JP6933051B2 - 高分子材料のシミュレーション方法 - Google Patents

高分子材料のシミュレーション方法 Download PDF

Info

Publication number
JP6933051B2
JP6933051B2 JP2017160499A JP2017160499A JP6933051B2 JP 6933051 B2 JP6933051 B2 JP 6933051B2 JP 2017160499 A JP2017160499 A JP 2017160499A JP 2017160499 A JP2017160499 A JP 2017160499A JP 6933051 B2 JP6933051 B2 JP 6933051B2
Authority
JP
Japan
Prior art keywords
model
filler
polymer material
potential
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017160499A
Other languages
English (en)
Other versions
JP2019040313A (ja
Inventor
昌吾 平尾
昌吾 平尾
容正 尾藤
容正 尾藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2017160499A priority Critical patent/JP6933051B2/ja
Publication of JP2019040313A publication Critical patent/JP2019040313A/ja
Application granted granted Critical
Publication of JP6933051B2 publication Critical patent/JP6933051B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、高分子材料のシミュレーション方法に関し、詳しくは、フィラーとマトリックスとを含む高分子材料の破壊特性を計算するためのシミュレーション方法に関する。
下記特許文献1は、コンピュータを用いて、フィラーとマトリックスとを含む高分子材料の破壊特性を計算するためのシミュレーション方法を提案している。下記特許文献1のシミュレーション方法では、先ず、高分子材料モデルがコンピュータに設定される。この高分子材料モデルのフィラーとマトリックスとの間には、下記非特許文献1に基づいて、斥力が作用するLJポテンシャルが定義されている。そして、下記特許文献1のシミュレーション方法では、高分子材料モデルに歪みを与えて、高分子材料の物理量が計算される。
特開2016−81297号公報 Kurt Kremer & Gary S. Grest 著、「Dynamics of entangled linear polymer melts: A molecular-dynamics simulation」、J. Chem Phys. vol.92, No.8, 15 April 1990、p5057-5086
フィラーとマトリックスとの間には、ミクロレベルで引力的な相互作用が存在し、フィラーにマトリックスが物理吸着することが実験的に知られている。しかしながら、上記非特許文献1のLJポテンシャルは、斥力的な相互作用であるため、実際の高分子材料の描像とは相反するという問題があった。
本発明は、以上のような実状に鑑み案出されたもので、実際の高分子材料の描像に沿った破壊特性を計算することができる高分子材料モデルのシミュレーション方法を提供することを主たる目的としている。
本発明は、コンピュータを用いて、フィラーとマトリックスとを含む高分子材料の破壊特性を計算するためのシミュレーション方法であって、前記高分子材料に基づいて、数値計算用の高分子材料モデルを前記コンピュータに設定する工程と、前記フィラーと前記マトリックスとの間に斥力系ポテンシャルが作用するとの条件の下、前記高分子材料モデルの応力と歪との関係を、少なくとも歪が零の状態から前記応力が降伏するまでの期間で計算する第1シミュレーション工程と、前記応力と歪との関係に基づいて、前記応力が降伏するまで前記高分子材料モデルに加えられた外部エネルギーを計算する工程と、前記外部エネルギーに基づいて、前記フィラーと前記マトリックスとの間の引力系ポテンシャルを決定する決定工程と、前記フィラーと前記マトリックスとの間に前記引力系ポテンシャルが作用するとの条件の下、前記高分子材料モデルの破壊特性を計算する第2シミュレーション工程とを含むことを特徴とする。
本発明に係る前記高分子材料のシミュレーション方法において、前記決定工程は、前記フィラーと前記マトリックスとの間に前記引力系ポテンシャルが作用するとの条件の下、前記フィラーの表面から前記マトリックスを引き剥がすのに必要なエネルギーを定義する工程と、前記外部エネルギーと、前記引き剥がすのに必要なエネルギーとが等しくなるとの条件の下、前記引力系ポテンシャルを決定する工程とを含んでもよい。
本発明の高分子材料のシミュレーション方法は、前記フィラーと前記マトリックスとの間に前記引力系ポテンシャルが作用するとの条件の下、前記高分子材料モデルの破壊特性を計算する第2シミュレーション工程を含んでいる。従って、本発明の高分子材料のシミュレーション方法は、前記フィラーと前記マトリックスとの間の引力的な相互作用に基づいて、実際の高分子材料の描像に沿った破壊特性を計算することができる。
前記引力系ポテンシャルは、前記フィラーと前記マトリックスとの間に斥力系ポテンシャルが作用するとの条件の下で計算された外部エネルギーに基づいて決定される。従って、本発明の高分子材料のシミュレーション方法は、上記非特許文献1に基づく斥力系ポテンシャルを、引力系ポテンシャルに容易に変換することができる。
高分子材料のシミュレーション方法を実行するためのコンピュータの一例を示す斜視図である。 マトリックスの一例を示す構造式である。 高分子材料のシミュレーション方法の処理手順の一例を示すフローチャートである。 モデル設定工程の処理手順の一例を示すフローチャートである。 高分子材料モデルの一例を示す概念図である。 フィラーモデルの一例を示す概念図である。 マトリックスモデルの一例を示す概念図である。 フィラーモデル及びマトリックスモデルを拡大して示す概念図である。 第1シミュレーション工程の処理手順の一例を示すフローチャートである。 高分子材料モデルに歪を与える工程の一例を説明する概念図である。 高分子材料モデルの応力−歪曲線の一例を示すグラフである。 フィラーモデルと、粗視化粒子モデルとの間の動径分布関数の一例を示すグラフである。 決定工程の処理手順の一例を示すフローチャートである。 LJポテンシャルULJ(ポテンシャルUFP)と、フィラーモデルの表面を構成するフィラー粒子モデルの重心からの距離rとの関係を示すグラフである。 第2シミュレーション工程の処理手順の一例を示すフローチャートである。 (a)〜(e)は、フィラーとマトリックスとの間に引力系ポテンシャルが作用するとの条件の下で、高分子材料モデルの破壊特性を計算した実施例の結果を示す概念図である。 (a)〜(e)は、フィラーとマトリックスとの間に斥力系ポテンシャルが作用するとの条件の下で、高分子材料モデルの破壊特性を計算した比較例の結果を示す概念図である。
以下、本発明の実施の一形態が図面に基づき説明される。
本実施形態の高分子材料のシミュレーション方法(以下、単に「シミュレーション方法」ということがある。)では、コンピュータを用いて、フィラーとマトリックスとを含む高分子材料の破壊特性が計算される。
図1は、高分子材料のシミュレーション方法を実行するためのコンピュータの一例を示す斜視図である。コンピュータ1は、本体1a、キーボード1b、マウス1c及びディスプレイ装置1dを含んでいる。この本体1aには、例えば、演算処理装置(CPU)、ROM、作業用メモリ、磁気ディスクなどの記憶装置、及び、ディスクドライブ装置1a1、1a2が設けられている。また、記憶装置には、シミュレーション方法を実行するためのソフトウェア等が予め記憶されている。
フィラーとしては、例えば、シリカ、カーボンブラック、又は、アルミナ等が採用される。マトリックスとしては、例えば、天然ゴム、合成ゴム、又は、樹脂等が採用される。図2は、マトリックスの一例を示す構造式である。本実施形態のマトリックスとしては、cis-1,4ポリブタジエン(以下、単に「ポリブタジエン」ということがある)が例示される。このポリブタジエンを構成する分子鎖は、メチレン基(−CH−)とメチン基(−CH−)とからなるモノマー{−[CH−CH=CH−CH]−}が、重合度nで連結されて構成されている。なお、マトリックスには、ポリブタジエン以外のものが用いられてもよい。
図3は、本実施形態のシミュレーション方法の処理手順の一例を示すフローチャートである。本実施形態のシミュレーション方法は、先ず、高分子材料に基づいて、数値計算用の高分子材料モデルが、コンピュータ1に設定される(モデル設定工程S1)。図4は、モデル設定工程S1の処理手順の一例を示すフローチャートである。
本実施形態のモデル設定工程S1では、先ず、予め定められた空間(セル)が定義される(工程S11)。図5は、高分子材料モデルの一例を示す概念図である。空間2は、後述する分子動力学計算において、計算対象となる領域である。本実施形態の空間2は、例えば、互いに向き合う少なくとも一対、本実施形態では3対の平面3、3を有する立方体として定義される。空間2の内部には、後述するフィラーモデル5、及び、マトリックスモデル11が複数個配置される。
空間2の各平面3には、上記特許文献1の空間と同様に、周期境界条件が定義されている。また、一対の平面3、3の間隔(即ち、1辺の長さL)は、上記特許文献1の空間と同様に設定されるのが望ましい。空間2の内部には、上記特許文献1の空間と同様に、後述するフィラーモデル5及びマトリックスモデル11の追跡等に用いるための複数の小領域(図示省略)が定義されている。空間2は、コンピュータ1に記憶される。
次に、本実施形態のモデル設定工程S1では、フィラーをモデル化したフィラーモデル5が設定される(工程S12)。図6は、フィラーモデル5の一例を示す概念図である。
フィラーモデル5は、上記特許文献1と同様に、複数のフィラー粒子モデル6と、隣接するフィラー粒子モデル6、6間を結合する結合鎖モデル(図示省略)とが含まれている。フィラー粒子モデル6は、分子動力学計算において、運動方程式の質点として取り扱われる。即ち、フィラー粒子モデル6には、質量、体積、直径、電荷又は初期座標などのパラメータが定義される。
工程S12では、上記特許文献1と同様に、走査型透過電子顕微鏡によって取得された高分子材料の三次元画像に基づいて、フィラー粒子モデル6(フィラーモデル5)が空間2(図5に示す)内に配置されるのが望ましい。これにより、工程S12では、実際のフィラーの分布に近似させて、フィラー粒子モデル6を空間2内に配置することができる。
結合鎖モデル(図示省略)は、上記特許文献1と同様に、下記式(1)で定義されるポテンシャル(以下、「LJポテンシャルULJ(rij)」ということがある。)と、下記式(2)で定義される結合ポテンシャルUFENEとの和で示されるポテンシャルで定義される。これにより、結合鎖モデルには、フィラー粒子モデル6、6間の距離rijを、LJポテンシャルULJ(rij)と結合ポテンシャルUFENEとが互いに釣り合う位置に戻そうとする復元力が定義される。
Figure 0006933051

Figure 0006933051

ここで、各定数及び変数は、Lennard-Jones及びFENEの各ポテンシャルのパラメータであり、次のとおりである。
ij:粒子間の距離
c:カットオフ距離
k:粒子間のばね定数
ε:粒子間に定義されるLJポテンシャルの強度
σ:粒子の直径に相当
0:伸びきり長
なお、距離rij、カットオフ距離rc、及び、伸びきり長R0は、各フィラー粒子モデル6の中心間の距離として定義される。
LJポテンシャルULJ(rij)及び結合ポテンシャルUFENEの各パラメータ(LJポテンシャルの強度ε、伸びきり長R0、粒子の直径σ及びカットオフ距離rc)については、上記特許文献1と同様に、上記非特許文献1に基づいて設定される。フィラーモデル5は、コンピュータ1に記憶される。
次に、本実施形態のモデル設定工程S1では、マトリックス(分子鎖)をモデル化したマトリックスモデル11が設定される(工程S13)。図7は、マトリックスモデル11の一例を示す概念図である。図8は、フィラーモデル5及びマトリックスモデル11を拡大して示す概念図である。
本実施形態のマトリックスモデル11は、粗視化モデルとして構成される。マトリックスモデル11は、上記特許文献1と同様に、マトリックス(分子鎖)のモノマー又はモノマーの一部分をなす構造単位12(図2に示す)が、直径を持った球で表現される粒子モデル(以下、「粗視化粒子モデル」ということがある。)13に置換される。粗視化粒子モデル13は、分子動力学計算において、運動方程式の質点として取り扱われる。即ち、粗視化粒子モデル13には、例えば、質量、体積、直径又は電荷などのパラメータが定義される。
マトリックスモデル11には、隣接する粗視化粒子モデル13、13間を結合する結合鎖モデル14が含まれている。結合鎖モデル14は、例えば、上記式(1)のLJポテンシャルULJ(rij)と、上記式(2)の結合ポテンシャルUFENEとの和で示されるポテンシャルP2(図8に示す)で設定される。LJポテンシャルULJ(rij)及び結合ポテンシャルUFENEの各パラメータについては、上記特許文献1と同様に、上記非特許文献1に基づいて設定される。このような結合鎖モデル14により、粗視化粒子モデル13を伸縮自在に拘束した直鎖状のマトリックスモデル11を設定することができる。
工程S13では、上記特許文献1と同様に、高分子材料の三次元画像に基づいて、マトリックスモデル11が空間2(図5に示す)内に配置されるのが望ましい。これにより、工程S13では、実際のマトリックスの分布に近似させて、マトリックスモデル11を空間2内に配置することができる。マトリックスモデル11は、コンピュータ1に記憶される。
次に、本実施形態のモデル設定工程S1では、隣接するマトリックスモデル11、11間に、ポテンシャル(引力系ポテンシャル)P3が定義される(工程S14)。本実施形態の工程S14では、隣接するマトリックスモデル11、11の粗視化粒子モデル13、13間に、ポテンシャルP3がそれぞれ定義される。ポテンシャルP3は、上記式(1)のLJポテンシャルULJ(rij)によって定義される。
本実施形態のポテンシャルP3のカットオフ距離rcは、例えば、論文(Ali Makke, Michel Perez, Olivier Lame and Jean-Louis Barrat著、 「Mechanical testing of glassy and rubbery polymers in numerical simulations: Role of boundary conditions in tensile stress experiments 」J. Chem. Phys. vol.131, 014904 (2009))に基づいて、2.5σに設定される。従って、ポテンシャルP3は、マトリックス(分子鎖)間に作用する引力系ポテンシャルとして定義される。これにより、後述の決定工程S4において、後述の第1シミュレーション工程S2で実施される高分子材料モデル16の伸長計算において、隣接するマトリックスモデル11、11の離間を防ぐことができるため、フィラーモデル5と、マトリックスモデル11との間で引き剥がされるときのエネルギー(外部エネルギーW1)を優先的に計算することができる。また、ポテンシャルP3のLJポテンシャルの強度εは、上記論文に基づいて、1.0に設定される。ポテンシャルP3は、コンピュータ1に記憶される。
次に、本実施形態のモデル設定工程S1では、隣接するフィラーモデル5、5間に、ポテンシャル(斥力系ポテンシャル)P4が定義される(工程S15)。本実施形態の工程S15では、隣接するフィラーモデル5のフィラー粒子モデル6、6間に、ポテンシャルP4がそれぞれ定義される。ポテンシャルP4は、上記式(1)のLJポテンシャルULJ(rij)によって定義される。
本実施形態のポテンシャルP4のカットオフ距離rcは、上記論文に基づいて、21/6σに設定される。従って、ポテンシャルP4は、フィラー間に作用する斥力系ポテンシャルとして定義される。また、ポテンシャルP4のLJポテンシャルの強度εは、上記論文に基づいて、1.0に設定される。ポテンシャルP4は、コンピュータ1に記憶される。
次に、本実施形態のモデル設定工程S1では、フィラーモデル5と、マトリックスモデル11との間に、ポテンシャル(斥力系ポテンシャル)P5が定義される(工程S16)。本実施形態の工程S16では、フィラーモデル5のフィラー粒子モデル6と、マトリックスモデル11の粗視化粒子モデル13との間に、ポテンシャルP5がそれぞれ定義される。ポテンシャルP5は、上記式(1)のLJポテンシャルULJ(rij)によって定義される。
本実施形態のポテンシャルP5のカットオフ距離rcは、上記論文に基づいて、21/6σに設定される。従って、ポテンシャルP5は、フィラーとマトリックスとの間に作用する斥力系ポテンシャルとして定義される。また、ポテンシャルP5のLJポテンシャルの強度εは、上記論文に基づいて、1.0に設定される。ポテンシャルP4は、コンピュータ1に記憶される。
次に、本実施形態のモデル設定工程S1では、フィラーモデル5及びマトリックスモデル11に、摩擦係数を含んだ運動方程式が定義される(工程S17)。運動方程式は、上記特許文献1に基づいて定義される。運動方程式は、コンピュータ1に記憶される。
次に、本実施形態のモデル設定工程S1では、分子動力学計算に基づいて、高分子材料モデル16の構造緩和が計算される(工程S18)。本実施形態の工程S18では、先ず、フィラーモデル5(フィラー粒子モデル6)の位置(座標)を固定して、マトリックスモデル11(粗視化粒子モデル13)のみを対象に、構造緩和が計算される。次に、工程S18では、フィラーモデル5の固定を解除して、フィラーモデル5及びマトリックスモデル11を対象に、構造緩和が計算される。これにより、工程S18では、高分子材料のフィラーの領域から、フィラーモデル5が大きく位置ずれするのを防ぎつつ、高分子材料モデル16の構造緩和が計算されうる。
本実施形態の分子動力学計算では、例えば、空間2について所定の時間、フィラーモデル5又はマトリックスモデル11が古典力学に従うものとして、工程S18で定義された運動方程式が適用される。そして、各時刻でのマトリックスモデル11の動きが、単位時間毎に追跡される。本実施形態では、空間2において、圧力及び温度が一定、又は、体積及び温度が一定に保たれている。これにより、工程S18では、実際の高分子材料の分子運動に近似させて、マトリックスモデル11の初期配置が、精度よく緩和される。このような構造緩和の計算には、例えば、(株)JSOL社製のソフトマテリアル総合シミュレーター(J−OCTA)に含まれている分子動力学エンジンCOGNACが用いられるのが望ましい。
工程S18では、マトリックスモデル11の初期配置が十分に緩和されるまで、シミュレーションの単位時間毎に、高分子材料モデル16(図5に示す)の構造緩和が計算される。これにより、本実施形態では、マトリックスモデル11の平衡状態(構造が緩和した状態)が計算され、数値計算用の高分子材料モデル16が設定されうる。高分子材料モデル16は、コンピュータ1に記憶される。
次に、本実施形態のシミュレーション方法は、コンピュータ1が、フィラーとマトリックスとの間に斥力系ポテンシャルが作用するとの条件の下、高分子材料モデル16の応力と歪との関係を計算する(第1シミュレーション工程S2)。本実施形態の第1シミュレーション工程S2では、少なくとも歪が零の状態から、応力が降伏するまでの期間で、高分子材料モデル16の応力と歪との関係が計算される。図9は、第1シミュレーション工程S2の処理手順の一例を示すフローチャートである。
本実施形態の第1シミュレーション工程S2では、先ず、歪が零の状態の高分子材料モデル16の応力が計算される(工程S21)。高分子材料モデル16の応力は、上記した分子動力学エンジンCOGNACによって計算することができる。歪が零の状態の高分子材料モデル16の応力は、コンピュータ1に記憶される。
次に、本実施形態の第1シミュレーション工程S2では、高分子材料モデル16に歪が与えられる(工程S22)。図10は、高分子材料モデルに歪を与える工程の一例を説明する概念図である。
本実施形態の工程S22では、z軸方向において、高分子材料モデル16の一端16a及び他端16bを離間させて、高分子材料モデル16の伸長が計算される。本実施形態では、上記特許文献1と同様に、分子動力学計算の単位時間(MDステップ)あたりの歪が10−5以上の速度V1で、高分子材料モデル16をアフィン変形に基づいて伸長させている。速度V1の好ましい範囲については、上記特許文献1と同様に設定されうる。また、工程S22では、フィラーモデル5及びマトリックスモデル11の熱運動(分子運動)が計算される。
次に、本実施形態の第1シミュレーション工程S2では、高分子材料モデル16の応力が計算される(工程S23)。工程S23では、工程S22で与えられた歪に基づいて、高分子材料モデル16の応力が単位時間毎に計算される。さらに、工程S23では、高分子材料モデル16の伸長によって計算されるフィラー粒子モデル6、及び、粗視化粒子モデル13の動きが、単位時間毎に追跡される。
工程S23では、高分子材料モデル16に与えられた歪、各ポテンシャルP1〜P5(図8に示す)及び運動方程式に基づいて、フィラーモデル5及びマトリックスモデル11の熱運動が計算される。この熱運動が計算されることにより、空間2には、粗視化粒子モデル13及びフィラー粒子モデル6が存在しない小領域(図示省略)が形成される。このような小領域は、高分子材料モデル16に形成された空孔(ボイド)として定義される。高分子材料モデル16の応力、及び、フィラー粒子モデル6、及び、粗視化粒子モデル13の各座標値は、コンピュータ1に記憶される。
次に、本実施形態の第1シミュレーション工程S2では、高分子材料モデル16に与えられた歪が、予め定められた上限値以上か否かが判断される(工程S24)。歪の上限値については、少なくとも応力が降伏する際の歪よりも大きければ、適宜設定することができる。
工程S24において、高分子材料モデル16に与えられた歪が上限値以上であると判断された場合(工程S24において、「Y」)、次の工程S25が実施される。他方、工程S24において、高分子材料モデル16に与えられた歪が上限値未満であると判断された場合(工程S24において、「N」)、単位時間を一つ進めて(工程S26)、工程S22〜工程S24が実施される。従って、第1シミュレーション工程S2では、少なくとも歪が零の状態から、応力が降伏するまでの期間で、高分子材料モデル16の応力を、単位時間毎に計算することができる。
次に、本実施形態の第1シミュレーション工程S2では、高分子材料モデル16の応力と歪との関係が求められる(工程S25)。本実施形態の工程S25では、高分子材料モデル16に与えられた歪ごとに、高分子材料モデル16の応力がプロットされることによって、高分子材料モデル16の応力−歪曲線が求められる。図11は、高分子材料モデル16の応力−歪曲線の一例を示すグラフである。
この高分子材料モデル16の応力−歪曲線において、高分子材料モデル16の応力が降伏する降伏点Q1で、高分子材料モデル16に空孔(ボイド)が形成されている。高分子材料モデル16の応力と歪との関係(応力−歪曲線)は、コンピュータ1に記憶される。
次に、本実施形態の第1シミュレーション工程S2では、高分子材料モデル16の応力が降伏した時点(降伏点Q1)において、フィラーモデル5の表面を構成するフィラー粒子モデル6と粗視化粒子モデル13との間の動径分布関数が求められる(工程S27)。本実施形態の動径分布関数は、応力が降伏した時点(降伏点Q1)で記憶されたフィラー粒子モデル6及び粗視化粒子モデル13の座標値に基づいて計算される。図12は、フィラーモデル5と、粗視化粒子モデル13との間の動径分布関数の一例を示すグラフである。図12において、距離r=0は、フィラーモデル5の表面を構成するフィラー粒子モデル6の重心を示しており、距離r1は、21/6σである。
本実施形態の動径分布関数は、フィラーモデル5の表面を構成するフィラー粒子モデル6からの距離r(σ)において、粗視化粒子モデル13が存在する確率密度を示す関数である。動径分布関数の計算方法については、例えば、特許文献(特開2015−56002号公報)に記載されているとおりである。
図12に示されるように、動径分布関数g(r)の増分が大きくなる変曲点Q2の距離rよりも大きい領域に、粗視化粒子モデル13が主として存在している。このため、変曲点Q2の距離r2以下の領域に、高分子材料モデル16に空孔(ボイド)が形成されている。従って、変曲点Q2での距離r2を、フィラーモデル5の表面の距離(即ち、フィラーモデル5の表面を構成するフィラー粒子モデル6の表面までの距離)r1で減じた剥離距離Rは、フィラーモデル5のフィラー粒子モデル6からマトリックスモデル11の粗視化粒子モデル13を引き剥がすのに必要な距離(以下、単に「粗視化粒子モデルの剥離距離」ということがある。)として定義することができる。動径分布関数は、コンピュータ1に記憶される。
次に、本実施形態のシミュレーション方法は、コンピュータ1が、応力と歪との関係に基づいて、応力が降伏するまで高分子材料モデル16に加えられた外部エネルギーを計算する(工程S3)。外部エネルギーW1は、図11に示した高分子材料モデル16の応力−歪曲線において、高分子材料モデル16の応力σstrを、歪εstrが零の状態から応力が降伏するまで(降伏点Q1まで)の期間で積分した値(図において、外部エネルギーW1に対応する領域に色付けしている)に等しい。外部エネルギーW1は、下記式(3)によって定義することができる。
Figure 0006933051

ここで、各パラメータは、次のとおりである。
A:フィラー粒子モデルの重心を通る断面積の総和
r:フィラーモデルの表面を構成するフィラー粒子モデルの重心からの距離
σstr:高分子材料モデルの応力
fil:フィラー粒子モデルの合計個数
1:フィラーモデルの表面の距離(即ち、フィラーモデルの表面を構成するフィラー粒子モデルの表面までの距離)
2:フィラーモデルの表面からポリマーが引き剥がされた距離(図12に示した変曲点Q2での距離)
上記式(3)において、σstr(r)は、フィラーモデル5の表面を構成するフィラー粒子モデル6の重心を基準とする距離rでの高分子材料モデルの応力を示している。この応力σstr(r)を、距離r1から距離r2までの範囲(即ち、剥離距離R(図12に示す))で積分し、さらに、フィラー粒子モデル6の重心を通る断面積の総和A及びフィラー粒子モデル6の合計個数Nfilを乗じることで、外部エネルギーW1を求めることができる。上記式(3)の各パラメータは、いずれも既知の値である。このため、外部エネルギーW1は、一意に定められる。外部エネルギーW1は、コンピュータ1に記憶される。
次に、本実施形態のシミュレーション方法は、コンピュータ1が、外部エネルギーW1に基づいて、フィラーとマトリックスとの間の引力系ポテンシャルを決定する(決定工程S4)。図13は、決定工程S4の処理手順の一例を示すフローチャートである。
本実施形態の決定工程S4では、先ず、フィラーの表面からマトリックスを引き剥がす(即ち、高分子材料モデル16に空孔(ボイド)を形成する)のに必要なエネルギー(以下、単に「剥離エネルギー」ということがある。)W2が定義される(工程S41)。本実施形態の剥離エネルギーW2は、フィラーとマトリックスとの間に引力系ポテンシャルが作用するとの条件の下、下記式(4)で定義することができる。
Figure 0006933051

ここで、各パラメータは、次のとおりである。
FP:フィラー粒子モデルと粗視化粒子モデルとの間のポテンシャル(引力系ポテンシャル)
fil:フィラー粒子モデルの合計個数
pol_particle:フィラーモデル近傍の粗視化粒子モデルの合計個数
r:フィラーモデルの表面を構成するフィラー粒子モデルの重心からの距離
1:フィラーモデルの表面の距離(即ち、フィラーモデルの表面を構成するフィラー粒子モデルの表面までの距離)
2:フィラーモデルの表面からポリマーが引き剥がされた距離(図12に示した変曲点Q2での距離)
上記式(4)において、ポテンシャルUFPは、フィラー粒子モデル6と粗視化粒子モデル13との間に定義されたポテンシャルP5(図8に示す)に対応するものである。ポテンシャルUFPは、上記式(1)のLJポテンシャルULJ(rij)で定義される。上記式(1)のカットオフ距離rcについては、モデル設定工程S1で設定された斥力系ポテンシャルのカットオフ距離rc(本例では、21/6σ)よりも大きい値(本実施形態では、1.5σ又は2.5σ)に設定される。これにより、ポテンシャルUFPは、引力系ポテンシャルとして定義される。
上記式(4)において、フィラー粒子モデルの合計個数Npol_particleは、フィラーモデル5の表面を構成するフィラー粒子モデル6の外面から、粗視化粒子モデルの半径の2〜5倍(本実施形態では、3倍)の範囲に存在する粗視化粒子モデルの合計個数として定義される。この合計個数Npol_particleは、モデル設定工程S1の工程S18(図4)で構造緩和された高分子材料モデル16に基づいて特定される。
上記式(4)において、ポテンシャルUFP(LJポテンシャルULJ(rij))のカットオフ距離rcには、上記論文のカットオフ距離rcとは異なる値(本実施形態では、1.5σ又は2.5σ)に設定されたため、LJポテンシャルの強度εを、上記論文に基づいて設定することができない。従って、上記式(4)において、LJポテンシャルの強度εは、変数(未知のパラメータ)として定義される。上記式(4)は、下記式(5)を経て、下記式(6)のように、変形することができる。
Figure 0006933051

Figure 0006933051
図14は、LJポテンシャルULJ(ポテンシャルUFP)と、フィラーモデルの表面を構成するフィラー粒子モデルの重心からの距離rとの関係を示すグラフである。図14から明らかなように、UFP(r1)=−ε、UFP(r2)=0となる。これにより、一つの粗視化粒子モデル13をフィラーモデル5から引き剥がすのに必要なエネルギーは、εとなる。そして、このエネルギーεに、フィラー粒子モデルの合計個数Nfil、及び、フィラーモデル近傍の粗視化粒子モデルの合計個数Npol_particleを乗じることで、フィラーの表面からマトリックスを引き剥がすのに必要なエネルギー(剥離エネルギー)W2を定義することができる。
剥離エネルギーW2及び外部エネルギーW1は、いずれも、高分子材料モデル16に空孔(ボイド)を形成するのに必要なエネルギーを示している。従って、剥離エネルギーW2は、外部エネルギーW1と等しくなると仮定することができる。剥離エネルギーW2は、コンピュータ1に記憶される。
次に、本実施形態の決定工程S4は、外部エネルギーW1と、フィラーの表面からマトリックスを引き剥がすのに必要なエネルギー(剥離エネルギー)W2とが等しくなるとの条件の下、引力系ポテンシャルが決定される(工程S42)。
上述したように、外部エネルギーW1は、上記式(3)の各パラメータがいずれも既知であるため、一意に定められている。他方、剥離エネルギーW2の未知のパラメータは、ポテンシャルUFP(LJポテンシャルULJ(rij))の強度εのみである。従って、剥離エネルギーW2は、外部エネルギーW1と等しくなるとの条件の下で(W1=W2)、引力系ポテンシャルのLJポテンシャルの強度εを特定することができる。
そして、ポテンシャルUFP(上記式(1)のLJポテンシャルULJ(rij))に、特定された強度ε、及び、カットオフ距離rc(本実施形態では、1.5σ又は2.5σ)が代入されることにより、引力系ポテンシャルが決定される。
このように、本実施形態の決定工程S4では、フィラーとマトリックスとの間に斥力系ポテンシャルが作用するとの条件の下で計算された外部エネルギーW1に基づいて、引力系ポテンシャルを決定することができる。これにより、本実施形態のシミュレーション方法は、従来の上記論文に基づく斥力系ポテンシャルを、引力系ポテンシャルに容易に変換することができる。従って、本実施形態のシミュレーション方法は、実験等に基づいて引力系ポテンシャルを求める必要がないため、計算コストを低減することができる。引力系ポテンシャルは、コンピュータ1に記憶される。
次に、本実施形態のシミュレーション方法は、コンピュータ1が、フィラーとマトリックスとの間に引力系ポテンシャルが作用するとの条件の下、高分子材料モデルの破壊特性を計算する(第2シミュレーション工程S5)。本実施形態では、モデル設定工程S1で設定された高分子材料モデル16において、フィラーモデル5とマトリックスモデル11との間に引力系ポテンシャルを定義して、高分子材料モデル16の破壊特性が計算される。図15は、第2シミュレーション工程S5の処理手順の一例を示すフローチャートである。
本実施形態の第2シミュレーション工程S5では、フィラーモデル5のフィラー粒子モデル6と、マトリックスモデル11の粗視化粒子モデル13との間に、引力系ポテンシャルが定義される(工程S51)。工程S51では、フィラーモデル5のフィラー粒子モデル6と、マトリックスモデル11の粗視化粒子モデル13との間に定義された斥力系ポテンシャルP5(図8に示す)に代えて、決定工程S4で特定された強度ε、及び、カットオフ距離rc(本実施形態では、1.5σ又は2.5σ)がそれぞれ代入されたポテンシャル(引力系ポテンシャル)UFPが定義される。再定義されたポテンシャルUFPは、コンピュータ1に記憶される。
次に、本実施形態の第2シミュレーション工程S5では、上記特許文献1のシミュレーション方法と同様の手順で、高分子材料モデル16を伸長させて(工程S52)、高分子材料モデル16の物理量が計算される(工程S53)。
工程S52では、高分子材料モデル16の一端16a及び他端16bが互いに離間するように、高分子材料モデル16の伸長が計算される。なお、高分子材料モデル16を伸長させる速度V1、及び、高分子材料モデル16に与えられる歪については、上記特許文献1と同一範囲内に定義することができる。
工程S53では、伸ばされた高分子材料モデル16の大きさが拘束され、その歪みを一定に保持した状態で物理量が計算される。工程S53では、第1シミュレーション工程S2と同様に、高分子材料モデル16に与えられた歪み、各ポテンシャルP1〜P4(図8に示す)、引力系ポテンシャル(フィラーとマトリックスとの間の引力系ポテンシャル)UFP、及び、運動方程式に基づいて、フィラーモデル5及びマトリックスモデル11の熱運動が計算される。この熱運動が計算されることによって、空間2には、粗視化粒子モデル13及びフィラー粒子モデル6が存在しない小領域(図示省略)が形成される。このような小領域は、高分子材料モデル16に形成された空孔(ボイド)21(図16に示す)として定義され、高分子材料モデル16の破壊が計算される。
第2シミュレーション工程S5では、フィラーとマトリックスとの間に引力系ポテンシャル(ポテンシャルUFP)が作用するとの条件の下、高分子材料モデル16の破壊が計算されている。従って、本実施形態の第2シミュレーション方法は、フィラーとマトリックスとの間の引力的な相互作用に基づいて、実際の高分子材料の描像に沿った破壊特性を計算することができる。
次に、本実施形態のシミュレーション方法では、高分子材料モデル16の物理量(破壊特性)が、良好か否かが判断される(工程S6)。工程S6では、例えば、高分子材料モデル16の応力、空孔(ボイド)21(図16に示す)の総量、又は、空孔(ボイド)21の偏り等に基づいて、高分子材料モデル16の物理量(破壊特性)が、良好か否かが判断される。
工程S6において、高分子材料モデル16の物理量が良好であると判断された場合(工程S6で、「Y」)、高分子材料モデル16に基づいて、高分子材料が製造される(工程S7)。他方、工程S6において、高分子材料モデル16の物理量が良好でないと判断された場合は(工程S6で、「N」)、高分子材料の諸条件が変更されて(工程S8)、工程S1〜工程S6が再度実施される。
このように、高分子材料モデル16の物理量が良好になるまで、高分子材料モデル16の諸条件が変更されるため、良好な破壊特性を有する高分子材料が、効率よく設計されうる。
以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。
図3及び図4に示した処理手順に従って、フィラーとマトリックスとを含む高分子材料の数値計算用の高分子材料モデルが設定され、高分子材料の破壊特性が計算された(実施例及び比較例)。
実施例では、図9、図13及び図15に示した処理手順に従って、フィラーとマトリックスとの間に斥力系ポテンシャルが作用するとの条件の下、高分子材料モデルの応力と歪との関係を計算する第1シミュレーション工程と、応力と歪との関係に基づいて、応力が降伏するまで高分子材料モデルに加えられた外部エネルギーを計算する工程とが実施された。外部エネルギーW1は、上記式(3)に基づいて定義された。
さらに、実施例では、外部エネルギーW1に基づいて、フィラーとマトリックスとの間の引力系ポテンシャルが決定され、フィラーモデルとマトリックスモデルとの間に定義された。この引力系ポテンシャルの決定工程では、上記式(3)の外部エネルギーW1と、引力系ポテンシャルに基づいて定義された上記式(4)の剥離エネルギーW2とが等しくなるとの条件の下、LJポテンシャルの強度εが決定された。そして、フィラーとマトリックスとの間に引力系ポテンシャルが作用するとの条件の下、高分子材料モデルの破壊特性が計算された。
比較例では、上記特許文献1と同様に、フィラーとマトリックスとの間の斥力系ポテンシャルが設定された。その他のポテンシャルについては、実施例と同様に定義された。そして、比較例の高分子材料モデルの破壊特性が計算された。共通仕様は次のとおり、その他のパラメータは、上記特許文献1のとおりである。
マトリックスモデル(分子鎖):
鎖長:1000
本数:189
数密度:0.9
カップリング剤モデルの個数:10
フィラー粒子モデルとマトリックスモデルとの間を連結する架橋剤モデル:1564個
フィラーの半径:10.2σ
空間(セル)のサイズ:
x軸方向の長さL:60σ
y軸方向の長さL:60σ
z軸方向の長さL:60.2σ
伸長速度:歪1.0/6300τ
ポアソン比:0.0
引力系ポテンシャル:
カットオフ距離rc:2.5σ
LJポテンシャルの強度ε:上記決定工程で求められた値
斥力系ポテンシャル
カットオフ距離rc:21/6σ
LJポテンシャルの強度ε:1.0(上記論文に基づく)
図16(a)〜(e)は、フィラーとマトリックスとの間に引力系ポテンシャルが作用するとの条件の下で、高分子材料モデルの破壊特性を計算した実施例の結果を示す概念図である。図17(a)〜(e)は、フィラーとマトリックスとの間に斥力系ポテンシャルが作用するとの条件の下で、高分子材料モデルの破壊特性を計算した比較例の結果を示す概念図である。
図16に示した実施例の高分子材料モデルは、フィラーモデルとマトリックスモデルとの界面部分において、マトリックスモデルがフィラーモデルに吸着する高分子材料の描像を再現することができた。他方、図17に示した比較例の高分子材料モデルは、フィラーモデルとマトリックスモデルとの界面部分において、マトリックスモデルがフィラーモデルから剥離しており、実際の高分子材料の描像を再現することができなかった。従って、実施例は、比較例に比べて、実際の高分子材料の描像に沿った破壊特性を計算することができた。
さらに、実施例では、上記論文に基づく斥力系ポテンシャルを用いて、引力系ポテンシャルに容易に変換することができた。従って、実施例では、実験等に基づいて引力系ポ テンシャルを求める必要がないため、計算コストを低減することができた。
S1 高分子材料モデルを設定する工程
S2 第1シミュレーション工程
S3 外部エネルギーを計算する工程
S4 引力系ポテンシャルを決定する工程
S5 第2シミュレーション工程

Claims (2)

  1. コンピュータを用いて、フィラーとマトリックスとを含む高分子材料の破壊特性を計算するためのシミュレーション方法であって、
    前記高分子材料に基づいて、数値計算用の高分子材料モデルを前記コンピュータに設定する工程と、
    前記フィラーと前記マトリックスとの間に斥力系ポテンシャルが作用するとの条件の下、前記高分子材料モデルの応力と歪との関係を、少なくとも歪が零の状態から前記応力が降伏するまでの期間で計算する第1シミュレーション工程と、
    前記応力と歪との関係に基づいて、前記応力が降伏するまで前記高分子材料モデルに加えられた外部エネルギーを計算する工程と、
    前記外部エネルギーに基づいて、前記フィラーと前記マトリックスとの間の引力系ポテンシャルを決定する決定工程と、
    前記フィラーと前記マトリックスとの間に前記引力系ポテンシャルが作用するとの条件の下、前記高分子材料モデルの破壊特性を計算する第2シミュレーション工程と、
    を含む高分子材料のシミュレーション方法。
  2. 前記決定工程は、前記フィラーと前記マトリックスとの間に前記引力系ポテンシャルが作用するとの条件の下、前記フィラーの表面から前記マトリックスを引き剥がすのに必要なエネルギーを定義する工程と、
    前記外部エネルギーと、前記引き剥がすのに必要なエネルギーとが等しくなるとの条件の下、前記引力系ポテンシャルを決定する工程とを含む請求項1記載の高分子材料のシミュレーション方法。
JP2017160499A 2017-08-23 2017-08-23 高分子材料のシミュレーション方法 Active JP6933051B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017160499A JP6933051B2 (ja) 2017-08-23 2017-08-23 高分子材料のシミュレーション方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017160499A JP6933051B2 (ja) 2017-08-23 2017-08-23 高分子材料のシミュレーション方法

Publications (2)

Publication Number Publication Date
JP2019040313A JP2019040313A (ja) 2019-03-14
JP6933051B2 true JP6933051B2 (ja) 2021-09-08

Family

ID=65726374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017160499A Active JP6933051B2 (ja) 2017-08-23 2017-08-23 高分子材料のシミュレーション方法

Country Status (1)

Country Link
JP (1) JP6933051B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7243442B2 (ja) * 2019-05-23 2023-03-22 横浜ゴム株式会社 複合材料の解析方法、及び複合材料の解析用コンピュータプログラム
CN110795854B (zh) * 2019-11-04 2023-05-12 湖南航天机电设备与特种材料研究所 一种弹上薄壁惯导应变的获取方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6085224B2 (ja) * 2013-06-25 2017-02-22 住友ゴム工業株式会社 フィラー間の相互作用ポテンシャルの計算方法
JP6353290B2 (ja) * 2014-06-26 2018-07-04 住友ゴム工業株式会社 高分子材料モデル作成方法
JP6408856B2 (ja) * 2014-10-16 2018-10-17 住友ゴム工業株式会社 高分子材料のシミュレーション方法

Also Published As

Publication number Publication date
JP2019040313A (ja) 2019-03-14

Similar Documents

Publication Publication Date Title
JP6408856B2 (ja) 高分子材料のシミュレーション方法
JP6254325B1 (ja) 高分子材料の粗視化分子動力学シミュレーション方法
Alisafaei et al. Indentation depth dependent mechanical behavior in polymers
JP6933051B2 (ja) 高分子材料のシミュレーション方法
JP3668238B2 (ja) ゴム材料のシミュレーション方法
JP6085224B2 (ja) フィラー間の相互作用ポテンシャルの計算方法
JP5602190B2 (ja) 高分子材料のシミュレーション方法
Setoodeh et al. Low velocity impact analysis of laminated composite plates using a 3D elasticity based layerwise FEM
Tomita et al. Computational evaluation of strain-rate-dependent deformation behavior of rubber and carbon-black-filled rubber under monotonic and cyclic straining
JP2013108951A (ja) 高分子材料のシミュレーション方法
Goodarzi et al. Modelling slope failure using a quasi-static MPM with a non-local strain softening approach
JP2014016163A (ja) 高分子材料のシミュレーション方法
Sugerman et al. A speckling technique for DIC on ultra-soft, highly hydrated materials
JP2005121536A (ja) 粘弾性材料のシミュレーション方法
JP2009216612A (ja) ゴム材料のシミュレーション方法
Zhang et al. Cavitation, crazing and bond scission in chemically cross-linked polymer nanocomposites
JP2018112525A (ja) 高分子材料のシミュレーション方法
Müller et al. Predicting the damage development in epoxy resins using an anisotropic damage model
WO2015072206A1 (ja) 高分子材料のシミュレーション方法
JP2014203242A (ja) シミュレーションモデルの作成方法およびシミュレーション方法
JP7087300B2 (ja) 高分子材料のシミュレーション方法及び高分子材料の破壊特性評価方法
JP2012238168A (ja) ゴム材料のシミュレーション方法
Anggono et al. Dynamic explicit finite element code for U-bending simulation and springback prediction
JP2017224202A (ja) 高分子材料のシミュレーション方法
JP6458097B1 (ja) 高分子材料の粗視化分子動力学シミュレーション方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210802

R150 Certificate of patent or registration of utility model

Ref document number: 6933051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150