JP6631400B2 - Desulfurization method of molten steel - Google Patents

Desulfurization method of molten steel Download PDF

Info

Publication number
JP6631400B2
JP6631400B2 JP2016098005A JP2016098005A JP6631400B2 JP 6631400 B2 JP6631400 B2 JP 6631400B2 JP 2016098005 A JP2016098005 A JP 2016098005A JP 2016098005 A JP2016098005 A JP 2016098005A JP 6631400 B2 JP6631400 B2 JP 6631400B2
Authority
JP
Japan
Prior art keywords
molten steel
powder
desulfurization
vac
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016098005A
Other languages
Japanese (ja)
Other versions
JP2017206719A (en
Inventor
惇史 久志本
惇史 久志本
秀平 笠原
秀平 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016098005A priority Critical patent/JP6631400B2/en
Publication of JP2017206719A publication Critical patent/JP2017206719A/en
Application granted granted Critical
Publication of JP6631400B2 publication Critical patent/JP6631400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、RH真空脱ガス装置にて、上吹き条件および溶鋼の流動を適正化して効率良くかつ安定的に極低硫鋼を溶製する溶鋼の脱硫方法に関する。   The present invention relates to a method for desulfurizing molten steel in which RH vacuum degassing equipment optimizes the conditions of top blowing and the flow of molten steel to efficiently and stably produce extremely low sulfur steel.

近年、溶鋼をより高純度化する要求が高まっており、特にS濃度が10ppm以下の極低硫鋼を溶製するためには溶銑脱硫だけでは不十分であり、溶鋼段階での脱硫プロセスが必須となる。溶鋼段階での脱硫手法として、例えばRH等の環流型真空脱ガス装置の真空槽内に吸引された溶鋼表面に、キャリアガスとともにCaOを含有する脱硫剤を吹き付けて脱硫処理を施す手法が挙げられる。   In recent years, there has been an increasing demand for higher purity molten steel. In particular, hot metal desulfurization alone is not enough to produce ultra-low sulfur steel having an S concentration of 10 ppm or less, and a desulfurization process at the molten steel stage is essential. It becomes. As a desulfurization method at the molten steel stage, for example, there is a method of performing a desulfurization treatment by spraying a desulfurizing agent containing CaO together with a carrier gas onto a surface of molten steel sucked into a vacuum tank of a reflux type vacuum degassing device such as RH. .

このように脱硫剤を吹付けて溶鋼の脱硫を促進させる手法として、脱硫剤の化学反応を促進させる手法と、吹き付けた脱硫剤粉体と溶鋼との反応効率を向上させる手法とに大別される。しかしながら、近年では環境負荷を軽減する等の観点から精錬能の高いCaF2の使用が規制されつつあるため、脱硫剤の化学反応を促進させて脱硫を大幅に促進させることは極めて困難である。したがって、粉体の反応効率を向上させて脱硫を促進させる手法が最も現実的であると考えられる。 As described above, methods of spraying a desulfurizing agent to promote desulfurization of molten steel are roughly classified into a method of promoting a chemical reaction of the desulfurizing agent and a method of improving the reaction efficiency between the sprayed desulfurizing agent powder and the molten steel. You. However, in recent years, the use of CaF 2 having high refining ability has been regulated from the viewpoint of reducing the environmental load and the like, and it is extremely difficult to promote the chemical reaction of the desulfurizing agent to greatly promote desulfurization. Therefore, it is considered that the most practical method is to improve the reaction efficiency of the powder to promote desulfurization.

粉体の反応効率を向上させる方法として、例えば特許文献1には、15〜50重量%のCaF2及び20重量%以下のMgOを含みCaOを主成分とする粉体状脱硫剤を速度1〜2kg/分/トンで上吹きランスから真空槽内の溶鋼の表面に吹き付ける脱硫方法が開示されている。この方法は、脱硫時間を短縮するために粉体を過剰に供給すると、溶鋼中での粉体滞留時間が短くなり反応効率がむしろ低下するため、供給速度に最適値が存在するという考え方に基づいている。 As a method for improving the reaction efficiency of powder, for example, Patent Document 1 discloses a powdery desulfurizing agent containing CaF 2 of 15 to 50% by weight and MgO of 20% by weight or less and containing CaO as a main component at a rate of 1 to 5. There is disclosed a desulfurization method in which a surface of molten steel in a vacuum chamber is sprayed from an upper blowing lance at a rate of 2 kg / min / ton. This method is based on the idea that if the powder is excessively supplied to shorten the desulfurization time, the residence time of the powder in the molten steel is shortened and the reaction efficiency is rather reduced, so that there is an optimum value for the supply speed. ing.

しかしながら、粉体の反応効率は溶鋼の流動および上吹き条件によって大きく変化し、さらに設備ごとに装置特性および環流条件が大きく異なるため、粉体を供給する速度の条件を規定しただけでは吹き付けられた粉体の反応効率が必ずしも最適とは言えないため、安定して粉体の反応効率を高めることができない。また、特許文献1に記載の方法は、精錬能の高いCaF2を使用することを前提としており、Fを含有しない脱硫剤を使用する際には適用できない。 However, the reaction efficiency of the powder varies greatly depending on the flow and top blowing conditions of the molten steel, and since the equipment characteristics and reflux conditions vary greatly from facility to facility, spraying was performed only by specifying the conditions for the powder supply speed. Since the reaction efficiency of the powder is not always optimal, it is not possible to stably increase the reaction efficiency of the powder. Further, the method described in Patent Document 1 is based on the premise that CaF 2 having high refining ability is used, and cannot be applied when a desulfurizing agent containing no F is used.

また、特許文献2には、上吹き用ランスの下端と真空槽内の溶鋼表面との鉛直距離Hと、真空槽内の真空度Pとに応じて精錬剤の供給速度Vを特定の条件に制御する精錬剤の上吹き方法が開示されている。この方法は、HおよびPに依存するキャリアガスジェットのエネルギーに対し、粉体供給速度が小さいと粉体が受けるエネルギーが増大し飛散ロスが促進し、粉体供給速度が大きいと個々の粒子に働くエネルギーが小さくなって粉体速度が遅くなり、溶鋼表面の粉体吹込み領域で粉体が堆積してしまうため、これらの関係に適正値が存在するという考え方に基づいている。   Patent Document 2 discloses that a supply speed V of a refining agent is set to a specific condition according to a vertical distance H between a lower end of an upper blowing lance and a surface of molten steel in a vacuum chamber and a degree of vacuum P in the vacuum chamber. A method of controlling the refining agent overblowing is disclosed. According to this method, when the powder supply speed is low, the energy received by the powder is increased and the scattering loss is promoted with respect to the energy of the carrier gas jet depending on H and P. The working energy is reduced, the powder speed is reduced, and the powder is deposited in the powder injection region on the surface of the molten steel.

しかしながら、特許文献2に記載の条件は、上述したように溶鋼の流動に係る条件が含まれておらず、特許文献2に記載の設備と異なる場合に同様の指標で粉体の反応効率が必ずしも最適とは言えないため、安定して粉体の反応効率を高めることができない。   However, the conditions described in Patent Literature 2 do not include the conditions related to the flow of molten steel as described above, and the reaction efficiency of the powder is not necessarily the same as that of the equipment described in Patent Literature 2 with the same index. Since it is not optimal, the reaction efficiency of the powder cannot be stably increased.

さらに、特許文献3には、CaOおよびCaF2を主成分とする脱硫フラックスを、フラックスの吹込み速度(kg/分)/溶鋼環流量(ton/分)の値が3kg/ton以下の条件で吹き込む脱硫精錬法が開示されている。この方法は、粉体の供給速度と溶鋼の環流による溶鋼内への分散性とのバランスを適正化し、粉体の吹き込み領域での凝集を抑制させて粉体効率を向上させるという考え方に基づく。 Further, Patent Document 3 discloses that a desulfurization flux containing CaO and CaF 2 as a main component is supplied under the condition that the value of flux blowing rate (kg / min) / fluid steel ring flow rate (ton / min) is 3 kg / ton or less. A blowing desulfurization refining process is disclosed. This method is based on the idea of optimizing the balance between the powder supply rate and the dispersibility of the molten steel in the molten steel due to the reflux, and suppressing the agglomeration of the powder in the blowing region to improve the powder efficiency.

しかしながら、特許文献3に記載の条件は、環流量という溶鋼の流動に係るパラメータが含まれているものの、上吹き粉体の反応は、装置全体の環流ではなく真空槽内の局所的な流動が強く影響している。また、真空槽内の局所的な流動は、装置全体の環流量だけでは規定することはできない。したがって、操業形態によっては特許文献3に記載の条件では粉体の反応効率が必ずしも最適とは言えないため、安定して粉体の反応効率を高めることができない。また、この技術では、特許文献1に記載の方法と同様に精錬能の高いCaF2の使用を前提としており、Fを含有しない脱硫剤を使用する際には適用できない。 However, although the conditions described in Patent Document 3 include a parameter relating to the flow of molten steel, which is a ring flow rate, the reaction of the top-blown powder is not a reflux of the entire apparatus but a local flow in a vacuum chamber. It has a strong influence. Further, the local flow in the vacuum chamber cannot be defined only by the circulating flow rate of the entire apparatus. Therefore, depending on the operation mode, the reaction efficiency of the powder is not always optimal under the conditions described in Patent Document 3, and the reaction efficiency of the powder cannot be stably increased. In addition, this technique is based on the premise that CaF 2 having high refining ability is used as in the method described in Patent Document 1, and cannot be applied when a desulfurizing agent containing no F is used.

特開平11−6009号公報JP-A-11-6009 特開2001−271117号公報JP 2001-271117 A 特開平8−269533号公報JP-A-8-269533

樫村ら:日本機械学会第73期全国大会講演論文集(II) p173Kashimura et al .: Proceedings of the 73rd Annual Meeting of the Japan Society of Mechanical Engineers (II) p173

上記したような従来の手法では、脱硫剤や設備の操業条件によらず安定して極低硫鋼を溶製することは困難であった。   With the conventional method as described above, it has been difficult to stably produce extremely low sulfur steel regardless of the desulfurizing agent and the operating conditions of the equipment.

そこで本発明は、粉体状の脱硫剤の反応効率を安定的に高めて極低硫鋼を溶製可能な溶鋼の脱硫方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for desulfurizing molten steel capable of stably increasing the reaction efficiency of a powdery desulfurizing agent to produce ultra-low sulfur steel.

本発明者らは、吹き込まれた粉体の分散性および移動速度は真空槽内の溶鋼の表面流速に依存していると考え、粉体供給速度と表面流速とのバランスを制御することにより吹き込み領域における粉体の堆積状態を緩和できると考えた。また、本発明者らは、吹き込み領域での粉体の堆積を緩和することで、粉体の凝集抑制を図るとともに溶鋼へ粉体が侵入しやすくし、新たにキャリアガスとともに吹き付けられた粉体が堆積した粉体に弾かれることによる飛散ロスを低減でき、粉体の利用効率および脱硫速度が大幅に向上することを見出した。   The present inventors believe that the dispersibility and moving speed of the injected powder depend on the surface flow velocity of the molten steel in the vacuum chamber, and that the injection is performed by controlling the balance between the powder supply rate and the surface flow velocity. It was thought that the accumulation state of the powder in the region could be alleviated. In addition, the present inventors have attempted to reduce the accumulation of powder in the blowing region, thereby suppressing the agglomeration of the powder and facilitating the penetration of the powder into the molten steel, and newly spraying the powder together with the carrier gas. It has been found that the scattering loss caused by being repelled by the deposited powder can be reduced, and the utilization efficiency and desulfurization rate of the powder are greatly improved.

さらに本発明者らは、吹き込み領域で粉体が堆積する現象は、粉体供給速度WPB(kg/min)と表面流速vlとの比WPB/vlがある値以上で起こりやすいことを見出し、同指標に脱硫効率と脱硫速度が最大となる最適値が存在することを見出した。 Furthermore, the present inventors have found that the phenomenon of powder accumulation in the blowing region tends to occur when the ratio W PB / v 1 between the powder supply speed W PB (kg / min) and the surface flow velocity v l is equal to or greater than a certain value. And found that the index has an optimum value at which the desulfurization efficiency and the desulfurization rate are maximized.

一方で、上吹きされた粉体はキャリアガスに随伴して移動するため、粉体はキャリアガスジェットが形成するキャビティの範囲に堆積すると考えられる。本発明者らは、上記した吹き込み領域での粉体の堆積を緩和するだけでなく、さらに粉体の堆積を適切に制御することにより更に粉体の利用効率および脱硫速度が向上することを見出し、キャビティ径Lと真空槽内径DVACとの比L/DVACに適正範囲があることを見出した。 On the other hand, since the powder blown upward moves with the carrier gas, the powder is considered to accumulate in the area of the cavity formed by the carrier gas jet. The present inventors have found that not only the powder accumulation in the blowing region described above is reduced, but also the powder utilization efficiency and the desulfurization rate are further improved by appropriately controlling the powder accumulation. It has been found that the ratio L / D VAC between the cavity diameter L and the vacuum chamber inner diameter D VAC has an appropriate range.

そこで本発明は、RH真空脱ガス装置にて、効率良くかつ安定的に極低硫鋼を溶製するための粉体の脱硫剤の供給条件および溶鋼の表面流動の適正条件を明確にすることでなされたものであり、下記に記載の通りである。
(1)RH真空脱ガス装置にて環流ガスを溶鋼に吹き込んで前記溶鋼を循環させ、真空槽の内部に設置された上吹きランスから、CaOおよびAl23を合計で60質量%以上含有し、かつCaO/Al23比が1.2〜2.0の条件を満たす粉状の脱硫剤をキャリアガスとともに吹き付けて前記溶鋼の脱硫を行う際に、前記粉状の脱硫剤の粉体供給速度および前記真空槽内の溶鋼の表面流速との関係が(1)〜(3)式の条件を満たし、かつキャリアガスが形成するキャビティ径と前記真空槽の内径との関係が以下の(4)式の条件を満たすことを特徴とする溶鋼の脱硫方法。
2.0≦WPB/vl≦3.5 ・・・(1)
l=Q/(7・h・DVAC) ・・・(2)
Q=11.4G1/3LEG 4/3・{ln(P1/PVAC)}1/3 ・・・(3)
0.3≦L/DVAC≦0.5 ・・・(4)
ここで、vlは前記真空槽内の溶鋼の表面流速(m/min)、hは前記真空槽内の溶鋼の浴深(m)、DVACは前記真空槽の内径(m)、Qは溶鋼の環流量(ton/min)、Gは環流ガス流量(Nl/min)、DLEGは浸漬管の内径(m)、P1は前記環流ガスのガス吹き込み位置の圧力(Torr)、PVACは前記真空槽内の圧力(Torr)、WPBは粉体供給速度(kg/min)、Lはキャリアガスが形成するキャビティ径(m)を表す。
Therefore, the present invention is to clarify the supply conditions of powder desulfurizing agent and the appropriate conditions of surface flow of molten steel for efficiently and stably producing ultra-low sulfur steel in an RH vacuum degassing apparatus. And as described below.
(1) Reflux gas is blown into molten steel by an RH vacuum degassing device to circulate the molten steel, and CaO and Al 2 O 3 are contained in a total of 60% by mass or more from an upper blowing lance installed inside the vacuum chamber. and, and when the CaO / Al 2 O 3 ratio performs desulfurization of the molten steel by blowing with a carrier gas to satisfy powdery desulfurizing agent 1.2 to 2.0, powder of the powdery desulfurizing agent The relationship between the body supply speed and the surface flow velocity of the molten steel in the vacuum chamber satisfies the conditions of equations (1) to (3), and the relation between the cavity diameter formed by the carrier gas and the inner diameter of the vacuum chamber is as follows. A method for desulfurizing molten steel, which satisfies the condition of the expression (4).
2.0 ≦ W PB / v l ≦ 3.5 (1)
v l = Q / (7 · h · D VAC ) (2)
Q = 11.4G 1/3 D LEG 4/3 · {ln (P 1 / P VAC )} 1/3 (3)
0.3 ≦ L / D VAC ≦ 0.5 (4)
Here, v l is the surface velocity of the molten steel in the vacuum chamber (m / min), h is the bath depth of the molten steel in the vacuum chamber (m), D VAC is the inner diameter of the vacuum chamber (m), and Q is The ring flow rate of molten steel (ton / min), G is the reflux gas flow rate (Nl / min), D LEG is the inner diameter (m) of the immersion tube, P 1 is the pressure (Torr) at the gas injection position of the reflux gas, P VAC Represents the pressure in the vacuum chamber (Torr), W PB represents the powder supply rate (kg / min), and L represents the cavity diameter (m) formed by the carrier gas.

本発明によれば、脱硫剤組成によらず、かつ設備の増設を行うことなく粉体状の脱硫剤の反応効率を安定的に高くして極低硫鋼を溶製可能な溶鋼の脱硫方法を提供することができる。   According to the present invention, a method for desulfurizing molten steel capable of smelting ultra-low sulfur steel by stably increasing the reaction efficiency of a powdery desulfurizing agent without depending on the desulfurizing agent composition and without adding equipment Can be provided.

キャビティ径の算出方法を説明するための図である。It is a figure for explaining a calculation method of a cavity diameter. 粉体供給速度WPB(kg/min)と表面流速vl(m/min)との比WPB/vlと脱硫速度定数KSとの関係を示す図である。It is a figure which shows the relationship between the ratio W PB / v l of the powder supply speed W PB (kg / min) and the surface flow velocity v l (m / min) and the desulfurization rate constant K S. 粉体供給速度WPB(kg/min)と表面流速vl(m/min)との比WPB/vlと脱硫k値との関係を示す図である。It is a figure which shows the relationship between the ratio W PB / v l of the powder supply speed W PB (kg / min) and the surface flow velocity v l (m / min) and the desulfurization k value.

以下、本発明について図面を参照しながら説明する。以下に説明する「RH真空脱ガス装置」とは、真空槽を有する溶鋼処理装置であり、「環流処理」とは、RH真空脱ガス装置にて溶鋼を環流させる処理のことを指す。また、「PB(Powder Blowing)脱硫処理」とは、真空槽内部に設置された上吹きランスから、キャリアガスとともに粉状の脱硫剤を吹き付けて溶鋼の脱硫を行う処理のことを指す。   Hereinafter, the present invention will be described with reference to the drawings. The “RH vacuum degassing device” described below is a molten steel processing device having a vacuum chamber, and the “reflux process” refers to a process of circulating molten steel by the RH vacuum degassing device. In addition, “PB (Power Blowing) desulfurization treatment” refers to a treatment for desulfurizing molten steel by spraying a powdery desulfurizing agent together with a carrier gas from an upper blowing lance installed inside a vacuum chamber.

本発明において、転炉等の精錬炉から取鍋に出鋼された溶鋼は、脱酸、合金添加等の成分調整を終えた後、RH真空脱ガス装置にて環流処理される。まず、上吹きランスを具備した真空槽を取鍋内の溶鋼に浸漬し、溶鋼を真空槽内に吸引後、真空槽内にて脱硫剤粉体をキャリアガスとともに上吹きランスから上吹きし、PB脱硫処理を行う。PB脱硫処理における上吹きランスのランスノズルの形状は問わないが、ノズルにスロート部をもつ、一般的にラバールノズルと呼称されるランスノズルの適用が望ましい。   In the present invention, molten steel discharged from a refining furnace such as a converter into a ladle is subjected to a reflux treatment in an RH vacuum degassing apparatus after completing component adjustment such as deoxidation and alloy addition. First, a vacuum tank equipped with an upper blowing lance is immersed in molten steel in a ladle, and after sucking the molten steel into the vacuum tank, the desulfurizing agent powder is blown upward together with a carrier gas from the upper blowing lance in the vacuum tank. Perform PB desulfurization treatment. The shape of the lance nozzle of the upper blowing lance in the PB desulfurization treatment is not limited, but it is preferable to use a lance nozzle having a throat portion in the nozzle and generally called a Laval nozzle.

本発明では、粉体供給速度WPB(kg/min)と表面流速vl(m/min)との比WPB/vlが以下の(1)式を満たし、かつキャビティ径L(m)と真空槽の内径DVAC(m)との比L/DVACが以下の(4)式を満たすようにPB脱硫処理を行う。
2.0≦WPB/vl≦3.5 ・・・(1)
0.3≦L/DVAC≦0.5 ・・・(4)
In the present invention, the ratio W PB / v 1 between the powder supply speed W PB (kg / min) and the surface flow velocity v l (m / min) satisfies the following expression (1), and the cavity diameter L (m) The PB desulfurization treatment is performed so that the ratio L / D VAC between the pressure and the inner diameter D VAC (m) of the vacuum tank satisfies the following expression (4).
2.0 ≦ W PB / v l ≦ 3.5 (1)
0.3 ≦ L / D VAC ≦ 0.5 (4)

まず、表面流速vlについて説明する。真空槽内の溶鋼の表面流速vl(m/min)は、(3)式の溶鋼環流量Q(ton/min)、真空槽内の溶鋼の浴深h(m)および真空槽の内径DVAC(m)を用いて(2)式で表される。
l=Q/(7・h・DVAC) ・・・(2)
Q=11.4G1/3LEG 4/3・{ln(P1/PVAC)}1/3 ・・・(3)
First, the surface flow velocity v l will be described. The surface flow velocity v l (m / min) of the molten steel in the vacuum chamber is represented by the following equation (3): the molten steel ring flow rate Q (ton / min), the bath depth h (m) of the molten steel in the vacuum chamber, and the inner diameter D of the vacuum chamber. It is expressed by equation (2) using VAC (m).
v l = Q / (7 · h · D VAC ) (2)
Q = 11.4G 1/3 D LEG 4/3 · {ln (P 1 / P VAC )} 1/3 (3)

ここで、Gは環流ガス流量(Nl/min)、DLEGは浸漬管内径(m)、P1は環流ガスのガス吹き込み位置の圧力(Torr)、PVACは真空槽内の圧力(Torr)を表している。また、真空槽が楕円である場合、真空槽の内径DVACは、真空槽の短径の値を用いる。 Here, G is the reflux gas flow rate (Nl / min), D LEG is the inner diameter of the immersion tube (m), P 1 is the pressure at the gas injection position of the reflux gas (Torr), and P VAC is the pressure in the vacuum chamber (Torr). Is represented. When the vacuum chamber is elliptical, the value of the short diameter of the vacuum chamber is used as the inner diameter D VAC of the vacuum chamber.

次に、キャビティ径Lの算出方法を以下に述べる。図1は、キャビティ径の算出方法を説明するための図である。ランスノズル1のスロート部2におけるノズル前圧P0(Torr)は、キャリアガスのガス流量Qgas(Nm3/min)、スロート径Ds(m)およびキャリアガスのモル質量Mgas(kg/kmol)を用いて以下の(5)式で表される。
0=0.55・Qgas/(Ds 2×Mgas 0.5) ・・・(5)
Next, a method of calculating the cavity diameter L will be described below. FIG. 1 is a diagram for explaining a method of calculating a cavity diameter. The nozzle pre-pressure P 0 (Torr) in the throat portion 2 of the lance nozzle 1 is determined by the gas flow rate Q gas (Nm 3 / min) of the carrier gas, the throat diameter D s (m), and the molar mass M gas (kg / kg) of the carrier gas. kmol) and is represented by the following equation (5).
P 0 = 0.55 · Q gas / (D s 2 × M gas 0.5 ) (5)

ランスノズル1から出たジェットは超音速領域(コア)を形成するためジェットは拡散しないが、コアより下部は亜音速領域であるため、図1に示すように流速が減衰しながら一定の広がり角度で溶鋼3に向かって拡散していく。ここで、コアの長さhcore(m)に関しては、以下の(6)式が非特許文献1に報告されており、かつコアの幅はランス出口径Deと同等であり、コア以下ではジェットが6°の角度で広がると仮定した場合、ジェットにより溶鋼直上に形成されるキャビティ径L(m)は、以下の(7)式で表される。
core=0.608・(P0/PVAC0.5・De ・・・(6)
L=2(H−hcore)tan6°+De ・・・(7)
The jet that emerges from the lance nozzle 1 forms a supersonic region (core) and does not diffuse. However, since the lower part of the core is a subsonic region, the flow velocity is attenuated as shown in FIG. And diffuses toward the molten steel 3. Here, with respect to the length of the core h core (m), are the following (6) are reported in Non-Patent Document 1, and the width of the core is equal to the lance outlet diameter D e, the core below Assuming that the jet expands at an angle of 6 °, the cavity diameter L (m) formed immediately above the molten steel by the jet is expressed by the following equation (7).
h core = 0.608 · (P 0 / P VAC ) 0.5 · D e (6)
L = 2 (Hh core ) tan6 ° + D e (7)

ここで、Hはランス−湯面間距離(m)を表す。このようにキャビティ径Lは、例えばランスの高さ、ノズル径およびキャリアガスの流量などを制御することで変更することが可能である。   Here, H represents the distance (m) between the lance and the molten metal surface. As described above, the cavity diameter L can be changed by controlling, for example, the height of the lance, the nozzle diameter, the flow rate of the carrier gas, and the like.

続いて、上述の(1)式および(4)式における上限値および下限値を設定した理由について説明する。脱硫効率を向上させるためには、吹き込み領域での粉体の堆積量の指標であるWPB/vlを適正な範囲に制御する必要がある。そこで、適正なWPB/vlの範囲を確かめるために、250tonの溶鋼をRH真空脱ガス装置にてPB脱硫処理を実施した。 Next, the reason why the upper limit value and the lower limit value in the above equations (1) and (4) are set will be described. To improve the desulfurization efficiency, it is necessary to control the W PB / v l a proper range is an indication of the powder deposition amount in the blowing region. Then, in order to confirm an appropriate range of W PB / v l , 250 ton molten steel was subjected to PB desulfurization treatment by an RH vacuum degassing apparatus.

本発明の効果は、脱硫速度および脱硫粉体反応効率にて評価した。PB脱硫処理前後にて溶鋼サンプルを採取し、化学分析に供することにより溶鋼中S濃度[%S]を得た。ここで、脱硫速度は以下の(8)式で表される見かけの脱硫速度定数Ksで評価し、脱硫粉体反応効率は以下の(9)式で表される脱硫k値で評価した。
S=ln([%S]PB脱硫前/[%S]PB脱硫後)/t ・・・(8)
脱硫k値=ln([%S]PB脱硫前/[%S]PB脱硫後)/脱硫剤原単位 ・・・(9)
The effects of the present invention were evaluated based on the desulfurization rate and desulfurized powder reaction efficiency. Before and after the PB desulfurization treatment, a molten steel sample was collected and subjected to chemical analysis to obtain an S concentration [% S] in the molten steel. Here, the desulfurization rate was evaluated by an apparent desulfurization rate constant Ks expressed by the following equation (8), and the desulfurization powder reaction efficiency was evaluated by a desulfurization k value expressed by the following equation (9).
K S = ln ([% S] before PB desulfurization / [% S] after PB desulfurization ) / t (8)
Desulfurization k value = ln ([% S] before PB desulfurization / [% S] after PB desulfurization ) / unit of desulfurizing agent (9)

ここで、tはPB脱硫処理の時間(min)を表し、脱硫剤の原単位はPB脱硫処理に使用した脱硫剤の総質量を溶鋼質量で除した値(kg/ton)である。本発明において、脱硫速度定数KSが0.10以上、かつ脱硫k値が0.30以上であるものを、発明の効果が得られたと判断した。試験結果を図2および図3に示す。 Here, t represents the time (min) of the PB desulfurization treatment, and the basic unit of the desulfurization agent is a value (kg / ton) obtained by dividing the total mass of the desulfurization agent used in the PB desulfurization treatment by the mass of the molten steel. In the present invention, those having a desulfurization rate constant K S of 0.10 or more and a desulfurization k value of 0.30 or more were judged to have obtained the effects of the invention. The test results are shown in FIGS.

図2および図3に示すように、WPB/vlが大きいほど粉体が過剰に堆積して脱硫速度定数KSおよび脱硫k値が大幅に低下するため、WPB/vlは3.5以下である必要がある。一方、WPB/vlが小さすぎると脱硫に必要な粉体量が確保されず、脱硫速度定数KSが大きく低下するため、WPB/vlは2.0を下限とする。 As shown in FIGS. 2 and 3, since the W PB / v l is large enough powder is excessively deposited desulfurizing rate constant K S and desulfurization k value is greatly reduced, W PB / v l is 3. Must be 5 or less. On the other hand, if W PB / v 1 is too small, the amount of powder required for desulfurization is not ensured, and the desulfurization rate constant K S is greatly reduced. Therefore, the lower limit of W PB / v 1 is 2.0.

また、キャビティ径Lと真空槽の内径DVACとの比L/DVACの制御によって粉体の堆積を適正化する必要があるが、L/DVACが大きすぎるとジェットのエネルギーが分散して粉体供給速度が低下し、粉体の溶鋼への侵入が困難となるため、L/DVACは0.5を上限とした。一方で、L/DVACが小さすぎると粉体が過度に凝集してしまい、脱硫効率が低下してしまうことからL/DVACは0.3を下限とした。 Also, it is necessary to optimize powder deposition by controlling the ratio L / D VAC of the cavity diameter L to the inner diameter D VAC of the vacuum chamber. However, if the L / D VAC is too large, the energy of the jet is dispersed. Since the powder supply speed is reduced and it becomes difficult for the powder to enter the molten steel, the upper limit of L / D VAC is set to 0.5. On the other hand, if the L / D VAC is too small, the powder will excessively agglomerate and the desulfurization efficiency will decrease, so the L / D VAC has a lower limit of 0.3.

次に、本発明で用いる脱硫剤の組成について説明する。   Next, the composition of the desulfurizing agent used in the present invention will be described.

[CaOおよびAl23が合計で60質量%以上]
CaOは溶鋼の脱硫反応に必要不可欠であり、かつAl23は脱硫剤の液相の確保に必要である。したがって、CaOおよびAl23が少なすぎると脱硫剤の脱硫能が大きく低下する懸念があり、脱硫剤にこれらが合計で60質量%以上含有されている必要がある。
[CaO and Al 2 O 3 are 60% by mass or more in total]
CaO is indispensable for the desulfurization reaction of molten steel, and Al 2 O 3 is necessary for securing the liquid phase of the desulfurizing agent. Therefore, if the amounts of CaO and Al 2 O 3 are too small, there is a concern that the desulfurizing ability of the desulfurizing agent is greatly reduced, and it is necessary that the desulfurizing agent contains 60% by mass or more in total.

[CaO/Al23比:1.2〜2.0]
一般的にCaO/Al23比(C/A)が高いほど、CaO活量が高く脱硫剤の脱硫能が高くなることが知られており、CaO/Al23比は最低でも1.2は確保する必要がある。しかしながら、CaO/Al23比が高すぎると脱硫反応に寄与する液相の量が極端に低下してしまうため、CaO/Al23比は2.0を上限とする。
[CaO / Al 2 O 3 ratio: 1.2-2.0]
Generally higher CaO / Al 2 O 3 ratio (C / A) is high, desulfurization ability of CaO activity of high desulfurizing agent has been known that is high, CaO / Al 2 O 3 ratio is at least 1 .2 must be secured. However, if the CaO / Al 2 O 3 ratio is too high, the amount of the liquid phase contributing to the desulfurization reaction will be extremely reduced. Therefore, the upper limit of the CaO / Al 2 O 3 ratio is 2.0.

次に、本発明を実施例に基づいて更に説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, the present invention will be further described based on examples. The conditions in the examples are examples of conditions adopted to confirm the operability and effects of the present invention. It is not limited to the example conditions. The present invention can employ various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

転炉吹錬を終えた溶鋼を取鍋に出鋼した後に、上吹きランスを具備した真空槽を取鍋内溶鋼に挿入し、溶鋼を吸引してPB脱硫処理を開始した。本発明例、比較例ともすべて、溶鋼量は250ton規模で、溶鋼温度は1600〜1640℃であった。PB脱硫処理に際し、粉体供給速度WPB、溶鋼環流量Q、キャビティ径Lおよび表面速度vlを操作因子として表1のように変化させ、WPB/vlおよびL/DVACを制御した。他の精錬条件は以下の通りとした。
キャリアガス:Ar、500Nl/min
ランスノズル:ラバールノズル(Ds=0.03m、De=0.08m)
真空槽:DVAC=1.8m
浸漬管:DLEG=0.7m
脱硫前の溶鋼の組成:
C:0.05〜0.20質量%
Si:0.05〜0.30質量%
Mn:0.50〜1.50質量%
Al:0.05〜0.20質量%
S:0.0030〜0.0047質量%
PB脱硫処理時間:10min
脱硫剤原単位:3.0〜4.5kg/ton
After the molten steel after the converter blowing was discharged to the ladle, the vacuum tank provided with the upper blowing lance was inserted into the molten steel in the ladle, and the molten steel was sucked to start the PB desulfurization treatment. In both the present invention example and the comparative example, the amount of molten steel was 250 ton scale, and the temperature of molten steel was 1600 to 1640 ° C. In the PB desulfurization treatment, the powder supply speed W PB , the molten steel ring flow rate Q, the cavity diameter L and the surface speed v l were changed as operating factors as shown in Table 1 to control W PB / v l and L / D VAC . . Other refining conditions were as follows.
Carrier gas: Ar, 500Nl / min
Lance nozzle: Laval (D s = 0.03m, D e = 0.08m)
Vacuum chamber: D VAC = 1.8m
Immersion tube: D LEG = 0.7m
Composition of molten steel before desulfurization:
C: 0.05 to 0.20 mass%
Si: 0.05 to 0.30 mass%
Mn: 0.50 to 1.50% by mass
Al: 0.05 to 0.20 mass%
S: 0.0030 to 0.0047% by mass
PB desulfurization time: 10min
Desulfurizer basic unit: 3.0-4.5 kg / ton

Figure 0006631400
Figure 0006631400

PB脱硫処理終了後に溶鋼サンプルを採取し、サンプルの一部を化学分析に供することで処理前後のS濃度([%S])を得、前述した(8)式および(9)式にて脱硫速度定数KSおよび脱硫k値を算出した。各条件における脱硫速度定数KSおよび脱硫k値を以下の表2に併せて記載する。 After completion of the PB desulfurization treatment, a molten steel sample was collected, and a part of the sample was subjected to chemical analysis to obtain the S concentration ([% S]) before and after the treatment, and desulfurization was performed using the above-described equations (8) and (9). The rate constant K S and desulfurization k value were calculated. The desulfurization rate constant K S and desulfurization k value under each condition are also shown in Table 2 below.

Figure 0006631400
Figure 0006631400

表2中の発明例であるCh.No.1〜5は、本発明の条件を全て満たしていたため、発明の効果が得られた。   In Table 2, Ch. No. Since Nos. 1 to 5 satisfied all the conditions of the present invention, the effects of the present invention were obtained.

表1中の比較例であるCh.No.6〜7は、L/DVACが(4)式の範囲から外れていたため、発明の効果が得られなかった。Ch.No.6は、L/DVACが0.5を超えており、キャリアガスジェットのエネルギーが分散して粉体速度が低下し、溶鋼への粉体侵入性が悪かったため発明の効果が得られなかったと考えられる。一方、Ch.No.7は、L/DVACが0.3を下回っており、吹き込み領域で粉体が過度に凝集してしまったため、発明の効果が得られなかったと考えられる。従って、本発明においてL/DVACは必ず0.3〜0.5の範囲内に制御する必要があることが確認できた。 Ch. No. In Nos. 6 to 7, the effects of the invention could not be obtained because the L / D VAC was out of the range of the expression (4). Ch. No. In No. 6, the L / D VAC exceeded 0.5, the energy of the carrier gas jet was dispersed, the powder speed was reduced, and the powder penetration into the molten steel was poor, so that the effects of the invention could not be obtained. Conceivable. On the other hand, Ch. No. In No. 7, since the L / D VAC was less than 0.3 and the powder was excessively agglomerated in the blowing region, it is considered that the effects of the invention were not obtained. Therefore, in the present invention, it was confirmed that L / D VAC must be controlled within the range of 0.3 to 0.5.

表1中の比較例であるCh.No.8〜9は、WPB/vlが(1)式の範囲から外れていたため、発明の効果が得られなかった。Ch.No.8は、WPB/vlが3.5を超えていたため、吹き込み領域に粉体が過剰に堆積したため、吹き付けられた粉体の侵入が阻害され、さらに飛散ロスが顕著に生じ、発明の効果が得られなかったと考えられる。一方、Ch.No.9は、WPB/vlが2.0を下回っていたため、粉体反応効率は高位であったものの脱硫に必要な粉体量が確保されず脱硫速度が大幅に低下し、発明の効果が得られなかったと考えられる。従って、本発明においてWPB/vlは必ず2.0〜3.5の範囲内に制御する必要があることが確認できた。 Ch. No. In Nos. 8 to 9, W PB / v 1 was out of the range of the expression (1), so that the effects of the invention could not be obtained. Ch. No. 8, W for PB / v l exceeds the 3.5, since the powder blowing region is excessively deposited, the penetration of sprayed powder is inhibited, further scattering loss occurs remarkably, the effect of the invention It is considered that was not obtained. On the other hand, Ch. No. In No. 9, since W PB / vl was less than 2.0, the powder reaction efficiency was high, but the amount of powder required for desulfurization was not secured, and the desulfurization rate was greatly reduced, and the effect of the present invention was reduced. Probably it was not obtained. Therefore, it was confirmed that in the present invention, it is necessary to control W PB / v l within a range of 2.0 to 3.5.

表1中の比較例であるCh.No.10〜12は、脱硫剤の組成が本発明の範囲から外れていたため、発明の効果が得られなかった。Ch.No.10は、脱硫反応に寄与するCaOおよびAl23の合計が60質量%を下回っていたため、脱硫に必要なCaO−Al23液相量が不足し、発明の効果が得られなかったと考えられる。従って、CaOおよびAl23は60質量%以上脱硫剤中に含有されている必要があることが確認できた。Ch.No.11は、C/A(CaO/Al23)が1.2を下回っていたため、CaO活量が低く脱硫能が著しく低下してしまい、発明の効果が得られなかったと考えられる。一方、Ch.No.12は、C/Aが2.0を超えていたため、固相が過剰に析出して脱硫反応に寄与する液相量が低減してしまい、発明の効果が得られなかったと考えられる。従って、脱硫剤のC/Aは1.2〜2.0の範囲内に制御する必要があることが確認できた。 Ch. No. In Nos. 10 to 12, the effects of the present invention were not obtained because the composition of the desulfurizing agent was out of the range of the present invention. Ch. No. In No. 10, the total amount of CaO and Al 2 O 3 contributing to the desulfurization reaction was less than 60% by mass, so that the amount of CaO—Al 2 O 3 liquid phase necessary for desulfurization was insufficient, and the effect of the invention was not obtained. Conceivable. Therefore, it was confirmed that CaO and Al 2 O 3 need to be contained in the desulfurizing agent in an amount of 60% by mass or more. Ch. No. In No. 11, C / A (CaO / Al 2 O 3 ) was less than 1.2, so that the CaO activity was low and the desulfurization ability was remarkably reduced, so that the effects of the invention could not be obtained. On the other hand, Ch. No. In No. 12, it is considered that the C / A exceeded 2.0, so that the solid phase precipitated excessively and the amount of the liquid phase contributing to the desulfurization reaction was reduced, so that the effects of the invention could not be obtained. Therefore, it was confirmed that the C / A of the desulfurizing agent needed to be controlled within the range of 1.2 to 2.0.

本発明によれば、脱硫剤によらず、さらには設備の増設を行うことなく、粉体の供給速度および溶鋼の表面流動を適正化することにより、安定して極低硫鋼を溶製することが可能であり、本発明の工業的価値は非常に大きい。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to stably produce ultra-low sulfur steel by optimizing the powder supply speed and the surface flow of molten steel without using a desulfurizing agent and without adding equipment. The industrial value of the present invention is very large.

1 ランスノズル
2 スロート部
3 溶鋼
DESCRIPTION OF SYMBOLS 1 Lance nozzle 2 Throat part 3 Molten steel

Claims (1)

RH真空脱ガス装置にて環流ガスを溶鋼に吹き込んで前記溶鋼を循環させ、真空槽の内部に設置された上吹きランスから、CaOおよびAl23を合計で60質量%以上含有し、かつCaO/Al23比が1.2〜2.0の条件を満たす粉状の脱硫剤をキャリアガスとともに吹き付けて前記溶鋼の脱硫を行う際に、前記粉状の脱硫剤の粉体供給速度および前記真空槽内の溶鋼の表面流速との関係が(1)〜(3)式の条件を満たし、かつキャリアガスが形成するキャビティ径と前記真空槽の内径との関係が以下の(4)式の条件を満たすことを特徴とする溶鋼の脱硫方法。
2.0≦WPB/vl≦3.5 ・・・(1)
l=Q/(7・h・DVAC) ・・・(2)
Q=11.4G1/3LEG 4/3・{ln(P1/PVAC)}1/3 ・・・(3)
0.3≦L/DVAC≦0.5 ・・・(4)
ここで、vlは前記真空槽内の溶鋼の表面流速(m/min)、hは前記真空槽内の溶鋼の浴深(m)、DVACは前記真空槽の内径(m)、Qは溶鋼の環流量(ton/min)、Gは環流ガス流量(Nl/min)、DLEGは浸漬管の内径(m)、P1は前記環流ガスのガス吹き込み位置の圧力(Torr)、PVACは前記真空槽内の圧力(Torr)、WPBは粉体供給速度(kg/min)、Lはキャリアガスが形成するキャビティ径(m)を表す。
Reflux gas is blown into the molten steel by an RH vacuum degassing device to circulate the molten steel, and CaO and Al 2 O 3 are contained in a total of 60% by mass or more from an upper blowing lance installed inside the vacuum chamber, and when performing desulfurization of the molten steel CaO / Al 2 O 3 ratio is blown together with the carrier gas to satisfy powdery desulfurizing agent 1.2 to 2.0, a powder supply rate of the powder-like desulfurizing agent And the relationship between the surface velocity of the molten steel in the vacuum tank and the surface velocity of the molten steel satisfies the conditions of the expressions (1) to (3), and the relation between the cavity diameter formed by the carrier gas and the inner diameter of the vacuum tank is as follows (4). A method for desulfurizing molten steel, which satisfies the conditions of the formula.
2.0 ≦ W PB / v l ≦ 3.5 (1)
v l = Q / (7 · h · D VAC ) (2)
Q = 11.4G 1/3 D LEG 4/3 · {ln (P 1 / P VAC )} 1/3 (3)
0.3 ≦ L / D VAC ≦ 0.5 (4)
Here, v l is the surface velocity of the molten steel in the vacuum chamber (m / min), h is the bath depth of the molten steel in the vacuum chamber (m), D VAC is the inner diameter of the vacuum chamber (m), and Q is The ring flow rate of molten steel (ton / min), G is the reflux gas flow rate (Nl / min), D LEG is the inner diameter (m) of the immersion tube, P 1 is the pressure (Torr) at the gas injection position of the reflux gas, P VAC Represents the pressure in the vacuum chamber (Torr), W PB represents the powder supply rate (kg / min), and L represents the cavity diameter (m) formed by the carrier gas.
JP2016098005A 2016-05-16 2016-05-16 Desulfurization method of molten steel Active JP6631400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016098005A JP6631400B2 (en) 2016-05-16 2016-05-16 Desulfurization method of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016098005A JP6631400B2 (en) 2016-05-16 2016-05-16 Desulfurization method of molten steel

Publications (2)

Publication Number Publication Date
JP2017206719A JP2017206719A (en) 2017-11-24
JP6631400B2 true JP6631400B2 (en) 2020-01-15

Family

ID=60414881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016098005A Active JP6631400B2 (en) 2016-05-16 2016-05-16 Desulfurization method of molten steel

Country Status (1)

Country Link
JP (1) JP6631400B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7031499B2 (en) * 2018-05-30 2022-03-08 日本製鉄株式会社 Refining method of molten steel
JP7163780B2 (en) * 2019-01-10 2022-11-01 日本製鉄株式会社 Molten steel refining method

Also Published As

Publication number Publication date
JP2017206719A (en) 2017-11-24

Similar Documents

Publication Publication Date Title
JP6343844B2 (en) Method for refining molten steel in vacuum degassing equipment
US5902374A (en) Vacuum refining method for molten steel
JP6631400B2 (en) Desulfurization method of molten steel
JP5904237B2 (en) Melting method of high nitrogen steel
JP2018016843A (en) Method for melting extra-low-sulfur low-nitrogen steel
JP5614306B2 (en) Method for melting manganese-containing low carbon steel
JP2011153328A (en) Method for smelting low-carbon high-manganese steel
JP5333542B2 (en) Desulfurization method for molten steel and molten iron alloy
JP6555068B2 (en) Flux for refining molten steel and method for refining molten steel
JP6281708B2 (en) Desulfurization method for molten steel
JP6766673B2 (en) Hot compresses
JPH0665625A (en) Desulphurization method for molten steel
JP5822073B2 (en) Converter refining method with excellent dust generation suppression effect
JP2008150710A (en) Method for melting low carbon high manganese steel
JP6358039B2 (en) Desulfurization method for molten steel
JP2019073780A (en) Method for refining molten steel
JP6645127B2 (en) Slab production method
JP3290050B2 (en) Hot metal desulfurization method
JP7043915B2 (en) Method of raising the temperature of molten steel
JP6828498B2 (en) Desulfurization method of molten steel
JP2005146335A (en) Method for dephosphorizing molten pig iron
JP5573721B2 (en) Method for suppressing refractory melt damage in vacuum degassing equipment
JP4466287B2 (en) Method of refining molten steel under reduced pressure and top blowing lance for refining
KR100398380B1 (en) Molten steel refining method for manufacturing ultra low carbon steel
JP6375822B2 (en) Hot metal desiliconization method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191125

R151 Written notification of patent or utility model registration

Ref document number: 6631400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151