JP6930827B2 - Glass dielectric - Google Patents
Glass dielectric Download PDFInfo
- Publication number
- JP6930827B2 JP6930827B2 JP2016218307A JP2016218307A JP6930827B2 JP 6930827 B2 JP6930827 B2 JP 6930827B2 JP 2016218307 A JP2016218307 A JP 2016218307A JP 2016218307 A JP2016218307 A JP 2016218307A JP 6930827 B2 JP6930827 B2 JP 6930827B2
- Authority
- JP
- Japan
- Prior art keywords
- component
- less
- glass
- dielectric
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011521 glass Substances 0.000 title claims description 112
- 239000000203 mixture Substances 0.000 claims description 23
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 19
- 239000000126 substance Substances 0.000 claims description 11
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 3
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 3
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 3
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 3
- 229910052765 Lutetium Inorganic materials 0.000 claims description 3
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 3
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- 229910016287 MxOy Inorganic materials 0.000 claims 1
- 239000004615 ingredient Substances 0.000 claims 1
- 230000015556 catabolic process Effects 0.000 description 16
- 230000000694 effects Effects 0.000 description 14
- 239000003990 capacitor Substances 0.000 description 8
- 239000003989 dielectric material Substances 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000002419 bulk glass Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000006063 cullet Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- SITVSCPRJNYAGV-UHFFFAOYSA-L tellurite Chemical compound [O-][Te]([O-])=O SITVSCPRJNYAGV-UHFFFAOYSA-L 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/066—Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/068—Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/16—Silica-free oxide glass compositions containing phosphorus
- C03C3/21—Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/23—Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
- C03C3/247—Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron containing fluorine and phosphorus
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/16—Compositions for glass with special properties for dielectric glass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/02—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
- H01B3/08—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances quartz; glass; glass wool; slag wool; vitreous enamels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/02—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
- H01B3/12—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Glass Compositions (AREA)
- Inorganic Insulating Materials (AREA)
Description
本発明は、誘電率と絶縁破壊強度とがいずれも高く、通信機器や電子機器に搭載される回路基板及び電子部品、大容量高電圧コンデンサーなどの誘電材料として好適に用いられるガラスに関する。 The present invention relates to glass having a high dielectric constant and dielectric breakdown strength, and is suitably used as a dielectric material for circuit boards and electronic components mounted on communication devices and electronic devices, large-capacity high-voltage capacitors, and the like.
近年、自動車用電話やパーソナル無線に代表される移動体通信、携帯電話、衛星放送、衛星通信、CATV等に代表されるような高度情報化時代を迎え、情報伝達はより高速化・高周波化の傾向にあり、さらにこれらの機器には小型化が求められ、これに伴って回路素子に対しても小型化が強く要求されている。 In recent years, we have entered an era of advanced information such as mobile communications such as automobile phones and personal radios, mobile phones, satellite broadcasting, satellite communications, and CATV, and information transmission has become faster and higher in frequency. There is a tendency, and further, these devices are required to be miniaturized, and along with this, the circuit elements are also strongly required to be miniaturized.
例えば、マイクロ波用回路素子について、その大きさは、使用電磁波の波長が基準になる。すなわち、誘電率(ε)の誘電体中を伝播する電磁波の波長(λ)は、真空中の波長をλ0とするとλ=λ0/(ε1/2)となり、λはεの平方根に反比例する。よってマイクロ波用回路素子の小型化のためには、誘電率が高い材料が求められている。 For example, the size of a microwave circuit element is based on the wavelength of the electromagnetic wave used. That is, the wavelength (λ) of an electromagnetic wave propagating in a dielectric having a dielectric constant (ε) is λ = λ 0 / (ε 1/2 ), where λ 0 is the wavelength in vacuum, and λ is the square root of ε. Inversely proportional. Therefore, in order to reduce the size of the microwave circuit element, a material having a high dielectric constant is required.
また、半導体加工や視力矯正手術で利用されるエキシマレーザー、医療用X線、蓄電装置(工業用高電圧電源、電気自動車の起動電源など)、送電設備などに使われる高エネルギー貯蔵密度を有するコンデンサーへの需要が近年に高まっている。コンデンサーのエネルギー貯蔵密度が(1/2)×ε0εrE2(ε0:真空の誘電率、εr:材料の誘電率、E:絶縁破壊強度)で表されるので、高いエネルギー貯蔵密度を得ようとするには高い誘電率と高い絶縁破壊強度を併せ持つ誘電体が望まれる。 In addition, capacitors with high energy storage density used in excimer lasers used in semiconductor processing and vision correction surgery, medical X-rays, power storage devices (industrial high-voltage power supplies, starting power supplies for electric vehicles, etc.), power transmission equipment, etc. Demand for power transmission has increased in recent years. High energy storage because the energy storage density of the capacitor is expressed by (1/2) × ε 0 ε r E 2 (ε 0 : vacuum dielectric constant, ε r : material dielectric constant, E: dielectric breakdown strength) In order to obtain a density, a dielectric having both a high dielectric constant and a high dielectric breakdown strength is desired.
誘電率が高いガラスとして、例えば特許文献1には、SiO2を40〜65モル%、MgO,CaO,SrOおよびBaOの少なくともひとつを20〜45モル%、TiO2およびZrO2の少なくともひとつを5〜25モル%、NbO5/2を0.5〜15モル%それぞれ含み、これらの酸化物の合計量が85モル%以上であり、比誘電率(1MHz,25℃)9以上の繊維化適性を有するガラス組成物が記載されている。
また、例えば特許文献2には、1〜5GHzでの誘電率が18以上であり、TeO2の含有量は50〜95mol%であり、さらにNa2O、BaO、ZnO、MoO3、Al2O3、Nb2O5、Sb2O3、Bi2O3から選択された1種以上を5〜50mol%含有する高誘電率テルライトガラスが記載されている。
As glass having a high permittivity, for example, Patent Document 1 states that SiO 2 is 40 to 65 mol%, at least one of MgO, CaO, SrO and BaO is 20 to 45 mol%, and at least one of TiO 2 and ZrO 2 is 5. It contains ~ 25 mol% and 0.5 ~ 15 mol% of NbO 5/2 , respectively, and the total amount of these oxides is 85 mol% or more, and the relative permittivity (1 MHz, 25 ° C.) 9 or more is suitable for fibrosis. A glass composition having the above is described.
Further, for example, in Patent Document 2, the dielectric constant at 1 to 5 GHz is 18 or more, the content of TeO 2 is 50 to 95 mol%, and further, Na 2 O, BaO, ZnO, MoO 3 , Al 2 O High dielectric constant tellurite glass containing 5 to 50 mol% of one or more selected from 3 , Nb 2 O 5 , Sb 2 O 3 , and Bi 2 O 3 is described.
しかしながら、従来、誘電率が大きい材料ほど絶縁破壊強度は低下する傾向が知られている。すなわち、誘電率と絶縁破壊強度はトレードオフの関係にあり、いずれをも高めることは困難であった。 However, conventionally, it has been known that the dielectric breakdown strength tends to decrease as the dielectric constant increases. That is, there is a trade-off relationship between the dielectric constant and the dielectric breakdown strength, and it has been difficult to increase both of them.
本発明者は鋭意検討し、既存の技術と異なった組成系で上記の課題を解決することができるガラス誘電体を見出し、本発明を完成させた。
本発明は以下の(1)〜(6)である。
(1)酸化物換算組成の全物質量に対して、モル%で
P2O5成分 15.0%〜40.0%、
TiO2成分 1.0%〜40.0%、
Nb2O5成分 5.0%〜40.0%、
モル和(BaO+ZnO) 3.0%〜50.0%
を含有し、1kHzにおける誘電率が20以上であることを特徴とするガラス誘電体。
(2)酸化物換算組成の全物質量に対して、モル%で
SiO2成分 0〜20.0%、
B2O3成分 0〜20.0%、
Al2O3成分 0〜10.0%、
ZnO成分 0〜30.0%、
BaO成分 0〜30.0%、
SrO成分 0〜30.0%、
CaO成分 0〜30.0%、
MgO成分 0〜30.0%、
Li2O成分 0〜10.0%、
Na2O成分 0〜10.0%、
K2O成分 0〜15.0%、
WO3成分 0〜20.0%、
Ta2O5成分 0〜15.0%
ZrO2成分 0〜15.0%
SnO2成分 0〜10.0%、
Sb2O3成分 0〜10.0%、
外割でFを0〜30.0%
を含有することを特徴とする上記(1)に記載のガラス誘電体。
(3)酸化物換算組成の全物質量に対して、モル%で
Ln2O3成分(式中、LnはLa、Ce、Gd、Y、Dy、Yb、Luからなる群より選択される1種以上)のモル和が10.0%以下であり、
RO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)のモル和が50.0%以下であり、
Rn2O成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)のモル和が10.0%以下であり、
MxOy成分(V、Cr、Mn、Fe、Co、Ni、Cu、Ag、Moからなる群より選択される1種以上)のモル和が10.0%以下である、上記(1)または(2)に記載のガラス誘電体。
(4)酸化物換算組成のNb2O5成分、TiO2成分およびBaO成分のモル和(Nb2O5成分+TiO2成分+BaO成分)が35.0〜80.0%である、上記(1)から(3)のいずれかに記載のガラス誘電体。
(5)モル比(ZnO+MgO+Rn2O)/(TiO2+Nb2O5)が0.7以下である、上記(1)から(4)のいずれかに記載のガラス誘電体。
(6)モル和(TiO2+Nb2O5)が25.0〜70.0%である、上記(1)から(5)のいずれかに記載のガラス誘電体。
The present inventor studied diligently and found a glass dielectric capable of solving the above-mentioned problems with a composition system different from the existing technology, and completed the present invention.
The present invention is the following (1) to (6).
(1) P 2 O 5 component 15.0% to 40.0% in mol% with respect to the total amount of substance in the oxide equivalent composition,
TiO 2 component 1.0% -40.0%,
Nb 2 O 5 component 5.0% -40.0%,
Mole sum (BaO + ZnO) 3.0% to 50.0%
A glass dielectric having a dielectric constant of 20 or more at 1 kHz.
(2) SiO 2
B 2 O 3 component 0 to 20.0%,
Al 2 O 3 component 0 to 10.0%,
ZnO component 0-30.0%,
BaO component 0-30.0%,
SrO component 0-30.0%,
CaO component 0-30.0%,
MgO component 0-30.0%,
Li 2 O component 0 to 10.0%,
Na 2
K 2 O component 0 to 15.0%,
WO 3 component 0-20.0%,
Ta 2 O 5 component 0 to 15.0%
ZrO 2 component 0 to 15.0%
SnO 2 component 0 to 10.0%,
Sb 2 O 3 component 0-10.0%,
F is 0 to 30.0% by outside discount
The glass dielectric according to (1) above, which comprises.
(3) Ln 2 O 3 component (in the formula, Ln is selected from the group consisting of La, Ce, Gd, Y, Dy, Yb, Lu) in mol% with respect to the total amount of substance of the oxide equivalent composition 1 The molar sum of (more than seeds) is 10.0% or less,
The molar sum of the RO components (in the formula, R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) is 50.0% or less.
The molar sum of the Rn 2 O component (in the formula, Rn is one or more selected from the group consisting of Li, Na, and K) is 10.0% or less.
The molar sum of the M x O y components (one or more selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, Cu, Ag, and Mo) is 10.0% or less, the above (1). Or the glass dielectric according to (2).
(4) The molar sum of the Nb 2 O 5 component, the TiO 2 component and the BaO component (Nb 2 O 5 component + TiO 2 component + BaO component) of the oxide conversion composition is 35.0 to 80.0%, as described in (1) above. ) To (3).
(5) The glass dielectric according to any one of (1) to (4) above, wherein the molar ratio (ZnO + MgO + Rn 2 O) / (TiO 2 + Nb 2 O 5) is 0.7 or less.
(6) The glass dielectric according to any one of (1) to (5) above, wherein the molar sum (TiO 2 + Nb 2 O 5) is 25.0 to 70.0%.
本発明によれば、誘電率が高く、かつ、絶縁破壊強度も高いガラス誘電体を提供することができる。 According to the present invention, it is possible to provide a glass dielectric having a high dielectric constant and a high dielectric breakdown strength.
本発明について説明する。
本発明は、酸化物換算組成の全物質量に対して、モル%で
P2O5成分 15.0%〜40.0%、
TiO2成分 1.0%〜40.0%、
Nb2O5成分 5.0%〜40.0%、
モル和(BaO+ZnO) 3.0%〜50.0%
を含有し、1kHzにおける誘電率εが20以上であることを特徴とするガラス誘電体である。
このようなガラスを以下では「本発明のガラス誘電体」ともいう。
The present invention will be described.
In the present invention, the P 2 O 5 component is 15.0% to 40.0% in mol% with respect to the total amount of substance in the oxide equivalent composition.
TiO 2 component 1.0% -40.0%,
Nb 2 O 5 component 5.0% -40.0%,
Mole sum (BaO + ZnO) 3.0% to 50.0%
It is a glass dielectric having a dielectric constant ε of 20 or more at 1 kHz.
Such glass is also referred to as "the glass dielectric of the present invention" below.
本発明のガラス誘電体は誘電率が高く、かつ、絶縁破壊強度も高いため、回路基板及び電子部品、大容量高電圧コンデンサーなどの誘電材料として好適に用いられる。また、本発明のガラス誘電体は、高温(おおむね90℃以上)の特性が劣化しにくので、高温用コンデンサーの誘電体としても利用できる。 Since the glass dielectric of the present invention has a high dielectric constant and a high dielectric breakdown strength, it is suitably used as a dielectric material for circuit boards, electronic components, large-capacity high-voltage capacitors, and the like. Further, since the glass dielectric of the present invention does not easily deteriorate the characteristics at high temperature (generally 90 ° C. or higher), it can also be used as a dielectric of a high temperature capacitor.
<ガラス成分>
本発明のガラス誘電体を構成する各成分の組成範囲を以下に述べる。
以下において単に「%」と記した場合、「モル%」を意味するものとする。
また、本願明細書中において「%」で表されるガラス組成は、すべて酸化物換算組成の全物質量における百分率を意味するものとする。ここで、「酸化物換算組成」とは、本発明のガラス誘電体構成成分の原料として使用される酸化物、硝酸塩等が、溶融によってすべて分解され酸化物へ変化すると仮定した組成をいう。したがって「酸化物換算組成の全物質量における百分率」は、すべての成分が酸化物として存在しているとしたときの生成酸化物の質量の総和を100モル%とし、それに対する各成分の存在量を意味する。
なお、以下において「外割」とは、上記の「酸化物換算組成の全物質量」に含めないことを意味し、外割の比率は、上記の生成酸化物の質量の総和を100モル%としたときの、これに対する存在量を百分率で表した値を意味するものとする。
<Glass component>
The composition range of each component constituting the glass dielectric of the present invention is described below.
In the following, when simply referred to as "%", it shall mean "mol%".
In addition, the glass composition represented by "%" in the specification of the present application shall mean a percentage of the total amount of substance of the oxide equivalent composition. Here, the "oxide-equivalent composition" refers to a composition assuming that all the oxides, nitrates, etc. used as raw materials for the glass dielectric constituents of the present invention are decomposed by melting and changed into oxides. Therefore, the "percentage of the total amount of substances in the oxide equivalent composition" is the total mass of the produced oxides when all the components are present as oxides, which is 100 mol%, and the abundance of each component with respect to the total mass. Means.
In the following, "outer division" means not included in the above "total amount of substances in the oxide conversion composition", and the ratio of outer division is 100 mol% of the total mass of the above-mentioned produced oxides. It is assumed that it means a value expressed as a percentage of the abundance with respect to this.
P2O5成分は、ガラスの網目構造を構成し、ガラスの安定性を高めるので本発明のガラス誘電体に欠かせない成分である。特に、P2O5成分を15.0%以上含有することで、より安定的にガラスを作製することができる。15.0%未満であるとガラスの作製が困難となる。従って、P2O5成分の含有量は、好ましくは15.0%以上、より好ましくは18.0%以上、さらに好ましくは20.0%以上とする。
他方で、P2O5成分の含有量を40.0%以下にすることで、所望の誘電率をより容易に得ることができる。従って、P2O5成分の含有量は、好ましくは40.0%以下、より好ましくは38.0%以下、さらに好ましくは35.0%以下とする。
The P 2 O 5 component is an indispensable component for the glass dielectric of the present invention because it constitutes a network structure of glass and enhances the stability of glass. In particular, by containing 15.0% or more of the P 2 O 5 component, glass can be produced more stably. If it is less than 15.0%, it becomes difficult to produce glass. Therefore, the content of the P 2 O 5 component is preferably 15.0% or more, more preferably 18.0% or more, still more preferably 20.0% or more.
On the other hand, by setting the content of the P 2 O 5 component to 40.0% or less, the desired dielectric constant can be obtained more easily. Therefore, the content of the P 2 O 5 component is preferably 40.0% or less, more preferably 38.0% or less, still more preferably 35.0% or less.
TiO2成分はガラスの安定性と誘電率を高める効果があり、本発明のガラス誘電体における必須成分である。この成分の含有率が高すぎるとガラスの安定性が低下しやすくなる傾向があるので、40.0%以下含有することが好ましく、35.0%以下含有することがより好ましく、30.0%以下含有することがさらに好ましい。一方、上述の効果を得ようとするには、下限の添加量は1.0%以上であることが好ましく、3.0%以上であることがより好ましく、5.0%以上であることがさらに好ましい。 The TiO 2 component has the effect of increasing the stability and dielectric constant of glass, and is an essential component in the glass dielectric of the present invention. If the content of this component is too high, the stability of the glass tends to decrease. Therefore, it is preferably contained in an amount of 40.0% or less, more preferably 35.0% or less, and 30.0%. It is more preferable to contain the following. On the other hand, in order to obtain the above-mentioned effect, the lower limit addition amount is preferably 1.0% or more, more preferably 3.0% or more, and preferably 5.0% or more. More preferred.
Nb2O5成分はガラスの安定性と誘電率を高める効果があり、本発明のガラス誘電体における必須成分である。特に、Nb2O5成分を5.0%以上含有することで、所望の誘電率を得ることができる。従って、Nb2O5成分の含有量は、好ましくは5.0%以上、より好ましくは7.0%以上、さらに好ましくは10.0%以上とする。
他方で、Nb2O5成分の含有量を40.0%以下にすることで、安定的にガラスを作製することができる。従って、Nb 2 O 5 成分の含有量は、好ましくは40.0%以下、より好ましくは38.0%以下、さらに好ましくは35.0%以下とする。
The Nb 2 O 5 component has the effect of increasing the stability and dielectric constant of the glass, and is an essential component in the glass dielectric of the present invention. In particular, a desired dielectric constant can be obtained by containing 5.0% or more of the Nb 2 O 5 component. Therefore, the content of the Nb 2 O 5 component is preferably 5.0% or more, more preferably 7.0% or more, still more preferably 10.0% or more.
On the other hand, by setting the content of the Nb 2 O 5 component to 40.0% or less, glass can be stably produced. Therefore, the content of the Nb 2 O 5 component is preferably 40.0% or less, more preferably 38.0% or less, still more preferably 35.0% or less.
本発明のガラス誘電体では、モル和(TiO2+Nb2O5)、すなわち、TiO2の含有率(%)とNb2O5の含有率(%)との合計が、25.0%以上であることが好ましく、30.0%以上であることがより好ましく、35.0%以上であることがさらに好ましい。また、この合計が70.0%以下であることが好ましく、60.0%以下であることがより好ましく、58.0%以下であることがさらに好ましい。この合計量は高すぎるとガラスの安定性が低下しやすくなる傾向があり、逆に低すぎると誘電率が低くなる傾向がある。 In the glass dielectric of the present invention, the molar sum (TiO 2 + Nb 2 O 5 ), that is, the total of the content rate (%) of TiO 2 and the content rate (%) of Nb 2 O 5 is 25.0% or more. Is more preferable, 30.0% or more is more preferable, and 35.0% or more is further preferable. Further, the total is preferably 70.0% or less, more preferably 60.0% or less, and further preferably 58.0% or less. If this total amount is too high, the stability of the glass tends to decrease, and conversely, if it is too low, the dielectric constant tends to decrease.
BaO成分とZnO成分との合計量(BaO+ZnO)を50.0%以下にすることでガラスの安定性及び誘電特性が低下しにくくなるのでBaO成分とZnO成分の合計量は好ましくは50.0%、より好ましくは40.0%、最も好ましくは37.0%を上限とする。一方、BaO成分及びZnO成分の合計量を3.0%以上にすることでガラスの安定性及び誘電特性が向上するので、その合計量は、好ましくは3.0%、より好ましくは5.0%、より好ましくは7.0%、最も好ましくは9.0%を下限とする。 By setting the total amount (BaO + ZnO) of the BaO component and the ZnO component to 50.0% or less, the stability and dielectric properties of the glass are less likely to deteriorate. Therefore, the total amount of the BaO component and the ZnO component is preferably 50.0%. , More preferably 40.0%, most preferably 37.0%. On the other hand, when the total amount of the BaO component and the ZnO component is set to 3.0% or more, the stability and dielectric properties of the glass are improved. Therefore, the total amount is preferably 3.0%, more preferably 5.0. %, More preferably 7.0%, and most preferably 9.0% as the lower limit.
本発明のガラスは、Nb2O5成分、TiO2成分およびBaO成分のモル和(Nb2O5成分+TiO2成分+BaO成分)が35.0%以上であることが好ましく、38.0%以上であることがより好ましく、40.0%以上であることがさらに好ましい。この合計量(モル和)が低すぎると誘電率が低くなる傾向がある。
また、この合計量(モル和)は80.0%以下であることが好ましく、68.0%以下であることがより好ましく、65.0%以下であることがさらに好ましい。この合計量(モル和)は高すぎるとガラスの安定性が低下しやすくなる傾向がある。
In the glass of the present invention, the molar sum of the Nb 2 O 5 component, the TiO 2 component and the BaO component (Nb 2 O 5 component + TiO 2 component + BaO component) is preferably 35.0% or more, preferably 38.0% or more. Is more preferable, and 40.0% or more is further preferable. If this total amount (sum of moles) is too low, the permittivity tends to be low.
The total amount (sum of moles) is preferably 80.0% or less, more preferably 68.0% or less, and further preferably 65.0% or less. If this total amount (sum of moles) is too high, the stability of the glass tends to decrease.
SiO2成分は、ガラスの安定性を高める効果があり、本発明のガラス誘電体における任意成分である。具体的な含有率は20.0%以下であることが好ましく、10.0%以下であることがより好ましく、5.0%以下であることがさらに好ましい。この成分含有率が高すぎるとガラスの安定性が低下しやすくなる。 The SiO 2 component has the effect of increasing the stability of the glass and is an optional component in the glass dielectric of the present invention. The specific content is preferably 20.0% or less, more preferably 10.0% or less, and even more preferably 5.0% or less. If the content of this component is too high, the stability of the glass tends to decrease.
B2O3成分は、ガラスの安定性を高める効果があり、本発明のガラス誘電体における任意成分である。具体的な含有率は20.0%以下であることが好ましく、10.0%以下であることがより好ましく、7.0%以下であることがより好ましく、5.0%以下であることがさらに好ましい。この成分含有率が高すぎるとガラスの安定性が低下しやすくなる。 The B 2 O 3 component has the effect of increasing the stability of the glass and is an optional component in the glass dielectric of the present invention. The specific content is preferably 20.0% or less, more preferably 10.0% or less, more preferably 7.0% or less, and preferably 5.0% or less. More preferred. If the content of this component is too high, the stability of the glass tends to decrease.
Al2O3成分は、ガラスの安定性を高める効果があり、本発明のガラス誘電体における任意成分である。具体的な含有率は10.0%以下であることが好ましく、8.0%以下がより好ましく、5.0%以下であることがさらに好ましい。この成分含有率が高すぎるとガラスの安定性が低下しやすくなる。 The Al 2 O 3 component has the effect of increasing the stability of the glass and is an optional component in the glass dielectric of the present invention. The specific content is preferably 10.0% or less, more preferably 8.0% or less, and even more preferably 5.0% or less. If the content of this component is too high, the stability of the glass tends to decrease.
ZnO成分は、ガラスの溶融性、安定性及び誘電率を高める効果があり、本発明のガラス誘電体に任意に添加できる成分である。従って、好ましくは0%超、より好ましくは1.0%以上、さらに好ましくは3.0%以上含有してもよい。他方で、この成分の含有率が高すぎるとガラスの安定性が低下しやすくなる傾向があるので、30.0%以下含有することが好ましく、28.0%以下含有することがより好ましく、25.0%以下含有することがさらに好ましい。 The ZnO component has the effect of increasing the meltability, stability and dielectric constant of the glass, and is a component that can be arbitrarily added to the glass dielectric of the present invention. Therefore, it may be contained preferably more than 0%, more preferably 1.0% or more, still more preferably 3.0% or more. On the other hand, if the content of this component is too high, the stability of the glass tends to decrease. Therefore, it is preferably contained in an amount of 30.0% or less, more preferably 28.0% or less, and 25. It is more preferable to contain 0.0% or less.
BaO成分はガラスの溶融性、安定性及び誘電率を高める効果があり、本発明のガラス誘電体に任意に添加できる成分である。従って、好ましくは0%超、より好ましくは5.0%以上、さらに好ましくは10.0%以上含有してもよい。他方で、この成分が高すぎると、ガラスの安定性が低下しやすくなるため、好ましくは30.0%以下、より好ましくは28.0%以下、さらに好ましくは25.0%以下とする。 The BaO component has the effect of increasing the meltability, stability and dielectric constant of glass, and is a component that can be arbitrarily added to the glass dielectric of the present invention. Therefore, it may be contained preferably more than 0%, more preferably 5.0% or more, still more preferably 10.0% or more. On the other hand, if this component is too high, the stability of the glass tends to decrease, so the content is preferably 30.0% or less, more preferably 28.0% or less, still more preferably 25.0% or less.
SrO成分は、ガラスの溶融性、安定性及び誘電率を高める効果があり、本発明のガラス誘電体に任意に添加できる成分である。この成分の含有率が高すぎるとガラスの安定性が低下しやすくなる傾向があるので、30.0%以下含有することが好ましく、25.0%以下含有することがより好ましく、20.0%以下含有することがさらに好ましい。 The SrO component has the effect of increasing the meltability, stability and dielectric constant of glass, and is a component that can be arbitrarily added to the glass dielectric of the present invention. If the content of this component is too high, the stability of the glass tends to decrease. Therefore, it is preferably contained in an amount of 30.0% or less, more preferably 25.0% or less, and 20.0%. It is more preferable to contain the following.
CaO成分は、ガラスの溶融性と安定性を高める効果があり、本発明のガラス誘電体に任意に添加できる成分である。この成分の含有率が高すぎるとガラスの安定性が低下しやすくなる傾向があるので、30.0%以下含有することが好ましく、25.0%以下含有することがより好ましく、20.0%以下含有することがさらに好ましい。 The CaO component has the effect of increasing the meltability and stability of the glass, and is a component that can be arbitrarily added to the glass dielectric of the present invention. If the content of this component is too high, the stability of the glass tends to decrease. Therefore, it is preferably contained in an amount of 30.0% or less, more preferably 25.0% or less, and 20.0%. It is more preferable to contain the following.
MgO成分は、ガラスの溶融性と安定性を高める効果があり、本発明のガラス誘電体に任意に添加できる成分である。この成分の含有率が高すぎるとガラスの安定性が低下しやすくなる傾向があるので、30.0%以下含有することが好ましく、20.0%以下含有することがより好ましく、15.0%以下含有することがさらに好ましい。 The MgO component has the effect of increasing the meltability and stability of the glass, and is a component that can be arbitrarily added to the glass dielectric of the present invention. If the content of this component is too high, the stability of the glass tends to decrease. Therefore, it is preferably contained in an amount of 30.0% or less, more preferably 20.0% or less, and 15.0%. It is more preferable to contain the following.
本発明のガラス誘電体は、酸化物換算組成の全物質量に対して、モル%で、RO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)のモル和が50.0%以下であることが好ましく、40.0%以下であることがより好ましく、37.0%以下であることがさらに好ましい。RO成分の含有率が上記のような範囲であると、ガラスの安定性及び誘電特性が向上する傾向がある。 The glass dielectric of the present invention has an RO component (in the formula, R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) in mol% with respect to the total amount of substance in the oxide equivalent composition. The molar sum of the above is preferably 50.0% or less, more preferably 40.0% or less, and further preferably 37.0% or less. When the content of the RO component is in the above range, the stability and dielectric properties of the glass tend to be improved.
Li2O成分は、ガラスの安定性を高める効果があり、本発明のガラス誘電体における任意成分である。具体的な含有率は10.0%以下であることが好ましく、5.0%以下であることがより好ましく、3.0%以下であることがさらに好ましい。この成分含有率が高すぎるとガラスの絶縁破壊強度が低下しやすくなる。 The Li 2 O component has the effect of increasing the stability of the glass and is an optional component in the glass dielectric of the present invention. The specific content is preferably 10.0% or less, more preferably 5.0% or less, and even more preferably 3.0% or less. If the content of this component is too high, the dielectric breakdown strength of the glass tends to decrease.
Na2O成分は、ガラスの安定性を高める効果があり、本発明のガラス誘電体における任意成分である。具体的な含有率は10.0%以下であることが好ましく、5.0%以下であることがより好ましく、3.0%以下であることがさらに好ましい。この成分含有率が高すぎるとガラスの絶縁破壊強度が低下しやすくなる。 The Na 2 O component has the effect of increasing the stability of the glass and is an optional component in the glass dielectric of the present invention. The specific content is preferably 10.0% or less, more preferably 5.0% or less, and even more preferably 3.0% or less. If the content of this component is too high, the dielectric breakdown strength of the glass tends to decrease.
K2O成分は、ガラスの安定性を高める効果があり、本発明のガラス誘電体における任意成分である。具体的な含有率は15.0%以下であることが好ましく、8.0%以下であることがより好ましく、5.0%以下であることがさらに好ましい。この成分含有率が高すぎるとガラスの誘電率と絶縁破壊強度が低下しやすくなる。 K 2 O component is effective for increasing the stability of the glass, an optional component in the glass dielectric of the present invention. The specific content is preferably 15.0% or less, more preferably 8.0% or less, and even more preferably 5.0% or less. If this component content is too high, the dielectric constant and dielectric breakdown strength of the glass tend to decrease.
本発明のガラス誘電体は、Rn2O成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)の合計量が絶縁破壊強度を低下させないために10.0%以下であることが好ましく、5.0%以下であることがより好ましく、3.0%以下であることがさらに好ましく、含有しないことが最も好ましい。 The glass dielectric of the present invention is 10.0% because the total amount of the Rn 2 O component (in the formula, Rn is one or more selected from the group consisting of Li, Na, and K) does not reduce the dielectric breakdown strength. It is preferably less than or equal to, more preferably 5.0% or less, further preferably 3.0% or less, and most preferably not contained.
本発明のガラスは、モル比(ZnO+MgO+Rn2O)/(TiO2+Nb2O5)が0.7以下であることが好ましく、0.65以下であることがより好ましく、0.63以下であることがさらに好ましい。この成分含有率が高すぎると誘電特性が低下しやすい。 The glass of the present invention preferably has a molar ratio (ZnO + MgO + Rn 2 O) / (TiO 2 + Nb 2 O 5 ) of 0.7 or less, more preferably 0.65 or less, and more preferably 0.63 or less. Is even more preferable. If the content of this component is too high, the dielectric properties tend to deteriorate.
WO3成分は、ガラスの安定性及び誘電率の向上に効果があり、本発明のガラス誘電体における任意成分である。具体的な含有率は20%以下であることが好ましく、10.0%以下であることがより好ましく、8.0%以下であることがさらに好ましい。この成分含有率が高すぎるとガラスの安定性が低下しやすくなる。 The WO 3 component is effective in improving the stability and dielectric constant of glass, and is an optional component in the glass dielectric of the present invention. The specific content is preferably 20% or less, more preferably 10.0% or less, and even more preferably 8.0% or less. If the content of this component is too high, the stability of the glass tends to decrease.
Ta2O5成分は、ガラスの安定性及び誘電率の向上に効果あり、本発明のガラス誘電体における任意成分である。具体的な含有率は15.0%以下であることが好ましく、10.0%以下であることがより好ましく、5.0%以下であることがより好ましく、3.0%以下であることがさらに好ましい。この成分含有率が高すぎるとガラスの安定性が低下しやすくなる。 The Ta 2 O 5 component is effective in improving the stability and dielectric constant of glass, and is an optional component in the glass dielectric of the present invention. The specific content is preferably 15.0% or less, more preferably 10.0% or less, more preferably 5.0% or less, and preferably 3.0% or less. More preferred. If the content of this component is too high, the stability of the glass tends to decrease.
ZrO2成分は、ガラスの安定性及び誘電率の向上に効果あるので本発明のガラス誘電体における任意成分である。具体的な含有率は15.0%以下であることが好ましく、10.0%以下であることがより好ましく、8.0%以下であることがより好ましく、5.0%以下であることがさらに好ましい。この成分含有率が高すぎるとガラスの安定性が低下しやすくなる。 The ZrO 2 component is an optional component in the glass dielectric of the present invention because it is effective in improving the stability and dielectric constant of glass. The specific content is preferably 15.0% or less, more preferably 10.0% or less, more preferably 8.0% or less, and preferably 5.0% or less. More preferred. If the content of this component is too high, the stability of the glass tends to decrease.
SnO2成分は、誘電特性の改善に効果があるので、本発明のガラス誘電体における任意成分である。具体的な含有率は10.0%以下であることが好ましく、5.0%以下であることがより好ましく、3.0%以下であることがさらに好ましい。この成分含有率が高すぎるとガラスの安定性が低下しやすくなる。 The SnO 2 component is an optional component in the glass dielectric of the present invention because it is effective in improving the dielectric properties. The specific content is preferably 10.0% or less, more preferably 5.0% or less, and even more preferably 3.0% or less. If the content of this component is too high, the stability of the glass tends to decrease.
Ln2O3成分(式中、LnはLa、Ce、Gd、Y、Dy、Yb、Luからなる群より選択される1種以上)は、誘電特性の改善に効果があり、本発明のガラス誘電体における任意成分である。これらの含有量(モル和)の合計が10.0%以下であることが好ましく、5.0%以下であることがより好ましく、3.0%以下であることがさらに好ましい。これらの成分の含有率が高すぎるとガラスの安定性が低下しやすくなる。 The Ln 2 O 3 component (in the formula, Ln is one or more selected from the group consisting of La, Ce, Gd, Y, Dy, Yb, and Lu) is effective in improving the dielectric properties, and the glass of the present invention. It is an optional component in the dielectric. The total content (sum of moles) of these is preferably 10.0% or less, more preferably 5.0% or less, and even more preferably 3.0% or less. If the content of these components is too high, the stability of the glass tends to decrease.
MxOy成分(V、Cr、Mn、Fe、Co、Ni、Cu、Ag、Moからなる群より選択される1種以上)は、誘電特性の改善に効果があり、本発明のガラス誘電体における任意成分である。これらの含有量(モル和)の合計が10.0%以下であることが好ましく、5.0%以下であることがより好ましく、3.0%以下であることがより好ましく、1.0%以下であることがさらに好ましい。これらの成分の含有率が高すぎるとガラスの安定性が低下しやすくなる。 The M x O y component (one or more selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, Cu, Ag, and Mo) is effective in improving the dielectric properties, and the glass dielectric of the present invention is effective. It is an optional component in the body. The total of these contents (sum of moles) is preferably 10.0% or less, more preferably 5.0% or less, more preferably 3.0% or less, and 1.0%. The following is more preferable. If the content of these components is too high, the stability of the glass tends to decrease.
F成分はガラスの安定性を高めるので本発明のガラス誘電体における任意成分である。その含有率は、外割で30.0%以下であることが好ましく、15.0%以下であることがより好ましく、8.0%以下であることがさらに好ましい。この成分の含有率が高すぎると誘電特性及び絶縁破壊強度が低下しやすくなる。 The F component is an optional component in the glass dielectric of the present invention because it enhances the stability of the glass. The content is preferably 30.0% or less, more preferably 15.0% or less, and even more preferably 8.0% or less. If the content of this component is too high, the dielectric properties and dielectric breakdown strength tend to decrease.
Sb2O3成分は、ガラスの脱泡剤の効果があり、さらに誘電特性の改善に寄与するので、本発明のガラス誘電体における任意成分である。具体的な含有率は10.0%以下であることが好ましく、5.0%以下であることがより好ましく、3.0%以下であることがより好ましく、1.0%以下であることがさらに好ましい。この成分含有率が高すぎるとガラスの安定性が低下しやすくなる。 The Sb 2 O 3 component is an optional component in the glass dielectric of the present invention because it has the effect of a defoaming agent for glass and further contributes to the improvement of the dielectric property. The specific content is preferably 10.0% or less, more preferably 5.0% or less, more preferably 3.0% or less, and preferably 1.0% or less. More preferred. If the content of this component is too high, the stability of the glass tends to decrease.
本発明のガラス誘電体は、1kHzにおける誘電率εが20以上である。この誘電率εは21以上であることが好ましく、24以上であることがより好ましい。
なお、本発明において、インピーダンスアナライザー(例えばソーラトロン社製 SI1260)を用いて10Hzから1MHzまでの周波数にわたって誘電率及び誘電損失を測定し、1kHzにおける値を本発明の誘電率及び誘電損失とした。
The glass dielectric of the present invention has a dielectric constant ε of 20 or more at 1 kHz. The dielectric constant ε is preferably 21 or more, and more preferably 24 or more.
In the present invention, the dielectric constant and the dielectric loss were measured over a frequency from 10 Hz to 1 MHz using an impedance analyzer (for example, SI1260 manufactured by Solartron), and the value at 1 kHz was taken as the dielectric constant and the dielectric loss of the present invention.
<用途>
本発明のガラス誘電体は、任意の形にすることが可能であるため、様々な誘電体として利用できる。例えば、通信機器や電子機器に搭載される回路基板及び電子部品、大容量高電圧コンデンサーなどの誘電材料に使用される。コンデンサーは電力変換装置における電流変動の緩衝、カップリングや平滑用に使用される。高電圧コンデンサーは半導体の加工や視力矯正手術で利用されるエキシマレーザー機器のほか、医療用X線装置、工業用高電圧電源や、再生可能エネルギー用送電システムに必要不可欠な部品である。これらのガラスは単独で上記の用途に用いられる以外に、繊維、粉末及びペーストなどの態様で他の誘電体と複合化した形でも使用されることも可能である。具体的には、基板上にパターン電極を形成された誘電体基板、積層基板材料、誘電体共振素子、誘電材料の焼成助剤、誘電体ペースト(誘電体粉末を有機化合物等からなるビヒクル中に懸濁させたものであって、通常、スクリーン印刷や打ち抜き型印刷により電極上に成膜されて使用される)等の用途が挙げられる。
<Use>
Since the glass dielectric of the present invention can be formed into any shape, it can be used as various dielectrics. For example, it is used as a dielectric material such as a circuit board and an electronic component mounted on a communication device or an electronic device, and a large-capacity high-voltage capacitor. Capacitors are used for buffering, coupling and smoothing current fluctuations in power converters. High-voltage capacitors are indispensable parts for excimer laser equipment used in semiconductor processing and vision correction surgery, medical X-ray equipment, industrial high-voltage power supplies, and renewable energy power transmission systems. In addition to being used alone for the above purposes, these glasses can also be used in the form of composites with other dielectrics in the form of fibers, powders, pastes and the like. Specifically, a dielectric substrate having a pattern electrode formed on the substrate, a laminated substrate material, a dielectric resonance element, a firing aid for the dielectric material, and a dielectric paste (dielectric powder is contained in a vehicle made of an organic compound or the like). It is suspended and is usually used by forming a film on an electrode by screen printing or punching type printing).
<製造方法>
本発明のガラス誘電体は、通常のガラスを製造する方法であれば、特に限定されないが、例えば、以下の方法により製造することができる。各出発原料(酸化物、炭酸塩、硝酸塩、リン酸塩、硫酸塩など)を所定量秤量し、均一に混合する。混合した原料を石英坩堝、アルミナ坩堝または白金坩堝に投入し、溶解炉で1200〜1450℃の温度範囲にて1〜12時間溶解する。その後、攪拌、均質化した後、適当な温度に下げて金型等に鋳込み、ガラスを製造する。繊維状として使用される場合は、板状のガラスを再溶融し、ガラス繊維を得るが、最初の溶液から直接にガラス繊維を得てもよい。また、セラミックス誘電体の焼成助剤、フィラーとしてまたは誘電体ペーストとして使われる場合は、成形したバルクガラスを粉砕してもよく、また、最初の溶液から水に注いでカレットを得てその後粉砕してもよい。
<Manufacturing method>
The glass dielectric of the present invention is not particularly limited as long as it is a method for producing ordinary glass, but can be produced by, for example, the following method. Each starting material (oxide, carbonate, nitrate, phosphate, sulfate, etc.) is weighed in a predetermined amount and mixed uniformly. The mixed raw materials are put into a quartz crucible, an alumina crucible or a platinum crucible, and melted in a melting furnace in a temperature range of 1200 to 1450 ° C. for 1 to 12 hours. Then, after stirring and homogenizing, the temperature is lowered to an appropriate temperature and cast into a mold or the like to manufacture glass. When used in the form of fibers, the plate-like glass is remelted to obtain glass fibers, but glass fibers may be obtained directly from the first solution. Also, when used as a firing aid, filler or dielectric paste for ceramic dielectrics, the molded bulk glass may be crushed, or the first solution may be poured into water to obtain cullet and then crushed. You may.
以下、実施例によって本発明を更に具体的に説明するが、本発明はこれらによりなんら制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
(実施例1)
組成:25P2O5−15TiO2−25Nb2O5−15BaO−3SrO−10CaO−7ZnO (モル%)
上記の組成になるように原料(TiO2、Nb2O5、Ba(PO3)2、Sr(NO3)2、Ca(PO3)2、ZnO)を調合し、よく混合した後、石英坩堝に入れて1260℃で1時間溶解した。その後、溶融液を白金坩堝に移し、さらに2時間溶解し、攪拌均質化してから溶融液を金型に流し込み、板状のガラスを得た。得られたガラスについて約30mm×30mm×1mmに加工し、両面に金電極を蒸着してから、インピーダンスアナライザー(ソーラトロン社製 SI1260)により誘電特性を評価した。その結果を図1に示す。この図から、本組成のガラスの誘電率と誘電損失は共に周波数によって殆ど変化しなかったことがわかる。1kHzにおける誘電率εおよび誘電損失はそれぞれ27と0.0040であった。
また、絶縁破壊強度は79kV/mmあった。なお、絶縁破壊強度は厚み1mmのサンプルを用いて、JIS C 2141に準じて測定した。
(Example 1)
Composition: 25P 2 O 5 -15TiO 2 -25Nb 2 O 5 -15BaO-3SrO-10CaO-7ZnO ( mol%)
Raw materials (TiO 2 , Nb 2 O 5 , Ba (PO 3 ) 2 , Sr (NO 3 ) 2 , Ca (PO 3 ) 2 , ZnO) are mixed so as to have the above composition, mixed well, and then quartz. It was placed in a crucible and melted at 1260 ° C. for 1 hour. Then, the melt was transferred to a platinum crucible, melted for another 2 hours, homogenized by stirring, and then the melt was poured into a mold to obtain a plate-shaped glass. The obtained glass was processed to about 30 mm × 30 mm × 1 mm, gold electrodes were vapor-deposited on both sides, and then the dielectric property was evaluated by an impedance analyzer (SI1260 manufactured by Solartron Co., Ltd.). The result is shown in FIG. From this figure, it can be seen that both the dielectric constant and the dielectric loss of the glass of this composition hardly changed with frequency. The permittivity ε and the dielectric loss at 1 kHz were 27 and 0.0040, respectively.
The dielectric breakdown strength was 79 kV / mm. The dielectric breakdown strength was measured according to JIS C 2141 using a sample having a thickness of 1 mm.
実施例1と類似な方法で、実施例2〜25および比較例1を作製した。各実施例および比較例の組成および誘電特性を表1〜4にまとめた。また、絶縁破壊強度を表5にまとめた。実施例1に比べて本発明のガラス誘電体は同程度の誘電率を有するが、誘電損失は一桁低く、さらに絶縁破壊強度は2倍以上高くなったことが分かる。 Examples 2 to 25 and Comparative Example 1 were prepared in a manner similar to that of Example 1. The compositions and dielectric properties of each Example and Comparative Example are summarized in Tables 1-4. The dielectric breakdown strength is summarized in Table 5. It can be seen that the glass dielectric of the present invention has the same dielectric constant as that of Example 1, but the dielectric loss is an order of magnitude lower and the dielectric breakdown strength is more than twice as high.
Claims (5)
P2O5成分 22.0%〜40.0%、
TiO2成分 1.0%〜40.0%、
Nb2O5成分 5.0%〜40.0%、
BaO成分 0%超〜30.0%、
SiO2成分 0〜5.0%以下
B2O3成分 0〜7.0%、
モル和(BaO+ZnO) 3.0%〜50.0%、
モル比(ZnO+MgO+Rn2O)/(TiO2+Nb2O5)を0.36以下
含有し(式中、RnはLi、Na、Kからなる群より選択される1種以上)、1kHzにおける誘電率が20以上であることを特徴とするガラス誘電体。 The total amount of substance of the oxide composition in terms of, P 2 O 5 ingredient 22.0% 40.0% in mol%,
TiO 2 component 1.0% -40.0%,
Nb 2 O 5 component 5.0% -40.0%,
BaO component over 0% to 30.0%,
SiO 2 component 0 to 5.0% or less B 2 O 3 component 0 to 7.0%,
Mole sum (BaO + ZnO) 3.0% to 50.0%,
It contains a molar ratio (ZnO + MgO + Rn 2 O) / (TiO 2 + Nb 2 O 5 ) of 0.36 or less (in the formula, Rn is one or more selected from the group consisting of Li, Na, and K) and has a dielectric constant at 1 kHz. A glass dielectric having a value of 20 or more.
Al2O3成分 0〜10.0%、
SrO成分 0〜30.0%、
CaO成分 0〜30.0%、
MgO成分 0〜30.0%、
ZnO成分 0〜30.0%、
Li2O成分 0〜10.0%、
Na2O成分 0〜10.0%、
K2O成分 0〜15.0%、
WO3成分 0〜20.0%、
Ta2O5成分 0〜15.0%
ZrO2成分 0〜15.0%
SnO2成分 0〜10.0%、
Sb2O3成分 0〜10.0%、
外割でFを0〜30.0%
を含有することを特徴とする請求項1に記載のガラス誘電体。 Al 2 O 3 component 0 to 10.0% in mol% with respect to the total amount of substance in the oxide equivalent composition,
SrO component 0-30.0%,
CaO component 0-30.0%,
MgO component 0-30.0%,
ZnO component 0-30.0%,
Li 2 O component 0 to 10.0%,
Na 2 O component 0 to 10.0%,
K 2 O component 0 to 15.0%,
WO 3 component 0-20.0%,
Ta 2 O 5 component 0 to 15.0%
ZrO 2 component 0 to 15.0%
SnO 2 component 0 to 10.0%,
Sb 2 O 3 component 0 to 10.0%,
F is 0 to 30.0% by outside discount
The glass dielectric according to claim 1, wherein the glass dielectric contains.
Ln2O3成分(式中、LnはLa、Ce、Gd、Y、Dy、Yb、Luからなる群より選択される1種以上)のモル和が10.0%以下であり、
RO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)のモル和が50.0%以下であり、
Rn2O成分のモル和が10.0%以下であり、
MxOy成分(V、Cr、Mn、Fe、Co、Ni、Cu、Ag、Moからなる群より選択される1種以上)のモル和が10.0%以下である、請求項1または2に記載のガラス誘電体。 Ln 2 O 3 component in mol% with respect to the total amount of substance in the oxide conversion composition (Ln is one or more selected from the group consisting of La, Ce, Gd, Y, Dy, Yb, and Lu). The molar sum of is 10.0% or less,
The molar sum of the RO components (in the formula, R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) is 50.0% or less.
The molar sum of the Rn 2 O components is 10.0% or less,
The first or second claim, wherein the molar sum of the MxOy components (one or more selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, Cu, Ag, and Mo) is 10.0% or less. Glass dielectric.
The glass dielectric according to any one of claims 1 to 4 , wherein the molar sum (TiO 2 + Nb 2 O 5 ) is 25.0 to 70.0%.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016218307A JP6930827B2 (en) | 2016-11-08 | 2016-11-08 | Glass dielectric |
PCT/JP2017/039784 WO2018088333A1 (en) | 2016-11-08 | 2017-11-02 | Glass dielectric |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016218307A JP6930827B2 (en) | 2016-11-08 | 2016-11-08 | Glass dielectric |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018076195A JP2018076195A (en) | 2018-05-17 |
JP6930827B2 true JP6930827B2 (en) | 2021-09-01 |
Family
ID=62109765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016218307A Active JP6930827B2 (en) | 2016-11-08 | 2016-11-08 | Glass dielectric |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6930827B2 (en) |
WO (1) | WO2018088333A1 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3381332B2 (en) * | 1993-08-24 | 2003-02-24 | 日本電気硝子株式会社 | High dielectric constant glass ceramic |
JP4736207B2 (en) * | 2001-03-08 | 2011-07-27 | 旭硝子株式会社 | Crystallized glass for optical filter substrate and optical filter |
JP4156845B2 (en) * | 2002-01-24 | 2008-09-24 | 株式会社オハラ | Glass and glass substrate having high relative dielectric constant |
JP4136589B2 (en) * | 2002-10-22 | 2008-08-20 | 株式会社オハラ | Glass for optical filter and optical filter |
JP2011098869A (en) * | 2009-11-07 | 2011-05-19 | Ohara Inc | Glass ceramic, method for manufacturing the same, photocatalytically functional compact and hydrophilic compact |
JP2011116620A (en) * | 2009-11-07 | 2011-06-16 | Ohara Inc | Composite and method for manufacturing the same, photocatalytic functional member, and hydrophilic member |
JP2015166289A (en) * | 2014-03-03 | 2015-09-24 | 株式会社オハラ | glass or crystallized glass |
-
2016
- 2016-11-08 JP JP2016218307A patent/JP6930827B2/en active Active
-
2017
- 2017-11-02 WO PCT/JP2017/039784 patent/WO2018088333A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP2018076195A (en) | 2018-05-17 |
WO2018088333A1 (en) | 2018-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7179135B2 (en) | dielectric | |
JP2008001531A (en) | Glass | |
WO2004094338A1 (en) | Lead-free glass for forming dielectric, glass ceramics composition for forming dielectric, dielectric and method for producing laminated dielectric | |
Anjana et al. | Microwave dielectric properties and low‐temperature sintering of cerium oxide for LTCC applications | |
JP2010006690A (en) | Low permittivity dielectric ceramic composition for low temperature firing | |
JP4108836B2 (en) | Dielectric porcelain composition | |
JP4156845B2 (en) | Glass and glass substrate having high relative dielectric constant | |
US9087624B2 (en) | Dielectric composition | |
JP2013166687A (en) | Dielectric ceramic and electronic component using the same | |
JP2007137747A (en) | Dielectric porcelain and method of manufacturing the same | |
JP7009064B2 (en) | Glass and glass ceramics | |
Gao et al. | High-performance microwave dielectric glass-ceramic with fine secondary structure for ULTCC application | |
JP6930827B2 (en) | Glass dielectric | |
JP2000272960A (en) | Dielectric ceramic composition for microwave use, its production and electronic part for microwave use produced by using the dielectric ceramic composition for microwave use | |
JP5527053B2 (en) | Dielectric porcelain, dielectric porcelain manufacturing method, and electronic component | |
Jeon et al. | Effects of crystallization behaviour on microwave dielectric properties of (Ca1− xMg x) SiO3 glass-ceramics | |
KR101084710B1 (en) | Dielectric Ceramics Composition for Electric Component | |
JP2004026529A (en) | Glass composition for low-temperature fired substrate and glass ceramics using the same | |
JP3084992B2 (en) | Ceramic substrate | |
JP2003221277A (en) | Glass powder for forming dielectric, glass-ceramics composition for forming dielectric and dielectric | |
JP2002220279A (en) | Dielectric ceramic composition for microwave | |
EP1627863B1 (en) | Porcelain composition | |
JP2011187772A (en) | Ceramic electronic component, and method of manufacturing the same | |
WO2022264991A1 (en) | Glass-ceramic dielectric | |
JP2011230960A (en) | Glass-ceramic, method for manufacturing the same, and dielectric glass-ceramic molded body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190730 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200602 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200727 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200929 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210331 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20210331 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20210409 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20210413 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210518 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210712 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210810 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210812 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6930827 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |