JP6926928B2 - Refining method of molten steel - Google Patents

Refining method of molten steel Download PDF

Info

Publication number
JP6926928B2
JP6926928B2 JP2017201756A JP2017201756A JP6926928B2 JP 6926928 B2 JP6926928 B2 JP 6926928B2 JP 2017201756 A JP2017201756 A JP 2017201756A JP 2017201756 A JP2017201756 A JP 2017201756A JP 6926928 B2 JP6926928 B2 JP 6926928B2
Authority
JP
Japan
Prior art keywords
powder
molten steel
lance
refining
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017201756A
Other languages
Japanese (ja)
Other versions
JP2019073780A (en
Inventor
惇史 久志本
惇史 久志本
鉄平 田村
鉄平 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017201756A priority Critical patent/JP6926928B2/en
Publication of JP2019073780A publication Critical patent/JP2019073780A/en
Application granted granted Critical
Publication of JP6926928B2 publication Critical patent/JP6926928B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、溶鋼の減圧精錬装置内の上吹きランスから噴射される精錬用粉体を大幅に加速させ、効率良く高級鋼を溶製する溶鋼の精錬方法に関する。 The present invention relates to a method for refining molten steel in which high-grade steel is efficiently melted by significantly accelerating the refining powder injected from a top-blown lance in a decompression refining apparatus for molten steel.

近年、鉄鋼製品に求められる性能レベルがますます高まっており、S,C等の溶鋼中不純物の徹底除去が求められている。例えばSに関して、10ppm以下の極低硫鋼を溶製するために、RH等の環流型真空脱ガス装置にて、溶鋼表面にキャリアガスとともにCaOを含有する脱硫剤粉体を吹き付けて脱硫処理を施す手法がとられる場合がある。また、Cに関して、溶鋼表面にFe23粉体を吹き付け、CによるFe23の還元を生じさせて脱炭反応を促進させる技術が知られている。 In recent years, the performance level required for steel products has been increasing more and more, and thorough removal of impurities in molten steel such as S and C is required. For example, with respect to S, in order to melt ultra-low sulfur steel of 10 ppm or less, a desulfurization treatment is performed by spraying a desulfurizing agent powder containing CaO together with a carrier gas on the surface of the molten steel with a recirculation type vacuum degassing device such as RH. The method of applying may be taken. Further, regarding C, a technique is known in which Fe 2 O 3 powder is sprayed on the surface of molten steel to cause reduction of Fe 2 O 3 by C and promote a decarburization reaction.

上記粉体上吹き処理における精錬効率を向上させる方法として、主に粉体の噴射範囲を拡大する手法と、溶鋼内部へ粉体の侵入を促進させる手法とが挙げられる。特に後者の手法では、粉体の噴射速度を増加させて慣性力を高め、溶鋼の表面張力を破って溶鋼内に深く侵入させる必要がある。また、上記粉体上吹き処理には、一般的にラバールノズルと呼称される径縮小部(スロート部)と径拡大部とを有する超音速ノズルを用い、キャリアガスとともに精錬用粉体を噴射する手法が広く用いられている。しかしながら、キャリアガスは体積の収縮と膨張とにより超音速まで瞬時に加速されるものの、体積変化を伴わない精錬用粉体はノズルから噴射された時点で必ずしもガスと同等の速度となっておらず、現状では粉体が加速不良で噴射され、溶鋼内に効率的に侵入していない。 Examples of the method for improving the refining efficiency in the powder top blowing treatment include a method of expanding the injection range of the powder and a method of promoting the intrusion of the powder into the molten steel. In particular, in the latter method, it is necessary to increase the injection speed of the powder to increase the inertial force, break the surface tension of the molten steel, and penetrate deeply into the molten steel. Further, for the powder top blowing treatment, a method of injecting refining powder together with a carrier gas using a supersonic nozzle having a diameter reducing portion (throat portion) and a diameter expanding portion generally called a Laval nozzle. Is widely used. However, although the carrier gas is instantly accelerated to supersonic speed by volume contraction and expansion, the refining powder without volume change does not always have the same speed as the gas when it is injected from the nozzle. At present, the powder is injected due to poor acceleration and does not efficiently penetrate into the molten steel.

上記課題に対し、特許文献1には、スロート部と円筒型の拡大部とを有する二段ノズルを用いた減圧精錬方法が開示されている。上記ノズルにより形成されるガスジェットは、ラバールノズルに対して最大動圧及び流速は劣るものの噴射範囲が拡大するため、粉体を広範囲に噴射することにより反応効率が向上するとしている。しかしながら、精錬用粉体は体積膨張を伴わず、かつガスに対して密度が大きいため直進性が非常に高く、粉体が必ずしもジェットと同様に広範囲に噴射されるとは限らない。また、ジェットの最大動圧及び流速がラバールノズルに対して大きく低下するため、粉体の加速が十分になされずに粉体の慣性力が溶鋼表面の表面張力を下回り、粉体が溶鋼内に侵入することができず溶鋼表面に堆積して反応効率が大きく低下する懸念がある。 In response to the above problems, Patent Document 1 discloses a vacuum refining method using a two-stage nozzle having a throat portion and a cylindrical enlarged portion. The gas jet formed by the nozzle is inferior in maximum dynamic pressure and flow velocity to the Laval nozzle, but the injection range is expanded. Therefore, it is said that the reaction efficiency is improved by injecting the powder over a wide range. However, the refining powder does not undergo volume expansion and has a high density with respect to the gas, so that the straightness is very high, and the powder is not always sprayed over a wide range like a jet. In addition, since the maximum dynamic pressure and flow velocity of the jet are greatly reduced with respect to the Laval nozzle, the inertial force of the powder falls below the surface tension of the molten steel surface without sufficient acceleration of the powder, and the powder penetrates into the molten steel. There is a concern that the reaction efficiency will be greatly reduced due to the accumulation on the surface of the molten steel.

一方、特許文献2には、ラバールノズルの先端にストレート形内管を接続し、粉体の加速距離を確保することで噴射速度を向上させ、粉体の溶鋼内への侵入を促進させて精錬効率を向上させることを特徴とするランスが開示されている。しかしながら、スロート出口から径拡大部にかけて著しくガスが膨張して圧力の低下が生じる。したがって、上記ノズルのストレート形内管におけるガスの圧力が非常に小さくなるため、加速効果は極めて小さい。また、上述した技術には、粉体上吹き処理中の操業条件に関する記載がなく、条件によって精錬効率が大きく変動する懸念がある。 On the other hand, in Patent Document 2, a straight inner tube is connected to the tip of a rubber nozzle to secure an acceleration distance of powder to improve the injection speed and promote the penetration of powder into molten steel for refining efficiency. A lance characterized by improving is disclosed. However, the gas expands remarkably from the throat outlet to the diameter expansion portion, and the pressure drops. Therefore, the pressure of the gas in the straight inner tube of the nozzle becomes very small, and the acceleration effect is extremely small. In addition, the above-mentioned technique does not describe the operating conditions during the powder top blowing process, and there is a concern that the refining efficiency may fluctuate greatly depending on the conditions.

特許第3654216号公報Japanese Patent No. 3654216 特許第3598536号公報Japanese Patent No. 3598536

以上のように従来の手法では、精錬用粉体の加速が効率的になされていないため、安定して高い精錬効率を発揮することは困難である。 As described above, in the conventional method, since the refining powder is not efficiently accelerated, it is difficult to stably exhibit high refining efficiency.

そこで本発明は前述の問題点を鑑み、粉体を大幅に加速させ溶鋼中への粉体の侵入を促進させて精錬効率を高める溶鋼の精錬方法を提供することを目的とする。 Therefore, in view of the above-mentioned problems, it is an object of the present invention to provide a method for refining molten steel, which significantly accelerates the powder, promotes the invasion of the powder into the molten steel, and enhances the refining efficiency.

本発明者らは、種々のノズル形状、および粉体の吹き込み条件にて、まずノズルから噴射された粉体の速度を調査する試験を実施した。図1には、ラバールノズルの内部構造の例を示す。ラバールノズルを基本とし、かつラバールノズルにおいて最も圧力が高くなるスロート部の長さlt(m)を大きくすることで、粉体を大幅に加速できることを見出した。
また、ノズル前圧P0(Torr)は、スロート径Dt(m)とキャリアガス流量Q(Nm3/min)とから(3)式で表される。
0=0.089・Q/Dt 2 ・・・(3)
The present inventors first conducted a test for investigating the velocity of the powder ejected from the nozzle under various nozzle shapes and powder blowing conditions. FIG. 1 shows an example of the internal structure of the Laval nozzle. It has been found that the powder can be significantly accelerated by increasing the length l t (m) of the throat portion where the pressure is highest in the Laval nozzle based on the Laval nozzle.
Further, the nozzle front pressure P 0 (Torr) is expressed by the equation (3) from the throat diameter D t (m) and the carrier gas flow rate Q (Nm 3 / min).
P 0 = 0.089 ・ Q / D t 2・ ・ ・ (3)

(3)式からもわかるように、ノズル前圧P0はスロート径Dtが小さいほど高くなる。したがって、仮にスロート部の長さltをある程度確保したとしても、スロート径Dtが大きすぎるとノズル前圧P0が小さくなり、粉体の加速不良が生じてしまう。このことから、スロート部の長さltとスロート部の直径(スロート径)Dtとの比に適正な範囲があることを見出した。 As can be seen from Eq. (3), the nozzle front pressure P 0 increases as the throat diameter D t decreases. Therefore, even if the length l t of the throat portion is secured to some extent, if the throat diameter D t is too large, the nozzle front pressure P 0 becomes small, resulting in poor acceleration of the powder. From this, it was found that there is an appropriate range in the ratio between the length l t of the throat portion and the diameter (throat diameter) D t of the throat portion.

さらに本発明者らは、粉体の噴射速度を変えた条件にて、脱硫を対象として溶鋼への粉体上吹き試験を実施し、粉体反応効率と粉体速度との関係を調査した。その結果、粉体速度がある臨界値を超えると粉体が溶鋼の表面を破り溶鋼内に侵入するようになり、粉体反応効率が飛躍的に向上することがわかった。スロート部における粉体の加速にはスロート内部の圧力の絶対値も併せて高めることが必要であることから、スロート部の長さltとスロート径Dtとの比に加えてノズル前圧P0をある臨界値以上に制御することで粉体が溶鋼内に侵入可能な速度まで加速され、粉体反応効率が飛躍的に向上することを見出した。 Furthermore, the present inventors conducted a powder top blowing test on molten steel for desulfurization under the condition that the powder injection rate was changed, and investigated the relationship between the powder reaction efficiency and the powder rate. As a result, it was found that when the powder velocity exceeds a certain critical value, the powder breaks the surface of the molten steel and invades into the molten steel, and the powder reaction efficiency is dramatically improved. Since it is necessary to increase the absolute value of the pressure inside the throat in order to accelerate the powder in the throat, the nozzle pre-pressure P is added to the ratio of the throat length l t and the throat diameter D t. It was found that by controlling 0 to a certain critical value or higher, the powder is accelerated to a speed at which it can penetrate into the molten steel, and the powder reaction efficiency is dramatically improved.

本発明は、精錬用粉体の噴射速度を大幅に加速させて溶鋼中への侵入を促進させ、精錬効率を飛躍的に向上させるためのランス形状、および粉体噴射条件を明確とすることでなされたものである。具体的には、以下のとおりである。
(1)雰囲気圧力Pe(Torr)が100Torr未満の減圧下にてキャリアガスとともに溶鋼表面に粒径の平均値が20〜100μmである精錬用粉体を吹き付ける処理において、
前記精錬用粉体を吹き付ける上吹きランスの先端形状が円筒形のスロート部と円錐形の径拡大部とからなり、
前記スロート部のスロート径を0.01〜0.05m、前記径拡大部の出口径を0.04〜0.1m、前記上吹きランスのランス高さを2.6〜4.2mとし、
前記上吹きランスとして、前記スロート部の直径Dt(m)と前記スロート部の長さlt(m)とが(1)式の関係を満たす上吹き単孔ランスを用い、かつ前記キャリアガスにArを用い、その供給条件が(2)式〜(3)式の条件を満たすことを特徴とする、溶鋼の精錬方法。
t/Dt≧5.0 ・・・(1)
0≧540×(lt/Dt-0.27 ・・・(2)
0=0.089・Q/Dt 2 ・・・(3)
ここで、P0:ノズル前圧(Torr)、Q:キャリアガス流量(Nm3/min)である。
(2)前記上吹きランスを用いて溶鋼表面に前記精錬用粉体を吹き付ける際に、さらに(4)式の条件を満たすことを特徴とする、上記(1)に記載の溶鋼の精錬方法。
(P0/Pe0.2(De/H)0.1・(lt/WPB0.1≧0.6 ・・・(4)
ここで、De:前記径拡大部の出口直径(m)H:ランス−湯面間距離(m)、WPB:粉体供給速度(kg/min)である。
The present invention clarifies the lance shape and the powder injection conditions for significantly accelerating the injection speed of the refining powder, promoting the invasion into the molten steel, and dramatically improving the refining efficiency. It was done. Specifically, it is as follows.
(1) In the processing ambient pressure P e (Torr) is the average value of the particle size the molten steel surface together with a carrier gas at a reduced pressure of less than 100Torr blows refining powder is 20 to 100 [mu] m,
The tip shape of the top-blowing lance that sprays the refining powder consists of a cylindrical throat portion and a conical diameter-expanding portion.
The throat diameter of the throat portion is 0.01 to 0.05 m, the outlet diameter of the diameter expansion portion is 0.04 to 0.1 m, and the lance height of the top blow lance is 2.6 to 4.2 m.
As the top-blown lance, a top-blown single-hole lance in which the diameter D t (m) of the throat portion and the length l t (m) of the throat portion satisfy the relationship of the equation (1) is used, and the carrier gas is used. characterized with Ar, supply conditions of that is (2) to (3) satisfying the condition equation, the molten steel process of refining.
l t / D t ≧ 5.0 ・ ・ ・ (1)
P 0 ≧ 540 × (l t / D t) -0.27 ··· (2)
P 0 = 0.089 ・ Q / D t 2・ ・ ・ (3)
Here, P 0 : nozzle front pressure (Torr), Q: carrier gas flow rate (Nm 3 / min).
(2) The method for refining molten steel according to (1) above, wherein when the refining powder is sprayed onto the surface of the molten steel using the top-blown lance, the condition of the equation (4) is further satisfied.
(P 0 / P e) 0.2 (D e / H) 0.1 · (l t / W PB) 0.1 ≧ 0.6 ··· (4)
Here, De : the outlet diameter (m) of the enlarged diameter portion, H: the distance between the lance and the molten metal surface (m), and W PB : the powder supply rate (kg / min).

本発明によれば、上吹きランスから精錬用粉体を吹き付ける際に、精錬用粉体を効率良く溶鋼内へ侵入させることができるため、精錬効率を飛躍的に向上させることができ、工業的価値は非常に大きい。 According to the present invention, when the refining powder is sprayed from the top-blown lance, the refining powder can be efficiently penetrated into the molten steel, so that the refining efficiency can be dramatically improved and it is industrial. The value is very great.

本発明における上吹きランスのノズル形状を模式的に示した図である。It is a figure which showed typically the nozzle shape of the top blowing lance in this invention. 粉体反応効率指数と粉体噴射速度との関係を示した図である。It is a figure which showed the relationship between the powder reaction efficiency index and the powder injection speed. 本発明が適用されるノズル前圧P0と比lt/Dtとの関係を示す図である。It is a figure which shows the relationship between the nozzle front pressure P 0 to which this invention is applied, and the ratio l t / D t.

(1.本発明における用語の定義)
以下に本発明について説明する。以下に説明する「RH真空脱ガス装置」とは、真空槽を有する溶鋼処理装置であり、「粉体反応効率」とは、上吹きした精錬用粉体(以下、粉体)が溶鋼と反応し、不純物の低減に寄与した効率を示す。また、「粉体上吹き処理」とは、RH真空脱ガス装置などの精錬容器の内部に設置された上吹きランスから、キャリアガスとともに粉体を吹き付けて溶鋼の精錬を行う処理である。粉体、粉体と溶鋼との反応、不純物元素の具体的な例に基づく「粉体反応効率」の算出については後述する。
(1. Definition of terms in the present invention)
The present invention will be described below. The "RH vacuum degassing device" described below is a molten steel processing device having a vacuum tank, and the "powder reaction efficiency" is that the top-blown refining powder (hereinafter, powder) reacts with the molten steel. It shows the efficiency that contributed to the reduction of impurities. Further, the "powder top blowing process" is a process of refining molten steel by spraying powder together with a carrier gas from a top blowing lance installed inside a refining container such as an RH vacuum degassing device. The calculation of powder, the reaction between powder and molten steel, and the calculation of "powder reaction efficiency" based on specific examples of impurity elements will be described later.

(2.本発明に係る粉体噴射条件)
[Pe:100Torr未満]
キャリアガスが形成するジェットはノズル前圧とノズル出口圧力との圧力勾配を駆動力とするため、ノズル出口圧力が低いほど超音速ジェットを形成し易い。また、真空槽内の雰囲気圧力Peが低いほど空気抵抗が小さくなるため、ノズルから噴射された粉体が溶鋼表面に到達するまでの速度の減衰が抑えられ、粉体の溶鋼への侵入効率が安定する。したがって、雰囲気圧力Peを100Torr以上としてしまうと、キャリアガスジェット流速の大幅な低下、空気抵抗の大幅な増加により粉体噴射後の速度の大幅な減衰を招くことから、雰囲気圧力Peを100Torr未満とする。
(2. Powder injection conditions according to the present invention)
[P e : less than 100 Torr]
Since the jet formed by the carrier gas uses the pressure gradient between the nozzle front pressure and the nozzle outlet pressure as the driving force, the lower the nozzle outlet pressure, the easier it is to form a supersonic jet. In addition, the lower the atmospheric pressure P e in the vacuum chamber, the smaller the air resistance, so the attenuation of the speed at which the powder injected from the nozzle reaches the surface of the molten steel is suppressed, and the penetration efficiency of the powder into the molten steel is suppressed. Is stable. Therefore, when the ambient pressure P e results in the above 100 Torr, a significant decrease in the carrier gas jet velocity, since it leads to a significant attenuation of the speed after the powder injection due to a significant increase in air resistance, an atmospheric pressure P e 100 Torr Less than.

[lt/Dt≧5.0 ・・・(1)]
粉体速度がある臨界値を超えると粉体が溶鋼の表面を破り、浴内に侵入するようになり、反応効率が飛躍的に向上する。図2には、後述の方法にて調査した粉体反応効率指数とノズル出口での粉体噴射速度との関係を示す。この調査結果から、粉体噴射速度がおよそ60m/sを超えると脱硫効率が飛躍的に向上することを知見した。
[L t / D t ≧ 5.0 ・ ・ ・ (1)]
When the powder velocity exceeds a certain critical value, the powder breaks the surface of the molten steel and invades the bath, dramatically improving the reaction efficiency. FIG. 2 shows the relationship between the powder reaction efficiency index investigated by the method described later and the powder injection speed at the nozzle outlet. From this survey result, it was found that the desulfurization efficiency is dramatically improved when the powder injection speed exceeds about 60 m / s.

図3には、ノズル前圧P0を変更した条件にてノズル出口での粉体噴射速度を実測し、比lt/Dtで整理した結果を示す。図3において、○印は粉体噴射速度が60m/sを超えたものを示し、×印は粉体噴射速度が60m/sを超えなかったものを示している。図3に示すように、比lt/Dt<5.0の範囲においては粉体加速効果が不十分であり、ノズル前圧P0を高位に制御したとしても粉体噴射速度を60m/s以上とすることができなかった。したがって、本発明の効果を十分に発揮するためには、比lt/Dtを5.0以上とする必要がある。 FIG. 3 shows the results of actually measuring the powder injection speed at the nozzle outlet under the condition that the nozzle pre-pressure P 0 was changed and arranging the powder injection speed by the ratio l t / D t. In FIG. 3, a circle indicates that the powder injection speed exceeds 60 m / s, and a cross indicates that the powder injection speed does not exceed 60 m / s. As shown in FIG. 3, the powder acceleration effect is insufficient in the range of the ratio l t / D t <5.0, and even if the nozzle pre-pressure P 0 is controlled to a high level, the powder injection speed is 60 m /. Could not be more than s. Therefore, in order to fully exert the effect of the present invention, it is necessary to set the ratio l t / D t to 5.0 or more.

[P0≧540×(lt/Dt-0.27 ・・・(2)]
比lt/Dtによって粉体加速効果は大きく異なってくるため、臨界速度を超えるために必要なノズル前圧P0の値は比lt/Dtによって当然異なってくる。そこで、図3に示した結果から、比lt/Dtが5.0以上を満たしている条件にて粉体噴射速度が60m/sを超えるために必要なノズル前圧P0および比lt/Dtの条件を定式化し、(2)式を得た。したがって、本発明の効果を得るためには、(1)式の条件に加え、比lt/Dtに応じてノズル前圧P0が(2)式の条件を満たすように制御する必要がある。
[P 0 ≧ 540 × (l t / D t) -0.27 ··· (2)]
Since the powder acceleration effect differs greatly depending on the ratio l t / D t , the value of the nozzle pre-pressure P 0 required to exceed the critical speed naturally differs depending on the ratio l t / D t. Therefore, from the results shown in FIG. 3, the nozzle prepressure P 0 and the ratio l required for the powder injection speed to exceed 60 m / s under the condition that the ratio l t / D t satisfies 5.0 or more. The condition of t / D t was formulated to obtain Eq. (2). Therefore, in order to obtain the effect of the present invention, it is necessary to control the nozzle front pressure P 0 so as to satisfy the condition of the equation (2) according to the ratio l t / D t in addition to the condition of the equation (1). be.

[(P0/Pe0.2(De/H)0.1・(lt/WPB0.1≧0.6 ・・・(4)]
ノズルから噴射された粉体が溶鋼表面に到達するまでの間に、様々な要因で速度の減衰が生じる。本発明者らは後述する方法に則り、本発明の効果をより安定的に得るために必要な操業因子を抽出し、その影響を定式化した。
[(P 0 / P e) 0.2 (D e / H) 0.1 · (l t / W PB) 0.1 ≧ 0.6 ··· (4)]
Before the powder ejected from the nozzle reaches the surface of the molten steel, the velocity is attenuated due to various factors. The present inventors extracted the operating factors necessary for obtaining the effect of the present invention more stably according to the method described later, and formulated the influence thereof.

まず、ノズル前圧P0と雰囲気圧力Peとの関係で、前述したようにノズル前圧とノズル出口圧力との比が大きいほど、ジェットの駆動力が大きくなるため、ノズル前圧P0と雰囲気圧力Peと比P0/Peは大きい方が望ましい。また、ノズル拡大部の出口径Deとランス−湯面間距離(ランス高さ)Hとの関係で、ランス高さHが大きくなると、その分湯面に到達するまでの間に粉体が空気抵抗にさらされることになるため、ノズル拡大部の出口径Deとランス高さHとの比De/Hも大きい方が望ましい。さらに、スロート部の長さltと粉体供給速度WPBとの関係で、粉体供給速度WPBが大きくなると、粉体間の凝集などによるエネルギーの損耗が大きくなるため、スロート部の長さltと粉体供給速度WPBとの比lt/WPBも大きい方が望ましい。以上のことから、本発明の顕著な効果を安定して得るためには、(1)式および(2)式に加えて、さらに(4)式の条件を満たしていることが望ましい。 First, in relation to the nozzle front pressure P 0 and the ambient pressure P e, the larger the ratio between the nozzle front pressure and nozzle exit pressure as described above, since the driving force of the jet is large, a nozzle pre-pressure P 0 It is desirable that the atmospheric pressure P e and the ratio P 0 / P e are large. Further, an outlet diameter D e and lance nozzle expansion portion - in relation to the water level distance (lance height) H, the lance height H increases, the powder until it reaches the correspondingly melt surface Since it is exposed to air resistance, it is desirable that the ratio D e / H of the outlet diameter D e of the nozzle enlargement portion and the lance height H is also large. Further, due to the relationship between the length l t of the throat portion and the powder supply speed W PB , when the powder supply speed W PB increases, energy consumption due to aggregation between powders increases, so that the length of the throat portion is the ratio l t / W of l t and a powder feed rate W PB PB is large is desirable. From the above, in order to stably obtain the remarkable effect of the present invention, it is desirable that the conditions of the equation (4) are further satisfied in addition to the equations (1) and (2).

(3.処理条件)
本発明において、転炉等の精錬炉から取鍋に出鋼された溶鋼は、脱酸、合金添加等の成分調整を終えた後、RH真空脱ガス装置等に代表される精錬容器において溶鋼の処理が実施される。上吹きランスを具備した精錬容器内にて前述の条件を満たす範囲でランス形状、操業条件を設定し、精錬用粉体をキャリアガスとともに上吹きする。ここで、粉体上吹きに用いる上吹きランスの断面形状は必ずしも真円形である必要はない。断面形状が真円以外の場合、スロート径Dtおよびノズル拡大部の出口径Deの値は、断面積から円相当径に換算した値を用いる。また、孔数についても特に限定しないが、孔数が多すぎると孔一つ当たりの前圧が低下して粉体の加速が困難となるため、単孔が望ましい。
(3. Processing conditions)
In the present invention, the molten steel discharged from a smelting furnace such as a converter to a ladle is made of molten steel in a smelting container typified by an RH vacuum degassing device after finishing component adjustment such as deoxidation and alloy addition. The process is carried out. In a refining container equipped with a top-blown lance, the lance shape and operating conditions are set within the range satisfying the above conditions, and the refining powder is top-blown together with the carrier gas. Here, the cross-sectional shape of the top blowing lance used for powder top blowing does not necessarily have to be a perfect circle. When the cross-sectional shape is other than a perfect circle, the values of the throat diameter D t and the outlet diameter De e of the nozzle enlargement portion are converted from the cross-sectional area to the equivalent circle diameter. Further, the number of holes is not particularly limited, but if the number of holes is too large, the prepressure per hole decreases and it becomes difficult to accelerate the powder, so a single hole is desirable.

一方で、粉体上吹きに用いるキャリアガスの種類は限定しないが、操業安定性、処理コストの観点から、希ガス元素が望ましく、特にArを使用することがより望ましい。また、キャリアガス流量Qが大きすぎると真空槽内の雰囲気圧力Peを高真空に維持することが困難となることに加え、キャリアガスジェットによる溶鋼飛散が活発となり設備負荷が大きく増加する。このことからキャリアガス流量Qは20Nm3/min未満とすることが望ましい。 On the other hand, the type of carrier gas used for powder top blowing is not limited, but a rare gas element is desirable from the viewpoint of operational stability and processing cost, and it is more desirable to use Ar in particular. Further, if the carrier gas flow rate Q is too large, it becomes difficult to maintain the atmospheric pressure P e in the vacuum chamber at a high vacuum, and the molten steel is actively scattered by the carrier gas jet, which greatly increases the equipment load. Therefore, it is desirable that the carrier gas flow rate Q is less than 20 Nm 3 / min.

さらに、本発明は脱硫に限定せず粉体上吹き処理全般を対象としているため、精錬用粉体は除去する不純物に応じて種類、粒径等を変更してもよい。しかしながら、粉体の粒径が大きすぎると質量に対する表面積が低下し、溶鋼との反応速度が大きく低下する。また、粉体の粒径が小さすぎると単一粒子の質量が大きく低下し、溶鋼への侵入が困難となる。このため、精錬用粉体の粒径は平均値で20〜100μmであることが望ましい。 Furthermore, since the present invention is not limited to desulfurization but covers all powder top blowing treatments, the type, particle size, etc. of the refining powder may be changed according to the impurities to be removed. However, if the particle size of the powder is too large, the surface area with respect to the mass decreases, and the reaction rate with the molten steel greatly decreases. Further, if the particle size of the powder is too small, the mass of the single particle is greatly reduced, and it becomes difficult to penetrate into the molten steel. Therefore, it is desirable that the particle size of the refining powder is 20 to 100 μm on average.

(4.効果の確認方法)
本発明の効果は、粉体反応効率にて評価することができる。まず、粉体上吹き処理前後にて溶鋼サンプルを採取し、化学分析に供することで溶鋼中の不純物濃度[%X]を得る。ここで、粉体反応効率は以下の(5)式の粉体反応効率指数で評価する。
粉体反応効率指数=ln([%X]上吹き前/[%X]上吹き後)/粉体原単位
・・・(5)
(4. How to check the effect)
The effect of the present invention can be evaluated by the powder reaction efficiency. First, a molten steel sample is taken before and after the powder top blowing treatment and subjected to chemical analysis to obtain an impurity concentration [% X] in the molten steel. Here, the powder reaction efficiency is evaluated by the powder reaction efficiency index of the following formula (5).
Powder reaction efficiency index = ln ([% X] before top blowing / [% X] after top blowing ) / powder basic unit
... (5)

ここで、粉体原単位(kg/ton)は、粉体上吹き処理に使用した粉体総質量を溶鋼質量で除した値である。本発明において、粉体反応効率指数が0.100以上であったものを発明の効果が得られたと判断でき、粉体反応効率指数が0.150以上であったものを発明の効果が特に顕著に得られたと判断できる。 Here, the powder basic unit (kg / ton) is a value obtained by dividing the total mass of the powder used in the powder top blowing treatment by the mass of molten steel. In the present invention, it can be determined that the effect of the invention was obtained when the powder reaction efficiency index was 0.100 or more, and the effect of the invention was particularly remarkable when the powder reaction efficiency index was 0.150 or more. It can be judged that it was obtained.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, an example of the present invention will be described. The conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention, and the present invention is described in this one condition example. It is not limited. In the present invention, various conditions can be adopted as long as the gist of the present invention is not deviated and the object of the present invention is achieved.

転炉吹錬を終えた溶鋼を取鍋に出鋼した後、取鍋をRH真空脱ガス装置まで搬送し、上吹きランスを具備した真空槽を取鍋内の溶鋼に挿入し、溶鋼を真空槽内に吸引して粉体の上吹き処理を開始した。実施例1及び2(本発明例)、比較例はすべて脱硫処理を対象とし、上吹きランスは単孔ラバールランス、上吹きする粉体はCaO、キャリアガスはAr、溶鋼量は250ton規模、溶鋼温度は1600〜1640℃とした。粉体の上吹き処理を行う際に、スロート部の長さlt、スロート径Dt、出口径De、雰囲気圧力Pe、キャリアガス流量Q、粉体供給速度WPBおよびランス高さHを操作因子として以下の表1のように変化させ、他の精錬条件は以下の通りとした。
粉体上吹き処理前のS濃度[%S]:0.0020〜0.0030質量%
粉体上吹き処理前の溶鋼の組成:
C濃度[%C]:0.05〜0.20質量%
Si濃度[%Si]:0.05〜0.30質量%
Mn濃度[%Mn]:0.50〜1.50質量%
Al濃度[%Al]:0.10〜0.20質量%
粉体上吹き処理時間:10min
After the molten steel that has been blown from the converter is discharged into a ladle, the ladle is transported to the RH vacuum degassing device, a vacuum tank equipped with a top-blown lance is inserted into the molten steel in the pan, and the molten steel is evacuated. The powder was sucked into the tank and the powder top blowing process was started. Examples 1 and 2 (Example of the present invention) and Comparative Examples are all for desulfurization treatment, the top-blown lance is a single-hole rubber lance, the top-blown powder is CaO, the carrier gas is Ar, the amount of molten steel is 250 ton scale, and molten steel. The temperature was 1600 to 1640 ° C. When performing the blowing on the powder processing, the length l t of the throat portion, the throat diameter D t, outlet diameter D e, the ambient pressure P e, the carrier gas flow rate Q, the powder feed rate W PB and lance height H Was changed as an operating factor as shown in Table 1 below, and other refining conditions were as follows.
S concentration [% S] before powder top blowing treatment: 0.0020 to 0.0030% by mass
Composition of molten steel before powder top blowing treatment:
C concentration [% C]: 0.05 to 0.20% by mass
Si concentration [% Si]: 0.05 to 0.30% by mass
Mn concentration [% Mn]: 0.50 to 1.50% by mass
Al concentration [% Al]: 0.10 to 0.20% by mass
Powder top blowing processing time: 10 min

Figure 0006926928
Figure 0006926928

粉体上吹き処理の前後に溶鋼サンプルを採取し、溶鋼サンプルの一部を化学分析に供することで処理前後のS濃度[%S]を得て、前述の(5)式にて粉体反応効率指数を算出した。各条件における粉体反応効率指数の値を表2に併せて示す。なお、上述した効果の確認方法に則り、粉体反応効率指数が0.150以上で発明の効果が特に顕著に得られたものを◎、顕著ではないが粉体反応効率指数が0.100以上で発明の効果が得られたものを○、発明の効果が得られなかったものを×と評価した。また、表1および表2中の下線で示している項目は、本発明を満足しない値を示している。 A molten steel sample is taken before and after the powder top blowing treatment, and a part of the molten steel sample is subjected to chemical analysis to obtain an S concentration [% S] before and after the treatment, and the powder reaction is carried out by the above formula (5). The efficiency index was calculated. Table 2 also shows the values of the powder reaction efficiency index under each condition. In addition, according to the above-mentioned method for confirming the effect, the one in which the effect of the invention was particularly remarkable when the powder reaction efficiency index was 0.150 or more was ⊚, and the powder reaction efficiency index was 0.100 or more, although it was not remarkable. Those in which the effect of the invention was obtained were evaluated as ◯, and those in which the effect of the invention was not obtained were evaluated as ×. The underlined items in Tables 1 and 2 show values that do not satisfy the present invention.

Figure 0006926928
Figure 0006926928

実施例1のCh.No.1〜6は、前述の(1)式〜(4)式のすべての条件を全て満たしていたため、発明の効果が特に顕著に得られた。
実施例2のCh.No.7〜11は、前述の(4)式の条件を満たしていなかったが、それ以外の条件を全て満たしていたため、発明の効果が得られた。(4)式の条件を満たしていないとノズルから噴射された粉体の速度がやや減衰し、湯面に到達した時点での粉体速度がやや低位となったため、発明の効果が小さくなったと考えられる。したがって、本発明の効果を最大限発揮するためには、(1)式〜(3)式の条件に加えて(4)式の条件も併せて満たすことが望ましいことが確認できた。
Ch. Of Example 1. No. Since all of the above-mentioned equations (1) to (4) were satisfied in 1 to 6, the effect of the invention was particularly remarkable.
Ch. Of Example 2 No. Nos. 7 to 11 did not satisfy the condition of the above formula (4), but all of the other conditions were satisfied, so that the effect of the invention was obtained. If the condition of Eq. (4) is not satisfied, the speed of the powder ejected from the nozzle is slightly attenuated, and the powder speed at the time of reaching the molten metal surface is slightly low, so that the effect of the invention is reduced. Conceivable. Therefore, in order to maximize the effect of the present invention, it was confirmed that it is desirable to satisfy the conditions of the formulas (4) in addition to the conditions of the formulas (1) to (3).

一方、比較例のCh.No.12〜16は、必須の条件を一部満たしていなかったため、発明の効果が得られなかったものである。Ch.No.12は、雰囲気圧力が100Torr以上であったため、キャリアガスジェットの動圧、流速が大きく減衰したことに加え、雰囲気の空気抵抗が大きく噴射後の粉体速度が大きく低下してしまい、発明の効果が得られなかったと考えられる。したがって、粉体上吹き処理中の雰囲気圧力は必ず100Torr未満とする必要があることが確認できた。 On the other hand, Ch. No. Nos. 12 to 16 did not satisfy some of the essential conditions, so that the effects of the invention could not be obtained. Ch. No. In No. 12, since the atmospheric pressure was 100 Torr or more, the dynamic pressure and the flow velocity of the carrier gas jet were greatly attenuated, and the air resistance of the atmosphere was large, and the powder velocity after injection was greatly reduced. It is probable that was not obtained. Therefore, it was confirmed that the atmospheric pressure during the powder top blowing treatment must always be less than 100 Torr.

Ch.No.13および14は、粉体上吹き処理における上吹きランスの比lt/Dtが5.0を下回っていたため、粉体の加速距離が不十分であり、発明の効果が得られなかった。したがって、上吹きランスの比lt/Dtは必ず5.0以上とする必要があることが確認できた。 Ch. No. In Nos. 13 and 14, since the ratio l t / D t of the top blowing lance in the powder top blowing treatment was less than 5.0, the acceleration distance of the powder was insufficient and the effect of the invention could not be obtained. Therefore, it was confirmed that the ratio l t / D t of the top blow lance must always be 5.0 or more.

Ch.No.15および16は、粉体上吹き処理におけるノズル前圧P0が(2)式の条件を満たしていなかったため、Ch.No.13および14と同様に粉体の加速が不十分であり、発明の効果が得られなかった。したがって、ノズル前圧P0は必ず(2)式の条件を満たす必要があることが確認できた。 Ch. No. In Nos. 15 and 16, since the nozzle pre-pressure P 0 in the powder top blowing process did not satisfy the condition of Eq. (2), Ch. No. Similar to 13 and 14, the acceleration of the powder was insufficient, and the effect of the invention could not be obtained. Therefore, it was confirmed that the nozzle pre-pressure P 0 must satisfy the condition of Eq. (2).

Claims (2)

雰囲気圧力Pe(Torr)が100Torr未満の減圧下にてキャリアガスとともに溶鋼表面に粒径の平均値が20〜100μmである精錬用粉体を吹き付ける処理において、
前記精錬用粉体を吹き付ける上吹きランスの先端形状が円筒形のスロート部と円錐形の径拡大部とからなり、
前記スロート部のスロート径を0.01〜0.05m、前記径拡大部の出口径を0.04〜0.1m、前記上吹きランスのランス高さを2.6〜4.2mとし、
前記上吹きランスとして、前記スロート部の直径Dt(m)と前記スロート部の長さlt(m)とが(1)式の関係を満たす上吹き単孔ランスを用い、かつ前記キャリアガスにArを用い、その供給条件が(2)式〜(3)式の条件を満たすことを特徴とする、溶鋼の精錬方法。
t/Dt≧5.0 ・・・(1)
0≧540×(lt/Dt-0.27 ・・・(2)
0=0.089・Q/Dt 2 ・・・(3)
ここで、P0:ノズル前圧(Torr)、Q:キャリアガス流量(Nm3/min)である。
In the process ambient pressure P e (Torr) is the average value of the particle size the molten steel surface together with a carrier gas at a reduced pressure of less than 100Torr blows refining powder is 20 to 100 [mu] m,
The tip shape of the top-blowing lance that sprays the refining powder consists of a cylindrical throat portion and a conical diameter-expanding portion.
The throat diameter of the throat portion is 0.01 to 0.05 m, the outlet diameter of the diameter expansion portion is 0.04 to 0.1 m, and the lance height of the top blow lance is 2.6 to 4.2 m.
As the top-blown lance, a top-blown single-hole lance in which the diameter D t (m) of the throat portion and the length l t (m) of the throat portion satisfy the relationship of the equation (1) is used, and the carrier gas is used. characterized with Ar, supply conditions of that is (2) to (3) satisfying the condition equation, the molten steel process of refining.
l t / D t ≧ 5.0 ・ ・ ・ (1)
P 0 ≧ 540 × (l t / D t) -0.27 ··· (2)
P 0 = 0.089 ・ Q / D t 2・ ・ ・ (3)
Here, P 0 : nozzle front pressure (Torr), Q: carrier gas flow rate (Nm 3 / min).
前記上吹きランスを用いて溶鋼表面に前記精錬用粉体を吹き付ける際に、さらに(4)式の条件を満たすことを特徴とする、請求項1に記載の溶鋼の精錬方法。
(P0/Pe0.2(De/H)0.1・(lt/WPB0.1≧0.6 ・・・(4)
ここで、De:前記径拡大部の出口直径(m)H:ランス−湯面間距離(m)、WPB:粉体供給速度(kg/min)である。
The method for refining molten steel according to claim 1, wherein when the refining powder is sprayed onto the surface of the molten steel using the top-blown lance, the condition of the equation (4) is further satisfied.
(P 0 / P e) 0.2 (D e / H) 0.1 · (l t / W PB) 0.1 ≧ 0.6 ··· (4)
Here, De : the outlet diameter (m) of the enlarged diameter portion, H: the distance between the lance and the molten metal surface (m), and W PB : the powder supply rate (kg / min).
JP2017201756A 2017-10-18 2017-10-18 Refining method of molten steel Active JP6926928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017201756A JP6926928B2 (en) 2017-10-18 2017-10-18 Refining method of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017201756A JP6926928B2 (en) 2017-10-18 2017-10-18 Refining method of molten steel

Publications (2)

Publication Number Publication Date
JP2019073780A JP2019073780A (en) 2019-05-16
JP6926928B2 true JP6926928B2 (en) 2021-08-25

Family

ID=66544675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017201756A Active JP6926928B2 (en) 2017-10-18 2017-10-18 Refining method of molten steel

Country Status (1)

Country Link
JP (1) JP6926928B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7163780B2 (en) * 2019-01-10 2022-11-01 日本製鉄株式会社 Molten steel refining method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598536B2 (en) * 1994-06-21 2004-12-08 Jfeスチール株式会社 Lance
DE19755876C2 (en) * 1997-12-04 2000-02-24 Mannesmann Ag Blow lance for treating metallic melts and method for blowing in gases
JP3503474B2 (en) * 1998-05-26 2004-03-08 住友金属工業株式会社 Lance for top blowing refining combined with powder and oxygen
JP3654216B2 (en) * 2001-07-31 2005-06-02 住友金属工業株式会社 Vacuum refining method
JP2003138312A (en) * 2001-11-01 2003-05-14 Nkk Corp Method for refining molten metal and top-blowing lance for refining molten metal
CN104126019B (en) * 2011-12-20 2017-06-23 杰富意钢铁株式会社 Converter steel making method
JP6458440B2 (en) * 2014-10-17 2019-01-30 新日鐵住金株式会社 Metal removal device and vacuum metal removal method in vacuum degassing tank

Also Published As

Publication number Publication date
JP2019073780A (en) 2019-05-16

Similar Documents

Publication Publication Date Title
AU6362599A (en) Integrated device to inject technological gases and powdered material and methodto use the device for the processing of baths of molten metal
TWI679283B (en) Oxygen supply refining method of molten iron and top-blowing spray gun
JP6926928B2 (en) Refining method of molten steel
CN105624367B (en) Refining device and method for controlling nitrogen content of molten steel
JP2010138446A (en) METHOD FOR PREVENTING NITROGEN ABSORPTION OF Cr-CONTAINING MOLTEN STEEL
WO2002040721A1 (en) Converter oxygen blowing method and upward blowing lance for converter oxygen blowing
KR102254941B1 (en) How to operate converter
RU2369644C2 (en) Method of nitriding of liquid steel in ladle
JP6372540B2 (en) Vacuum degassing apparatus and vacuum degassing treatment method
JP7031499B2 (en) Refining method of molten steel
JP6631400B2 (en) Desulfurization method of molten steel
JP3654216B2 (en) Vacuum refining method
JP6358039B2 (en) Desulfurization method for molten steel
JP6372541B2 (en) Vacuum degassing apparatus and vacuum degassing treatment method
JP7163780B2 (en) Molten steel refining method
JP2002226907A (en) Lance for refining molten metal and refining method
JPH1112633A (en) Lance for refining molten metal and refining method
JPH083618A (en) Lance
JPS6156301B2 (en)
JP5061535B2 (en) Method for refining molten steel in RH vacuum degassing equipment
JP7372546B2 (en) Melting furnace refining method
JP4466287B2 (en) Method of refining molten steel under reduced pressure and top blowing lance for refining
JP6638538B2 (en) RH type vacuum degassing equipment
JP2024148825A (en) Method for denitrification of molten steel
JP2006070292A (en) Method for refining molten steel under reduced pressure and top-blowing lance for refining

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210719

R151 Written notification of patent or utility model registration

Ref document number: 6926928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151