JP6925174B2 - Wavelength converter - Google Patents

Wavelength converter Download PDF

Info

Publication number
JP6925174B2
JP6925174B2 JP2017111177A JP2017111177A JP6925174B2 JP 6925174 B2 JP6925174 B2 JP 6925174B2 JP 2017111177 A JP2017111177 A JP 2017111177A JP 2017111177 A JP2017111177 A JP 2017111177A JP 6925174 B2 JP6925174 B2 JP 6925174B2
Authority
JP
Japan
Prior art keywords
light
translucent member
wavelength conversion
translucent
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017111177A
Other languages
Japanese (ja)
Other versions
JP2018205548A (en
Inventor
雄大 山口
雄大 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2017111177A priority Critical patent/JP6925174B2/en
Publication of JP2018205548A publication Critical patent/JP2018205548A/en
Application granted granted Critical
Publication of JP6925174B2 publication Critical patent/JP6925174B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Optical Filters (AREA)

Description

本発明は、光源からの通過光の波長を変換する波長変換体に関する。 The present invention relates to a wavelength converter that converts the wavelength of passing light from a light source.

近年、光源としてLD(Laser Diode)等を備える照明装置が知られている。車両用前照灯のような照明装置等では、光色が白色と決められているため、LDの光の色を白色に変換するために、蛍光体粒子のような波長変換物質を含む波長変換体が使用される(例:特許文献1,2)。 In recent years, a lighting device including an LD (Laser Diode) or the like as a light source is known. In lighting devices such as vehicle headlights, the light color is determined to be white, so in order to convert the LD light color to white, wavelength conversion including a wavelength conversion substance such as phosphor particles The body is used (eg, Patent Documents 1 and 2).

波長変換体内の波長変換物質は、通過光としての励起光の波長変換に伴い、発熱する。波長変換物質の温度が高くなると、消光が起きる。このため、一般的な構造の波長変換体では、波長変換部材の光入射側に放熱用の透光性部材が接合される。該透光性部材は、波長変換部材からの伝導熱を伝導して、周囲に放散する(例:特許文献1)。 Wavelength conversion The wavelength conversion substance in the body generates heat as the excitation light as the passing light undergoes wavelength conversion. Quenching occurs when the temperature of the wavelength converter increases. Therefore, in a wavelength converter having a general structure, a light-transmitting member for heat dissipation is joined to the light incident side of the wavelength conversion member. The translucent member conducts conduction heat from the wavelength conversion member and dissipates it to the surroundings (Example: Patent Document 1).

特開2015-149394号公報JP-A-2015-149394 特開2015-38884号公報JP-A-2015-38884

透光性部材付きの波長変換体において、光源からの光は、透光性部材を通って、波長変換部材に進入する際、一部の光が光源側としての透光性部材の光入射側に反射する。次に、反射光の一部は、透光性部材の光入射側の面で波長変換部材側に全反射して、波長変換部材に再入射する。波長変換部材への再入射位置は、最初に反射した時の入射位置とは別の入射位置となる。 In a wavelength converter with a translucent member, when light from a light source passes through the translucent member and enters the wavelength conversion member, some of the light is on the light incident side of the translucent member as the light source side. Reflects on. Next, a part of the reflected light is totally reflected on the wavelength conversion member side on the light incident side surface of the translucent member and re-incidents on the wavelength conversion member. The re-incident position on the wavelength conversion member is a different incident position from the incident position at the time of the first reflection.

こうして、波長変換体から、光源からの入射光のうち、波長変換部材と透光性部材との接合面で反射することなく波長変換部材に直接入射した入射光による出射光と、全反射の入射光による出射光とが出射されることがある。後者の出射光は、前者の出射光の周りを包囲するリング状の出射光となる。リング状の出射光は、配光パターンや画像等に影響与えるので、除去する必要がある。 In this way, among the incident light from the light source from the wavelength converter, the emitted light due to the incident light directly incident on the wavelength conversion member without being reflected at the joint surface between the wavelength conversion member and the translucent member, and the incident light of total internal reflection. Light emitted by light may be emitted. The emitted light of the latter is a ring-shaped emitted light that surrounds the emitted light of the former. The ring-shaped emitted light affects the light distribution pattern, the image, and the like, and therefore needs to be removed.

特許文献1,2の波長変換体は、放熱用の透光性部材の存在に起因するリング状の出射光を除去したり抑制したりする構造を備えていない。 The wavelength converters of Patent Documents 1 and 2 do not have a structure for removing or suppressing ring-shaped emitted light due to the presence of a light-transmitting member for heat dissipation.

本発明の目的は、放熱用の透光性部材を装備しつつ、リング状の出射光を抑制又は除去することができる波長変換体を提供することである。 An object of the present invention is to provide a wavelength converter capable of suppressing or removing ring-shaped emitted light while being equipped with a translucent member for heat dissipation.

本発明の波長変換体は、
波長変換物質を含み、該波長変換物質により通過光の波長変換を行う波長変換部材と、
前記波長変換部材の光入射側に接合され、前記波長変換部材からの伝導熱を伝導する第1透光性部材と、
前記第1透光性部材の光入射側に接合される第2透光性部材とを備えることを特徴とする。
The wavelength converter of the present invention is
A wavelength conversion member containing a wavelength conversion substance and performing wavelength conversion of passing light by the wavelength conversion substance, and
A first translucent member that is joined to the light incident side of the wavelength conversion member and conducts conduction heat from the wavelength conversion member.
It is characterized by including a second translucent member joined to the light incident side of the first translucent member.

本発明によれば、第1透光性部材が、放熱用の透光性部材として、波長変換部材の光入射面に接合されて、波長変換部材からの伝導熱を伝導する。また、第2透光性部材が第1透光性部材の光入射側に接合されることにより、透光性部材全体の厚み(接合方向寸法)は十分に増大する。透光性部材全体の厚みは大きいほど、第2透光性部材の光入射側の面で全反射して波長変換部材の入射側に再入射する全反射光の再入射位置は、波長変換部材の光入射面の面方向に、波長変換部材の入射側に最初に入射した入射位置から遠ざかる。すなわち、リング状の出射光は、そのリング半径が増大して、単位面積当たりの強度が低下する。こうして、リング状の出射光は、波長変換部材の光入射面に入射しても、目立たなくなるか、波長変換部材の光入射面の面方向に全反射光の入射位置は光入射面の外側になる。これにより、リング状の出射光を抑性又は除去することができる。 According to the present invention, the first translucent member is joined to the light incident surface of the wavelength conversion member as a translucent member for heat dissipation to conduct conduction heat from the wavelength conversion member. Further, by joining the second translucent member to the light incident side of the first translucent member, the thickness (dimension in the joining direction) of the entire translucent member is sufficiently increased. The larger the thickness of the entire translucent member, the more the re-incident position of the total reflected light that is totally reflected on the surface of the second translucent member on the light incident side and re-incident on the incident side of the wavelength conversion member is the wavelength conversion member. In the plane direction of the light incident surface of, the distance from the incident position where the light incident member was first incident on the incident side of the wavelength conversion member. That is, the ring-shaped emitted light has an increased ring radius and a decreased intensity per unit area. In this way, the ring-shaped emitted light becomes inconspicuous even if it is incident on the light incident surface of the wavelength conversion member, or the incident position of the total reflected light in the plane direction of the light incident surface of the wavelength conversion member is outside the light incident surface. Become. Thereby, the ring-shaped emitted light can be suppressed or removed.

本発明の波長変換体において、前記波長変換体への入射光が、前記波長変換部材の光入射面で前記波長変換体の光入射側に反射し、反射により生成された反射光が、前記第1透光性部材と前記第2透光性部材との接合面、又は前記第2透光性部材の光入射側の面で前記波長変換部材の前記光入射面側に全反射し、全反射により生成された全反射光が、前記波長変換部材と前記第1透光性部材との接合面に到達したときに、到達位置が前記波長変換部材の前記光入射面の面方向に該光入射面の外側になるように、前記第1透光性部材及び前記第2透光性部材の厚み及び屈折率が設定されていることが好ましい。 In the wavelength converter of the present invention, the incident light on the wavelength converter is reflected on the light incident surface of the wavelength converter member on the light incident side of the wavelength converter, and the reflected light generated by the reflection is the first. The joint surface between the 1 translucent member and the 2nd translucent member, or the surface of the 2nd translucent member on the light incident side, is totally reflected to the light incident surface side of the wavelength conversion member, and is totally reflected. When the total reflected light generated by the above reaches the joint surface between the wavelength conversion member and the first translucent member, the arrival position is the light incident in the plane direction of the light incident surface of the wavelength conversion member. It is preferable that the thickness and the refractive index of the first translucent member and the second translucent member are set so as to be on the outside of the surface.

この構成によれば、波長変換部材の光入射面で波長変換体の光入射側に反射して、その後、波長変換部材と第1透光性部材との接合面側に全反射して、該接合面に戻って来る全反射光を波長変換部材の光入射面の外にすることができる。これにより、波長変換部材の光出射面からのリング状の出射光を除去することができる。 According to this configuration, the light incident surface of the wavelength conversion member is reflected to the light incident side of the wavelength converter, and then is totally reflected to the junction surface side of the wavelength conversion member and the first translucent member. The total reflected light returning to the joint surface can be outside the light incident surface of the wavelength conversion member. Thereby, the ring-shaped emitted light from the light emitting surface of the wavelength conversion member can be removed.

本発明の波長変換体において、
前記第1透光性部材及び前記第2透光性部材のそれぞれの屈折率n1,n2がn1>n2である場合に、
前記波長変換部材の光出射面上で該光出射面の中心点と該中心点から最遠方点との間の距離をd、前記第1透光性部材及び前記第2透光性部材の厚みをそれぞれw1,w2、前記第1透光性部材から空気中への光の臨界角をθ1、前記第2透光性部材から空気中への光の臨界角をθ2、及び前記第1透光性部材から前記第2透光性部材への光の臨界角θ3とするとき、
2・{w1・tanθ1+w2・tanθ2}≧dで、かつ2・w1・tanθ3≧dに設定することが好ましい。
In the wavelength converter of the present invention
When the refractive indexes n1 and n2 of the first translucent member and the second translucent member are n1> n2, respectively.
The distance between the center point of the light emitting surface and the farthest point from the center point on the light emitting surface of the wavelength conversion member is d, and the thickness of the first translucent member and the second translucent member. W1 and w2, respectively, the critical angle of light from the first translucent member into the air is θ1, the critical angle of light from the second translucent member into the air is θ2, and the first translucent member. When the critical angle θ3 of light from the sex member to the second translucent member is set,
It is preferable to set 2 · {w1 · tan θ1 + w2 · tan θ2} ≧ d and 2 · w1 · tan θ3 ≧ d.

この構成によれば、n1>n2である場合に、第1透光性部材と第2透光性部材との接合面、及び第2透光性部材の光入試側の面で全反射して、波長変換部材の方に戻って来る全反射光は、波長変換部材の光入射面には入射しない。これにより、波長変換部材の光出射面からのリング状の出射光を除去することができる。 According to this configuration, when n1> n2, total reflection is performed on the joint surface between the first translucent member and the second translucent member and the surface of the second translucent member on the light entrance test side. , The total reflected light returning toward the wavelength conversion member does not enter the light incident surface of the wavelength conversion member. Thereby, the ring-shaped emitted light from the light emitting surface of the wavelength conversion member can be removed.

本発明の波長変換体において、
前記第1透光性部材及び前記第2透光性部材のそれぞれの屈折率n1,n2がn1<n2である場合に、
前記波長変換部材の光出射面上で該光出射面の中心点と該中心点から最遠方点との間の距離をd、前記第1透光性部材及び前記第2透光性部材のそれぞれの厚みをw1,w2、前記第1透光性部材から空気中への光の臨界角をθ1、及び前記第2透光性部材から空気中への光の臨界角をθ2とするとき、
2・{w1・tanθ1+w2・tanθ2}≧dに設定することが好ましい。
In the wavelength converter of the present invention
When the refractive indexes n1 and n2 of the first translucent member and the second translucent member are n1 <n2, respectively.
The distance between the center point of the light emitting surface and the farthest point from the center point on the light emitting surface of the wavelength conversion member is d, and each of the first translucent member and the second translucent member. When the thickness of is w1 and w2, the critical angle of the light from the first translucent member into the air is θ1, and the critical angle of the light from the second translucent member into the air is θ2.
2. It is preferable to set {w1 · tan θ1 + w2 · tan θ2} ≧ d.

この構成によれば、n1<n2である場合に、第2透光性部材の光入試側の面で全反射して、波長変換部材の方に戻って来る全反射光は、波長変換部材の光入射面には入射しない。これにより、波長変換部材の光出射面からのリング状の出射光を除去することができる。 According to this configuration, when n1 <n2, the total reflected light that is totally reflected on the surface of the second translucent member on the light entrance test side and returned to the wavelength conversion member is the wavelength conversion member. It does not enter the light incident surface. Thereby, the ring-shaped emitted light from the light emitting surface of the wavelength conversion member can be removed.

発光装置の模式図。Schematic diagram of the light emitting device. 波長変換体の斜視図。Perspective view of the wavelength converter. 図2のIII−III線に沿う断面図。FIG. 2 is a cross-sectional view taken along the line III-III of FIG. 第1透光性部材の屈折率>第2透光性部材の屈折率である場合の所定の全反射の説明図。Explanatory drawing of a predetermined total reflection when the refractive index of the 1st translucent member> the refractive index of a 2nd translucent member. 第1透光性部材の屈折率<第2透光性部材の屈折率である場合の所定の全反射の説明図。Explanatory drawing of a predetermined total reflection when the refractive index of the 1st translucent member <the refractive index of the 2nd translucent member. 波長変換体の光出射面に生成されるリング状発光の説明に関し、図6Aは波長変換体の光出射面にリング状発光が生成されている状態を示す図、図6Bは波長変換体の光出射面からリング状発光が除去されている状態を示す図。Regarding the description of the ring-shaped light emission generated on the light emitting surface of the wavelength converter, FIG. 6A is a diagram showing a state in which ring-shaped light emission is generated on the light emitting surface of the wavelength converter, and FIG. 6B is the light of the wavelength converter. The figure which shows the state which the ring-shaped light emission is removed from the emission surface.

(発光装置の構成)
図1は発光装置1の模式図である。発光装置1は、中心軸線を揃えて配設された光源装置2及び波長変換体3を備える。なお、光源装置2及び波長変換体3の中心軸線は光源装置2及び波長変換体3の光軸でもある。
(Configuration of light emitting device)
FIG. 1 is a schematic view of the light emitting device 1. The light emitting device 1 includes a light source device 2 and a wavelength converter 3 arranged so that their central axes are aligned. The central axis of the light source device 2 and the wavelength converter 3 is also the optical axis of the light source device 2 and the wavelength converter 3.

光源装置2は、基板5と、基板5に取り付けられたLD(Laser Diode)6とを備える。LD6が出射したレーザ光は、波長変換体3に入射光Laとして入射する。波長変換体3は、入射光Laの一部を青色から例えば黄色の波長に変換して、青色の光と黄色の光とが混合して白色となった出射光Lbを出射する。 The light source device 2 includes a substrate 5 and an LD (Laser Diode) 6 attached to the substrate 5. The laser light emitted by the LD 6 is incident on the wavelength converter 3 as incident light La. The wavelength converter 3 converts a part of the incident light La from blue to, for example, a yellow wavelength, and emits the emitted light Lb which is white by mixing the blue light and the yellow light.

(波長変換体の構成)
図2は波長変換体3の斜視図である。波長変換体3は、波長変換部材10、第1透光性部材11、第2透光性部材12及び放熱枠17とを備える。
(Structure of wavelength converter)
FIG. 2 is a perspective view of the wavelength converter 3. The wavelength converter 3 includes a wavelength converter 10, a first translucent member 11, a second translucent member 12, and a heat radiating frame 17.

図2において、Foは波長変換部材10の光出射面を示す。光出射面Foは矩形である。Oは、光出射面Foの中心点を示し、2本の対角線の交点に位置する。Pcは、波長変換体3の中心軸線であり、中心点Oを通る。図1の入射光La及び出射光Lbは、中心軸線Pcに沿って進む。dは、光出射面Fo上で中心点Oと中心点Oから最遠方点との間の距離を示す。光出射面Foは矩形であるので、最遠方点は、光出射面Foの頂点になり、4つ存在する。dは、中心点Oと頂点との距離でもあり、対角線の長さの1/2となる。 In FIG. 2, Fo indicates a light emitting surface of the wavelength conversion member 10. The light emitting surface Fo is rectangular. O indicates the center point of the light emitting surface Fo and is located at the intersection of two diagonal lines. Pc is the central axis of the wavelength converter 3 and passes through the center point O. The incident light La and the emitted light Lb in FIG. 1 travel along the central axis Pc. d indicates the distance between the center point O and the farthest point from the center point O on the light emitting surface Fo. Since the light emitting surface Fo is rectangular, the farthest points are the vertices of the light emitting surface Fo, and there are four. d is also the distance between the center point O and the apex, which is half the length of the diagonal line.

波長変換部材10、第1透光性部材11及び第2透光性部材12は、その順番で波長変換体3の光出射側から光入射側に配置された積層構造を構成する。第1透光性部材11及び第2透光性部材12は、波長変換部材10の基板としての役目を果たす。積層構造において、中心軸線Pcの延在方向に隣り同士の層は相互に接合されている。中心軸線Pcの延在方向は、波長変換体3の光軸方向でもあり、積層構造体の各層の厚み方向(厚みの方向)でもある。 The wavelength conversion member 10, the first translucent member 11, and the second translucent member 12 form a laminated structure arranged in this order from the light emitting side to the light incident side of the wavelength converter 3. The first translucent member 11 and the second translucent member 12 serve as a substrate for the wavelength conversion member 10. In the laminated structure, adjacent layers are joined to each other in the extending direction of the central axis Pc. The extending direction of the central axis Pc is also the optical axis direction of the wavelength converter 3 and the thickness direction (thickness direction) of each layer of the laminated structure.

波長変換部材10、第1透光性部材11及び第2透光性部材12は、厚み方向視で矩形になっている。第1透光性部材11及び第2透光性部材12の矩形は、大きさが相互に等しく、かつ波長変換部材10の矩形より一回り大きくなっている。波長変換部材10、第1透光性部材11及び第2透光性部材12は、それらの中心軸線を共通の中心軸線Pcにしているので、厚み方向視で、第1透光性部材11及び第2透光性部材12の周縁は波長変換部材10の周縁より所定の寸法、外側にはみ出ている。 The wavelength conversion member 10, the first translucent member 11, and the second translucent member 12 are rectangular in the thickness direction. The rectangles of the first translucent member 11 and the second translucent member 12 are equal in size to each other and are one size larger than the rectangle of the wavelength conversion member 10. Since the wavelength conversion member 10, the first translucent member 11, and the second translucent member 12 have a common central axis Pc, the first translucent member 11 and the second translucent member 12 and the second translucent member 12 have a common central axis Pc. The peripheral edge of the second translucent member 12 protrudes to the outside by a predetermined dimension from the peripheral edge of the wavelength conversion member 10.

図3は図2のIII−III線に沿う断面図である。波長変換部材10は、層状に形成され、層の両面側に光出射面Foと光入射面Fiとを有している。放熱枠17は、波長変換部材10を包囲するように波長変換部材10の周縁部に取り付けられている。光出射面Foは、波長変換部材10の光出射側の面のうち放熱枠17から露出している面部分のみから構成される。光入射面Fiは、波長変換部材10と第1透光性部材11との接合面のうち、その周縁部を除き、光出射面Foに対峙している面部分のみから構成される。したがって、光入射面Fiは、光出射面Foと同一の寸法及び形状を有する。 FIG. 3 is a cross-sectional view taken along the line III-III of FIG. The wavelength conversion member 10 is formed in a layered shape, and has a light emitting surface Fo and a light incident surface Fi on both side surfaces of the layer. The heat radiating frame 17 is attached to the peripheral edge of the wavelength conversion member 10 so as to surround the wavelength conversion member 10. The light emitting surface Fo is composed of only the surface portion of the wavelength conversion member 10 on the light emitting side that is exposed from the heat radiating frame 17. The light incident surface Fi is composed of only the surface portion of the joint surface between the wavelength conversion member 10 and the first translucent member 11 that faces the light emitting surface Fo, excluding the peripheral portion thereof. Therefore, the light incident surface Fi has the same dimensions and shape as the light emitting surface Fo.

放熱枠17は、熱伝導率の高い材料としてアルミニウム等の所定の金属から成る。放熱枠17は、第1透光性部材11の周縁部と面接触で接合し、第1透光性部材11から接合面を介して熱を伝導される。波長変換部材10の中心部の発熱は、第1透光性部材11の中心部に伝導熱として伝導され、次に、第1透光性部材11の中心部から周縁部に伝導され、さらに、第1透光性部材11の周縁部から放熱枠17に伝導されて、放熱枠17から放散される。 The heat radiating frame 17 is made of a predetermined metal such as aluminum as a material having high thermal conductivity. The heat radiating frame 17 is joined to the peripheral edge of the first translucent member 11 by surface contact, and heat is conducted from the first translucent member 11 through the joint surface. The heat generated at the central portion of the wavelength conversion member 10 is conducted as conduction heat to the central portion of the first translucent member 11, then is conducted from the central portion of the first translucent member 11 to the peripheral portion, and further. It is conducted from the peripheral edge of the first translucent member 11 to the heat radiating frame 17 and is dissipated from the heat radiating frame 17.

第2透光性部材12は、厚み方向の両面を接合面Fb及び露出面Feとしている。接合面Fbは、第1透光性部材11と第2透光性部材12とが相互に接合している面である。露出面Feは、波長変換体3の光入射面でもある。接合面Fb及び露出面Feは、それぞれ第2透光性部材12の光出射側の面及び光入射側の面でもある。露出面Feは、波長変換体3の光入射面でもある。 The second translucent member 12 has a joint surface Fb and an exposed surface Fe on both sides in the thickness direction. The joint surface Fb is a surface on which the first translucent member 11 and the second translucent member 12 are joined to each other. The exposed surface Fe is also the light incident surface of the wavelength converter 3. The joint surface Fb and the exposed surface Fe are also a surface on the light emitting side and a surface on the light incident side of the second translucent member 12, respectively. The exposed surface Fe is also the light incident surface of the wavelength converter 3.

波長変換部材10は、波長変換部材10の通過光を波長変換する波長変換物質としての蛍光体粒子を内部に含んでいる。蛍光体粒子は、例えば、青色のレーザ光を黄色に変換する波長変換物質として、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、硫化物蛍光体又はフッ化物蛍光体等の材料から成る。 The wavelength conversion member 10 contains phosphor particles as a wavelength conversion substance that wavelength-converts the passing light of the wavelength conversion member 10. The phosphor particles are, for example, from a material such as an oxide phosphor, a nitride phosphor, an oxynitride phosphor, a sulfide phosphor, or a fluoride phosphor as a wavelength converting substance that converts blue laser light into yellow. Become.

波長変換部材10の厚み(層厚)は、例えば10〜50μmである。厚みが10μm未満である場合、層厚を均一にすることが難しくなる。厚みが50μmを超える場合、波長変換部材10内の導光により色分離が起きる。粒径は例えば100nm〜50μmが望ましい。粒径が小さいと、蛍光体粒子の発光効率が低下し、大き過ぎると、波長変換部材10の色むらが増大する。 The thickness (layer thickness) of the wavelength conversion member 10 is, for example, 10 to 50 μm. If the thickness is less than 10 μm, it becomes difficult to make the layer thickness uniform. When the thickness exceeds 50 μm, color separation occurs due to the light guide in the wavelength conversion member 10. The particle size is preferably 100 nm to 50 μm, for example. If the particle size is small, the luminous efficiency of the phosphor particles is low, and if it is too large, the color unevenness of the wavelength conversion member 10 increases.

波長変換部材10は、蛍光体粒子が入射光Laのレーザ光を励起光として、レーザ光より長い波長の蛍光を生成する際、すなわち波長変換する際に発熱する。波長変換部材10の発熱は消光の原因になるので、波長変換部材10は冷却する必要がある。波長変換部材10を冷却する役目を第1透光性部材11と放熱枠17とが担っている。 The wavelength conversion member 10 generates heat when the phosphor particles use the laser light of the incident light La as excitation light to generate fluorescence having a wavelength longer than the laser light, that is, when the wavelength is converted. Since the heat generated by the wavelength conversion member 10 causes quenching, the wavelength conversion member 10 needs to be cooled. The first translucent member 11 and the heat radiating frame 17 play a role of cooling the wavelength conversion member 10.

第1透光性部材11は、消光を回避するために、熱伝導度の高いものでなければならない。これに対し、第2透光性部材12は、波長変換部材10を冷却する役目を有していないので、十分な熱伝導度を有していなくてもよい。第2透光性部材12は、光入射面Fiと露出面Feとの間の厚み方向の寸法を増大するために、備えられている。したがって、第2透光性部材12は、第1透光性部材11に比して、熱伝導度は劣るものの安価か加工性が良いかの少なくともどちらかを満たす材料が選択される。 The first translucent member 11 must have high thermal conductivity in order to avoid quenching. On the other hand, since the second translucent member 12 does not have a role of cooling the wavelength conversion member 10, it does not have to have sufficient thermal conductivity. The second translucent member 12 is provided to increase the dimension in the thickness direction between the light incident surface Fi and the exposed surface Fe. Therefore, for the second translucent member 12, a material is selected that satisfies at least either low cost or good workability, although the thermal conductivity is inferior to that of the first translucent member 11.

第1透光性部材11は、例えば、サファイア、単結晶GaN又は単結晶YAG等の単結晶材料や、多結晶Al、多結晶MgO、多結晶ZrO等の多結晶材料から成る。 The first translucent member 11 is made of, for example, a single crystal material such as sapphire, single crystal GaN or single crystal YAG, or a polycrystalline material such as polycrystalline Al 2 O 3 , polycrystalline MgO, or polycrystalline ZrO 2 .

第2透光性部材12は、例えば、ガラスや多結晶セラミックから成る。第1透光性部材11と第2透光性部材12との接合方法には、例えば、オプチカルコンタクト法、フュージョンボンディング法、ホットプレス法又は熱間等方加圧法(HIP法)がある。 The second translucent member 12 is made of, for example, glass or polycrystalline ceramic. Examples of the joining method between the first translucent member 11 and the second translucent member 12 include an optical contact method, a fusion bonding method, a hot press method, and a hot isotropic pressurization method (HIP method).

波長変換部材10と第1透光性部材11との接合方法として例えば2つある。第1の接合方法は、波長変換部材10を成形体として製造し、該成形体を基板としての第1透光性部材11に接合又は接着するものである。第2の接合の方法は、基板としての第1透光性部材11に波長変換部材10の層を成膜するものである。 There are, for example, two methods for joining the wavelength conversion member 10 and the first translucent member 11. The first joining method is to manufacture the wavelength conversion member 10 as a molded body and join or bond the molded body to the first translucent member 11 as a substrate. The second joining method is to form a layer of the wavelength conversion member 10 on the first translucent member 11 as a substrate.

第1の接合方法に使用される波長変換部材10は、例えば、単結晶蛍光体、蛍光体セラミック、蛍光体分散ガラス、又は蛍光体分散樹脂シート等から成る。この場合は、波長変換部材10と第1透光性部材11の間には、拡散接合等の接合層が存在しない。したがって、波長変換部材10と第1透光性部材11を相互に接合するために、例えば接着剤が使用される。このような接着剤として、有機接着剤又は無機接着剤等の透明接着剤がある。 The wavelength conversion member 10 used in the first bonding method is made of, for example, a single crystal phosphor, a phosphor ceramic, a phosphor-dispersed glass, a phosphor-dispersed resin sheet, or the like. In this case, there is no bonding layer such as diffusion bonding between the wavelength conversion member 10 and the first translucent member 11. Therefore, for example, an adhesive is used to bond the wavelength conversion member 10 and the first translucent member 11 to each other. As such an adhesive, there is a transparent adhesive such as an organic adhesive or an inorganic adhesive.

第2の接合方法は拡散接合等を使用する。このため、波長変換部材10として、例えば、蛍光体+セラミックバインダー、蛍光体+ガラスバインダー、又は蛍光体+樹脂バインダーが使用される。拡散接合の工法としては、例えば、ディスペンス、回転塗布法、印刷法、又はスプレー法が使用される。 The second joining method uses diffusion joining or the like. Therefore, as the wavelength conversion member 10, for example, a phosphor + ceramic binder, a phosphor + glass binder, or a phosphor + resin binder is used. As the diffusion bonding method, for example, a dispensing method, a rotary coating method, a printing method, or a spraying method is used.

(リング状発光の防止構造)
図4及び図5は、波長変換体3内で起きる全反射の説明図である。図4は第1透光性部材11の屈折率n1>第2透光性部材12の屈折率n2である場合の所定の全反射の説明図である。図5は第1透光性部材11の屈折率n1<第2透光性部材12の屈折率n2である場合の所定の全反射の説明図である。
(Ring-shaped light emission prevention structure)
4 and 5 are explanatory views of total reflection occurring in the wavelength converter 3. FIG. 4 is an explanatory diagram of predetermined total reflection when the refractive index n1 of the first translucent member 11> the refractive index n2 of the second translucent member 12. FIG. 5 is an explanatory diagram of predetermined total reflection when the refractive index n1 of the first translucent member 11 <the refractive index n2 of the second translucent member 12.

図4及び図5に共通の事項について説明する。図4及び図5共に、波長変換体3を矩形の光出射面Foの対角線に沿って切ったときの中心軸線Pcより右側の半部のみの断面図となっている。波長変換体3内の全反射は、中心軸線Pcに対して左右対称である。 Items common to FIGS. 4 and 5 will be described. Both FIGS. 4 and 5 are cross-sectional views of only the half part on the right side of the central axis Pc when the wavelength converter 3 is cut along the diagonal line of the rectangular light emitting surface Fo. The total reflection in the wavelength converter 3 is symmetrical with respect to the central axis Pc.

図4及び図5では、説明の便宜上、中心軸線Pcとは別に、中心軸線Pcに対して平行な補助線P1〜P4を記載している。補助線P1〜P4の定義は次のとおりである。
P1:後述の全反射光Lrwと接合面Fbとの2つの交点のうち中点O側の交点を通る補助線
P2:矩形の光出射面Fo上の中心点Oと頂点との中点を通る補助線
P3:後述の全反射光Lrwと接合面Fbとの2つの交点のうち頂点側の交点を通る補助線
P4:頂点を通る補助線
なお、波長変換部材10の厚みは、非常に薄いので、矩形の光出射面Fo上で定義した中心点O及び頂点は、矩形の光入射面Fi上の中心点及び頂点とみなすことができる。
In FIGS. 4 and 5, for convenience of explanation, auxiliary lines P1 to P4 parallel to the central axis Pc are shown separately from the central axis Pc. The definitions of the auxiliary lines P1 to P4 are as follows.
P1: Auxiliary line passing through the intersection on the midpoint O side of the two intersections of the fully reflected light Lrw and the junction surface Fb described later P2: Passing through the midpoint between the center point O and the apex on the rectangular light emitting surface Fo Auxiliary line P3: Auxiliary line passing through the intersection on the apex side of the two intersections of the fully reflected light Lrw and the junction surface Fb, which will be described later P4: Auxiliary line passing through the apex Since the thickness of the wavelength conversion member 10 is very thin. , The center point O and the apex defined on the rectangular light emitting surface Fo can be regarded as the center point and the apex on the rectangular light incident surface Fi.

図4及び図5において、Lru,Lrwの定義は次のとおりである。
Lru(図4のみ):接合面Fbと補助線P3との交点で全反射する全反射光
Lrw:露出面Feと補助線P3との交点で全反射する全反射光
なお、光入射面Fiで露出面Fe側に反射した入射光Laのうち、露出面Feで反射(全反射を含む)しながった光は、露出面Feから波長変換体3の外へ出射し、光入射面Fi側に戻ることはない。
In FIGS. 4 and 5, the definitions of Lru and Lrw are as follows.
Lru (Fig. 4 only): Totally reflected light at the intersection of the junction surface Fb and the auxiliary line P3 Lrw: Totally reflected light at the intersection of the exposed surface Fe and the auxiliary line P3 Note that the light incident surface Fi Of the incident light La reflected on the exposed surface Fe side, the light reflected (including total reflection) by the exposed surface Fe is emitted from the exposed surface Fe to the outside of the wavelength converter 3, and the light incident surface Fi Never go back to the side.

各符号のうち、厚み及び角度についての定義は次のとおりである。
w1:第1透光性部材11の厚み
w2:第2透光性部材12の厚み
θ1:光が第1透光性部材11から空気中へ進むときの臨界角
θ2:光が第2透光性部材12から空気中へ進むときの臨界角
θ3:屈折率n1>屈折率n2のときに光が第1透光性部材11から第2透光性部材12へ進むときの臨界角
なお、臨界角は、全反射が生じるときの入射角に等しい。
Of each code, the definitions of thickness and angle are as follows.
w1: Thickness of the first translucent member 11 w2: Thickness of the second translucent member 12 θ1: Critical angle when light travels from the first translucent member 11 into the air θ2: Light is the second translucent member Critical angle when traveling from the sex member 12 into the air θ3: Critical angle when light travels from the first translucent member 11 to the second translucent member 12 when the refractive index n1> refractive index n2 The angle is equal to the angle of incidence when total reflection occurs.

θ1は、厳密には、光が第1透光性部材11から波長変換部材10に進入するときの臨界角として定義されなければならない。しかしながら、波長変換部材10は極めて薄いので、光が第1透光性部材11から波長変換部材10に進入するときの臨界角は、θ1とみなすことができる。 Strictly speaking, θ1 must be defined as the critical angle when light enters the wavelength conversion member 10 from the first translucent member 11. However, since the wavelength conversion member 10 is extremely thin, the critical angle when light enters the wavelength conversion member 10 from the first translucent member 11 can be regarded as θ1.

空気の屈折率nを屈折率naと定義すると、θ1〜θ3を光の屈折率nで表わせば、次のようになる。
θ1=arcsin(na/n1)
θ2=arcsin(na/n2)
θ3=arcsin(n1/n2)
なお、「arcsin」は逆正弦関数を意味する。
If the refractive index n of air is defined as the refractive index na, and θ1 to θ3 are expressed by the refractive index n of light, it becomes as follows.
θ1 = arcsin (na / n1)
θ2 = arcsin (na / n2)
θ3 = arcsin (n1 / n2)
In addition, "arcsin" means an inverse sine function.

図4及び図5について詳細に説明する前に、図4及び図5において所定の全反射光Lru,Lrwを説明する理由を図6で説明する。 Before explaining the details of FIGS. 4 and 5, the reason for explaining the predetermined total reflected light Lru and Lrw in FIGS. 4 and 5 will be described with reference to FIG.

波長変換部材10の光入射面Fiには、入射光Laのように、直接入射する光(以下、「一次入射光」という。)の他に、入射光Laの一部が露出面Fe側に反射して、さらに、接合面Fb又は露出面Feで全反射してから再度光入射面Fiに入射する光(以下、「二次入射光」という。)がある。 On the light incident surface Fi of the wavelength conversion member 10, in addition to the light directly incident (hereinafter referred to as “primary incident light”) like the incident light La, a part of the incident light La is on the exposed surface Fe side. There is light that is reflected, further completely reflected by the joint surface Fb or the exposed surface Fe, and then incident on the light incident surface Fi again (hereinafter, referred to as “secondary incident light”).

図6は波長変換体3の光出射面Foに生成されるリング状発光25に関する。図6Aは波長変換体3の光出射面Foにリング状発光25が生成されている状態を示している。図6Bは波長変換体3の光出射面Foからリング状発光25が除去されている状態を示している。 FIG. 6 relates to a ring-shaped light emitting 25 generated on the light emitting surface Fo of the wavelength converter 3. FIG. 6A shows a state in which the ring-shaped light emitting 25 is generated on the light emitting surface Fo of the wavelength converter 3. FIG. 6B shows a state in which the ring-shaped light emitting 25 is removed from the light emitting surface Fo of the wavelength converter 3.

二次入射光には、接合面Fbで全反射した第1全反射光と、露出面Feで全反射した第2全反射光とがある。二次反射光のうち全反射光のみを問題にする理由は、通常反射の反射光は、反射光としての強度が全反射光に比して著しく小さいからである。すなわち、通常反射の反射光も、後述のリング状発光25を生成するものの、強度が小さく、問題にならない。 The secondary incident light includes a first total reflection light totally reflected by the joint surface Fb and a second total reflection light totally reflected by the exposed surface Fe. The reason why only the total reflected light is considered as the secondary reflected light is that the intensity of the reflected light of the normal reflection is remarkably smaller than that of the fully reflected light. That is, the reflected light of normal reflection also produces the ring-shaped light emission 25 described later, but the intensity is low and there is no problem.

第1及び第2全反射光が、光入射面Fiの面方向に光入射面Fiの周輪郭の内側に入射するときに、大きい強度のリング状発光25が光出射面Foに出現する(図6A)。中心発光23は、一次入射光に起因する出射光であり、中心点Oに出現する。これに対し、リング状発光25は、中心発光23を包囲するように、出現する。sは、中心点Oを中心とするリング状発光25の内周円の半径を示している。 When the first and second total reflected lights are incident on the inside of the circumferential contour of the light incident surface Fi in the plane direction of the light incident surface Fi, a ring-shaped light emitting 25 having a high intensity appears on the light emitting surface Fo (FIG. 6A). The central emission 23 is the emitted light caused by the primary incident light, and appears at the center point O. On the other hand, the ring-shaped light emitting 25 appears so as to surround the central light emitting 23. s indicates the radius of the inner circumference circle of the ring-shaped light emitting 25 centered on the center point O.

リング状発光25の強度は、内周縁が最大となり、外側に向かうに連れて徐々に低下する。リング状発光25は、出射光Lbによる配光パターンや画像等を生成するときに、それらの品質を低下させる。光出射面Foには、中心発光23のみを残して、リング状発光25は除去するか抑制することが望まれる。 The intensity of the ring-shaped light emitting 25 is maximized at the inner peripheral edge and gradually decreases toward the outside. The ring-shaped light emitting 25 lowers the quality of the light distribution pattern, the image, and the like generated by the emitted light Lb. It is desired to remove or suppress the ring-shaped light emission 25 while leaving only the central light emission 23 on the light emission surface Fo.

図6Bはリング状発光25の内周の半径sが距離d以上であることを示している(s≧d)。s≧dとは、波長変換部材10と第1透光性部材11との接合面(該接合面は光入射面Fiより1回り大きい。)に到達したときに、到達位置が光入射面Fiの面方向に光入射面Fiの頂点上か、該頂点より外側になることを意味する。 FIG. 6B shows that the radius s of the inner circumference of the ring-shaped light emitting 25 is the distance d or more (s ≧ d). s ≧ d means that when the joint surface between the wavelength conversion member 10 and the first translucent member 11 (the joint surface is one size larger than the light incident surface Fi) is reached, the arrival position is the light incident surface Fi. It means that it is on the apex of the light incident surface Fi or outside the apex in the plane direction of.

このことから、図6Bに示すように、s≧dとなるように、波長変換体3の各因子の値、具体的には厚み及び屈折率の値を設定すれば、光出射面Foからリング状発光25を除去することが理解できる。 From this, as shown in FIG. 6B, if the values of each factor of the wavelength converter 3, specifically the thickness and the refractive index, are set so that s ≧ d, the ring is formed from the light emitting surface Fo. It can be understood that the state light emission 25 is removed.

図4及び図5は、全反射に起因する二次入射光としての全反射光Lru(第1全反射光)及び全反射光Lrw(第2全反射光)が、波長変換部材10と第1透光性部材11との接合面に戻って来た戻り位置が光入射面Fi上で中心点Oから最遠方点としての矩形の頂点(光入射面Fiと補助線F4との交点)であるときを示している。全反射光Lru,Lrwの戻り位置が補助線F4上か補助線F4より右であれば、全反射光Lru,Lrwは光入射面Fiから波長変換部材10に進入しない。このことは、図6Bの状態を意味する。 In FIGS. 4 and 5, the total reflected light Lru (first total reflected light) and the total reflected light Lrw (second total reflected light) as the secondary incident light due to the total reflection are the wavelength conversion member 10 and the first. The return position returned to the joint surface with the translucent member 11 is the rectangular apex (the intersection of the light incident surface Fi and the auxiliary line F4) as the farthest point from the center point O on the light incident surface Fi. Shows the time. If the return positions of the totally reflected lights Lru and Lrw are on the auxiliary line F4 or to the right of the auxiliary line F4, the totally reflected lights Lru and Lrw do not enter the wavelength conversion member 10 from the light incident surface Fi. This means the state of FIG. 6B.

図4のように、n1>n2の場合には、二次入射光による全反射光は、全反射光Lru(第1全反射光)及び全反射光Lrw(第2全反射光)の2つになる。したがって、光出射面Foにリング状発光25を生成させない条件式は、全反射光Lru及び全反射光Lrwの入射位置が光入射面Fiの面方向に光入射面Fiの頂点より外側になるように、設定され、具体的には、次の(式1)及び(式2)となる。
2・{w1・tanθ1+w2・tanθ2}≧d・・・(式1)
2・w1・tanθ3≧d・・・(式2)
上記(式1)及び(式2)において、左辺がsに対応している。
As shown in FIG. 4, when n1> n2, the total reflected light due to the secondary incident light is the total reflected light Lru (first total reflected light) and the total reflected light Lrw (second total reflected light). become. Therefore, the conditional expression that does not generate the ring-shaped light emitting 25 on the light emitting surface Fo is such that the incident positions of the total reflected light Lru and the totally reflected light Lrw are outside the apex of the light incident surface Fi in the plane direction of the light incident surface Fi. , And specifically, the following (Equation 1) and (Equation 2).
2. {w1, tan θ1 + w2, tan θ2} ≧ d ... (Equation 1)
2 ・ w1 ・ tan θ3 ≧ d ・ ・ ・ (Equation 2)
In the above (Equation 1) and (Equation 2), the left side corresponds to s.

また、図5のように、n1<n2の場合には、二次入射光による全反射光は、全反射光Lrw(第2全反射光)のみとなる。したがって、光出射面Foにリング状発光25を生成させない条件式は、全反射光Lrwの入射位置が光入射面Fiの面方向に光入射面Fiの頂点より外側になるように、設定され、具体的には、次の(式3)となる。
2・{w1・tanθ1+w2・tanθ2}≧d・・・(式3)
上記(式3)において、左辺がsに対応している。
Further, as shown in FIG. 5, when n1 <n2, the total reflected light by the secondary incident light is only the total reflected light Lrw (second total reflected light). Therefore, the conditional expression that does not generate the ring-shaped light emitting 25 on the light emitting surface Fo is set so that the incident position of the total reflected light Lrw is outside the apex of the light incident surface Fi in the plane direction of the light incident surface Fi. Specifically, it becomes the following (Equation 3).
2. {w1, tan θ1 + w2, tan θ2} ≧ d ... (Equation 3)
In the above (Equation 3), the left side corresponds to s.

(変形例)
波長変換部材10と第1透光性部材11との間に波長選択性を有する膜を形成することができる。該膜は、波長変換部材10と第1透光性部材11との接合面において、第1透光性部材11から波長変換部材10への一方向の通過のみを許容し、逆方向への通過を阻止又は抑制する。この結果、波長変換部材10で波長変換されて生成された蛍光のうち、第1透光性部材11の方へ戻ろうとする蛍光は、該膜により阻止されて、波長変換部材10から第1透光性部材11の方へ進入することができない。これにより、波長変換部材10から第1透光性部材11の方へ進入した蛍光が、反射光(全反射光を含む。)となって、リング状発光25の生成原因になることが防止される。
(Modification example)
A film having wavelength selectivity can be formed between the wavelength conversion member 10 and the first translucent member 11. The film allows only one-way passage from the first translucent member 11 to the wavelength conversion member 10 at the joint surface between the wavelength conversion member 10 and the first translucent member 11, and passes in the opposite direction. To prevent or suppress. As a result, among the fluorescence generated by wavelength conversion by the wavelength conversion member 10, the fluorescence that tends to return to the first translucent member 11 is blocked by the film, and the first transmission from the wavelength conversion member 10 is blocked. It is not possible to enter the optical member 11. As a result, it is possible to prevent the fluorescence that has entered from the wavelength conversion member 10 toward the first translucent member 11 to become reflected light (including total reflected light) and cause the ring-shaped light emission 25 to be generated. NS.

露出面Feに反射防止膜を形成することができる。該反射防止膜は、入射光Laとは逆方向に波長変換部材10から第2透光性部材12へ進行して来る蛍光及び後方散乱励起光について、全反射角以下で第2透光性部材12側から入射する光が光入射面Fi側に反射することを抑制する。この結果、迷光を抑制して、出射光Lbの品質を上げることができる。 An antireflection film can be formed on the exposed surface Fe. The antireflection film is a second translucent member having a total reflection angle or less for fluorescence and backward scattered excitation light traveling from the wavelength conversion member 10 to the second translucent member 12 in the direction opposite to the incident light La. It suppresses the reflection of the light incident from the 12 side to the light incident surface Fi side. As a result, stray light can be suppressed and the quality of the emitted light Lb can be improved.

本実施形態では、第1透光性部材11の厚みw1及び第2透光性部材12の厚みw2について、第1透光性部材及び第2透光性部材の全体で所定の厚みを確保できるのであれば、w1≧w2であってもよい。 In the present embodiment, with respect to the thickness w1 of the first translucent member 11 and the thickness w2 of the second translucent member 12, a predetermined thickness can be secured for the entire first translucent member and the second translucent member. If, w1 ≧ w2 may be satisfied.

本実施形態では、光出射面Fo及び光入射面Fiは、矩形になっている。しかしながら、本発明では、光出射面Fo及び光入射面Fiは、円形やその他の形状にすることもできる。光出射面Fo及び光入射面Fiが円形である場合には、光出射面Fo上で中心点0から最遠方点は、光出射面Foの円周上の各位置となる。したがって、光出射面Fo上で光出射面Foの中心点Oと最遠方点との間の距離dは、光出射面Foの半径となる。 In the present embodiment, the light emitting surface Fo and the light incident surface Fi are rectangular. However, in the present invention, the light emitting surface Fo and the light incident surface Fi can also have a circular shape or other shapes. When the light emitting surface Fo and the light incident surface Fi are circular, the farthest point from the center point 0 on the light emitting surface Fo is each position on the circumference of the light emitting surface Fo. Therefore, the distance d between the center point O and the farthest point of the light emitting surface Fo on the light emitting surface Fo is the radius of the light emitting surface Fo.

本実施形態では、波長変換部材10の波長変換物質は、青色の波長を黄色の波長に変更するものなっている。しかしながら、本発明の波長変換部材の波長変換物質は、その他の波長を変換するものであってもよい。 In the present embodiment, the wavelength conversion substance of the wavelength conversion member 10 changes the wavelength of blue to the wavelength of yellow. However, the wavelength conversion substance of the wavelength conversion member of the present invention may be one that converts other wavelengths.

1・・・発光装置、3・・・波長変換体、10・・・波長変換部材、11・・・第1透光性部材、12・・・第2透光性部材、Lru・・・全反射光(第1全反射光)、Lrw・・・全反射光(第2全反射光)、Fi・・・光入射面、Fb・・・接合面、Fe・・・入射側露出面、O・・・中心点、d・・・距離。 1 ... light emitting device, 3 ... wavelength converter, 10 ... wavelength conversion member, 11 ... first translucent member, 12 ... second translucent member, Lru ... total Reflected light (first total reflected light), Lrw ... total reflected light (second total reflected light), Fi ... light incident surface, Fb ... junction surface, Fe ... incident side exposed surface, O ... center point, d ... distance.

Claims (3)

波長変換体であって
波長変換物質を含み、該波長変換物質により通過光の波長変換を行う波長変換部材と、
前記波長変換部材の光入射側に接合され、前記波長変換部材からの伝導熱を伝導する第1透光性部材と、
前記第1透光性部材の光入射側に接合される第2透光性部材とを備え、
前記波長変換体への入射光が、前記波長変換部材の光入射面で前記波長変換体の光入射側に反射し、反射により生成された反射光が、前記第1透光性部材と前記第2透光性部材との接合面、又は前記第2透光性部材の光入射側の面で前記波長変換部材の前記光入射面側に全反射し、全反射により生成された全反射光が、前記波長変換部材と前記第1透光性部材との接合面に到達したときに、到達位置が前記波長変換部材の前記光入射面の面方向に該光入射面の外側になるように、前記第1透光性部材及び前記第2透光性部材の厚み及び屈折率が設定されていることを特徴とする波長変換体。
It is a wavelength converter
A wavelength conversion member containing a wavelength conversion substance and performing wavelength conversion of passing light by the wavelength conversion substance, and
A first translucent member that is joined to the light incident side of the wavelength conversion member and conducts conduction heat from the wavelength conversion member.
A second translucent member joined to the light incident side of the first translucent member is provided.
The incident light on the wavelength converter is reflected on the light incident surface of the wavelength converter on the light incident side of the wavelength converter, and the reflected light generated by the reflection is the first translucent member and the first translucent member. The total reflected light generated by the total reflection is totally reflected to the light incident surface side of the wavelength conversion member on the joint surface with the two translucent members or the surface on the light incident side of the second translucent member. When the joint surface between the wavelength conversion member and the first translucent member is reached, the arrival position is outside the light incident surface in the plane direction of the light incident surface of the wavelength conversion member. A wavelength converter characterized in that the thickness and refractive index of the first translucent member and the second translucent member are set.
波長変換物質を含み、該波長変換物質により通過光の波長変換を行う波長変換部材と、
前記波長変換部材の光入射側に接合され、前記波長変換部材からの伝導熱を伝導する第1透光性部材と、
前記第1透光性部材の光入射側に接合される第2透光性部材とを備え
前記第1透光性部材及び前記第2透光性部材のそれぞれの屈折率n1,n2がn1>n2である場合に、
前記波長変換部材の光出射面上で該光出射面の中心点と該中心点から最遠方点との間の距離をd、前記第1透光性部材及び前記第2透光性部材の厚みをそれぞれw1,w2、前記第1透光性部材から空気中への光の臨界角をθ1、前記第2透光性部材から空気中への光の臨界角をθ2、及び前記第1透光性部材から前記第2透光性部材への光の臨界角をθ3とするとき、
2・{w1・tanθ1+w2・tanθ2}≧dで、かつ2・w1・tanθ3≧dに設定されていることを特徴とする波長変換体。
A wavelength conversion member containing a wavelength conversion substance and performing wavelength conversion of passing light by the wavelength conversion substance, and
A first translucent member that is joined to the light incident side of the wavelength conversion member and conducts conduction heat from the wavelength conversion member.
A second translucent member joined to the light incident side of the first translucent member is provided .
When the refractive indexes n1 and n2 of the first translucent member and the second translucent member are n1> n2, respectively.
The distance between the center point of the light emitting surface and the farthest point from the center point on the light emitting surface of the wavelength conversion member is d, and the thickness of the first translucent member and the second translucent member. W1 and w2, respectively, the critical angle of light from the first translucent member into the air is θ1, the critical angle of light from the second translucent member into the air is θ2, and the first translucent member. When the critical angle of light from the sex member to the second translucent member is θ3,
2. A wavelength converter characterized in that {w1 · tan θ1 + w2 · tan θ2} ≧ d and 2 · w1 · tan θ3 ≧ d.
波長変換物質を含み、該波長変換物質により通過光の波長変換を行う波長変換部材と、
前記波長変換部材の光入射側に接合され、前記波長変換部材からの伝導熱を伝導する第1透光性部材と、
前記第1透光性部材の光入射側に接合される第2透光性部材とを備え
前記第1透光性部材及び前記第2透光性部材のそれぞれの屈折率n1,n2がn1<n2である場合に、
前記波長変換部材の光出射面上で該光出射面の中心点と該中心点から最遠方点との間の距離をd、前記第1透光性部材及び前記第2透光性部材のそれぞれの厚みをw1,w2、前記第1透光性部材から空気中への光の臨界角をθ1、及び前記第2透光性部材から空気中への光の臨界角をθ2とするとき、
2・{w1・tanθ1+w2・tanθ2}≧dに設定されていることを特徴とする波長変換体。
A wavelength conversion member containing a wavelength conversion substance and performing wavelength conversion of passing light by the wavelength conversion substance, and
A first translucent member that is joined to the light incident side of the wavelength conversion member and conducts conduction heat from the wavelength conversion member.
A second translucent member joined to the light incident side of the first translucent member is provided .
When the refractive indexes n1 and n2 of the first translucent member and the second translucent member are n1 <n2, respectively.
The distance between the center point of the light emitting surface and the farthest point from the center point on the light emitting surface of the wavelength conversion member is d, and each of the first translucent member and the second translucent member. When the thickness of is w1 and w2, the critical angle of the light from the first translucent member into the air is θ1, and the critical angle of the light from the second translucent member into the air is θ2.
2. A wavelength converter characterized in that {w1, tan θ1 + w2, tan θ2} ≧ d.
JP2017111177A 2017-06-05 2017-06-05 Wavelength converter Active JP6925174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017111177A JP6925174B2 (en) 2017-06-05 2017-06-05 Wavelength converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017111177A JP6925174B2 (en) 2017-06-05 2017-06-05 Wavelength converter

Publications (2)

Publication Number Publication Date
JP2018205548A JP2018205548A (en) 2018-12-27
JP6925174B2 true JP6925174B2 (en) 2021-08-25

Family

ID=64957749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017111177A Active JP6925174B2 (en) 2017-06-05 2017-06-05 Wavelength converter

Country Status (1)

Country Link
JP (1) JP6925174B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635639B (en) * 2020-12-09 2022-03-22 佛山科学技术学院 White light LED device with uniform space character temperature distribution

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173593A (en) * 2011-02-23 2012-09-10 Seiko Epson Corp Light source device, and projector
JP6119214B2 (en) * 2012-12-03 2017-04-26 スタンレー電気株式会社 Light emitting device and vehicle lamp
KR101680624B1 (en) * 2014-12-08 2016-11-30 한국광기술원 headlight of motor vehicle

Also Published As

Publication number Publication date
JP2018205548A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
US10054798B2 (en) Light-emitting device
US9863595B2 (en) Light-emitting unit with optical plate reflecting excitation light and transmitting fluorescent light, and light-emitting device, illumination device, and vehicle headlight including the unit
US9249951B2 (en) Lens having an internal reflection layer
JP5606922B2 (en) Light emitting module and lamp unit
JP6067629B2 (en) Light emitting device, lighting device, and vehicle headlamp
JP6587148B2 (en) Fluorescent light source device
US20170052362A1 (en) Phosphor wheel and wavelength converting device applying the same
JP6271216B2 (en) Light emitting unit and lighting device
US10347801B2 (en) Light emitting device
JP6457099B2 (en) Wavelength conversion member and light emitting device
US10381532B2 (en) Wavelength conversion device and lighting apparatus
KR101781034B1 (en) Lighting device for vehicle
KR101781033B1 (en) Lighting device for vehicle
JP2018525799A (en) Lighting device for vehicle headlight
TWI598540B (en) Wavelength converting module and light source module using the same
JP6394076B2 (en) Light source device and projector
JP6925174B2 (en) Wavelength converter
TWI544179B (en) Wavelength-converting device and illumination system using same
JP6292376B2 (en) Vehicle lamp and lens body
US20190219233A1 (en) Light emitting device and illuminating apparatus
WO2017043121A1 (en) Light-emitting device and illumination device
JP2018147703A (en) Light source device
JP6604473B2 (en) Lighting apparatus and lighting device
WO2013175752A1 (en) Wavelength conversion member, optical element, light-emitting device, and projection device
KR20170119170A (en) Lighting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210803

R150 Certificate of patent or registration of utility model

Ref document number: 6925174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150