 1 of the first embodiment)
In FIGS. 1 and 2 in the first embodiment described above, the light transmissive substrate 14 is formed into a rectangular shape, and the side surface thereof is processed so as to be perpendicular to the mounting substrate.
As shown in FIG. 4A, the side surface of the light transmissive substrate 14 has a tapered shape having an inclination so as to spread toward the upper surface, and has an inclined surface continuous from the side surface of the second phosphor layer 13. can do. At this time, the inclination angle between the side surface of the light transmissive substrate 14 and the side surface of the second phosphor layer 13 can be appropriately determined, but it is preferable that the inclination angles of both are equal.

このようにすることで、発光素子からの光がテーパ形状の側面で反射して発光面正面に導かれるため(図4(A)中の矢印参照)、光取出し効率が向上し、発光面正面における色ムラをさらに抑制し、均一な発光を実現することができる。比較例として、図4(B)に示すように、光透過性基板14の側面をテーパ形状に加工していない場合には、図中の矢印のように、発光素子からの光の一部が側面で反射されて光透過性基板に戻るため、図4(A)の半導体発光装置に比して、発光効率がやや低下する。 By doing so, the light from the light emitting element is reflected by the tapered side surface and guided to the front surface of the light emitting surface (see the arrow in FIG. 4 (A)), so that the light extraction efficiency is improved and the front surface of the light emitting surface is improved. It is possible to further suppress the color unevenness in the above and realize uniform light emission. As a comparative example, as shown in FIG. 4B, when the side surface of the light transmissive substrate 14 is not processed into a tapered shape, a part of the light from the light emitting element is emitted as shown by the arrow in the figure. Since it is reflected on the side surface and returns to the light transmissive substrate, the luminous efficiency is slightly lower than that of the semiconductor light emitting device shown in FIG. 4 (A).

(第2の実施形態)
次に、本発明の第2の実施形態に係る半導体発光装置について説明する。
図5(A)は、本実施形態に係る半導体発光装置の断面図であり、(B)は上面図である。以下の説明において、上述した第1の実施形態と同一の構成には同符号を付し、その説明を省略する。
本実施形態に係る半導体発光装置は、発光素子10の上面に第2の発光層13が設けられ、第2の発光層13の上面に第1の発光層12が設けられており、第2の発光層13にスペーサ131が含まれていない点で、上述した第1の実施形態及びその変形例と異なる。
(Second Embodiment)
Next, the semiconductor light emitting device according to the second embodiment of the present invention will be described.
FIG. 5A is a cross-sectional view of the semiconductor light emitting device according to the present embodiment, and FIG. 5B is a top view. In the following description, the same components as those in the first embodiment described above will be designated by the same reference numerals, and the description thereof will be omitted.
In the semiconductor light emitting device according to the present embodiment, the second light emitting layer 13 is provided on the upper surface of the light emitting element 10, and the first light emitting layer 12 is provided on the upper surface of the second light emitting layer 13. It differs from the above-described first embodiment and its modifications in that the light emitting layer 13 does not include the spacer 131.

このように構成された半導体発光装置の製造方法について図6を用いて説明する。なお、図5では、説明の便宜上発光素子10の発光体層、透明基板等の図示を省略している。
予め配線パターンが形成された実装基板11にフリップチップ型発光素子10をAuバンプを介して実装する(図6(A))。次に、第2の蛍光体層13として、予めシリコーン樹脂に蛍光体を所定濃度混合した混合液を発光素子10上面に所定量を凸状になるように塗布する(図6(B))。このとき、第2の蛍光体層13をフィレット形状とするための塗布量調整は第1の実施形態と同様に調整する。
A method of manufacturing the semiconductor light emitting device configured as described above will be described with reference to FIG. In FIG. 5, for convenience of explanation, the light emitting body layer, the transparent substrate, and the like of the light emitting element 10 are not shown.
The flip-chip type light emitting element 10 is mounted on the mounting substrate 11 on which the wiring pattern is formed in advance via Au bumps (FIG. 6 (A)). Next, as the second phosphor layer 13, a mixed solution in which a phosphor is mixed with a silicone resin at a predetermined concentration is applied to the upper surface of the light emitting element 10 in a predetermined amount so as to be convex (FIG. 6 (B)). At this time, the coating amount adjustment for forming the second phosphor layer 13 into a fillet shape is adjusted in the same manner as in the first embodiment.

次に、第1の蛍光体層12として、予め蛍光体濃度および厚みが調整された半硬化蛍光体シートを光透過性基板14の下面に貼り合せたものを、凸状の第2の蛍光体層の上に搭載する(図6(C))。このとき、凸状に塗布された第2の蛍光体層13が押しつぶされて、第1の蛍光体層12と発光体層10との間から側面にはみ出てフィレット形状が形成され、同時に、発光素子10上面と第1の蛍光体層12との間に第2の蛍光体層13が蛍光体粒子約1層分の厚みに調整されて形成される(図6(D))。
この状態で加熱硬化することで、半硬化状の第1の蛍光体層12、第2の蛍光体層13を含んだシリコーン樹脂が同時に硬化される。次に、光反射部材15を光透過性基板14の側面と第2の蛍光体層13の側面を覆い、加熱硬化して、所定サイズにダイシングカットすることで個片化された半導体発光装置を製造することができる((図6(E))。
Next, as the first phosphor layer 12, a semi-cured phosphor sheet whose phosphor concentration and thickness have been adjusted in advance is attached to the lower surface of the light transmissive substrate 14, and the convex second phosphor. It is mounted on a layer (Fig. 6 (C)). At this time, the convexly applied second phosphor layer 13 is crushed, and a fillet shape is formed so as to protrude from the space between the first phosphor layer 12 and the illuminant layer 10 to form a fillet, and at the same time, light is emitted. A second phosphor layer 13 is formed between the upper surface of the element 10 and the first phosphor layer 12 so as to have a thickness of about one layer of phosphor particles (FIG. 6 (D)).
By heat-curing in this state, the silicone resin containing the semi-cured first phosphor layer 12 and the second phosphor layer 13 is simultaneously cured. Next, the light reflecting member 15 covers the side surface of the light transmissive substrate 14 and the side surface of the second phosphor layer 13, is heat-cured, and is diced to a predetermined size to form a semiconductor light emitting device. It can be manufactured ((FIG. 6 (E)).

なお、上述の例では、光透過性基板14の下面が平坦であり、予め第1の蛍光体層12を張り合わせることで、第1の蛍光体層12が光透過性基板14の下面から突出している(図5及び図6参照)。
これに代えて、図7に示すように、光透過性基板14の下面に第1の蛍光体層12を埋め込んで、光透過性基板14の周縁部から第1の蛍光体層12の下面が連続する平坦面となるように加工することもできる。なお、図7(A)は第2の蛍光体層13にスペーサ131が含まれている例、図7(B)は第2の蛍光体層13にスペーサ131が含まれていない例を示している。
光透過性基板の下面に第1の蛍光体層を埋め込み一体化した板状部材とすることで、例えば、素子の発光波長のバラつきに対応させて複数種類の板状部材を作成しておくことができ、搭載された発光素子に応じて適切な板状部材を選択して搭載することで、容易に半導体発光装置の発光色を調整することができる。
In the above example, the lower surface of the light transmissive substrate 14 is flat, and by laminating the first phosphor layer 12 in advance, the first phosphor layer 12 protrudes from the lower surface of the light transmissive substrate 14. (See FIGS. 5 and 6).
Instead, as shown in FIG. 7, the first phosphor layer 12 is embedded in the lower surface of the light transmissive substrate 14, and the lower surface of the first phosphor layer 12 is formed from the peripheral edge of the light transmissive substrate 14. It can also be processed so that it becomes a continuous flat surface. Note that FIG. 7A shows an example in which the second phosphor layer 13 contains the spacer 131, and FIG. 7B shows an example in which the second phosphor layer 13 does not contain the spacer 131. There is.
By embedding the first phosphor layer in the lower surface of the light transmissive substrate to form an integrated plate-shaped member, for example, a plurality of types of plate-shaped members can be created in response to variations in the emission wavelength of the element. By selecting and mounting an appropriate plate-shaped member according to the mounted light emitting element, the emission color of the semiconductor light emitting device can be easily adjusted.

(第1の実施形態及び第2の実施形態の変形例)
上述した第1の実施形態及び第2の実施形態では、図1(A)及び(B)に示すように、矩形状の発光素子10の四辺全てが、光透過性基板14の内側に位置し、発光素子10の周囲を囲繞するようにフィレット上の第2の蛍光体層13が設けられている。
本変形例に係る半導体発光装置は、図8に示すように、発光素子10と、第1の蛍光体層12及び第2の蛍光体層13と、光透過性基板14の一辺を発光面上面から見て何れも同一直線上に位置するように形成されている。
このように、発光素子10、第1の蛍光体層12、第2の蛍光体層13、及び光透過性基板14の一辺を発光面からみて同一直線上に設けることによりその直線の輝度が高くなるので、車両用灯具のうち、特にヘッドランプ用光源として用いたときに、遠方視認性を上げる配光を作りやすい光源として用いることができる。
(Modified examples of the first embodiment and the second embodiment)
In the first embodiment and the second embodiment described above, as shown in FIGS. 1A and 1B, all four sides of the rectangular light emitting element 10 are located inside the light transmissive substrate 14. A second phosphor layer 13 on the fillet is provided so as to surround the light emitting element 10.
In the semiconductor light emitting device according to this modification, as shown in FIG. 8, one side of the light emitting element 10, the first phosphor layer 12, the second phosphor layer 13, and the light transmissive substrate 14 is the upper surface of the light emitting surface. All of them are formed so as to be located on the same straight line when viewed from the viewpoint.
As described above, by providing one side of the light emitting element 10, the first phosphor layer 12, the second phosphor layer 13, and the light transmissive substrate 14 on the same straight line when viewed from the light emitting surface, the brightness of the straight line is high. Therefore, among vehicle lamps, it can be used as a light source that makes it easy to create a light distribution that enhances distant visibility, especially when used as a light source for head lamps.

(第1の実施形態及び第2の実施形態の他の変形例)
上述した第1の実施形態及び第2の実施形態では、図1(A)及び(B)に示すように、矩形状の光透過性基板14の側面まで光反射部材15が設けられている。図9(A)は図9(B)のA−A断面図であり、図9(A)及び(B)に示すように、本変形例では、発光面上面から見て、光透過性基板14の対向する一対の辺の側面に光反射部材15を設け、他の一対の辺の側面には光反射部材15を設けない。このようにすることで、複数の半導体発光装置を並べて配置したときに、半導体発光装置の発光面同士の距離を近接させることができる。
なお、本変形例に係る半導体発光装置は、例えば、図10(A)及び(B)の破線で示すようにフィレット状の第2の蛍光体層13の上端部でダイシングカットすることにより得られる。
(Other variants of the first embodiment and the second embodiment)
In the first embodiment and the second embodiment described above, as shown in FIGS. 1A and 1B, the light reflecting member 15 is provided up to the side surface of the rectangular light transmitting substrate 14. 9 (A) is a cross-sectional view taken along the line AA of FIG. 9 (B). The light reflecting member 15 is provided on the side surfaces of the pair of opposite sides of the 14 and the light reflecting member 15 is not provided on the side surfaces of the other pair of sides. By doing so, when a plurality of semiconductor light emitting devices are arranged side by side, the distance between the light emitting surfaces of the semiconductor light emitting devices can be brought close to each other.
The semiconductor light emitting device according to this modification can be obtained, for example, by dicing cut at the upper end portion of the fillet-shaped second phosphor layer 13 as shown by the broken lines in FIGS. 10A and 10B. ..

(第3の実施形態)
本発明の第3の実施形態に係る半導体発光装置について説明する。以下の説明において、上述した第1の実施形態と同一の構成には同符号を付し、その説明を省略する。
本実施形態に係る半導体発光装置は、支持基板201と支持基板の上面に設けられた発光層202を有する発光素子20と、蛍光体を含有し、発光層の上面に設けられた第1の蛍光体層12と、第1の蛍光体層12よりも低濃度の蛍光体を含有し、発光層202の側面と第1の蛍光体層12の側面と支持基板201の上面を覆う第2の蛍光体層13と、第1の蛍光体層12及び第2の蛍光体層13の上面に配置され、発光素子30の上面よりも大きい面積を有する光透過性基板14と、少なくとも第2の蛍光体層13の側面を覆う光反射部材15と、を備えている。
(Third Embodiment)
The semiconductor light emitting device according to the third embodiment of the present invention will be described. In the following description, the same components as those in the first embodiment described above will be designated by the same reference numerals, and the description thereof will be omitted.
The semiconductor light emitting device according to the present embodiment contains a support substrate 201, a light emitting element 20 having a light emitting layer 202 provided on the upper surface of the support substrate, and a phosphor, and a first fluorescence provided on the upper surface of the light emitting layer. A second fluorescence containing the body layer 12 and a phosphor having a concentration lower than that of the first phosphor layer 12 and covering the side surface of the light emitting layer 202, the side surface of the first phosphor layer 12, and the upper surface of the support substrate 201. A light transmissive substrate 14 arranged on the upper surfaces of the body layer 13, the first phosphor layer 12 and the second phosphor layer 13 and having a larger area than the upper surface of the light emitting element 30, and at least the second phosphor. A light reflecting member 15 that covers the side surface of the layer 13 is provided.

図11(A)は、本実施形態に係る半導体発光装置の断面図であり、(B)は上面図である。また、図12は、図11の光透過性基板14を取り除いた状態を示す図であり、(A)は半導体発光装置の断面図、(B)は上面図である。
より具体的には、本実施形態に係る半導体発光装置は、発光素子20として、不透明支持基板201に半導体発光層202を金属層(図示せず)を介して貼り合せ、発光素子20の上面および裏面から導通するメタルボンディング構造の発光素子を適用している。
FIG. 11A is a cross-sectional view of the semiconductor light emitting device according to the present embodiment, and FIG. 11B is a top view. 12A and 12B are views showing a state in which the light transmissive substrate 14 of FIG. 11 is removed, FIG. 12A is a cross-sectional view of the semiconductor light emitting device, and FIG. 12B is a top view.
More specifically, in the semiconductor light emitting device according to the present embodiment, as the light emitting element 20, the semiconductor light emitting layer 202 is attached to the opaque support substrate 201 via a metal layer (not shown), and the upper surface of the light emitting element 20 and the light emitting element 20 are attached. A light emitting element having a metal bonding structure that conducts from the back surface is applied.

従って、発光素子20の上面及び実装基板11の所定の位置には、ボンディングパッドが形成され、発光素子20の上面に設けられたボンディングパッド203と、実装基板11のボンディングパッド(図示せず)とはボンディングワイヤ5により電気的に接続されている。発光素子20において、半導体発光層202の光は主として発光素子の上面から出射されるので、上述した各実施形態及びそれらの変形例に示したフリップチップ型の発光素子に比べて正面輝度を更に高くすることができる。 Therefore, bonding pads are formed on the upper surface of the light emitting element 20 and at predetermined positions of the mounting substrate 11, and the bonding pad 203 provided on the upper surface of the light emitting element 20 and the bonding pad (not shown) of the mounting substrate 11 Are electrically connected by a bonding wire 5. In the light emitting element 20, since the light of the semiconductor light emitting layer 202 is mainly emitted from the upper surface of the light emitting element, the front luminance is further increased as compared with the flip-chip type light emitting element shown in each of the above-described embodiments and modifications thereof. can do.

第1の蛍光体層12は、発光素子20の上面のワイヤボンディング領域に干渉しない大きさが好ましく、本実施形態においては半導体発光層202よりも若干小さいサイズに形成されている。第2の蛍光体層13は、予め所定濃度に調整された蛍光体およびスペーサ131入りシリコーン樹脂で構成され、スペーサ131によって第1の蛍光体層12の上部に位置する第2の蛍光体層13についての厚みが調整されるようになっている。また、光透過性基板14は、発光素子20のサイズよりも大きく、この光透過性基板14の下面との表面張力によって、第1の蛍光体層12が配置された領域以外の発光素子20の上面及び第1の蛍光体層12の側面を覆うフィレット形状(逆テーパ形状)の第2の蛍光体層13が形成される。光透過性基板14の側面と、第2の蛍光体層13の側面と、発光素子20の側面を覆い、かつ、光透過性基板14の上面が露出する所まで光反射部材15を形成する。 The first phosphor layer 12 preferably has a size that does not interfere with the wire bonding region on the upper surface of the light emitting element 20, and is formed in a size slightly smaller than that of the semiconductor light emitting layer 202 in the present embodiment. The second phosphor layer 13 is composed of a phosphor and a silicone resin containing a spacer 131 adjusted in advance to a predetermined concentration, and the second phosphor layer 13 is located above the first phosphor layer 12 by the spacer 131. The thickness of the is adjusted. Further, the light-transmitting substrate 14 is larger than the size of the light-emitting element 20, and due to the surface tension with the lower surface of the light-transmitting substrate 14, the light-transmitting element 20 other than the region where the first phosphor layer 12 is arranged A fillet-shaped (reverse-tapered) second phosphor layer 13 that covers the upper surface and the side surface of the first phosphor layer 12 is formed. The light reflecting member 15 is formed so as to cover the side surface of the light transmitting substrate 14, the side surface of the second phosphor layer 13, and the side surface of the light emitting element 20, and to expose the upper surface of the light transmitting substrate 14.

ここで、不透明支持基板201上に貼り合わされた半導体発光層202は不透明支持基板201のサイズよりも小さい。これは、ウエハ状態の半導体プロセスで作製された半導体基板をダイシング工程にて分割する際に端面の加工溝に影響されない内側に半導体発光層を配置する必要があり、支持基板の外周に最小限の非発光部が残るためである。 Here, the semiconductor light emitting layer 202 bonded on the opaque support substrate 201 is smaller than the size of the opaque support substrate 201. This is because when a semiconductor substrate manufactured by a semiconductor process in a wafer state is divided in a dicing process, it is necessary to arrange a semiconductor light emitting layer inside which is not affected by the machined grooves on the end face, which is a minimum on the outer periphery of the support substrate. This is because the non-light emitting part remains.

図11及び図12では、第1の蛍光体層12は半導体発光層202よりも小さいサイズとしたが、例えば、図13に示すように、半導体発光層202と第1の蛍光体層12とが略同サイズであってもよい。この場合、素子上面に配置されたワイヤボンディング領域に干渉しないように第1の蛍光体層12の一部を切り欠いた構造であればよい。第1の蛍光体層の蛍光体濃度及び厚みと、第2の蛍光体層の蛍光体濃度、厚み(=スペーサ粒径)及びフィレット量の三者を組み合わせることで、発光素子上面の波長変換量を略同一にすることが可能であり、光透過性基板上面から取り出される光の色を均一にすることができる。また、スペーサ131は必ずしも含める必要はなく、第2の蛍光体13にスペーサを含めなくてもよい。 In FIGS. 11 and 12, the size of the first phosphor layer 12 is smaller than that of the semiconductor light emitting layer 202. For example, as shown in FIG. 13, the semiconductor light emitting layer 202 and the first phosphor layer 12 are formed. It may be substantially the same size. In this case, the structure may be such that a part of the first phosphor layer 12 is cut out so as not to interfere with the wire bonding region arranged on the upper surface of the element. The amount of wavelength conversion on the upper surface of the light emitting element is achieved by combining the phosphor concentration and thickness of the first phosphor layer with the phosphor concentration, thickness (= spacer particle size) and fillet amount of the second phosphor layer. Can be made substantially the same, and the color of the light extracted from the upper surface of the light-transmitting substrate can be made uniform. Further, the spacer 131 does not necessarily have to be included, and the spacer 13 may not be included in the second phosphor 13.

このように構成された半導体発光装置では、発光素子20から出射された光のうち、第1の蛍光体層12に入射した光は、第1の蛍光体層12、第1の蛍光体層12の上部に位置する第2の蛍光体層13によって波長変換される。また、第1の蛍光体層12が配置された領域以外の発光素子20上面の光及び半導体発光層202の側面から漏れ出る光は、第2の蛍光体層13によって波長変換される。このように、半導体発光層202から照射されるすべての光を光透過性基板14の上面に効率よく導光して取り出すことができるため、色ムラを抑制しつつ正面輝度を向上させることができる。半導体発光層202の光は素子の上面から出射されるので、第1の蛍光体層12およびフィレット形状の第2の蛍光体層13からの光は同じ方向に出射され、両者の光が光透過性基板の上面に効率よく取り出されるため、上述したフリップチップタイプの発光素子を適用した半導体発光素子に比して更に正面輝度を高くすることができる。なお、第2の蛍光体層13の蛍光体濃度は第1の蛍光体層12に含まれる蛍光体よりも低濃度としており、これにより半導体発光装置全体の色度を調整している。 In the semiconductor light emitting device configured as described above, among the light emitted from the light emitting element 20, the light incident on the first phosphor layer 12 is the first phosphor layer 12 and the first phosphor layer 12. The wavelength is converted by the second phosphor layer 13 located on the upper part of the. Further, the light on the upper surface of the light emitting element 20 and the light leaking from the side surface of the semiconductor light emitting layer 202 other than the region where the first phosphor layer 12 is arranged are wavelength-converted by the second phosphor layer 13. In this way, all the light emitted from the semiconductor light emitting layer 202 can be efficiently guided to the upper surface of the light transmissive substrate 14 and taken out, so that the front luminance can be improved while suppressing color unevenness. .. Since the light of the semiconductor light emitting layer 202 is emitted from the upper surface of the device, the light from the first phosphor layer 12 and the fillet-shaped second phosphor layer 13 is emitted in the same direction, and both lights are transmitted. Since it is efficiently taken out on the upper surface of the sex substrate, the front brightness can be further increased as compared with the semiconductor light emitting element to which the above-mentioned flip chip type light emitting element is applied. The phosphor concentration of the second phosphor layer 13 is lower than that of the phosphor contained in the first phosphor layer 12, thereby adjusting the chromaticity of the entire semiconductor light emitting device.

このような半導体発光装置の製造方法について図14に従って説明する。
予め配線パターン(図示せず)が形成された実装基板11にメタルボンディング型発光素子をAuSn共晶およびAuワイヤーを介して実装する(図14(A))。次に、第1の蛍光体層12として、予め蛍光体濃度および厚みが調整された発光素子20の上面サイズよりも小さい半硬化蛍光体シートを発光素子20上面に搭載して、加熱溶着させる(図14(B))。
A method for manufacturing such a semiconductor light emitting device will be described with reference to FIG.
A metal bonding type light emitting element is mounted on a mounting substrate 11 on which a wiring pattern (not shown) is formed in advance via AuSn eutectic and Au wire (FIG. 14 (A)). Next, as the first phosphor layer 12, a semi-cured phosphor sheet smaller than the upper surface size of the light emitting element 20 whose phosphor concentration and thickness have been adjusted in advance is mounted on the upper surface of the light emitting element 20 and heat-welded ( FIG. 14 (B).

次に、第2の蛍光体層13として、予めシリコーン樹脂に蛍光体およびギャップ調整用スペーサ131を所定濃度混合した混合液を第1の蛍光体層12の上面および発光素子20上面に所定量を凸状になるように塗布する(図14(C))。このとき、第2の蛍光体層13の塗布量は、次工程において光透過性基板14を実装した際に、光透過性基板14の下面と第1の蛍光体層12との間、発光素子20上面、及び第1の蛍光体層12の側面、を覆うように第2の蛍光体層13がフィレット形状を維持できる量に調整される。 Next, as the second phosphor layer 13, a predetermined amount of a mixed solution obtained by previously mixing a silicone resin with a phosphor and a gap adjusting spacer 131 at a predetermined concentration is applied to the upper surface of the first phosphor layer 12 and the upper surface of the light emitting element 20. It is applied so as to be convex (FIG. 14 (C)). At this time, the coating amount of the second phosphor layer 13 is the light emitting element between the lower surface of the light transmissive substrate 14 and the first phosphor layer 12 when the light transmissive substrate 14 is mounted in the next step. The amount of the second phosphor layer 13 that can maintain the fillet shape is adjusted so as to cover the upper surface of the 20 and the side surface of the first phosphor layer 12.

次に、発光素子20サイズよりも大きい光透過性基板14を凸状の第2の蛍光体層13の上に搭載することで、逆テーパ状にフィレット形状が形成される図14(D)(E)。ここで加熱硬化することで、半硬化状の第1の蛍光体層12及び第2の蛍光体層13およびスペーサ131を含んだシリコーン樹脂が同時に硬化される。次に、予めシリコーン樹脂に光反射性フィラーを所定量混合したものを光反射部材15として、実装基板11上に、光透過性基板14の側面を完全に覆うまで流し込み、加熱硬化する。硬化したものを、所定サイズにダイシングカットすることで、光反射部材15が光透過性基板14の側面、第2の蛍光体層13の側面、及び発光素子20の側面を覆う構造として個片化された半導体発光装置を得る(図14(F))。 Next, by mounting the light transmissive substrate 14 larger than the size of the light emitting element 20 on the convex second phosphor layer 13, a fillet shape is formed in a reverse taper shape (D) (D). E). By heat-curing here, the semi-curable first phosphor layer 12, the second phosphor layer 13, and the silicone resin containing the spacer 131 are simultaneously cured. Next, a predetermined amount of a light-reflecting filler mixed with a silicone resin is poured into the mounting substrate 11 as a light-reflecting member 15 until the side surface of the light-transmitting substrate 14 is completely covered, and heat-cured. By dicing and cutting the cured product to a predetermined size, the light reflecting member 15 is individualized as a structure covering the side surface of the light transmitting substrate 14, the side surface of the second phosphor layer 13, and the side surface of the light emitting element 20. The semiconductor light emitting device is obtained (FIG. 14 (F)).

(他の製造方法)
予め配線パターン(図示せず)が形成された実装基板11に複数のメタルボンディング型発光素子20をAuSn共晶およびAuワイヤを介して実装する(図15(A))。第1の蛍光体層12として、予め蛍光体濃度および厚みが調整された発光素子20上面サイズよりも小さい半硬化蛍光体シートを各発光素子20上面に搭載して、加熱溶着させる(図15(B))。次に、第2の蛍光体層として、予めシリコーン樹脂に蛍光体を所定濃度混合した混合液を第1の蛍光体層12の上面および発光素子20上面に所定量を凸状になるように塗布する。ここで、フィレット形状維持のために塗布量を適宜調整する(図15(C))。
(Other manufacturing methods)
A plurality of metal bonding type light emitting elements 20 are mounted on a mounting substrate 11 on which a wiring pattern (not shown) is formed in advance via AuSn eutectic and Au wire (FIG. 15 (A)). As the first phosphor layer 12, a semi-cured phosphor sheet smaller than the size of the upper surface of the light emitting element 20 whose phosphor concentration and thickness have been adjusted in advance is mounted on the upper surface of each light emitting element 20 and heat-welded (FIG. 15 (FIG. 15). B)). Next, as the second phosphor layer, a mixed solution in which a phosphor is mixed with a silicone resin at a predetermined concentration is applied to the upper surface of the first phosphor layer 12 and the upper surface of the light emitting element 20 in a predetermined amount so as to be convex. do. Here, the coating amount is appropriately adjusted to maintain the fillet shape (FIG. 15 (C)).

次に、複数の発光素子20の最外形サイズよりも大きい光透過性基板14を凸状の第2の蛍光体層13の上に搭載することで、フィレット形状が形成される(図15(D))。凸状に塗布された第2の蛍光体層13が押しつぶされて、第1の蛍光体層12と発光体層10との間から側面にはみ出てフィレット形状が形成され、同時に、発光素子10上面と第1の蛍光体層12との間に第2の蛍光体層13が蛍光体粒子約1層分の厚みに調整されて形成される(図15(E))。この段階で加熱硬化することで、半硬化状の第1の蛍光体層12、第2の蛍光体層13を含んだシリコーン樹脂が同時に硬化される。光反射部材15により、光透過性基板14の側面と、第2の蛍光体層13の側面と、発光素子20側面と、を覆い、加熱硬化する(図15(F))。第2の蛍光体層13が光透過性基板14の下面にフィレット形状にて到達する境界を目標に、光透過性基板14側からダイシングカットを行い(図15(G))、個片化された半導体発光装置を得ることができる(図15(H))。 Next, a fillet shape is formed by mounting the light transmissive substrate 14 larger than the outermost outer size of the plurality of light emitting elements 20 on the convex second phosphor layer 13 (FIG. 15 (D). )). The convexly applied second phosphor layer 13 is crushed to form a fillet shape protruding from the side surface between the first phosphor layer 12 and the light emitting body layer 10, and at the same time, the upper surface of the light emitting element 10 is formed. A second phosphor layer 13 is formed between the first phosphor layer 12 and the first phosphor layer 12 so as to have a thickness of about one layer of phosphor particles (FIG. 15 (E)). By heat-curing at this stage, the silicone resin containing the semi-cured first phosphor layer 12 and the second phosphor layer 13 is simultaneously cured. The light reflecting member 15 covers the side surface of the light transmitting substrate 14, the side surface of the second phosphor layer 13, and the side surface of the light emitting element 20, and is heat-cured (FIG. 15 (F)). A dicing cut is performed from the light transmissive substrate 14 side (FIG. 15 (G)) with the target of the boundary where the second phosphor layer 13 reaches the lower surface of the light transmissive substrate 14 in a fillet shape, and the second phosphor layer 13 is separated into individual pieces. A semiconductor light emitting device can be obtained (FIG. 15 (H)).

このとき、光透過性基板14を通して第1の蛍光体層12の上面、および第2の蛍光体層13の上面、およびワイヤボンディング部を画像認識カメラを用いてアライメントすることができるので、ダイシング装置のステージを所定ピッチで移動する際にカットラインの位置合わせが精度よく実施できる。このようにダイシングカットすることで、上面視において光反射部材が存在しない個片化された半導体発光装置を得ることができるので、装置の小型化には特に有効である。 At this time, the upper surface of the first phosphor layer 12, the upper surface of the second phosphor layer 13, and the wire bonding portion can be aligned through the light transmissive substrate 14 by using an image recognition camera, so that the dicing apparatus can be used. When moving the stage at a predetermined pitch, the alignment of the cut line can be performed accurately. By dicing cut in this way, it is possible to obtain an individualized semiconductor light emitting device in which the light reflecting member does not exist in the top view, which is particularly effective for miniaturization of the device.

(第4の実施形態)
次に、本発明の第4の実施形態に係る半導体発光装置について説明する。
予め第1の蛍光体層12を光透過性基板14の下面に形成しておくことで、第2の蛍光体層13を発光素子20上面に所定量塗布して、その上から第1の蛍光体層12の下面と接合させることで、光透過性基板14の下面の第1の蛍光体層12と接しない領域と、第1の蛍光体層12の下面と、第1の蛍光体層12の側面と、発光素子20の上面の第1の蛍光体層12と接合しない領域と、を覆うフィレット状の第2の蛍光体層を形成することができる。このような構成であっても、発光素子20上面と光透過性基板14に挟まれる蛍光体の濃度は上述した第3の実施形態と同様であり、また、第2の蛍光体層13の蛍光体濃度を調整することで、半導体発光装置全体の色度を調整することが可能である。
(Fourth Embodiment)
Next, the semiconductor light emitting device according to the fourth embodiment of the present invention will be described.
By forming the first phosphor layer 12 on the lower surface of the light transmissive substrate 14 in advance, a predetermined amount of the second phosphor layer 13 is applied to the upper surface of the light emitting element 20, and the first fluorescence is applied from above. By joining to the lower surface of the body layer 12, a region of the lower surface of the light transmissive substrate 14 that does not come into contact with the first phosphor layer 12, the lower surface of the first phosphor layer 12, and the first phosphor layer 12 A fillet-shaped second phosphor layer can be formed to cover the side surface of the light emitting element 20 and the region not bonded to the first phosphor layer 12 on the upper surface of the light emitting element 20. Even with such a configuration, the concentration of the phosphor sandwiched between the upper surface of the light emitting element 20 and the light transmissive substrate 14 is the same as that of the third embodiment described above, and the fluorescence of the second phosphor layer 13 By adjusting the body concentration, it is possible to adjust the chromaticity of the entire semiconductor light emitting device.

このように構成された半導体発光装置の製造方法について図を用いて説明する。なお、図16では、説明の便宜上発光素子20の半導体発光体層等の図示を省略している。
予め配線パターン(図示せず)が形成された実装基板11にメタルボンディング型発光素子20をAuSn共晶およびAuワイヤを介して実装する(図16(A))。次に、第2の蛍光体層として、予めシリコーン樹脂に蛍光体を所定濃度混合した混合液を発光素子上面に所定量を凸状になるように塗布する(図16(B))。次に、予め蛍光体濃度および厚みが調整された小さい半硬化蛍光体シートが光透過性基板14の下面に貼り合されたものを、凸状の第2の蛍光体層13の上に搭載する(図16(C))。
The manufacturing method of the semiconductor light emitting device configured as described above will be described with reference to the drawings. Note that in FIG. 16, for convenience of explanation, the semiconductor light emitting body layer and the like of the light emitting element 20 are not shown.
A metal bonding type light emitting element 20 is mounted on a mounting substrate 11 on which a wiring pattern (not shown) is formed in advance via AuSn eutectic and Au wire (FIG. 16A). Next, as the second phosphor layer, a mixed solution in which a phosphor is mixed with a silicone resin at a predetermined concentration is applied to the upper surface of the light emitting element in a predetermined amount so as to be convex (FIG. 16B). Next, a small semi-cured phosphor sheet whose phosphor concentration and thickness have been adjusted in advance is bonded to the lower surface of the light transmissive substrate 14 and mounted on the convex second phosphor layer 13. (FIG. 16 (C)).

このとき、凸状に塗布された第2の蛍光体層13が押しつぶされて、第1の蛍光体層12と発光体層10との間から側面にはみ出てフィレット形状が形成され、同時に、発光素子10上面と第1の蛍光体層12との間に第2の蛍光体層13が蛍光体粒子約1層分の厚みに調整されて形成される(図16(D))。この段階で加熱硬化することで、半硬化状の第1の蛍光体層12、および第2の蛍光体層13を含んだシリコーン樹脂が同時に硬化される。次に、光反射部材15を、光透過性基板14の側面と、第2の蛍光体層13の側面と、発光素子20の側面とを覆うように設け、加熱硬化、所定サイズにダイシングカットすることで個片化された半導体発光装置を得る(図16(E))。 At this time, the convexly applied second phosphor layer 13 is crushed, and a fillet shape is formed so as to protrude from the space between the first phosphor layer 12 and the illuminant layer 10 to form a fillet, and at the same time, light is emitted. A second phosphor layer 13 is formed between the upper surface of the element 10 and the first phosphor layer 12 so as to have a thickness of about one layer of phosphor particles (FIG. 16 (D)). By heat-curing at this stage, the semi-cured first phosphor layer 12 and the silicone resin containing the second phosphor layer 13 are simultaneously cured. Next, the light reflecting member 15 is provided so as to cover the side surface of the light transmissive substrate 14, the side surface of the second phosphor layer 13, and the side surface of the light emitting element 20, and is heat-cured and diced to a predetermined size. As a result, an individualized semiconductor light emitting device is obtained (FIG. 16 (E)).

(変形例)
上述した第3の実施形態及び第4の実施形態では、図11〜図13に示すように、矩形状の発光素子20の四辺全てが、光透過性基板14の内側に位置し、発光素子10の周囲を囲繞するようにフィレット上の第2の蛍光体層13が設けられている。
本変形例に係る半導体発光装置は、図17に示すように、発光素子20と、第1の蛍光体層12及び第2の蛍光体層13と、光透過性基板14の三辺を発光面上面から見て何れも同一直線上に位置するように形成されている。
このように、発光素子20、第1の蛍光体層12、第2の蛍光体層13、及び光透過性基板14の三辺を発光面からみて同一直線上に設けることにより、横一列に複数の半導体発光装置を並べた場合、横並びの発光に対して輝度の均一化を図ることができる。
(Modification example)
In the third embodiment and the fourth embodiment described above, as shown in FIGS. 11 to 13, all four sides of the rectangular light emitting element 20 are located inside the light transmissive substrate 14, and the light emitting element 10 is located. A second phosphor layer 13 on the fillet is provided so as to surround the periphery of the fillet.
As shown in FIG. 17, the semiconductor light emitting device according to this modification has a light emitting surface on three sides of the light emitting element 20, the first phosphor layer 12, the second phosphor layer 13, and the light transmissive substrate 14. All are formed so as to be located on the same straight line when viewed from the upper surface.
In this way, by providing the three sides of the light emitting element 20, the first phosphor layer 12, the second phosphor layer 13, and the light transmissive substrate 14 on the same straight line when viewed from the light emitting surface, a plurality of light emitting elements 20 are provided in a horizontal row. When the semiconductor light emitting devices of the above are arranged side by side, it is possible to make the brightness uniform with respect to the side-by-side light emission.

上述した半導体発光装置の構造において、更に正面輝度を向上させる手法として、図18(A),(B)に示すように、半導体発光装置の4つの側面に遮光膜18を設けることができる。遮光膜18を形成する方法としては、側面を上面に向けて多数を並べた状態にして、真空装置を用いて金属反射膜(例えばAl、Ag、Ag/Pd、Ag/Ni、など)や誘電体多層膜を成膜する方法が挙げられる。また、光透過性基板14の上面をレジスト膜で覆い、回転機構を用いて4つの側面を同時に成膜した後に、レジスト膜を除去する方法もある。遮光膜の別の形成方法として、白色顔料インクをインクジェット法で固着する方法、シード層を下地とした電解めっきなどが挙げられる。遮光膜の形成により、光反射部材の側面、第2の蛍光体層13の側面、光透過性基板14の側面からの光を内部に戻す効果が働き、反射と散乱により正面に取り出されるため、正面輝度を向上させることができる。 In the structure of the semiconductor light emitting device described above, as a method for further improving the front luminance, as shown in FIGS. 18A and 18B, light shielding films 18 can be provided on the four side surfaces of the semiconductor light emitting device. As a method of forming the light-shielding film 18, a large number of light-shielding films 18 are arranged side by side with the side surfaces facing the upper surface, and a metal reflective film (for example, Al, Ag, Ag / Pd, Ag / Ni, etc.) or dielectric is used using a vacuum device. Examples thereof include a method of forming a body multilayer film. Further, there is also a method in which the upper surface of the light transmissive substrate 14 is covered with a resist film, four side surfaces are simultaneously formed by using a rotation mechanism, and then the resist film is removed. As another method for forming the light-shielding film, a method of fixing the white pigment ink by an inkjet method, electrolytic plating using a seed layer as a base, and the like can be mentioned. The formation of the light-shielding film has the effect of returning the light from the side surface of the light-reflecting member, the side surface of the second phosphor layer 13, and the side surface of the light-transmitting substrate 14 to the inside, and is taken out to the front by reflection and scattering. The front brightness can be improved.

また、図8および図17に示した、発光素子、第1の蛍光体層、第2の蛍光体層、及び光透過性基板の何れかの一辺が同一直線上に位置する半導体発光装置のように、上面視において光反射部材15が存在しない構造にした場合にも遮光膜18を設けることができる。
具体的には、例えば、図8に示す半導体発光装置においては、光透過性基板の四辺のうち、発光素子、第1の蛍光体層、及び第2の蛍光体層の辺と同一直線状にあり、これらが連続する側面に遮光膜18を設ける。すなわち、光透過性基板の4つの側面のうち、少なくとも1つの側面が、第1の蛍光体層の側面および発光素子の側面と同一沿面にあり、連続する側面を形成するので、この側面に遮光幕18を設ける。これにより発光面の遮光膜18近傍の輝度を他の領域よりも高くすることができる。従って、縦方向の輝度分布傾斜が形成でき、車両用ヘッドランプの配光において、明暗カットラインの形成と同時に、路面へのグラデーションを備えた理想的な配光を実現できる。
Further, like the semiconductor light emitting device shown in FIGS. 8 and 17, one side of any one of the light emitting element, the first phosphor layer, the second phosphor layer, and the light transmissive substrate is located on the same straight line. In addition, the light-shielding film 18 can be provided even when the structure is such that the light-reflecting member 15 does not exist in the top view.
Specifically, for example, in the semiconductor light emitting device shown in FIG. 8, among the four sides of the light transmissive substrate, the sides of the light emitting element, the first phosphor layer, and the second phosphor layer are formed in the same linear shape. There is a light-shielding film 18 provided on the side surface where these are continuous. That is, since at least one side surface of the four side surfaces of the light transmissive substrate is on the same side surface as the side surface of the first phosphor layer and the side surface of the light emitting element and forms a continuous side surface, the side surface is shielded from light. A curtain 18 is provided. As a result, the brightness in the vicinity of the light-shielding film 18 on the light emitting surface can be made higher than in other regions. Therefore, the brightness distribution inclination in the vertical direction can be formed, and in the light distribution of the headlamp for a vehicle, it is possible to realize an ideal light distribution having a gradation on the road surface at the same time as forming a light / dark cut line.

図17に示す半導体発光装置においては、光透過性基板の4つの側面のうち、少なくとも3つの側面が、夫々第1の蛍光体層側面および発光素子側面と同一沿面を構成している場合、この沿面に遮光膜18を設けることで発光面の遮光膜近傍の輝度を他の領域よりも高くすることができる。また、同時に、ライン状やマトリックス状に半導体発光装置を並べて点消灯させた場合、遮光膜によって、隣接する光源の光が導光しなくなりクロストークが防止され、コントラストの高い配光を作ることが可能となる。 In the semiconductor light emitting device shown in FIG. 17, when at least three side surfaces of the four side surfaces of the light transmissive substrate form the same creepage surface as the first phosphor layer side surface and the light emitting element side surface, respectively. By providing the light-shielding film 18 on the creeping surface, the brightness in the vicinity of the light-shielding film on the light emitting surface can be made higher than that of other regions. At the same time, when semiconductor light emitting devices are arranged in a line shape or a matrix shape and turned on and off, the light from an adjacent light source is not guided by the light shielding film, cross talk is prevented, and a high contrast light distribution can be created. It will be possible.

上述した各実施形態及びそれらの変形例では、発光素子について、フリップチップ型及びメタルボンディング型として説明したが、発光素子の上面または側面に第2の蛍光体層のフィレット構造が形成できるものであれば適応可能である。また、光透過性基板に波長変換機能があってもよい。例えば、第1および第2の蛍光体層と、光透過性基板と、に含まれる蛍光体(波長変換剤)の割合を調整することで同一の効果が得られる。
また、第1および第2の蛍光体層に光散乱材を混合することで、より均一な光散乱が可能となり、色ムラを抑制することができる。
In each of the above-described embodiments and modifications thereof, the light emitting element has been described as a flip chip type and a metal bonding type, but any one capable of forming a fillet structure of the second phosphor layer on the upper surface or the side surface of the light emitting element. It is adaptable. Further, the light transmissive substrate may have a wavelength conversion function. For example, the same effect can be obtained by adjusting the ratio of the phosphor (wavelength converter) contained in the first and second phosphor layers and the light transmissive substrate.
Further, by mixing the light scattering material with the first and second phosphor layers, more uniform light scattering becomes possible and color unevenness can be suppressed.

さらに、図19に示すように、光透過性基板の上面または下面の一方の面に角度を持たせた構造であってもよい。図19(A)に示す例の場合、第1の蛍光体層12の上面と光透過性基板14の下面とが同じサイズとなり、光透過性基板14下面の傾斜角度により、光取出しで有利になる。傾斜面の加工と同時に第1の蛍光体層12の外形加工も可能となり、工程の簡略化ができる。 Further, as shown in FIG. 19, the structure may be such that one surface of the upper surface or the lower surface of the light transmissive substrate is angled. In the case of the example shown in FIG. 19A, the upper surface of the first phosphor layer 12 and the lower surface of the light transmissive substrate 14 have the same size, and the inclination angle of the lower surface of the light transmissive substrate 14 is advantageous for light extraction. Become. The outer shape of the first phosphor layer 12 can be processed at the same time as the processing of the inclined surface, and the process can be simplified.

図19(B)に示す例の場合、光透過性基板14の上面を発光素子20と同等サイズもしくはそれより小さいサイズとすることができ、正面輝度向上に有利である。また、図3(H)、図15(H)、図18に示した個片化する製造方法では、複数の発光素子同士の間隔を詰めて実装すれば、隣接する半導体発光装置同士の輝度差が小さくなり、ライン状やマトリックス状に配列した半導体発光装置を提供することもできる。 In the case of the example shown in FIG. 19B, the upper surface of the light transmissive substrate 14 can be made the same size as or smaller than the light emitting element 20, which is advantageous for improving the front luminance. Further, in the manufacturing method of individualizing shown in FIGS. 3 (H), 15 (H), and 18, if a plurality of light emitting elements are mounted with a close interval, the brightness difference between adjacent semiconductor light emitting devices is different. It is also possible to provide a semiconductor light emitting device which is arranged in a line shape or a matrix shape.

上述した各実施形態及び各変形例に係る半導体発光装置は、ヘッドランプやADB(Adaptive Driving Beam)型の車両用灯具の光源に適用することができる他、照明用等の一般的な灯具に適用することもできる。 The semiconductor light emitting device according to each of the above-described embodiments and modifications can be applied to a light source of a headlamp or an ADB (Adaptive Driving Beam) type vehicle lighting device, and is also applied to a general lighting device for lighting or the like. You can also do it.

10・・・発光素子、11・・・実装基板、12・・・第1の蛍光体層、13・・・第2の蛍光体層、14・・・光透過性基板、15・・・光反射部材、16・・・バンプ、18・・・遮光膜、20・・・発光素子、102・・・発光層、202・・・半導体発光層 10 ... light emitting element, 11 ... mounting substrate, 12 ... first phosphor layer, 13 ... second phosphor layer, 14 ... light transmissive substrate, 15 ... light Reflective member, 16 ... Bump, 18 ... Light-shielding film, 20 ... Light emitting element, 102 ... Light emitting layer, 202 ... Semiconductor light emitting layer

Claims (12)

上面及び側面に発光面を有する発光素子と、
蛍光体を含有し、前記発光素子の前記上面を直接的または間接的に覆う第1の蛍光体層と、
前記第1の蛍光体層よりも低濃度の蛍光体を含有し、少なくとも前記発光素子の前記側面を覆う第2の蛍光体層と、
前記第1の蛍光体層及び前記第2の蛍光体層の上面に配置され、前記発光素子の上面よりも大きい面積を有する光透過性基板と
光反射部材と、
遮光膜とを備え、
前記第2の蛍光体層は、前記発光素子の側面から前記光透過性基板の下面に向かってフィレット形状を形成しており、
前記光反射部材が、前記第2の蛍光体層の前記フィレット形状の側面を覆い、
前記遮光膜は、前記光反射部材の側面および前記光透過性基板の側面を覆い、かつ、金属反射膜または誘電体多層膜からなり、
前記光透過性基板を上方から見て、前記光反射部材が存在しない
ことを特徴とする半導体発光装置。
A light emitting element having a light emitting surface on the upper surface and the side surface,
A first phosphor layer containing a phosphor and directly or indirectly covering the upper surface of the light emitting device,
A second phosphor layer containing a phosphor having a concentration lower than that of the first phosphor layer and covering at least the side surface of the light emitting element.
A light transmissive substrate which is arranged on the upper surface of the first phosphor layer and the second phosphor layer and has an area larger than the upper surface of the light emitting element .
Light reflecting member and
Equipped with a light-shielding film,
The second phosphor layer forms a fillet shape from the side surface of the light emitting element toward the lower surface of the light transmissive substrate.
The light reflecting member covers the fillet-shaped side surface of the second phosphor layer.
The light-shielding film covers the side surface of the light-reflecting member and the side surface of the light-transmitting substrate , and is made of a metal reflective film or a dielectric multilayer film.
A semiconductor light emitting device characterized in that the light reflecting member does not exist when the light transmitting substrate is viewed from above.
前記第1の蛍光体層が前記発光素子の上面に設けられ、
前記第2の蛍光体層が前記発光素子の側面から、前記第1の蛍光体層の側面及び上面に亘って設けられ、
前記光透過性基板が前記第2の蛍光体層の上面に設けられた請求項1記載の半導体発光装置。
The first phosphor layer is provided on the upper surface of the light emitting element, and the first phosphor layer is provided on the upper surface of the light emitting element.
The second phosphor layer is provided from the side surface of the light emitting element to the side surface and the upper surface of the first phosphor layer.
The semiconductor light emitting device according to claim 1, wherein the light transmissive substrate is provided on the upper surface of the second phosphor layer.
前記光透過性基板が、側面を傾斜させたテーパ形状である請求項1又は請求項2記載の半導体発光装置。 The semiconductor light emitting device according to claim 1 or 2, wherein the light transmissive substrate has a tapered shape with its side surface inclined. 前記光透過性基板の下面に凹部が設けられ、該凹部に前記第1の蛍光体層が嵌合された板状部材となっている請求項2記載の半導体発光装置。 The semiconductor light emitting device according to claim 2, wherein a recess is provided on the lower surface of the light transmissive substrate, and the recess is a plate-like member in which the first phosphor layer is fitted. 前記第1の蛍光体層が前記第2の蛍光体層の上面に設けられ、
前記第2の蛍光体層が前記発光素子の上面と前記第1の蛍光体層との間、前記発光素子の側面、及び前記第1の蛍光体層の側面に設けられ、
前記光透過性基板が前記第1の蛍光体層の上面に設けられた請求項1記載の半導体発光装置。
The first phosphor layer is provided on the upper surface of the second phosphor layer,
The second phosphor layer is provided between the upper surface of the light emitting element and the first phosphor layer, the side surface of the light emitting element, and the side surface of the first phosphor layer.
The semiconductor light emitting device according to claim 1, wherein the light transmissive substrate is provided on the upper surface of the first phosphor layer.
前記発光素子が、透明基板上に発光層が積層されたフリップチップ型の発光素子である請求項1乃至請求項5の何れか1項記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 5, wherein the light emitting element is a flip-chip type light emitting element in which a light emitting layer is laminated on a transparent substrate. 支持基板と該支持基板の上面に設けられた発光層を有する発光素子と、
蛍光体を含有し、前記発光層の上面に設けられた第1の蛍光体層と、
前記第1の蛍光体層よりも低濃度の蛍光体を含有し、前記発光層の側面と前記第1の蛍光体層の側面と前記支持基板の上面を覆う第2の蛍光体層と、
前記第1の蛍光体層及び前記第2の蛍光体層の上面に配置され、前記発光素子の上面よりも大きい面積を有する光透過性基板と、
光反射部材と、
遮光膜とを備え、
前記第2の蛍光体層は、前記発光素子の上面から前記光透過性基板の下面に向かってフィレット形状を形成しており、
前記光反射部材が、前記第2の蛍光体層の前記フィレット形状の側面を覆い、
前記遮光膜は、前記光反射部材の側面および前記光透過性基板の側面を覆い、かつ、金属反射膜または誘電体多層膜からなり、
前記光透過性基板を上方から見て、前記光反射部材が存在しないことを特徴とする半導体発光装置。
A support substrate, a light emitting element having a light emitting layer provided on the upper surface of the support substrate, and a light emitting element.
A first phosphor layer containing a phosphor and provided on the upper surface of the light emitting layer,
A second phosphor layer containing a phosphor having a concentration lower than that of the first phosphor layer and covering the side surface of the light emitting layer, the side surface of the first phosphor layer, and the upper surface of the support substrate.
A light transmissive substrate which is arranged on the upper surface of the first phosphor layer and the second phosphor layer and has an area larger than the upper surface of the light emitting element.
Light reflecting member and
Equipped with a light-shielding film,
The second phosphor layer forms a fillet shape from the upper surface of the light emitting element toward the lower surface of the light transmissive substrate.
The light reflecting member is not covered the sides of the fillet shape of the second phosphor layer,
The light shielding film is not covered the sides and the side surface of the light transmissive substrate of the light reflecting member, and a metal reflection film or a dielectric multilayer film,
A semiconductor light emitting device , characterized in that the light reflecting member does not exist when the light transmitting substrate is viewed from above.
前記発光素子が、前記支持基板の上面に前記発光層を備え、前記発光素子の上面に接続されたボンディングワイヤを介して前記発光層に給電するワイヤボンディング型の発光素子である請求項7項記載の半導体発光装置。
体発光装置。
The seventh aspect of claim 7, wherein the light emitting element is a wire bonding type light emitting element having the light emitting layer on the upper surface of the support substrate and supplying power to the light emitting layer via a bonding wire connected to the upper surface of the light emitting element. Semiconductor light emitting device.
Body light emitting device.
前記第2の蛍光体層の側面が上面に向かって広がる傾斜面である請求項1乃至請求項8の何れか1項に記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 8, wherein the side surface of the second phosphor layer is an inclined surface extending toward the upper surface. 前記第2の蛍光体層が、スペーサを含有している請求項1乃至請求項9の何れか1項記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 9, wherein the second phosphor layer contains a spacer. 前記第1の蛍光体層が、前記発光素子の上面と略同一の大きさ又はそれより小さく形成されている請求項1乃至請求項10の何れか1項に記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 10, wherein the first phosphor layer is formed to have substantially the same size as or smaller than the upper surface of the light emitting element. 請求項1乃至請求項11の何れか1項に記載の半導体発光装置を備えた車両用灯具。 A vehicle lamp provided with the semiconductor light emitting device according to any one of claims 1 to 11.
JP2016183206A 2016-09-20 2016-09-20 Semiconductor light emitting device and vehicle lighting equipment Active JP6934712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016183206A JP6934712B2 (en) 2016-09-20 2016-09-20 Semiconductor light emitting device and vehicle lighting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016183206A JP6934712B2 (en) 2016-09-20 2016-09-20 Semiconductor light emitting device and vehicle lighting equipment

Publications (2)

Publication Number Publication Date
JP2018049875A JP2018049875A (en) 2018-03-29
JP6934712B2 true JP6934712B2 (en) 2021-09-15

Family

ID=61767718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016183206A Active JP6934712B2 (en) 2016-09-20 2016-09-20 Semiconductor light emitting device and vehicle lighting equipment

Country Status (1)

Country Link
JP (1) JP6934712B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023107883A1 (en) * 2021-12-10 2023-06-15 Lumileds Llc Phosphor converted leds with improved light uniformity including discrete light-scattering layers

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10600937B1 (en) 2018-09-17 2020-03-24 Lumileds Holding B.V. Precise bondline control between LED components
US11171268B2 (en) 2018-09-26 2021-11-09 Nichia Corporation Light emitting device and method of manufacturing the same
JP7054005B2 (en) * 2018-09-28 2022-04-13 日亜化学工業株式会社 Light emitting device
JP6940776B2 (en) * 2018-11-05 2021-09-29 日亜化学工業株式会社 Light emitting device and its manufacturing method
JP6947989B2 (en) 2019-03-28 2021-10-13 日亜化学工業株式会社 Linear light source and planar light emitting device
JP7330755B2 (en) 2019-05-16 2023-08-22 スタンレー電気株式会社 light emitting device
TW202319792A (en) * 2021-09-01 2023-05-16 日商京瓷股份有限公司 Optical waveguide package and light-emitting device
JP2023140834A (en) * 2022-03-23 2023-10-05 スタンレー電気株式会社 Light-emitting device and method for manufacturing light-emitting device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111882A (en) * 2002-09-20 2004-04-08 Toyoda Gosei Co Ltd Light emitting apparatus
JP2004349646A (en) * 2003-05-26 2004-12-09 Matsushita Electric Works Ltd Light-emitting device
JP4366161B2 (en) * 2003-09-19 2009-11-18 スタンレー電気株式会社 Semiconductor light emitting device
JP4143043B2 (en) * 2004-05-26 2008-09-03 京セラ株式会社 Light emitting device and lighting device
JP2008159707A (en) * 2006-12-21 2008-07-10 Matsushita Electric Works Ltd Light-emitting device
JP2010050236A (en) * 2008-08-20 2010-03-04 Mitsubishi Chemicals Corp Semiconductor light emitting device, and method for manufacturing the same
JP5689225B2 (en) * 2009-03-31 2015-03-25 日亜化学工業株式会社 Light emitting device
JP5588368B2 (en) * 2011-01-24 2014-09-10 スタンレー電気株式会社 Light emitting device and manufacturing method thereof
JP2012248553A (en) * 2011-05-25 2012-12-13 Panasonic Corp Light-emitting device and luminaire using the same
JP5452562B2 (en) * 2011-09-30 2014-03-26 三菱電機株式会社 Light emitting device and lighting apparatus
JP5956167B2 (en) * 2012-01-23 2016-07-27 スタンレー電気株式会社 LIGHT EMITTING DEVICE, VEHICLE LIGHT, AND METHOD FOR MANUFACTURING LIGHT EMITTING DEVICE
JP6099901B2 (en) * 2012-08-23 2017-03-22 スタンレー電気株式会社 Light emitting device
US8754435B1 (en) * 2013-02-19 2014-06-17 Cooledge Lighting Inc. Engineered-phosphor LED package and related methods
JP6244906B2 (en) * 2013-12-27 2017-12-13 日亜化学工業株式会社 Semiconductor light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023107883A1 (en) * 2021-12-10 2023-06-15 Lumileds Llc Phosphor converted leds with improved light uniformity including discrete light-scattering layers

Also Published As

Publication number Publication date
JP2018049875A (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP6934712B2 (en) Semiconductor light emitting device and vehicle lighting equipment
US11393803B2 (en) Light emitting device
CN107039410B (en) Method for manufacturing light emitting device
EP3174110B1 (en) Light emitting device
TWI686965B (en) Light emitting device and method for manufacturing thereof
JP6733646B2 (en) Light emitting device and manufacturing method thereof
US9576941B2 (en) Light-emitting device and method of manufacturing the same
JP4771179B2 (en) Lighting device
JP6387954B2 (en) Method for manufacturing light emitting device using wavelength conversion member
JP6777127B2 (en) Manufacturing method of light emitting device
JP2013143430A (en) Semiconductor light-emitting device, and illuminating device using the same
JP2013118244A (en) Semiconductor light-emitting device and lighting apparatus using the same
JP6940776B2 (en) Light emitting device and its manufacturing method
JP2019016763A (en) Light-emitting device and method for manufacturing the same
JP7448863B2 (en) Light emitting module and method for manufacturing the light emitting module
JP2017152475A (en) Light-emitting device
TW202121705A (en) Light emitting device and led package
JP2020061543A (en) Light-emitting device
EP2233828A1 (en) Vehicle light and road illumination device
JP2013149711A (en) Semiconductor light-emitting device
JP7133973B2 (en) semiconductor light emitting device
JP2013021351A (en) Semiconductor light-emitting device, head light for vehicle and manufacturing method of semiconductor light-emitting device
JP6006525B2 (en) Semiconductor light emitting device and lamp using the same
JP7448805B2 (en) Manufacturing method of light emitting device
JP6989807B2 (en) Light emitting device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210824

R150 Certificate of patent or registration of utility model

Ref document number: 6934712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150