JPH083618A - Lance - Google Patents

Lance

Info

Publication number
JPH083618A
JPH083618A JP13885394A JP13885394A JPH083618A JP H083618 A JPH083618 A JP H083618A JP 13885394 A JP13885394 A JP 13885394A JP 13885394 A JP13885394 A JP 13885394A JP H083618 A JPH083618 A JP H083618A
Authority
JP
Japan
Prior art keywords
refining
lance
section
gas
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13885394A
Other languages
Japanese (ja)
Other versions
JP3598536B2 (en
Inventor
Hiroshi Okamoto
浩志 岡本
Nobumoto Takashiba
信元 高柴
Mitsunobu Yokoyama
満宣 横山
Masahiro Yoshida
正弘 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13885394A priority Critical patent/JP3598536B2/en
Publication of JPH083618A publication Critical patent/JPH083618A/en
Application granted granted Critical
Publication of JP3598536B2 publication Critical patent/JP3598536B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Furnace Charging Or Discharging (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To provide a lance, in which gas for refining and/or powdery material for refining can be blown at a necessary and sufficient high speed and by which an effect of the stirring with the gas for refining and the removal of inpurities (e.g. the removal of [S]) in molten steel with the powdery material for refining can be compatible with each other. CONSTITUTION:An inner pipe 20 having a shape concentrically connected with the straight type inner pipe for accelerating the powdery material at the tip end part of a Lavel shaped inner pipe for accelerating the gas and an outer pipe 40 surrounding this inner pipe 20 for cooling are provided. In this inner pipe 20, the Lavel section 28 composed of a tapered section 22, a contracting section 24 having min. diameter and an expanding section 26, is formed. At the tip end part of this Lavel section 28, a straight section 30 having the same diameter as the end part of the expanding section 26 is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融金属を精錬するに
当たって溶融金属に精錬用気体や精錬用粉体を吹き込む
ランスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lance for blowing refining gas or refining powder into a molten metal in refining the molten metal.

【0002】[0002]

【従来の技術】溶融金属にその上方のランスから精錬用
気体や精錬用粉体を吹き込んで精錬する処理方法が製鋼
分野において利用されている。精錬用粉体はランス中を
搬送用気体によって搬送されて溶融金属中に吹き込まれ
る。精錬用粉体を吹き込むためのランスとしては、消耗
式のランスと非消耗式のランスが知られており、消耗式
ランスでは単管構造が用いられ、非消耗式ランスでは内
部に冷却水を通す3重管構造のものが用いられるのが一
般的である。精錬用粉体を吹き込む場合は、精錬用粉体
や搬送用気体の流速を超音速にする必要がないので、い
わゆるストレート形のランスが使用されている。
2. Description of the Related Art A method of refining molten metal by blowing a refining gas or a refining powder from a lance above the molten metal is used in the steelmaking field. The refining powder is carried in the lance by the carrier gas and blown into the molten metal. Consumable lances and non-consumable lances are known as lances for blowing refining powder.The consumable lances use a single pipe structure, and the non-consumable lances pass cooling water inside. A triple tube structure is generally used. When the refining powder is blown, the so-called straight lance is used because it is not necessary to make the flow rate of the refining powder and the conveying gas supersonic.

【0003】一方、精錬用気体を溶融金属中に吹込む場
合には、吹き込んだ精錬用気体と溶融金属との反応効率
の向上を図るために精錬用気体の流速を可能な限り大き
くすることが望ましい。このため、精錬用気体を超音速
にすることが一般的であり、中細区間を有するいわゆる
ラバール形のランスが一般的に用いられている。また、
精錬用粉体と精錬用気体の両者を同時もしくは個別に溶
融金属に吹き込むことがある。この場合、上記のように
それぞれの吹き込みに適した2種類のランスを用いる
か、もしくは2種類のランスを並列に組み合わせた構造
のランスを用いることが一般的である(例えば、特公昭
35−14501号公報、特開昭59−35615号公
報、特開昭60−46313号公報、特開平2−221
312号公報参照)。
On the other hand, when the refining gas is blown into the molten metal, the flow rate of the refining gas should be increased as much as possible in order to improve the reaction efficiency between the blown refining gas and the molten metal. desirable. For this reason, it is general to make the refining gas supersonic, and a so-called Laval type lance having a middle narrow section is generally used. Also,
Both the refining powder and the refining gas may be blown into the molten metal simultaneously or individually. In this case, it is general to use two types of lances suitable for each blowing as described above, or to use a lance having a structure in which two types of lances are combined in parallel (for example, Japanese Patent Publication No. 35-14501). JP-A-59-35615, JP-A-60-46313, and JP-A-2-221.
No. 312).

【0004】[0004]

【発明が解決しようとする課題】上述した従来のランス
を使用して精錬する方法としては、 (1)精錬用粉体及び精錬用気体それぞれに適した2種
類のランスを用いる方法 (2)ストレート形のランスを用いて精錬用粉体、精錬
用気体を吹き込む方法 (3)ラバール形のランスを用いて精錬用粉体、精錬用
気体を吹き込む方法 が考えられるが、これら(1)〜(3)の方法にはそれ
ぞれ、下記に述べるような問題点がある。
As a method of refining using the above-mentioned conventional lance, (1) a method of using two types of lances suitable for refining powder and refining gas respectively (2) straight Method for blowing refining powder and refining gas using a lance (3) A method for blowing refining powder and refining gas using a Laval-shaped lance is conceivable, but these (1) to (3) Each of these methods has the following problems.

【0005】(1)の方法では、2種類のランスを用い
るので、ランスの昇降装置などの付帯設備を2式必要と
する上、スペースに余裕がない場合には設置が困難であ
る。また、ランスが水冷構造の場合には3重管になるの
で、単管に比べ費用が2倍以上になる。(2)の方法で
は、精錬用気体のみを吹き込む場合、精錬用気体を超音
速にまで加速できないので、精錬用気体と溶融金属との
反応効率の低下は免れない。また、精錬用粉体を吹き込
む場合、ストレート形であるので加速距離を十分取るこ
とができるにも拘らず、超音速に加速するための中細区
間がないので搬送用気体が音速までにしか加速されな
い。このため、精錬用粉体の速度も十分に大きくならな
い。さらに、ランスの出口形状に広がり角度が無いの
で、精錬用粉体を広域に散布できない。
In the method (1), since two types of lances are used, two sets of auxiliary equipment such as a lifting device for the lance are required, and installation is difficult when there is not enough space. If the lance has a water-cooled structure, the cost is more than double that of a single tube because it has a triple tube. In the method of (2), when only the refining gas is blown, the refining gas cannot be accelerated to supersonic speed, so that the reaction efficiency between the refining gas and the molten metal is inevitably reduced. In addition, when the refining powder is blown, since it is straight type, it has a sufficient acceleration distance, but since there is no middle section for accelerating to supersonic speed, the carrier gas accelerates only to the sonic speed. Not done. Therefore, the speed of the refining powder does not become sufficiently high. Further, since the shape of the outlet of the lance has no spread angle, the refining powder cannot be spread over a wide area.

【0006】(3)の方法では、精錬用気体のみを吹き
込む場合は、超音速で吹き込むことができる。しかし、
精錬用粉体を吹き込む場合は、精錬用粉体を搬送する搬
送用気体を超音速にまで加速できるが、精錬用粉体のた
めの十分な加速距離を取ることができないので、精錬用
粉体は低速度のままである。また、上記参照文献には、
ランスの出口形状についての説明がなく、精錬用気体及
び精錬用粉体を高速かつ広域に吹込むことができない。
According to the method (3), when only the refining gas is blown, it can be blown at supersonic speed. But,
When the refining powder is blown, the carrier gas that conveys the refining powder can be accelerated to supersonic speed, but it cannot take a sufficient acceleration distance for the refining powder. Remains slow. Also, in the above references,
There is no description of the shape of the lance outlet, and refining gas and refining powder cannot be blown into a wide area at high speed.

【0007】本発明は、上記事情に鑑み、精錬用気体及
び/又は精錬用粉体を必要十分な高速度で吹込むことが
でき、精錬用気体による攪拌効果と精錬用粉体による溶
鉱中の不純物除去(例えば[S]の除去)とを両立でき
るランスを提供することを目的とする。
In view of the above circumstances, the present invention can blow the refining gas and / or the refining powder at a necessary and sufficient high speed, and the stirring effect of the refining gas and the smelting by the refining powder can be achieved. It is an object of the present invention to provide a lance that is compatible with the removal of impurities (for example, removal of [S]).

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明のランスは、溶融金属に気体及び/又は粉体を
吹き込むランスにおいて、前記気体を加速させるラバー
ル形内管と、前記ラバール形内管の先端に同軸に接続さ
れ、前記粉体を加速させるストレート形内管とを備えた
ことを特徴とするものである。ラバール形内管のラバー
ル区間に関しては等エントロピー流れとして流体力学的
にその形状を決定できその設計方法は既知である。スト
レート形内管のストレート区間の直径はラバール区間後
端の直径と同一にし、両区間を滑らかに接続する。スト
レート区間の寸法は、ファノー流れ(Fanno流れ)
として解析できる。
The lance of the present invention for achieving the above object is a Laval type inner tube for accelerating the gas in a lance for blowing gas and / or powder into a molten metal, and the Laval type. A straight inner tube coaxially connected to the tip of the inner tube for accelerating the powder is provided. Regarding the Laval section of the Laval type inner pipe, its shape can be determined hydrodynamically as an isentropic flow, and its design method is known. The diameter of the straight section of the straight inner pipe should be the same as the diameter of the rear end of the Laval section, and both sections should be connected smoothly. The size of the straight section is Fano flow
Can be analyzed as

【0009】ここで、前記粉体の浮遊速度をU、重力加
速度をg、係数をKとしたときに、前記ストレート形内
管がL=K・U2 /gで表される長さを有することが好
ましい。使用する精錬用粉体の浮遊速度をU(m/
s)、重力加速度をg(m/s2)としたときに、係数
Kは、ランスが鉛直線となす角度、精錬用粉体、搬送用
気体の密度、精錬用粉体の粒径、ランス内径などの影響
を受けるが、ストレート形内管のストレート区間におい
て精錬用粉体を必要かつ十分に加速するために少なくと
も0.8以上であり、例えば鉛直ランスを用いて50〜
150μmのCaOをArで搬送する場合には2以上が
望ましい。
Here, when the floating velocity of the powder is U, the gravitational acceleration is g, and the coefficient is K, the straight inner tube has a length represented by L = K · U 2 / g. It is preferable. The floating speed of the refining powder used is U (m /
s), when the gravitational acceleration is g (m / s 2 ), the coefficient K is the angle formed by the lance with respect to the vertical line, the refining powder, the density of the conveying gas, the particle size of the refining powder, and the lance. Although it is affected by the inner diameter and the like, it is at least 0.8 or more in order to accelerate the refining powder in the straight section of the straight type inner tube in a straight section, and it is at least 0.8 or more.
When CaO of 150 μm is transported by Ar, it is preferably 2 or more.

【0010】また、前記ストレート形内管を、末広がり
形状の内管に代えることが好ましい。さらに、末広がり
の角度を、中心軸に対して3°以上10°以下にするこ
とが好ましい。噴射するガスがランス内で過不足なく膨
張でき適正な流れになることが条件であり、角度が上記
範囲よりも小さすぎるとノズル内で十分に膨張できず
に、ノズル外で膨張波を生ずる。一方、角度が上記範囲
よりも大きすぎるとノズル内で膨張波が生ずる。適正な
流れとは、噴射するガスがランス内外の圧力差分だけ過
不足なく膨張し、衝撃波を生じない流れをいう。
Further, it is preferable that the straight inner tube is replaced with an inner tube having a divergent shape. Further, it is preferable that the angle of divergence is 3 ° or more and 10 ° or less with respect to the central axis. The condition is that the injected gas can expand properly within the lance and become a proper flow. If the angle is smaller than the above range, the gas cannot be expanded sufficiently within the nozzle and an expansion wave is generated outside the nozzle. On the other hand, when the angle is larger than the above range, an expansion wave is generated in the nozzle. The proper flow is a flow in which the injected gas expands just enough by the pressure difference between the inside and outside of the lance and does not generate a shock wave.

【0011】[0011]

【作用】本発明のランスによれば、精錬用気体のみを噴
射する場合は、従来のランスと同様にラバール形内管の
ラバール区間において精錬用気体が超音速にまで加速さ
れる。従来のランスでは、ラバール形内管の先端から噴
射されるが本発明のランスでは、ストレート形内管のス
トレート区間で10%程度の速度減衰を経て噴射され
る。精錬用粉体を噴射する場合は、ラバール区間におい
て搬送用気体が超音速にまで加速され、ストレート区間
において搬送用気体から精錬用粉体にエネルギーが伝達
され、搬送用気体の速度が減衰する一方、精錬用粉体の
速度が上昇して噴射される。従って、精錬用気体のみを
噴射する場合は従来ランスに比べ速度の減衰がほとんど
なく、一方、精錬用粉体を噴射する場合には、従来ラン
スに比べ大幅に速度を向上できる。
According to the lance of the present invention, when only the refining gas is injected, the refining gas is accelerated to supersonic speed in the Laval section of the Laval-shaped inner tube, as in the conventional lance. In the conventional lance, the injection is performed from the tip of the Laval type inner pipe, but in the lance of the present invention, the velocity is attenuated by about 10% in the straight section of the straight type inner pipe, and then injected. When injecting refining powder, the carrier gas is accelerated to supersonic speed in the Laval section, energy is transferred from the carrier gas to the refining powder in the straight section, and the velocity of the carrier gas is attenuated. , The speed of the refining powder is increased and jetted. Therefore, in the case of injecting only the refining gas, there is almost no decrease in the velocity as compared with the conventional lance, while in the case of injecting the refining powder, the velocity can be greatly improved as compared with the conventional lance.

【0012】ここで、粉体の浮遊速度をU、重力加速度
をg、係数をKとしたときに、ストレート形内管の長さ
Lを、L=K・U2 /gで表される長さにした場合は、
必要最小限のランス長さで精錬用粉体を最高速にまで加
速でき、また、精錬用気体の速度低下を抑制できる。ま
た、ストレート形内管に代えて、末広がり形状の内管を
用いた場合は、精錬用気体や精錬用粉体を溶融金属に広
域にわたって吹き込める。
Here, when the floating velocity of the powder is U, the gravitational acceleration is g, and the coefficient is K, the length L of the straight inner tube is expressed by L = K · U 2 / g. If you choose
With the minimum necessary lance length, the refining powder can be accelerated to the maximum speed, and the reduction in the refining gas velocity can be suppressed. When an inner tube having a divergent shape is used instead of the straight inner tube, the refining gas and the refining powder can be blown into the molten metal over a wide area.

【0013】[0013]

【実施例】以下、図面を参照して本発明のランスの実施
例を説明する。図1は、第1実施例のランスを示す断面
図である。ランス10は、気体を加速させるラバール形
内管の先端に粉体を加速させるストレート形内管を同軸
に接続した形状の内管20と、この内管20を囲んで冷
却する外管40とを備えて構成されている。内管20に
は、先細りになった先細区間22と最小径の絞り区間2
4と先太りになった拡大区間26とからなるラバール区
間28が形成されており、このラバール区間28の先端
には拡大区間26の先端と同径のストレート区間30が
形成されている。ラバール形内管とは、ラバール区間2
8からなる内管をいい、ストレート形内管とはストレー
ト区間30からなる内管をいう。また、外管40には、
入側の通水路42と出側の通水路44とを仕切る仕切板
46が備えられている。
Embodiments of the lance of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing the lance of the first embodiment. The lance 10 includes an inner tube 20 having a shape in which a straight inner tube for accelerating powder is coaxially connected to the tip of a Laval type inner tube for accelerating gas, and an outer tube 40 surrounding and cooling the inner tube 20. It is equipped with. The inner tube 20 has a tapered section 22 and a narrowed section 2 having the smallest diameter.
4 and a thickened enlarged section 26, a Laval section 28 is formed. At the tip of this Laval section 28, a straight section 30 having the same diameter as the tip of the enlarged section 26 is formed. Laval type inner tube means Laval section 2
8 means an inner pipe, and a straight type inner pipe means an inner pipe made of a straight section 30. In addition, the outer tube 40,
A partition plate 46 for partitioning the water passage 42 on the inlet side and the water passage 44 on the outlet side is provided.

【0014】次に、図2を参照してランス10を用いて
溶融金属を精錬した例を説明する。ここでは、RH環流
式脱ガス設備にランス10を備え、脱Sを目的とする精
錬用粉体としてCaOを噴射し、脱Cを目的とする精錬
用気体として酸素を噴射した場合を比較例と共にする。
比較例のランスとしては特公昭35−14501号公報
に記載されたランスを用いた。精錬用気体(酸素)は
0.7MPa−abs×40Nm3 /min、精錬用粉
体(CaO)は250kg/min、精錬用粉体を搬送
するための搬送用気体(Ar)は0.4MPa−abs
×20Nm3 /minとした。表1に、精錬用気体と精
錬用粉体の噴射速度を比較して示す。表1に示されてい
るように、本発明のランスでは精錬用粉体の噴射速度が
従来のランスに比べ1.7倍に向上した。
Next, an example in which molten metal is refined using the lance 10 will be described with reference to FIG. Here, a case where the RH reflux type degassing equipment is equipped with a lance 10 and CaO is injected as a refining powder for the purpose of de-S and oxygen is injected as a refining gas for the purpose of de-C, together with a comparative example. To do.
As the lance of the comparative example, the lance described in JP-B-35-14501 was used. Refining gas (oxygen) is 0.7 MPa-abs × 40 Nm 3 / min, refining powder (CaO) is 250 kg / min, and carrier gas (Ar) for conveying refining powder is 0.4 MPa-. abs
× 20 Nm 3 / min. Table 1 shows the injection speeds of the refining gas and the refining powder in comparison. As shown in Table 1, in the lance of the present invention, the injection speed of the refining powder was improved by 1.7 times as compared with the conventional lance.

【0015】[0015]

【表1】 [Table 1]

【0016】この結果、溶鋼面への精錬用粉体の到達速
度も、従来のランスを用いた場合に比べ1.7倍に維持
されており、図2に示されるように、排気ガス中にさら
われる精錬用粉体の割合が減少し、溶融金属面に到達す
る割合(捕捉率と定義する)が向上した。尚、図2で
は、精錬用粉体の粒径をパラメータとして縦軸に示し、
溶鋼面からランス先端までの距離を横軸に示した。
As a result, the arrival rate of the refining powder to the molten steel surface was maintained at 1.7 times that in the case of using the conventional lance, and as shown in FIG. The proportion of refining powder exposed was reduced and the proportion reaching the molten metal surface (defined as the capture rate) was improved. In FIG. 2, the particle diameter of the refining powder is shown as a parameter on the vertical axis,
The horizontal axis indicates the distance from the molten steel surface to the tip of the lance.

【0017】以上説明したように、ランス10を用いる
ことにより、精錬用粉体の速度が従来法に比べ1.7倍
程度に向上するので溶融金属への精錬用粉体の浸漬深さ
が増大し、溶融金属への捕捉率が向上するなどの利点を
有する。従って、例えば極低S鋼の溶製に使用した場合
を例にとると、 (1)同一の精錬用粉体の原単位で処理時間が30%低
減し、次工程とのマッチング精度が向上した。 (2)処理時間が短縮できるので溶鋼の温度降下が少な
くなり、この結果、溶鋼の温度保証が不要になって精錬
プロセスを省力でき、精錬コストが溶鋼加熱設備を用い
る場合に比べ30%に低減した。 (3)(2)と同様の理由で溶鋼加熱設備を省略できる
ので処理中のCピックアップがなくなり溶鋼清浄度が向
上し、製品欠陥が0.3%低減した。
As described above, the use of the lance 10 improves the speed of the refining powder by about 1.7 times as compared with the conventional method, so that the immersion depth of the refining powder in the molten metal is increased. However, it has advantages such as an improved capture rate to the molten metal. Therefore, for example, when it is used for melting ultra-low S steel as an example, (1) the processing time is reduced by 30% for the same basic unit of refining powder, and the matching accuracy with the next process is improved. . (2) Since the processing time can be shortened, the temperature drop of the molten steel is reduced, and as a result, the temperature guarantee of the molten steel is not required and the refining process can be saved. did. (3) Because the molten steel heating equipment can be omitted for the same reason as in (2), the C pickup during processing is eliminated, the molten steel cleanliness is improved, and product defects are reduced by 0.3%.

【0018】以上述べたようにRH脱ガス設備の大幅な
改造がなく、既存のランス先端部の小改造のみにもかか
わらず、本発明による総合的効果は極めて大きい。尚、
上記の例では、ランスをRH環流式脱ガスに用いたが、
溶融金属に精錬用粉体を上部から噴射する装置(例えば
VODにおける精錬用粉体上吹き)にも適用できること
はいうまでもない。
As described above, the overall effect of the present invention is extremely large, although there is no major modification of the RH degassing equipment and only a small modification of the existing lance tip. still,
In the above example, the lance was used for RH reflux degassing,
It goes without saying that the present invention can also be applied to an apparatus for spraying refining powder onto molten metal from above (for example, spraying on refining powder in VOD).

【0019】次に、図3、図4を参照して本発明のラン
スの第2実施例を説明する。図3は第2実施例のランス
を示す断面図、図4はランス内での気体と粉体の速度を
示すグラフである。ここでは、ランス50から搬送用気
体を用いて精錬用粉体を噴射する場合を例に説明する。
矢印52で示される方向から吹き込まれた搬送用気体
は、ランス入口54からランス50の内部に入り、先細
区間56で音速まで加速され、絞り区間58でちょうど
音速に達する。さらに末広区間60で超音速に加速され
る。精錬用粉体を吹込む時は、搬送用気体のもつエネル
ギーが精錬用粉体に与えられて、末広区間60で精錬用
粉体が加速されていき、ランス出口62において精錬用
粉体は最高速度に達する。末広区間60は、広がり角度
θを有するので、ランス50から噴射された精錬用粉体
噴流は広がりをもち、広域に散布される。
Next, a second embodiment of the lance of the present invention will be described with reference to FIGS. FIG. 3 is a sectional view showing the lance of the second embodiment, and FIG. 4 is a graph showing the velocities of gas and powder in the lance. Here, a case where the refining powder is sprayed from the lance 50 using the carrier gas will be described as an example.
The carrier gas blown in from the direction shown by the arrow 52 enters the inside of the lance 50 from the lance inlet 54, is accelerated to the sonic velocity in the tapered section 56, and reaches just the sonic velocity in the throttle section 58. Furthermore, it is accelerated to supersonic speed in the Suehiro section 60. When the refining powder is blown, the energy of the carrier gas is given to the refining powder, and the refining powder is accelerated in the suehiro section 60. Reach speed. Since the suehiro section 60 has a spread angle θ, the refining powder jet injected from the lance 50 has a spread and is spread over a wide area.

【0020】ここで、ランス内での精錬用粉体の速度と
搬送用気体の速度を測定する方法を説明する。等エント
ロピー流れとして搬送用気体の速度を計算し、精錬用粉
体の速度は、搬送用気体のもつエネルギーが精錬用粉体
を加速させるために消費されるとして計算した。以上よ
り、精錬用粉体の速度と搬送用気体の速度が求められる
ので、精錬用粉体の速度が最大値になる長さをランスの
長さとすればよい。上記の方法で、精錬用粉体の流速と
搬送用気体の流速を求めた結果を図4に示す。搬送用気
体の流速が減少していく分、精錬用粉体の流速は増加し
ていくことがわかる。精錬用粉体の流速が最高ピーク値
に達する距離を、加速のための末広区間60の最適長さ
とする。精錬用気体のみを吹込む場合(ここでは酸素)
は、図4の実線(KTB)で示されるように、640m
/sまで加速されて超音速の流れになる。
Here, a method of measuring the speed of the refining powder and the speed of the carrier gas in the lance will be described. The velocity of the carrier gas was calculated as an isentropic flow, and the velocity of the refining powder was calculated assuming that the energy of the carrier gas was consumed to accelerate the refining powder. From the above, since the speed of the refining powder and the speed of the carrier gas are obtained, the length at which the speed of the refining powder reaches the maximum value may be taken as the length of the lance. FIG. 4 shows the results of the determination of the flow rate of the refining powder and the flow rate of the carrier gas by the above method. It can be seen that the flow velocity of the refining powder increases as the flow velocity of the carrier gas decreases. The distance at which the flow velocity of the refining powder reaches the maximum peak value is the optimum length of the divergent section 60 for acceleration. Injecting only refining gas (here oxygen)
Is 640 m as shown by the solid line (KTB) in FIG.
/ S is accelerated to a supersonic flow.

【0021】次に、RH環流式脱ガス設備にランス10
を備え、表2に示す条件で、脱Sを目的とする精錬用粉
体としてCaOを噴射し、脱Cを目的とする精錬用気体
として酸素を噴射した場合を比較例と共に表3、表4に
示す。比較例のランスとしては特公昭35−14501
号公報に記載されたランスを用いた。
Next, the lance 10 is installed in the RH reflux type degassing equipment.
And a case in which CaO is injected as a refining powder for S removal and oxygen is injected as a refining gas for C removal under the conditions shown in Table 2 together with Comparative Examples. Shown in. As a lance of a comparative example, Japanese Patent Publication No. 35-14501
The lance described in Japanese Patent Publication was used.

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【表4】 [Table 4]

【0025】ランス50は、精錬用粉体の加速区間を備
え、さらに加速区間が末広がりになっているので、表
3、表4に示されるように、従来のランスに比べ精錬用
粉体が十分に加速されると共に広域に散布された。
The lance 50 is provided with an accelerating section for refining powder, and the accelerating section is widened toward the end. Therefore, as shown in Tables 3 and 4, the refining powder is more sufficient than the conventional lance. It was accelerated and spread over a wide area.

【0026】[0026]

【発明の効果】以上説明したように本発明のランスによ
れば、精錬用気体のみを噴射する場合は、従来のランス
と同様にラバール形内管のラバール区間において精錬用
気体が超音速にまで加速され、精錬用粉体を噴射する場
合においては、ラバール区間において搬送用気体が超音
速にまで加速され、ストレート区間において搬送用気体
から精錬用粉体にエネルギーが伝達され精錬用粉体の速
度が上昇して噴射される。従って、精錬用気体のみを噴
射する場合は従来ランスに比べて速度の減衰がほとんど
なく、一方、精錬用粉体を噴射する場合には、従来ラン
スに比べ大幅に速度を向上できる。
As described above, according to the lance of the present invention, when only the refining gas is injected, the refining gas reaches a supersonic velocity in the Laval section of the Laval-shaped inner tube as in the conventional lance. In the case of accelerating and injecting refining powder, the carrier gas is accelerated to supersonic speed in the Laval section, energy is transferred from the carrier gas to the refining powder in the straight section, and the speed of the refining powder is increased. Is raised and injected. Therefore, in the case of injecting only the refining gas, there is almost no decrease in the velocity as compared with the conventional lance, while in the case of injecting the refining powder, the velocity can be greatly improved as compared with the conventional lance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のランスの第1実施例を示す断面図であ
る。
FIG. 1 is a sectional view showing a first embodiment of a lance of the present invention.

【図2】第1実施例のランスによる捕捉率と比較例のラ
ンスによる捕捉率を比較して示すグラフである。
FIG. 2 is a graph showing a comparison of the capture rate by the lance of the first example and the capture rate by the lance of the comparative example.

【図3】本発明のランスの第2実施例を示す断面図であ
る。
FIG. 3 is a sectional view showing a second embodiment of the lance of the present invention.

【図4】ランス内での気体と粉体の速度を示すグラフで
ある。
FIG. 4 is a graph showing velocities of gas and powder in a lance.

【符号の説明】[Explanation of symbols]

10,50 ランス 20 内管 22,56 先細区間 24,58 絞り区間 26 拡大区間 28 ラバール区間 30 ストレート区間 60 末広区間 10,50 Lance 20 Inner pipe 22,56 Tapered section 24,58 Restricted section 26 Expanded section 28 Laval section 30 Straight section 60 Suehiro section

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横山 満宣 倉敷市水島川崎通1丁目(番地なし) 川 崎製鉄株式会社水島製鉄所内 (72)発明者 吉田 正弘 倉敷市水島川崎通1丁目(番地なし) 川 崎製鉄株式会社水島製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Mitsunobu Yokoyama, 1-chome, Mizushima Kawasaki-dori, Kurashiki-shi (no street address) Inside the Mizushima Works, Kawasaki Steel Works (72) In-house Masahiro Yoshida, 1-chome, Mizushima Kawasaki-dori, Kurashiki-shi None) Inside Kawashima Steel Works Mizushima Steel Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 溶融金属に気体及び/又は粉体を吹き込
むランスにおいて、 前記気体を加速させるラバール形内管と、前記ラバール
形内管の先端に同軸に接続され、前記粉体を加速させる
ストレート形内管とを備えたことを特徴とするランス。
1. A lance for blowing gas and / or powder into a molten metal, wherein a Laval-shaped inner tube for accelerating the gas and a straight line for coaxially connecting the tip of the Laval-shaped inner tube to accelerate the powder. A lance characterized by having a shaped tube.
【請求項2】 前記粉体の浮遊速度をU、重力加速度を
g、係数をKとしたときに、前記ストレート形内管がL
=K・U2 /gで表される長さを有することを特徴とす
る請求項1記載のランス。
2. When the floating velocity of the powder is U, the gravitational acceleration is g, and the coefficient is K, the straight inner tube is L.
Lance according to claim 1, characterized in that it has a length represented by = K · U 2 / g.
【請求項3】 前記ストレート形内管に代えて、末広が
り形状の内管を備えたことを特徴とする請求項1記載の
ランス。
3. The lance according to claim 1, further comprising an inner tube having a divergent shape instead of the straight inner tube.
JP13885394A 1994-06-21 1994-06-21 Lance Expired - Fee Related JP3598536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13885394A JP3598536B2 (en) 1994-06-21 1994-06-21 Lance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13885394A JP3598536B2 (en) 1994-06-21 1994-06-21 Lance

Publications (2)

Publication Number Publication Date
JPH083618A true JPH083618A (en) 1996-01-09
JP3598536B2 JP3598536B2 (en) 2004-12-08

Family

ID=15231690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13885394A Expired - Fee Related JP3598536B2 (en) 1994-06-21 1994-06-21 Lance

Country Status (1)

Country Link
JP (1) JP3598536B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2812659A1 (en) * 2000-08-07 2002-02-08 Air Liquide Method for the supersonic injection of gas into a liquid using an injector incorporating a Laval tuyere with dimensions calculated as a function of flow rate and jet speed
US6514310B2 (en) 2000-08-07 2003-02-04 L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for injection of a gas with the aid of a nozzle
WO2003091460A1 (en) * 2002-04-24 2003-11-06 The Boc Group Plc Lance for injecting particulate material into liquid metal
JP2005060834A (en) * 2003-07-31 2005-03-10 Jfe Steel Kk Burner for blowing pulverized fine coal for metallurgy, and method for blowing pulverized fine coal into metallurgical furnace
JP2019052333A (en) * 2017-09-12 2019-04-04 新日鐵住金株式会社 Refining apparatus for molten steel and method for refining molten steel
JP2019073780A (en) * 2017-10-18 2019-05-16 新日鐵住金株式会社 Method for refining molten steel
WO2019117554A1 (en) * 2017-12-13 2019-06-20 주식회사 포스코 Lance

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2812659A1 (en) * 2000-08-07 2002-02-08 Air Liquide Method for the supersonic injection of gas into a liquid using an injector incorporating a Laval tuyere with dimensions calculated as a function of flow rate and jet speed
US6514310B2 (en) 2000-08-07 2003-02-04 L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for injection of a gas with the aid of a nozzle
WO2003091460A1 (en) * 2002-04-24 2003-11-06 The Boc Group Plc Lance for injecting particulate material into liquid metal
CN1320129C (en) * 2002-04-24 2007-06-06 英国氧气集团有限公司 Lance for injecting particulate material into liquid metal
US7396503B2 (en) 2002-04-24 2008-07-08 The Boc Group Plc Lance for injecting particulate material into liquid metal
KR100982828B1 (en) * 2002-04-24 2010-09-16 더 비오씨 그룹 리미티드 Lance for injecting particulate material into liquid metal
JP2005060834A (en) * 2003-07-31 2005-03-10 Jfe Steel Kk Burner for blowing pulverized fine coal for metallurgy, and method for blowing pulverized fine coal into metallurgical furnace
JP2019052333A (en) * 2017-09-12 2019-04-04 新日鐵住金株式会社 Refining apparatus for molten steel and method for refining molten steel
JP2019073780A (en) * 2017-10-18 2019-05-16 新日鐵住金株式会社 Method for refining molten steel
WO2019117554A1 (en) * 2017-12-13 2019-06-20 주식회사 포스코 Lance
KR20190070461A (en) * 2017-12-13 2019-06-21 주식회사 포스코 Lance

Also Published As

Publication number Publication date
JP3598536B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
US5931985A (en) Process and device for blowing oxygen-containing gas with and without solid material on a metal melt in a metallurgical vessel
US2829960A (en) Method and metallurgical device for the refining of steel
AU6362599A (en) Integrated device to inject technological gases and powdered material and methodto use the device for the processing of baths of molten metal
CN104775008A (en) Annular tooth seam supersonic jetting nozzle
JPH083618A (en) Lance
JP2014221928A (en) Converter blowing method
JP2007077489A (en) Top-blown lance and method for operating converter using this lance
JP4830825B2 (en) Refining method in converter type refining furnace
MY123125A (en) Apparatus and process for refining molten steel in the production of ultra-low carbon steel
WO2002040721A1 (en) Converter oxygen blowing method and upward blowing lance for converter oxygen blowing
KR20040097383A (en) Injection of solids into liquids by means of a shrouded supersonic gas jet
CN104152635A (en) Top lance for RH vacuum refining
JP5884197B2 (en) Converter refining method
CN204608072U (en) A kind of ring slot supersonic jet shower nozzle
JP2002226907A (en) Lance for refining molten metal and refining method
JP6036096B2 (en) Converter blowing method
JPH1112633A (en) Lance for refining molten metal and refining method
JPH08269530A (en) Top blowing lance
JP2024127483A (en) Method for refining molten metal and top blowing lance for refining
JP2002249816A (en) Nozzle for top-blown lance
JP4218234B2 (en) Converter blowing method
JPH11181514A (en) Bottom-blown tuyere in converter
JP2019073780A (en) Method for refining molten steel
JP3293023B2 (en) Vacuum blowing method for molten steel
AU2021387682B2 (en) Method for treating molten metals and/or slags in metallurgical baths and metallurgical plant for treating molten metals

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040323

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040824

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040906

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees