JP3084992B2 - Ceramic substrate - Google Patents

Ceramic substrate

Info

Publication number
JP3084992B2
JP3084992B2 JP05005196A JP519693A JP3084992B2 JP 3084992 B2 JP3084992 B2 JP 3084992B2 JP 05005196 A JP05005196 A JP 05005196A JP 519693 A JP519693 A JP 519693A JP 3084992 B2 JP3084992 B2 JP 3084992B2
Authority
JP
Japan
Prior art keywords
temperature
ceramic substrate
ceramic
less
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05005196A
Other languages
Japanese (ja)
Other versions
JPH06211564A (en
Inventor
博文 砂原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP05005196A priority Critical patent/JP3084992B2/en
Publication of JPH06211564A publication Critical patent/JPH06211564A/en
Application granted granted Critical
Publication of JP3084992B2 publication Critical patent/JP3084992B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えばマイクロ波帯用
の共振器やフィルタ等の誘電体として用いることがで
き、かつ高誘電率,高いQ値,及び安定した温度特性を
有しながら、低温焼成を可能にして融点の低い電極との
同時焼成を実現できるようにしたセラミック基板に関す
る。
The present invention can be used, for example, as a dielectric for a resonator or a filter for a microwave band, and has a high dielectric constant, a high Q value, and stable temperature characteristics. The present invention relates to a ceramic substrate that can be fired at a low temperature and can be simultaneously fired with an electrode having a low melting point.

【0002】[0002]

【従来の技術】従来、マイクロ波帯用の共振器やフィル
タ等においては、電子部品の小型化を図るために高い誘
電率εr を有する誘電体セラミック基板を空胴共振器に
置き換えることが行われている。これは誘電体セラミッ
ク基板内部における電磁波の波長が自由空間のそれの1
/εr1/2に短縮される効果を利用したものである。とこ
ろで、誘電体共振器として使用できるゼロ温度係数をも
つセラミック材料の誘電率は、今までのところ100 以下
に限定されており、近年のさらなる小型化の要求には対
応できなくなっている。
2. Description of the Related Art Conventionally, in a resonator or filter for a microwave band, a dielectric ceramic substrate having a high dielectric constant .epsilon.r is replaced with a cavity resonator in order to reduce the size of electronic components. ing. This is because the wavelength of the electromagnetic wave inside the dielectric ceramic substrate is one of that in free space.
/ Εr 1/2 is used. By the way, the dielectric constant of a ceramic material having a zero temperature coefficient that can be used as a dielectric resonator has been limited to 100 or less so far, and cannot meet the recent demand for further miniaturization.

【0003】このような小型化に対応するには、マイク
ロ波回路で知られているLC共振器を用いることが有効
である。またこのLC共振器を組み合わせた回路を構成
する場合、積層コンデンサや多層基板等で実用化されて
いるセラミック層と内部電極とを交互に重ねて一体焼結
してなる積層セラミック基板を適用することにより、よ
り小型化を可能にでき、かつ信頼性の高い電子部品が得
られる。この場合、マイクロ波帯で高誘電率,高いQ
値,及び高温での安定性を有するLC共振器を得るに
は、上記セラミック基板の内部電極に高い導電率の金,
銀,銅等を用いる必要がある。
To cope with such miniaturization, it is effective to use an LC resonator known as a microwave circuit. When a circuit is formed by combining this LC resonator, a multilayer ceramic substrate is used in which a ceramic layer and an internal electrode, which are practically used in a multilayer capacitor or a multilayer substrate, are alternately stacked and sintered integrally. Thus, a more compact electronic component with higher reliability can be obtained. In this case, high dielectric constant and high Q in the microwave band
In order to obtain an LC resonator having high stability at high temperature and high temperature, gold having high conductivity should be used for the internal electrode of the ceramic substrate.
It is necessary to use silver, copper, or the like.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記従来
のセラミック基板では、誘電体セラミックの焼成温度よ
り内部電極の融点が低いことから、同時に一体焼成する
のが困難である。このため低温での焼結に対応できるセ
ラミック材料の出現が要請されている。
However, in the above-mentioned conventional ceramic substrate, it is difficult to simultaneously sinter simultaneously since the melting point of the internal electrodes is lower than the sintering temperature of the dielectric ceramic. For this reason, the appearance of a ceramic material that can cope with sintering at a low temperature has been demanded.

【0005】本発明は上記従来の状況に鑑みてなされた
もので、内部電極に採用される金属の融点よりも低い温
度で焼結できるセラミック基板を提供することを目的と
している。
The present invention has been made in view of the above-mentioned conventional circumstances, and has as its object to provide a ceramic substrate that can be sintered at a temperature lower than the melting point of a metal used for an internal electrode.

【0006】[0006]

【課題を解決するための手段】本件発明者は、高誘電
率,高いQ値,及び安定した温度特性を有しながら、
金,銀等の内部電極と同時に一体焼結できるセラミック
材料を見出すべき鋭意検討したところ、BaO−TiO
2 −NdO3/2 を主成分とする高周波用誘電体磁器組成
物にガラスを添加し、かつ上記各組成物,及びガラス成
分の添加量を限定することにより上記電極の融点より低
い温度で焼結できることを見出し、本発明を成したもの
である。
Means for Solving the Problems The present inventor has realized that while having a high dielectric constant, a high Q value, and a stable temperature characteristic,
After extensive studies to find a ceramic material that can be integrally sintered simultaneously with the internal electrodes such as gold and silver, BaO-TiO
By adding glass to the dielectric ceramic composition for high frequency containing 2- NdO 3/2 as a main component, and by limiting the amount of each of the above compositions and glass components, firing at a temperature lower than the melting point of the electrode is performed. It has been found that the present invention is possible, and the present invention has been accomplished.

【0007】そこで本発明は、x・ BaO−y・ TiO
2 −z・ NdO3/2(但し、x+y+z=100%)と表
したとき、上記x,y,zがそれぞれ2.5 ≦x≦15,5
2.5≦y≦70,15≦z≦45のモル%の範囲にあるものを
主成分とし、これにBi2 3が17wt%以下及びPbO
が10wt%以下添加された誘電体磁器組成物30〜95wt%
と、SiO2 を5〜60wt%、BaOを40〜80wt%、Al
2 3 ,ZrO2 ,TiO 2 のうち少なくとも1種を10
wt%以下、B2 3 を5〜20wt%含み、かつNa2O,
2 O,Li2 Oのうち少なくとも1種を0.01〜7wt%
含み、さらにSrO,CaO,MgO,ZnO,PbO
を15wt%以下含むガラス5 〜70wt%とからなる組成物を
焼成したことを特徴とするセラミック基板である。
Accordingly, the present invention provides x.BaO-y.TiO.
Two-Z NdO3/2(However, x + y + z = 100%) and table
Then, the above x, y, z are respectively 2.5 ≦ x ≦ 15,5
2.5 ≦ y ≦ 70,15 ≦ z ≦ 45 mol% range
The main component is BiTwoOThreeIs 17wt% or less and PbO
Porcelain composition 30 to 95 wt% to which is added 10 wt% or less
And SiOTwo5-60 wt%, BaO 40-80 wt%, Al
TwoOThree, ZrOTwo, TiO TwoAt least one of 10
wt% or less, BTwoOThreeFrom 5 to 20 wt%, and NaTwoO,
KTwoO, LiTwo0.01 to 7 wt% of at least one of O
SrO, CaO, MgO, ZnO, PbO
A composition comprising 5 to 70 wt% of glass containing 15 wt% or less of
A ceramic substrate characterized by being fired.

【0008】ここで、上記各組成物の添加量を限定した
理由について説明する。 〔主成分をx・ BaO−y・ TiO2 −z・ NdO3/2
に規制した理由〕図1は、上記主成分の組成範囲を示す
三元図である。同図において、上記x,y,zがA領域
では、低温焼結が困難となる。この場合、通常の焼結に
必要な温度である1400℃になると多孔質の磁器しか
得られなくなる。またB領域では温度特性がプラス側で
大きくなり過ぎることから焼結が不安定となる。これは
C領域においても同様のことがいえる。さらにD領域で
は温度特性が逆にマイナス側で大きくなってくることか
ら焼結が進まなくなる。この結果、上記x,y,zの最
適範囲は上記A〜D領域で囲まれた範囲内(図中、斜線
部分)が望ましい。
Here, the reason why the amount of each of the above compositions is limited will be described. [- the main component x BaO-y · TiO 2 -z · NdO 3/2
FIG. 1 is a ternary diagram showing the composition range of the main component. In the figure, when x, y, and z are in the region A, low-temperature sintering becomes difficult. In this case, when the temperature reaches 1400 ° C., which is a temperature required for normal sintering, only a porous porcelain can be obtained. In the region B, the sintering becomes unstable because the temperature characteristic becomes too large on the plus side. The same can be said for the C region. Further, in the D region, sintering does not proceed because the temperature characteristic increases on the negative side. As a result, the optimum range of x, y, and z is desirably within the range (the hatched portion in the figure) surrounded by the regions A to D.

【0009】〔ガラス組成物の添加量を限定した理由〕
上記B2 3 はガラス粘度下げる働きがあることから、
これを添加することによりセラミック基板の焼結を促進
できる。しかしガラス中のB成分が20wt%を越えると
セラミックグリーンシート上にホウ酸結晶として析出す
る。また上記B 2 3 量を5wt%未満にすると1000
℃以下での基板の焼結が困難となる。
[Reason for limiting the amount of glass composition added]
B aboveTwoOThreeHas the function of lowering the glass viscosity,
Addition of this promotes sintering of ceramic substrates
it can. However, when the B component in the glass exceeds 20 wt%,
Precipitates as boric acid crystals on ceramic green sheets
You. The above B TwoOThreeIf the amount is less than 5 wt%, 1000
It becomes difficult to sinter the substrate at a temperature of not more than ℃.

【0010】上記BaOは上記誘電体磁器組成物とガラ
ス反応を促進させ、ガラスの軟化点を下げる働きがあ
る。しかしこのBaO量を40wt%以下にすると上記磁
器組成物との反応が進まず、1000℃以下での焼結が
困難となる。またBaOはセラミック基板のQ値に影響
を与え易く、これの添加量が80wt%を越えるとQ値が
著しく悪化する。
The BaO has the function of accelerating the glass reaction with the dielectric ceramic composition and lowering the softening point of the glass. However, when the amount of BaO is set to 40 wt% or less, the reaction with the porcelain composition does not proceed, and sintering at 1000 ° C or less becomes difficult. Further, BaO tends to affect the Q value of the ceramic substrate, and when the added amount exceeds 80% by weight, the Q value is remarkably deteriorated.

【0011】上記SiO2 量を限定したのは、この量が
60wt%を越えるとガラス化温度が高くなり過ぎること
から、工業的な実用ガラス溶融温度の1500℃以下で
ガラス化しなくなるからである。またSiO2 量を5wt
%未満にすると焼結体の収縮率のばらつきが大きくな
り、セラミック基板としての採用が困難になる。
The reason why the amount of SiO 2 is limited is that if the amount exceeds 60% by weight, the vitrification temperature becomes too high, so that vitrification does not occur at 1500 ° C. or lower, which is an industrial practical glass melting temperature. Also, the amount of SiO 2 was 5 wt.
%, The variation in the shrinkage rate of the sintered body increases, which makes it difficult to adopt the ceramic substrate.

【0012】また上記Al2 3 ,ZrO2 ,TiO2
はガラス及びセラミック基板の化学的な耐久性を高める
働きをする。しかしこの量が10wt%を越えるとガラス
の溶融温度を高くしてしまうことから、セラミック基板
の焼結温度も高くなる。
The above Al 2 O 3 , ZrO 2 , TiO 2
Serves to increase the chemical durability of glass and ceramic substrates. However, if the amount exceeds 10% by weight, the melting temperature of the glass is increased, so that the sintering temperature of the ceramic substrate is also increased.

【0013】さらに上記Na2 O,K2 O,Li2 Oの
アルカリ成分はガラス化温度を低くする機能を有してい
ることから、セラミック基板の焼結温度を下げるのに有
効である。しかし添加量を0.01wt%未満にするとそ
の効果が得られない。また添加量が7wt%を越えるとセ
ラミック基板の化学的耐久性及びQ値が悪くなる。
Further, since the alkali components of Na 2 O, K 2 O and Li 2 O have a function of lowering the vitrification temperature, they are effective in lowering the sintering temperature of the ceramic substrate. However, if the amount is less than 0.01% by weight, the effect cannot be obtained. If the amount exceeds 7 wt%, the chemical durability and the Q value of the ceramic substrate deteriorate.

【0014】上記SrO,CaO,MgO,ZnO,P
bOはセラミック基板の焼結性,及びQ値を向上させる
働きがある。しかしこの添加量が15wt%を越えるとセ
ラミック基板の収縮率が不安定になる。
The above SrO, CaO, MgO, ZnO, P
bO has the function of improving the sinterability and Q value of the ceramic substrate. However, if the amount exceeds 15 wt%, the shrinkage of the ceramic substrate becomes unstable.

【0015】最後に、上記誘電体磁器組成物量を限定し
たのは、これが95wt%を越えると1000℃以下での
焼結が困難となるからであり、また5wt%未満にすると
誘電率及びQ値が低下し、所望の特性が得られなくなる
からである。
Finally, the amount of the dielectric ceramic composition is limited because if it exceeds 95 wt%, sintering at 1000 ° C. or less becomes difficult, and if it is less than 5 wt%, the dielectric constant and Q value , And desired characteristics cannot be obtained.

【0016】[0016]

【作用】本発明に係るセラミック基板によれば、BaO
−TiO2 −NdO3/2 を主成分とする誘電体磁器組成
物にガラスを添加し、かつこの磁器組成物,及びガラス
成分の添加量を上述の範囲に限定したので、従来例えば
1400℃程度必要であった焼結温度を1000℃以下にするこ
とができ、低温焼結が可能となる。その結果、比抵抗の
小さいAg,Au,Cu等の融点より低い温度で同時に
一体焼結することができる。また、本発明のセラミック
基板では、低温での焼結を可能にしながら、高い誘電
率,及びQ値を得ることができるとともに、高温での安
定した温度特性を得ることができる。従って、上記セラ
ミック基板をマイクロ波,ミリ波等の高周波帯域におけ
る共振器,フィルタとして採用でき、ひいては小型化に
貢献でき、かつ品質に対する信頼性を向上できる。
According to the ceramic substrate of the present invention, BaO
Since glass was added to the dielectric porcelain composition containing -TiO 2 -NdO 3/2 as a main component, and the addition amounts of the porcelain composition and the glass component were limited to the above ranges, conventionally, for example,
The required sintering temperature of about 1400 ° C. can be reduced to 1000 ° C. or lower, and low-temperature sintering becomes possible. As a result, simultaneous sintering can be performed simultaneously at a temperature lower than the melting point of Ag, Au, Cu, or the like having a small specific resistance. Further, the ceramic substrate of the present invention can obtain a high dielectric constant and a high Q value while enabling sintering at a low temperature, and can obtain stable temperature characteristics at a high temperature. Therefore, the ceramic substrate can be used as a resonator and a filter in a high frequency band such as a microwave and a millimeter wave, which can contribute to downsizing and improve reliability with respect to quality.

【0017】[0017]

【実施例】以下、本発明の実施例を説明する。本実施例
では、本発明のセラミック基板を製造し、該基板の効果
を確認するために行った特性試験について説明する。
Embodiments of the present invention will be described below. Example 1 In this example, a description will be given of a characteristic test performed for manufacturing a ceramic substrate of the present invention and confirming the effect of the substrate.

【0018】[0018]

【表1】 [Table 1]

【0019】まず、誘電体磁器組成物を製造する。表1
に示すように、x・ BaO−y・ TiO2 −z・ NdO
3/2 のx,y,zがそれぞれ、x =2.5 〜15.0, y =5
2.5〜70.0,z=15.0〜45.0mol %となるように、BaC
3 ,TiO2 ,及びNd2 3 を秤量し、これに副成
分として、Bi2 3 及びPbO粉末をそれぞれ8〜1
1,2〜15mol %添加混合した。これを1100℃の温度で
1時間仮焼成した後、再び粉砕し、これにより誘電体磁
器組成物(試料番号S1〜S9)を作成した。
First, a dielectric ceramic composition is manufactured. Table 1
As shown in, x · BaO-y · TiO 2 -z · NdO
X, y, z of 3/2 are respectively x = 2.5 to 15.0, y = 5
BaC so that 2.5-70.0, z = 15.0-45.0 mol%.
O 3 , TiO 2 , and Nd 2 O 3 were weighed, and Bi 2 O 3 and PbO powder were added as subcomponents to 8 to 1 respectively.
1, 2 to 15 mol% were added and mixed. This was temporarily calcined at a temperature of 1100 ° C. for 1 hour and then pulverized again, thereby producing a dielectric ceramic composition (sample numbers S1 to S9).

【0020】[0020]

【表2】 [Table 2]

【0021】次に、表2示すように、ガラス成分として
2 3 ,BaO,SiO2 ,Al 2 3 ,Li2 O,
Na2 O,K2 O,CaOを準備し、これらが表に示す
組成比(wt%)となるように調合して原料を作成した。
これを1100℃〜1400℃の温度で溶融した後、水中急冷
し、この後湿式粉砕してガラス粉末(〜)を作成し
た。
Next, as shown in Table 2, as a glass component
BTwoOThree, BaO, SiOTwo, Al TwoOThree, LiTwoO,
NaTwoO, KTwoPrepare O and CaO, these are shown in the table
A raw material was prepared by mixing so as to have a composition ratio (wt%).
This is melted at a temperature of 1100 ° C to 1400 ° C, then quenched in water
And then wet-pulverized to create a glass powder (~)
Was.

【0022】[0022]

【表3】 [Table 3]

【0023】表3に示すように、上記作成した試料S1
〜S9の中から、静電容量の変化率の小さい試料S2
と、該変化率が最も大きい試料S6とを選択し、この両
試料S2,S6と上記〜のガラスとを調合するとと
もに、両者の添加量を変化させてセラミック材料を作成
した。またこのセラミック材料100 wt%に対して適当量
のバインダー, 可塑剤, 及び溶剤を加えて混練し、スラ
リーを形成した。
As shown in Table 3, the sample S1 prepared above
Out of S9, sample S2 having a small capacitance change rate
And the sample S6 having the largest change rate were selected, the two samples S2 and S6 were mixed with the above-mentioned glasses, and the addition amounts of both were changed to prepare a ceramic material. Further, an appropriate amount of a binder, a plasticizer, and a solvent were added to 100% by weight of the ceramic material and kneaded to form a slurry.

【0024】上記スラリーからドクターブレード法によ
り厚さ1mmのセラミックグリーンシートを形成し、該シ
ートを縦30mm, 横10mmの寸法にカットして成形体を作成
した。この成形体を空気中にて870 〜930 ℃の範囲の温
度で1時間焼成し、これによりセラミック基板を得た
(試料No. 1〜No. 24)。そして、この各試料No. 1
〜24の誘電率ε,Q値,及び静電容量の変化率(TC
C)ppm を測定した。
A ceramic green sheet having a thickness of 1 mm was formed from the slurry by a doctor blade method, and the sheet was cut into a size of 30 mm in length and 10 mm in width to form a molded body. This molded body was fired in air at a temperature in the range of 870 to 930 ° C. for 1 hour, thereby obtaining a ceramic substrate (Sample Nos. 1 to 24). And, each sample No. 1
24, Q value, and change rate of capacitance (TC
C) ppm was measured.

【0025】表3からも明らかなように、所定のモル比
からなるBaO−TiO2 −NdO 3/2 を主成分とする
誘電体磁器組成物に所定量のガラス成分を添加すること
により、焼成温度を1000℃以下にしても高い誘電率, 及
びQ値を有し、かつ静電容量の変化率の小さいセラミッ
ク基板が得られていることがわかる。また上記基本成分
の組成を選定することにより、試料No. 13,14,1
6のように±10ppm/℃以下の容量温度特性も得ること
も可能であることがわかる。
As is clear from Table 3, the prescribed molar ratio
BaO-TiO consisting ofTwo-NdO 3/2The main component
Adding a predetermined amount of glass component to the dielectric porcelain composition
Therefore, even if the firing temperature is 1000 ° C or less, a high dielectric constant and
And Q value and small change rate of capacitance
It can be seen that a work substrate was obtained. Also the above basic components
By selecting the composition of sample Nos. 13, 14, 1
Capacitance-temperature characteristics of ± 10 ppm / ° C or less as in 6
It can be seen that this is also possible.

【0026】このように本実施例によれば、上記低温焼
結セラミック材料を採用することにより、マイクロ波帯
で高いQ値を得るために必要な内部電極との同時焼成が
可能となり、従来では困難であった積層型の共振器,フ
ィルタを構成できるとともに、小型化に貢献できる。
As described above, according to this embodiment, by employing the above-mentioned low-temperature sintered ceramic material, simultaneous firing with an internal electrode necessary for obtaining a high Q value in a microwave band becomes possible. It is possible to construct a laminated resonator and filter, which were difficult, and to contribute to miniaturization.

【0027】[0027]

【発明の効果】以上のように本発明に係るセラミック基
板によれば、xBaO−yTiO2 −zNdO3/2 を主
成分とし、これにBi2 3 及びPbOを所定量添加し
てなる誘電体磁器組成物と、SiO2 , BaO, Al2
3 , B2 3 , Na2 O,SrO等を所定量含むガラ
スとを焼成したので、従来では困難であった低温焼成を
可能にでき、内部電極との同時焼結を実現できる効果が
あり、かつ高い誘電率,及びQ値を得られるとともに、
安定した温度特性を得ることができ、マイクロ波帯用の
積層型共振器,フィルタに適用できる効果がある。
As described above, according to the ceramic substrate of the present invention, a dielectric material comprising xBaO-yTiO 2 -zNdO 3/2 as a main component and a predetermined amount of Bi 2 O 3 and PbO added thereto. Porcelain composition, SiO 2 , BaO, Al 2
Since glass containing a predetermined amount of O 3 , B 2 O 3 , Na 2 O, SrO, etc. was fired, low-temperature firing, which was difficult in the past, can be performed, and simultaneous sintering with internal electrodes can be realized. With high dielectric constant and Q value,
Stable temperature characteristics can be obtained, and there is an effect that it can be applied to a laminated resonator and a filter for a microwave band.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のセラミック基板を構成する誘電体磁器
組成物の組成比を説明するための図である。
FIG. 1 is a view for explaining a composition ratio of a dielectric ceramic composition constituting a ceramic substrate of the present invention.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 x・ BaO−y・ TiO2 −z・ NdO
3/2(但し、x+y+z=100%)と表したとき、上記
x,y,zがそれぞれ2.5 ≦x≦15,52.5≦y≦70,15
≦z≦45のモル%の範囲にあるものを主成分とし、これ
にBi2 3が17wt%以下及びPbOが10wt%以下添加
された誘電体磁器組成物30〜95wt%と、SiO2 を5〜
60wt%、BaOを40〜80wt%、Al2 3 ,ZrO2
TiO 2 のうち少なくとも1種を10wt%以下、B2 3
を5〜20wt%含み、かつNa2O,K2 O,Li2 Oの
うち少なくとも1種を0.01〜7wt%含み、さらにSr
O,CaO,MgO,ZnO,PbOを15wt%以下含む
ガラス5 〜70wt%とからなる組成物を焼成したことを特
徴とするセラミック基板。
1. x-BaO-y-TiOTwo-Z NdO
3/2(However, x + y + z = 100%)
x, y, z are 2.5 ≦ x ≦ 15, 52.5 ≦ y ≦ 70, 15
≦ z ≦ 45 mol% range as the main component,
BiTwoOThree17wt% or less and PbO 10wt% or less
30 to 95% by weight of the dielectric ceramic compositionTwoTo 5
60wt%, BaO 40 ~ 80wt%, AlTwoOThree, ZrOTwo,
TiO TwoAt least one of them is 10wt% or less, BTwoOThree
From 5 to 20 wt%, and NaTwoO, KTwoO, LiTwoO's
At least one of them contains 0.01 to 7 wt%,
Contains 15 wt% or less of O, CaO, MgO, ZnO, PbO
It is characterized by firing a composition consisting of 5 to 70 wt% of glass.
Ceramic substrate.
JP05005196A 1993-01-14 1993-01-14 Ceramic substrate Expired - Lifetime JP3084992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05005196A JP3084992B2 (en) 1993-01-14 1993-01-14 Ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05005196A JP3084992B2 (en) 1993-01-14 1993-01-14 Ceramic substrate

Publications (2)

Publication Number Publication Date
JPH06211564A JPH06211564A (en) 1994-08-02
JP3084992B2 true JP3084992B2 (en) 2000-09-04

Family

ID=11604458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05005196A Expired - Lifetime JP3084992B2 (en) 1993-01-14 1993-01-14 Ceramic substrate

Country Status (1)

Country Link
JP (1) JP3084992B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4108836B2 (en) 1998-07-15 2008-06-25 Tdk株式会社 Dielectric porcelain composition
EP1036777B1 (en) 1999-03-16 2003-06-04 TDK Corporation Composition of dielectric ceramics and producing method therefor
JP2002326868A (en) * 2001-05-01 2002-11-12 Samsung Electro Mech Co Ltd Dielectric ceramic composition and ceramics capacitor using it and method of manufacturing them
JP2002326867A (en) * 2001-05-01 2002-11-12 Samsung Electro Mech Co Ltd Dielectric ceramic composition and ceramic capacitor using it and method of manufacturing them
JP2002326866A (en) * 2001-05-01 2002-11-12 Samsung Electro Mech Co Ltd Dielectric ceramic composition and ceramic capacitor using it and method of manufacturing them
JP2003176171A (en) 2001-10-04 2003-06-24 Ube Electronics Ltd Dielectric ceramic composition
CN114656261B (en) * 2022-03-28 2023-06-02 电子科技大学 Medium dielectric constant LTCC microwave dielectric ceramic material and preparation method thereof

Also Published As

Publication number Publication date
JPH06211564A (en) 1994-08-02

Similar Documents

Publication Publication Date Title
US6620750B2 (en) Dielectric ceramic composition and method for manufacturing multilayered components using the same
JP3358589B2 (en) Composition for ceramic substrate, green sheet and ceramic circuit component
US6108192A (en) Dielectric ceramic composition and ceramic electronic parts using the same
JP3381332B2 (en) High dielectric constant glass ceramic
WO2004094338A1 (en) Lead-free glass for forming dielectric, glass ceramics composition for forming dielectric, dielectric and method for producing laminated dielectric
JPH11310455A (en) Dielectric porcelain composition and ceramic electronic part using the same
JPWO2008018408A1 (en) Glass ceramic composition, glass ceramic sintered body, and multilayer ceramic electronic component
JPWO2008018407A1 (en) Glass ceramic composition, glass ceramic sintered body, and multilayer ceramic electronic component
JP2007137747A (en) Dielectric porcelain and method of manufacturing the same
US5556585A (en) Dielectric ceramic body including TIO2 dispersion in crystallized cordierite matrix phase, method of producing the same, and circuit board using the same
JP2001114554A (en) Low-temperature burnable ceramic composition and ceramic multilayer substrate
JP3084992B2 (en) Ceramic substrate
JP3513787B2 (en) LC composite parts
US6372676B1 (en) Ceramic substrate composition and ceramic circuit component
JP4392633B2 (en) DIELECTRIC CERAMIC COMPOSITION FOR MICROWAVE AND ITS MANUFACTURING METHOD
KR101050990B1 (en) Dielectric Ceramic Compositions, Dielectric Ceramics and Laminated Ceramic Parts Using the Same
JP2005289789A (en) Dielectric ceramic composition and multilayer ceramic part using the same
JP4228344B2 (en) Glass powder, glass ceramic dielectric material, sintered body, and circuit member for high frequency
JP2000319066A (en) Low temperature simultaneously firing dielectric ceramic composition
KR101084710B1 (en) Dielectric Ceramics Composition for Electric Component
KR20060081747A (en) Glass frit for low temperature sintering and low temperature co-fired ceramic composition, chip components
JP2003063861A (en) Composite laminated ceramic electronic part and method for producing the same
JPH06223625A (en) Ceramic substrate
JP3605260B2 (en) Non-reducing dielectric ceramic composition
CN100372802C (en) High frequency thermostable titanium barium neodymium base ceramic medium materials and multilayer sheet type ceramic capacitor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080707

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 13