TWI544179B - Wavelength-converting device and illumination system using same - Google Patents

Wavelength-converting device and illumination system using same Download PDF

Info

Publication number
TWI544179B
TWI544179B TW104101526A TW104101526A TWI544179B TW I544179 B TWI544179 B TW I544179B TW 104101526 A TW104101526 A TW 104101526A TW 104101526 A TW104101526 A TW 104101526A TW I544179 B TWI544179 B TW I544179B
Authority
TW
Taiwan
Prior art keywords
light
conversion device
wavelength conversion
optical
refractive index
Prior art date
Application number
TW104101526A
Other languages
Chinese (zh)
Other versions
TW201610364A (en
Inventor
張克蘇
陳照勗
周彥伊
陳琪
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to US14/755,378 priority Critical patent/US9696013B2/en
Priority to EP15174452.1A priority patent/EP2993709A1/en
Priority to JP2015130950A priority patent/JP2016058378A/en
Publication of TW201610364A publication Critical patent/TW201610364A/en
Application granted granted Critical
Publication of TWI544179B publication Critical patent/TWI544179B/en

Links

Landscapes

  • Projection Apparatus (AREA)
  • Led Device Packages (AREA)

Description

光波長轉換裝置及其適用之光源系統 Optical wavelength conversion device and its suitable light source system

本案係關於一種光波長轉換裝置,尤指一種光波長轉換裝置及其適用之光源系統。 The present invention relates to a light wavelength conversion device, and more particularly to a light wavelength conversion device and a light source system therefor.

光波長轉換裝置係為一種光學換能元件,主要用於將光波長轉換產生特定之可見光波長以作為光源,通常應用於特殊照明,例如聚光燈、車頭燈、顯示器光源或投影機顯像等。 The optical wavelength conversion device is an optical transducing element mainly used for converting a wavelength of light to generate a specific visible light wavelength as a light source, and is generally applied to special illumination, such as a spotlight, a headlight, a display light source or a projector image.

一般而言,傳統光波長轉換裝置以螢光粉色輪為大宗,旨在配合雷射光源並將雷射光轉換成具有不同波長之色光。在高功率操作下,螢光粉色輪之光波長轉換效率可大幅提升投影機之光電轉換及流明輸出,近年來已成為新世代投影技術之重要光源。 In general, the conventional light wavelength conversion device is a large-scale fluorescent pink wheel, and is intended to cooperate with a laser light source and convert the laser light into color light having different wavelengths. Under high-power operation, the wavelength conversion efficiency of the fluorescent pink wheel can greatly enhance the photoelectric conversion and lumen output of the projector. In recent years, it has become an important source of new generation projection technology.

請參閱第1圖,其係顯示傳統螢光粉色輪之結構剖視圖。如第1圖所示,傳統螢光粉色輪1主要為三層式結構,具有基板10、反射層11及螢光層12。其中,反射層11係形成於基板10之上,且螢光層12係形成於反射層11之上,亦即反射層11係形成於基板10及螢光層12之間。當第一波段光L1激發螢光層12之螢光粉121而轉換成第二波段光L2後,該第二波段光L2係進行全角度散射,其中,當定義由螢光層12遠離反射層11之方向為正向時,逆向散射,亦 即由螢光層12指向反射層11之方向之散射,係受反射層11進行反射後由正向散射出光,應注意的是此處所稱之正向係指由螢光層12遠離反射層11之方向為正向;同理,逆向係指由螢光層12朝向反射層11之方向為逆向。由於螢光粉所轉換之第二波段光L2屬朗伯特(Lambertian)出光模型,因此反射層11必須具備反射400奈米至700奈米之可見光之能力之外,同時亦需具備反射高於70度入射角度光之能力,但對多層反射鏡技術,要應付如此寬廣的反射波段與入射角度,實屬一艱辛的課題。 Please refer to Fig. 1, which is a cross-sectional view showing the structure of a conventional fluorescent pink wheel. As shown in FIG. 1, the conventional fluorescent pink wheel 1 is mainly a three-layer structure having a substrate 10, a reflective layer 11, and a fluorescent layer 12. The reflective layer 11 is formed on the substrate 10 , and the fluorescent layer 12 is formed on the reflective layer 11 , that is, the reflective layer 11 is formed between the substrate 10 and the fluorescent layer 12 . After the first band of light L1 excites the phosphor powder 121 of the phosphor layer 12 and is converted into the second band of light L2, the second band of light L2 is subjected to full-angle scattering, wherein when defined by the fluorescent layer 12 away from the reflective layer When the direction of 11 is positive, reverse scatter, also That is, the scattering from the direction in which the fluorescent layer 12 is directed to the reflective layer 11 is reflected by the reflective layer 11 and then forwardly scattered. It should be noted that the forward direction referred to herein is the fluorescent layer 12 away from the reflective layer 11 The direction is forward; for the same reason, the reverse direction refers to the direction in which the phosphor layer 12 faces the reflective layer 11 in the reverse direction. Since the second-band light L2 converted by the phosphor powder belongs to the Lambertian light-emitting model, the reflective layer 11 must have the ability to reflect visible light of 400 nm to 700 nm, and also needs to have a higher reflection. The ability to incident light at 70 degrees, but for multilayer mirror technology, it is a difficult task to cope with such a wide reflection band and angle of incidence.

另外,考慮入射環境n1與穿透環境n2的折射率所存在的布魯斯特角(Brewster Angle,θB=tan-1(n2/n1))效應,當入射光之入射角大於或等於布魯斯特角時,入射光之P偏光會全數穿透反射層11,使得反射層11之反射率大幅降低,而產生漏光之現象。舉例而言,當入射光自有效折射率n值約為1.4至1.5入射至折射率n值為1之空氣時,其布魯斯特角係為35.5度角,另有一臨界角(Critical Angle,θC=sin-1(n2/n1))係為45.6度角,亦即當入射光之入射角大於或等於35.5度時,入射光之P偏光會全數穿透,而產生漏光之現象,直至入射角大於45.6度時,入射光方會全數被臨界角全反射。由此可推知,在傳統螢光粉色輪1之結構中,反射層11係介於螢光層12(n1~1.4-1.5)與基板10(ns)之結構下,其布魯斯特角係小於臨界角,故在入射光角度大於或等於布魯斯特角且小於臨界角時,鑒於多層反射鏡技術無法包含全頻譜與大角度的反射,將會有大量的入射光損耗而無法被反射並應用於光路中,造成大量的能量浪費,同時也使光波長轉換裝置及光源系統之製造難度大幅提昇。 In addition, considering the Brewster Angle (θ B =tan -1 (n 2 /n 1 )) effect of the refractive index of the incident environment n 1 and the penetrating environment n 2 , when the incident angle of the incident light is greater than or When it is equal to the Brewster angle, the P-polarized light of the incident light will penetrate the reflective layer 11 in its entirety, so that the reflectance of the reflective layer 11 is greatly reduced, and light leakage occurs. For example, when the incident light is incident from the effective refractive index n value of about 1.4 to 1.5 to the air having the refractive index n value of 1, the Brewster angle is 35.5 degrees, and another critical angle (Critical Angle, θ C ) = sin -1 (n 2 /n 1 )) is 45.6 degrees, that is, when the incident angle of incident light is greater than or equal to 35.5 degrees, the P-polarized light of the incident light will penetrate all the way, resulting in light leakage until When the incident angle is greater than 45.6 degrees, the incident light will be totally reflected by the critical angle. It can be inferred that in the structure of the conventional fluorescent pink wheel 1, the reflective layer 11 is under the structure of the fluorescent layer 12 (n 1 ~ 1.4-1.5) and the substrate 10 (n s ), and its Brewster angle system Less than the critical angle, so when the incident light angle is greater than or equal to the Brewster angle and less than the critical angle, in view of the fact that the multilayer mirror technology cannot contain full spectrum and large angle reflection, there will be a large amount of incident light loss that cannot be reflected and applied. In the light path, a large amount of energy is wasted, and the manufacturing difficulty of the optical wavelength conversion device and the light source system is greatly increased.

因此,實有必要發展一種光波長轉換裝置及其適用之光源系統,以改善前文提及之各項缺點及問題,進而增進其產業上之實用性。 Therefore, it is necessary to develop an optical wavelength conversion device and a light source system therefor to improve the above-mentioned shortcomings and problems, thereby enhancing its industrial applicability.

本案之主要目的為提供一種光波長轉換裝置及其適用之光源系統,俾解決並改善前述先前技術之問題與缺點。 The main object of the present invention is to provide an optical wavelength conversion device and a light source system therefor, which solve and improve the problems and disadvantages of the aforementioned prior art.

本案之另一目的為提供一種光波長轉換裝置及其適用之光源系統,藉由光波長轉換裝置選用之材料及結構,並滿足θC=sin-1(namb/ns)以及nr>2(namb 2)/ns二式,以實現使布魯斯特角θB之角度大於臨界角θC之角度,並利用臨界角的全反射來減輕多層反射鏡技術的大角度入射設計,可有效達到避免能量之浪費,同時簡化光波長轉換裝置及光源系統之製造及材料選用之難度等功效。 Another object of the present invention is to provide an optical wavelength conversion device and a light source system therefor, which are selected by the optical wavelength conversion device and satisfy θ C =sin -1 (n amb /n s ) and n r > 2(n amb 2 )/n s two equations to achieve an angle that causes the Brewster angle θ B to be greater than the critical angle θ C and utilizes the total reflection of the critical angle to mitigate the large-angle incident design of the multilayer mirror technique. Effectively avoids the waste of energy, and at the same time simplifies the manufacturing of the optical wavelength conversion device and the light source system and the difficulty of material selection.

為達上述目的,本案之一較廣實施態樣為提供一種光波長轉換裝置,適用於轉換一第一波段光,包括:一穿透式基板,具有一折射率ns值,其中該折射率ns值係大於環境介質之一折射率namb值;一螢光層,設置於該穿透式基板之一側,用以將該第一波段光轉換為一第二波段光;以及一光學層,相對該螢光層設置於該穿透式基板之另一側,用以反射該第二波段光,其中該光學層具有一有效折射率nr值;其中,該折射率ns值、該折射率namb值及該有效折射率nr值係滿足nr>2(namb 2)/ns之關係式。 In order to achieve the above object, a wider aspect of the present invention provides a light wavelength conversion device suitable for converting a first wavelength band, comprising: a transmissive substrate having a refractive index n s value, wherein the refractive index The n s value is greater than a refractive index n amb value of the environmental medium; a phosphor layer disposed on one side of the transmissive substrate for converting the first band of light into a second band of light; and an optical a layer opposite to the phosphor layer disposed on the other side of the transmissive substrate for reflecting the second wavelength band, wherein the optical layer has an effective refractive index n r value; wherein the refractive index n s value, The refractive index n amb value and the effective refractive index n r value satisfy a relationship of n r > 2 (n amb 2 ) / n s .

於一些實施例中,該穿透式基板係架構於使該第一波段光及該第二波段光穿透。 In some embodiments, the transmissive substrate is configured to penetrate the first band of light and the second band of light.

於一些實施例中,該光學層係架構於使該第一波段光穿透,並反射該第二波段光。其中,該第一波段光係為藍光或UV光源,且該第二波段光係為波長大於460奈米之可見光。 In some embodiments, the optical layer is configured to penetrate the first band of light and reflect the second band of light. The first band light system is a blue light or a UV light source, and the second band light system is visible light having a wavelength greater than 460 nm.

於一些實施例中,該光學層係架構於反射該第一波段光及該第二波段光。 In some embodiments, the optical layer is configured to reflect the first band of light and the second band of light.

於一些實施例中,該穿透式基板係為藍寶石基板、玻璃基板、硼矽玻璃基板、浮法硼矽玻璃基板、熔凝石英基板或氟化鈣基板。 In some embodiments, the transmissive substrate is a sapphire substrate, a glass substrate, a boron germanium glass substrate, a float boron germanium glass substrate, a fused quartz substrate, or a calcium fluoride substrate.

於一些實施例中,該光學層係包含至少一金屬材料,且該金屬材料係為銀或鋁,或至少包含銀合金或鋁合金。 In some embodiments, the optical layer comprises at least one metallic material, and the metallic material is silver or aluminum, or at least comprises a silver alloy or an aluminum alloy.

於一些實施例中,該光學層係包括一分佈布拉格反射層或一全向反射層。 In some embodiments, the optical layer comprises a distributed Bragg reflector or an omnidirectional reflector.

為達上述目的,本案之另一較廣實施態樣為提供一種光源系統,包括:一固態發光元件,架構於發出一第一波段光至一光路徑;以及一光波長轉換裝置,設置於該光路徑上,包括:一穿透式基板,具有一折射率ns值,其中該折射率ns值係大於環境介質之一折射率namb值;一螢光層,設置於該穿透式基板之一側,用以將該第一波段光轉換為一第二波段光並輸出該第二波段光;以及一光學層,相對該螢光層設置於該穿透式基板之另一側,用以反射該第二波段光,其中該光學層具有一有效折射率nr值;其中,該折射率ns值、該折射率namb值及該有效折射率nr值係滿足nr>2(namb 2)/ns之關係式。 In order to achieve the above object, another broad aspect of the present invention provides a light source system comprising: a solid state light emitting device configured to emit a first band of light to a light path; and a light wavelength conversion device disposed at the The light path includes: a transmissive substrate having a refractive index n s value, wherein the refractive index n s value is greater than a refractive index n amb value of the environmental medium; a fluorescent layer disposed on the transparent a side of the substrate for converting the first band of light into a second band of light and outputting the second band of light; and an optical layer disposed opposite to the other side of the transmissive substrate For reflecting the second wavelength band, wherein the optical layer has an effective refractive index n r value; wherein the refractive index n s value, the refractive index n amb value, and the effective refractive index n r value satisfy n r > The relational expression of 2(n amb 2 )/n s .

於一些實施例中,該光波長轉換裝置係為一反射式光波長轉換裝置。其中,該固態發光元件係鄰設於該螢光層。 In some embodiments, the optical wavelength conversion device is a reflective optical wavelength conversion device. The solid state light emitting device is disposed adjacent to the phosphor layer.

於一些實施例中,該光波長轉換裝置係為一穿透式光波長轉換裝置。其中,該固態發光元件係鄰設於該光學層。 In some embodiments, the optical wavelength conversion device is a transmissive optical wavelength conversion device. Wherein, the solid state light emitting element is adjacent to the optical layer.

1‧‧‧傳統光波長轉換裝置 1‧‧‧Traditional light wavelength conversion device

10‧‧‧基板 10‧‧‧Substrate

11‧‧‧反射層 11‧‧‧reflective layer

12‧‧‧螢光層 12‧‧‧Fluorescent layer

121‧‧‧螢光粉 121‧‧‧Fluorescent powder

2‧‧‧光波長轉換裝置 2‧‧‧Light wavelength conversion device

20‧‧‧穿透式基板 20‧‧‧Transmissive substrate

21‧‧‧光學層 21‧‧‧Optical layer

22‧‧‧螢光層 22‧‧‧Fluorescent layer

3‧‧‧光源系統 3‧‧‧Light source system

31‧‧‧固態發光元件 31‧‧‧Solid light-emitting elements

A‧‧‧環境介質 A‧‧‧Environmental medium

I‧‧‧入射光 I‧‧‧ incident light

L1‧‧‧第一波段光 L1‧‧‧ first band light

L2‧‧‧第二波段光 L2‧‧‧second band light

P‧‧‧光路徑 P‧‧‧Light path

第1圖係顯示傳統螢光粉色輪之結構剖視圖。 Figure 1 is a cross-sectional view showing the structure of a conventional fluorescent pink wheel.

第2圖係顯示一入射光自本案較佳實施例之光波長轉換裝置之基板入射至一光學層並受反射之示意圖。 Figure 2 is a schematic view showing incident light incident on an optical layer from a substrate of the optical wavelength conversion device of the preferred embodiment of the present invention and reflected.

第3圖係顯示一入射光自本案光波長轉換裝置入射至空氣之反射率-入射角角度對應圖。 Fig. 3 is a graph showing the reflectance-incident angle of a incident light incident on the air from the light wavelength conversion device of the present invention.

第4A圖係顯示本案較佳實施例之光源系統之架構圖。 Figure 4A is a block diagram showing the light source system of the preferred embodiment of the present invention.

第4B圖係顯示本案另一較佳實施例之光源系統之架構圖。 Figure 4B is a block diagram showing the light source system of another preferred embodiment of the present invention.

第5圖係顯示本案一實施例之反射式光波長轉換裝置之結構剖視圖。 Fig. 5 is a cross-sectional view showing the structure of a reflection type optical wavelength conversion device according to an embodiment of the present invention.

第6圖係顯示第5圖所示之反射式光波長轉換裝置之反射頻譜。 Fig. 6 is a view showing a reflection spectrum of the reflection type optical wavelength conversion device shown in Fig. 5.

第7圖係顯示本案一實施例之穿透式光波長轉換裝置之結構剖視圖。 Figure 7 is a cross-sectional view showing the structure of a transmissive optical wavelength conversion device according to an embodiment of the present invention.

第8圖係顯示第7圖所示之穿透式光波長轉換裝置之穿透頻譜。 Fig. 8 is a view showing the penetration spectrum of the transmissive optical wavelength conversion device shown in Fig. 7.

體現本案特徵與優點的一些典型實施例將在後段的說明中詳細敘述。應理解的是本案能夠在不同的態樣上具有各種的變化,其皆不脫離本案的範圍,且其中的說明及圖示在本質上係當作說明之用,而非架構於限制本案。 Some exemplary embodiments embodying the features and advantages of the present invention are described in detail in the following description. It is to be understood that the present invention is capable of various modifications in various aspects, and is not to be construed as a limitation.

請參閱第2圖,其係顯示一入射光自本案較佳實施例之光波長轉換裝置之基板入射至一光學層並受反射之示意圖。如第2圖所示,本案提出一種光波長轉換裝置2,係將光學層21鍍覆至基板20下方,使基板20夾設於螢光層22與光學層21之間,在該光學架構下,入射光由基板20入射至光學層21。具體而言,入射光I係由穿透式基板20入射至光學層21,並受光學層21及環境介質A之界面反射,其中,臨界角θC係為環境介質A之折射率namb值除以穿透式基板20之折射率ns值所得之商之反正弦函數,即θC=sin-1(namb/ns);布魯斯特角θB係為光學層21之有效折射率nr值除以穿透式基板20之折射率ns值所得之商之反正切函數即θB=tan-1(nr/ns)。藉由基板ns與環境介質A所創造的臨界角,使得光學層21僅需考慮臨界角以下的入光角度之全波長頻譜反射(400-700nm),其設計較為容易滿足布魯斯特角θB之角度大於臨界角θC之角度;經進一步運算可推得穿透式基板20之折射率ns值、光學層21之有效折射率nr值以及環境介質A之折射率namb值之關係式為:nr>2(namb 2)/ns。換言之,若本案之光波長轉換裝置選用之材料及結構滿足θC=sin-1(namb/ns)以及nr>2(namb 2)/ns二式時,該光波長轉換裝置即可實現使布魯斯特角θB之角度大於臨界角θC之角度,並進一步降低入射光之損耗。 Please refer to FIG. 2, which is a schematic diagram showing incident light incident on an optical layer from a substrate of the optical wavelength conversion device of the preferred embodiment of the present invention and reflected. As shown in FIG. 2, the present invention proposes a light wavelength conversion device 2 for plating an optical layer 21 under the substrate 20 such that the substrate 20 is interposed between the phosphor layer 22 and the optical layer 21 under the optical structure. The incident light is incident on the optical layer 21 from the substrate 20. Specifically, the incident light I is incident on the optical layer 21 from the transmissive substrate 20 and is reflected by the interface between the optical layer 21 and the environmental medium A, wherein the critical angle θ C is the refractive index n amb of the environmental medium A. The inverse sine function of the quotient obtained by dividing the refractive index n s of the transmissive substrate 20, that is, θ C = sin -1 (n amb /n s ); the Brewster angle θ B is the effective refractive index of the optical layer 21 The inverse tangent function of the quotient obtained by dividing the value of n r by the refractive index n s of the transmissive substrate 20 is θ B =tan -1 (n r /n s ). By the critical angle created by the substrate n s and the environmental medium A, the optical layer 21 only needs to consider the full-wavelength spectral reflection (400-700 nm) of the incident angle below the critical angle, and the design is easy to satisfy the Brewster angle θ B The angle is greater than the angle of the critical angle θ C ; further calculation can be used to derive the relationship between the refractive index n s value of the transmissive substrate 20, the effective refractive index n r of the optical layer 21, and the refractive index n amb of the environmental medium A. The formula is: n r >2(n amb 2 )/n s . In other words, if the material and structure selected by the optical wavelength conversion device of the present invention satisfy θ C = sin -1 (n amb /n s ) and n r >2(n amb 2 )/n s , the optical wavelength conversion device The angle at which the Brewster angle θ B is greater than the critical angle θ C can be achieved and the loss of incident light can be further reduced.

請參閱第3圖,其係顯示一入射光自一藍寶石基板入射至空氣之反射率-入射角角度對應圖。如第3圖所示,為了解決先前技術中,光波長轉換裝置之入射光損耗問題,本發明係考慮光波長轉換裝置及空氣之折射率n值,並實現使布魯斯特角之角度大於臨界角之角度。於光波長轉換裝置中,布魯斯特角之角度係取決於整 體光波長轉換裝置之光學層的有效折射率nr值,臨界角之角度係取決於光波長轉換裝置之基板ns與環境namb折射率。故此,若採用折射率ns值較大之基板,例如藍寶石基板,其折射率ns值約為1.77,可得臨界角角度下降至34.4度,即如第3圖所示。再經運算反推,可進一步得知整體光波長轉換裝置之光學層有效折射率nr值之最大值。 Please refer to FIG. 3, which is a graph showing the reflectance-incident angle angle of incident light incident on a sapphire substrate. As shown in FIG. 3, in order to solve the problem of incident light loss of the optical wavelength conversion device in the prior art, the present invention considers the refractive index n value of the optical wavelength conversion device and the air, and realizes that the Brewster angle is greater than the critical angle. The angle. In the optical wavelength conversion device, the angle of the Brewster angle depends on the effective refractive index n r of the optical layer of the overall optical wavelength conversion device, and the angle of the critical angle depends on the substrate n s of the optical wavelength conversion device and the environment n amb Refractive index. Therefore, if a substrate having a large refractive index n s value, such as a sapphire substrate, has a refractive index n s value of about 1.77, the critical angle angle can be lowered to 34.4 degrees, that is, as shown in FIG. Further, by inverse operation, the maximum value of the effective refractive index n r of the optical layer of the overall optical wavelength conversion device can be further known.

以使布魯斯特角之角度大於35度為例,經運算可得整體光波長轉換裝置之光學層的有效折射率nr值係小於1.45,但不以此為限。此外,由布魯斯特角之定義θB=tan-1(n2/n1)中,係可發現為使布魯斯特角之角度提升,勢必要使反正切函數中的折射率n1值下降,故本案提出前述較佳實施例之光波長轉換裝置2之架構,以實現本發明「使布魯斯特角之角度大於臨界角之角度」之目標,並進一步地達到避免能量之浪費,同時簡化光波長轉換裝置及光源系統之製造及材料選用之難度等功效。 For example, the angle of the effective refractive index n r of the optical layer of the overall optical wavelength conversion device is less than 1.45, but not limited thereto. In addition, from the definition of Brewster's angle θ B =tan -1 (n 2 /n 1 ), it can be found that the angle of the Brewster angle is raised, and it is necessary to lower the value of the refractive index n 1 in the arctangent function. Therefore, the structure of the optical wavelength conversion device 2 of the foregoing preferred embodiment is proposed in the present invention to achieve the object of the invention that the angle of the Brewster angle is greater than the angle of the critical angle, and further avoiding waste of energy while simplifying the wavelength of light. The difficulty of manufacturing and material selection of the conversion device and the light source system.

反觀習知技術,其於傳統光波長轉換裝置之架構下,折射率n1值實受限於螢光層之膠體特性,一般多介於1.4-1.5之矽膠材,材料較難調整,明顯無法達成本發明之目標。 In contrast, the conventional technology, under the framework of the traditional optical wavelength conversion device, the refractive index n 1 value is limited by the colloidal properties of the fluorescent layer, generally more than 1.4-1.5 of the rubber material, the material is difficult to adjust, obviously unable to The object of the invention is achieved.

請參閱第4A圖及第4B圖並配合第2圖,其中第4A圖係顯示本案較佳實施例之光源系統之架構圖,以及第4B圖係顯示本案另一較佳實施例之光源系統之架構圖。如第2圖、第4A圖及第4B圖所示,本案之光波長轉換裝置2係適用於轉換光源系統3之固態發光元件31發出之第一波段光L1,且光波長轉換裝置2包括穿透式基板20、光學層21及螢光層22。其中,穿透式基板20係可為例如藍寶石(Sapphire)基板、玻璃(Glass)基板、硼矽玻璃(Borosilicate Glass)基板、浮法硼矽玻璃(Borofloat Glass)基板、熔凝石英(Fused quartz)基板或氟化鈣(CaF2)基板等,但不以此為限,且具有一折射率ns值,其中該折射率ns值係大於環境介質之一折射率namb值。螢光層21係設置於穿透式基板20之一側,用以將第一波段光L1轉換為第二波段光L2。光學層22係可包含至少一金屬材料,例如但不限於銀或鋁或至少含其中之一金屬成分之合金,亦可包括分佈布拉格反射層(Distributed Bragg Reflector,DBR)或全向反射層(Omni Directional Reflector,ODR),其中分佈布拉格反射層及全向反射層之層數係可依實際需求選用之,例如配合光波長轉換裝置為反射式或穿透式架構,且較佳係具有複數層,惟不以此為限,且光學層21係相對螢光層22設置於穿透式基板20之另一側,用以反射第二波段光L2,且光學層21具有一有效折射率nr值。其中,為滿足本案使布魯斯特角θB之角度大於臨界角θC之角度,以進一步降低能量損耗,該折射率ns值、該折射率namb值及該有效折射率nr值係滿足nr>2(namb 2)/ns之關係式。藉此,可達到有效避免能量之浪費,同時簡化光波長轉換裝置及光源系統之製造及材料選用之難度等功效。 Please refer to FIG. 4A and FIG. 4B and FIG. 2 , wherein FIG. 4A is a structural diagram of a light source system according to a preferred embodiment of the present invention, and FIG. 4B is a diagram showing a light source system according to another preferred embodiment of the present invention. Architecture diagram. As shown in FIG. 2, FIG. 4A and FIG. 4B, the optical wavelength conversion device 2 of the present invention is suitable for converting the first-band light L1 emitted from the solid-state light-emitting element 31 of the light source system 3, and the optical wavelength conversion device 2 includes The transparent substrate 20, the optical layer 21, and the fluorescent layer 22. The transmissive substrate 20 can be, for example, a sapphire substrate, a glass substrate, a boron borosilicate glass substrate, a float borax glass substrate, or a fused quartz. a substrate or a calcium fluoride (CaF 2 ) substrate or the like, but not limited thereto, and having a refractive index n s value, wherein the refractive index n s value is greater than a refractive index n amb value of one of the environmental media. The phosphor layer 21 is disposed on one side of the transmissive substrate 20 for converting the first band light L1 into the second band light L2. The optical layer 22 may comprise at least one metal material such as, but not limited to, silver or aluminum or an alloy containing at least one of the metal components, and may also include a Distributed Bragg Reflector (DBR) or an omnidirectional reflective layer (Omni). Directional Reflector (ODR), wherein the number of layers of the Bragg reflection layer and the omnidirectional reflection layer can be selected according to actual needs, for example, the light wavelength conversion device is a reflective or transmissive structure, and preferably has a plurality of layers. The optical layer 21 is disposed on the other side of the transmissive substrate 20 opposite to the phosphor layer 22 for reflecting the second wavelength band light L2, and the optical layer 21 has an effective refractive index n r value. . Wherein, in order to satisfy the present case, the angle of the Brewster angle θ B is greater than the angle of the critical angle θ C to further reduce the energy loss, and the refractive index n s value, the refractive index n amb value and the effective refractive index n r are satisfied. The relationship between n r >2(n amb 2 )/n s . Thereby, the waste of energy can be effectively avoided, and the difficulty of manufacturing and material selection of the optical wavelength conversion device and the light source system can be simplified.

請參閱第5圖並配合第2圖及第4A圖,其中第5圖係顯示本案一實施例之反射式光波長轉換裝置之結構剖視圖。如第2圖、第4A圖及第5圖所示,本案光源系統3之光波長轉換裝置2係可為反射式光波長轉換裝置,其中固態發光元件31係鄰設於螢光層22,以架構於使第一波段光L1之入射方向與第二波段光L2之最終出射方向實質上相反。於一些實施例中,穿透式基板20係架構於使第一波段光L1及第二波段光L2穿透,且光學層21係架構於反射第一波段 光L1及第二波段光L2,亦即反射波長400奈米至700奈米之可見光。 Please refer to FIG. 5 and FIG. 2 and FIG. 4A. FIG. 5 is a cross-sectional view showing the structure of the reflective optical wavelength conversion device according to an embodiment of the present invention. As shown in FIG. 2, FIG. 4A and FIG. 5, the optical wavelength conversion device 2 of the light source system 3 of the present invention can be a reflective optical wavelength conversion device, wherein the solid-state light-emitting element 31 is adjacent to the fluorescent layer 22, The structure is such that the incident direction of the first band light L1 is substantially opposite to the final exit direction of the second band light L2. In some embodiments, the transmissive substrate 20 is configured to penetrate the first band light L1 and the second band light L2, and the optical layer 21 is configured to reflect the first band. The light L1 and the second band light L2, that is, the visible light having a wavelength of 400 nm to 700 nm.

請參閱第6圖並配合第5圖,其中第6圖係顯示第5圖所示之反射式光波長轉換裝置之反射頻譜。如第5圖及第6圖所示,當選用藍寶石基板作為本案反射式光波長轉換裝置之穿透式基板20,該臨界角θC僅34.4度,該光學層容易設計實現本案使布魯斯特角θB之角度大於臨界角θC之角度之目標,本案反射式光波長轉換裝置2之反射頻譜係顯示400奈米至700奈米之可見光於入射角為0度及30度時,其反射率實質上皆約略為100%,而高於34.4度之入射光,則藉由臨界角的全反射,而幾乎達到全頻譜、全角度的反射效果,故此於第6圖所示之反射頻譜中,400奈米至700奈米之可見光於入射角大於30度之部分省略繪出。 Please refer to Fig. 6 and Fig. 5, wherein Fig. 6 shows the reflection spectrum of the reflective optical wavelength conversion device shown in Fig. 5. As shown in FIG. 5 and FIG. 6, when the sapphire substrate is selected as the transmissive substrate 20 of the reflective light wavelength conversion device of the present invention, the critical angle θ C is only 34.4 degrees, and the optical layer is easily designed to realize the Brewster angle. The angle of θ B is greater than the angle of the critical angle θ C. The reflection spectrum of the reflective light wavelength conversion device 2 of the present invention shows the reflectance of visible light of 400 nm to 700 nm at an incident angle of 0 and 30 degrees. In essence, it is about 100%, and the incident light higher than 34.4 degrees is almost full-spectrum and full-angle reflection by the total reflection of the critical angle. Therefore, in the reflection spectrum shown in Fig. 6, The visible light of 400 nm to 700 nm is omitted in the portion where the incident angle is greater than 30 degrees.

請參閱第7圖並配合第2圖及第4B圖,其中第7圖係顯示本案一實施例之穿透式光波長轉換裝置之結構剖視圖。如第2圖、第4B圖及第7圖所示,本案光源系統3之光波長轉換裝置2係可為穿透式光波長轉換裝置,且固態發光元件31係鄰設於光學層21,以架構於使第一波段光L1之入射方向與第二波段光L2之最終出射方向實質上相同。於一些實施例中,穿透式基板20係架構於使第一波段光L1及第二波段光L2穿透,且光學層21係架構於使第一波段光L1穿透,並反射第二波段光L2,其中第一波段光L1係為藍光,且第二波段光L2係為波長大於460奈米之可見光,然並不以此為限。 Referring to FIG. 7 and FIG. 2 and FIG. 4B, FIG. 7 is a cross-sectional view showing the structure of the transmissive optical wavelength conversion device according to an embodiment of the present invention. As shown in FIG. 2, FIG. 4B and FIG. 7, the optical wavelength conversion device 2 of the light source system 3 of the present invention can be a transmissive optical wavelength conversion device, and the solid-state light-emitting element 31 is disposed adjacent to the optical layer 21 to The arrangement is such that the incident direction of the first band light L1 is substantially the same as the final exit direction of the second band light L2. In some embodiments, the transmissive substrate 20 is configured to penetrate the first band light L1 and the second band light L2, and the optical layer 21 is configured to penetrate the first band light L1 and reflect the second band. The light L2, wherein the first band light L1 is blue light, and the second band light L2 is visible light having a wavelength greater than 460 nm, which is not limited thereto.

請參閱第8圖並配合第7圖,其中第8圖係顯示第7圖所示之穿透式光波長轉換裝置之穿透頻譜。如第7圖及第8圖所示,當選用藍寶石基板作為本案穿透式光波長轉換裝置之穿透式基板20,且實現 本案使布魯斯特角θB之角度大於臨界角θC之角度之目標時,本案光波長轉換裝置2之穿透頻譜係顯示第二波段光L2,即波長大於460奈米之可見光,於入射角為0度時,其穿透率實質上約略為0%,亦即幾乎達到全反射。此外,於第8圖中亦示出,此實施例中之第一波段光L1,即波長小於或等於460奈米之藍光,於入射角為0度時,其穿透率實質上皆約略為100%,亦即幾乎達到全穿透,由此驗證前述光學層21確實係架構於使第一波段光L1穿透,並反射第二波段光L2。 Please refer to Fig. 8 and Fig. 7, wherein Fig. 8 shows the penetration spectrum of the transmissive optical wavelength conversion device shown in Fig. 7. As shown in FIGS. 7 and 8, when a sapphire substrate is selected as the transmissive substrate 20 of the transmissive optical wavelength conversion device of the present invention, and the angle at which the Brewster angle θ B is greater than the critical angle θ C is achieved. At the target, the penetration spectrum of the optical wavelength conversion device 2 of the present invention shows the second wavelength light L2, that is, the visible light having a wavelength greater than 460 nm, and the transmittance is substantially 0% when the incident angle is 0 degrees. That is, almost total reflection is achieved. In addition, it is also shown in FIG. 8 that the first wavelength band light L1 in this embodiment, that is, the blue light having a wavelength less than or equal to 460 nm, has substantially the same transmittance when the incident angle is 0 degrees. 100%, that is, almost full penetration, thereby verifying that the optical layer 21 is indeed structured to penetrate the first wavelength band light L1 and reflect the second band light L2.

綜上所述,本案提供一種光波長轉換裝置及其適用之光源系統,俾解決並改善先前技術之問題與缺點。具體而言,本案係提供一種光波長轉換裝置及其適用之光源系統,藉由光波長轉換裝置選用之材料及結構滿足θC=sin-1(namb/ns)以及nr>2(namb 2)/ns二式,以實現使布魯斯特角θB之角度大於臨界角θC之角度,可達到有效避免能量之浪費,同時簡化光波長轉換裝置及光源系統之製造及材料選用之難度等功效。 In summary, the present invention provides an optical wavelength conversion device and a light source system therefor, which solve and improve the problems and disadvantages of the prior art. Specifically, the present invention provides an optical wavelength conversion device and a light source system therefor, wherein the material and structure selected by the optical wavelength conversion device satisfy θ C =sin -1 (n amb /n s ) and n r >2 ( n amb 2 ) / n s two, in order to achieve the angle of the Brewster angle θ B is greater than the critical angle θ C , can effectively avoid energy waste, while simplifying the manufacture and material selection of the optical wavelength conversion device and the light source system The difficulty and other effects.

縱使本發明已由上述之實施例詳細敘述而可由熟悉本技藝之人士任施匠思而為諸般修飾,然皆不脫如附申請專利範圍所欲保護者。 The present invention has been described in detail by the above-described embodiments, and may be modified by those skilled in the art, without departing from the scope of the appended claims.

2‧‧‧光波長轉換裝置 2‧‧‧Light wavelength conversion device

20‧‧‧穿透式基板 20‧‧‧Transmissive substrate

21‧‧‧光學層 21‧‧‧Optical layer

22‧‧‧螢光層 22‧‧‧Fluorescent layer

Claims (11)

一種光波長轉換裝置,適用於轉換一第一波段光,包括:一穿透式基板,具有一折射率ns值,其中該折射率ns值係大於環境介質之一折射率namb值;一螢光層,設置於該穿透式基板之一側,用以將該第一波段光轉換為一第二波段光;以及一光學層,相對該螢光層設置於該穿透式基板之另一側,用以反射該第二波段光,其中該光學層具有一有效折射率nr值;其中,該第一波段光係由該螢光層進入該光波長轉換裝置,或該第一波段光係由該光學層進入該光波長轉換裝置,且該折射率ns值、該折射率namb值及該有效折射率nr值係滿足nr>2(namb 2)/ns之關係式。 An optical wavelength conversion device, configured to convert a first wavelength band of light, comprising: a transmissive substrate having a refractive index n s value, wherein the refractive index n s value is greater than a refractive index n amb value of one of the environmental media; a phosphor layer disposed on one side of the transmissive substrate for converting the first wavelength band light into a second band of light; and an optical layer disposed on the transmissive substrate opposite to the phosphor layer The other side is configured to reflect the second wavelength band, wherein the optical layer has an effective refractive index n r value; wherein the first wavelength light system enters the optical wavelength conversion device by the fluorescent layer, or the first a band light system enters the light wavelength conversion device by the optical layer, and the refractive index n s value, the refractive index n amb value, and the effective refractive index n r value satisfy n r >2(n amb 2 )/n s The relationship. 如申請專利範圍第1項所述之光波長轉換裝置,其中該光學層係架構於使該第一波段光穿透,並反射該第二波段光。 The optical wavelength conversion device of claim 1, wherein the optical layer is configured to penetrate the first wavelength band and reflect the second wavelength band. 如申請專利範圍第2項所述之光波長轉換裝置,其中該第一波段光係為藍光或UV光源,且該第二波段光係為波長大於460奈米之可見光。 The optical wavelength conversion device of claim 2, wherein the first wavelength light system is a blue light or a UV light source, and the second wavelength light system is visible light having a wavelength greater than 460 nm. 如申請專利範圍第1項所述之光波長轉換裝置,其中該光學層係架構於反射該第一波段光及該第二波段光。 The optical wavelength conversion device of claim 1, wherein the optical layer is configured to reflect the first band of light and the second band of light. 如申請專利範圍第1項所述之光波長轉換裝置,其中該穿透式基板係為藍寶石基板、玻璃基板、硼矽玻璃基板、浮法硼矽玻璃基板、熔凝石英基板或氟化鈣基板。 The optical wavelength conversion device according to claim 1, wherein the transmissive substrate is a sapphire substrate, a glass substrate, a boron germanium glass substrate, a float boron germanium glass substrate, a fused quartz substrate or a calcium fluoride substrate. . 如申請專利範圍第1項所述之光波長轉換裝置,其中該光學層係包含至少一金屬材料,且該金屬材料係為銀或鋁。 The optical wavelength conversion device of claim 1, wherein the optical layer comprises at least one metal material, and the metal material is silver or aluminum. 如申請專利範圍第1項所述之光波長轉換裝置,其中該光學層係包含銀合金或鋁合金。 The optical wavelength conversion device of claim 1, wherein the optical layer comprises a silver alloy or an aluminum alloy. 如申請專利範圍第1項所述之光波長轉換裝置,其中該光學層係包括一分佈布拉格反射層或一全向反射層。 The optical wavelength conversion device of claim 1, wherein the optical layer comprises a distributed Bragg reflection layer or an omnidirectional reflection layer. 一種光源系統,包括:一固態發光元件,架構於發出一第一波段光至一光路徑;以及一光波長轉換裝置,設置於該光路徑上,包括:一穿透式基板,具有一折射率ns值,其中該折射率ns值係大於環境介質之一折射率namb值;一螢光層,設置於該穿透式基板之一側,用以將該第一波段光轉換為一第二波段光並輸出該第二波段光;以及一光學層,相對該螢光層設置於該穿透式基板之另一側,用以反射該第二波段光,其中該光學層具有一有效折射率nr值;其中,該固態發光元件係鄰設於該螢光層,或該固態發光元件係鄰設於該光學層,且該折射率ns值、該折射率namb值及該有效折射率nr值係滿足nr>2(namb 2)/ns之關係式。 A light source system comprising: a solid state light emitting device configured to emit a first wavelength band of light to a light path; and a light wavelength conversion device disposed on the light path, comprising: a transmissive substrate having a refractive index a value of n s , wherein the value of the refractive index n s is greater than a refractive index n amb of the environmental medium; a phosphor layer disposed on one side of the transmissive substrate for converting the first band of light into one a second band of light and outputting the second band of light; and an optical layer disposed on the other side of the transmissive substrate opposite to the reflective substrate for reflecting the second band of light, wherein the optical layer has an effective a refractive index n r value; wherein the solid state light emitting device is disposed adjacent to the fluorescent layer, or the solid state light emitting device is adjacent to the optical layer, and the refractive index n s value, the refractive index n amb value, and the The effective refractive index n r value satisfies the relationship of n r > 2 (n amb 2 ) / n s . 如申請專利範圍第9項所述之光源系統,其中該光波長轉換裝置係為一反射式光波長轉換裝置。 The light source system of claim 9, wherein the optical wavelength conversion device is a reflective optical wavelength conversion device. 如申請專利範圍第9項所述之光源系統,其中該光波長轉換裝置係為一穿透式光波長轉換裝置。 The light source system of claim 9, wherein the optical wavelength conversion device is a transmissive optical wavelength conversion device.
TW104101526A 2014-09-05 2015-01-16 Wavelength-converting device and illumination system using same TWI544179B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/755,378 US9696013B2 (en) 2014-09-05 2015-06-30 Illumination system multi-layered wavelength-converting device
EP15174452.1A EP2993709A1 (en) 2014-09-05 2015-06-30 Wavelength-converting device and illumination system using same
JP2015130950A JP2016058378A (en) 2014-09-05 2015-06-30 Wavelength conversion device and lighting system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201462046505P 2014-09-05 2014-09-05

Publications (2)

Publication Number Publication Date
TW201610364A TW201610364A (en) 2016-03-16
TWI544179B true TWI544179B (en) 2016-08-01

Family

ID=56085109

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104101526A TWI544179B (en) 2014-09-05 2015-01-16 Wavelength-converting device and illumination system using same

Country Status (2)

Country Link
CN (1) CN105841097A (en)
TW (1) TWI544179B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10288992B2 (en) 2017-02-16 2019-05-14 Delta Electronics, Inc. Laser light source for projector and laser projection device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193016A1 (en) * 2017-04-21 2018-10-25 Lumileds Holding B.V. Reliable light conversion device for laser-based light sources
US11306898B2 (en) 2019-12-26 2022-04-19 Delta Electronics, Inc. Wavelength conversion element
CN112034548A (en) * 2020-07-28 2020-12-04 武汉爱墨科技发展有限公司 Total reflection optical color-changing film and lighting device plated with same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080037127A1 (en) * 2006-03-31 2008-02-14 3M Innovative Properties Company Wide angle mirror system
KR20100021470A (en) * 2007-05-20 2010-02-24 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Lamp-hiding assembly for a direct lit backlight
JP4613947B2 (en) * 2007-12-07 2011-01-19 ソニー株式会社 Illumination device, color conversion element, and display device
JP2009206459A (en) * 2008-02-29 2009-09-10 Sharp Corp Color conversion member and light-emitting apparatus using the same
KR20110094996A (en) * 2010-02-18 2011-08-24 엘지이노텍 주식회사 Package of light emitting device and method for fabricating the same and lighting system including the same
US20120138874A1 (en) * 2010-12-02 2012-06-07 Intematix Corporation Solid-state light emitting devices and signage with photoluminescence wavelength conversion and photoluminescent compositions therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10288992B2 (en) 2017-02-16 2019-05-14 Delta Electronics, Inc. Laser light source for projector and laser projection device

Also Published As

Publication number Publication date
CN105841097A (en) 2016-08-10
TW201610364A (en) 2016-03-16

Similar Documents

Publication Publication Date Title
US10477166B2 (en) Wavelength conversion device and projector
TWI584044B (en) Phosphor wheel and wavelength-converting device applying the same
TWI494604B (en) Wavelength conversion and filtering module and light source system
US10481474B2 (en) Wavelength conversion filter module and illumination system
US10061188B2 (en) Illumination system and projection apparatus having reflection cover
JP6136617B2 (en) Light source device and projector
WO2012017838A1 (en) Light source device
TWI686568B (en) Optically enhanced solid-state light converters
TWI544179B (en) Wavelength-converting device and illumination system using same
US10599026B2 (en) Wavelength conversion module, forming method of wavelength conversion module, and projection device
TWM531657U (en) Wavelength conversion device
EP3009875B1 (en) Optical wavelength-converting device and illumination system using same
JP2015135455A (en) Light source device and projector
US20200233291A1 (en) Wavelength conversion device and projection device
CN110579932B (en) Wavelength conversion element, projection device, and method for manufacturing wavelength conversion element
TWI598540B (en) Wavelength converting module and light source module using the same
US9696013B2 (en) Illumination system multi-layered wavelength-converting device
TWI614917B (en) Wavelength conversion device
CN106468427A (en) Fluorescence colour wheel and its Wavelength converter of application
TWI677648B (en) Optical wavelength conversion device
TWI688805B (en) Backlight module
WO2017043121A1 (en) Light-emitting device and illumination device
TWI548927B (en) Glass fluorescent color wheel with an anti-relective coating layer
US10775689B2 (en) Illumination system and projection apparatus
JP2020095066A (en) Color conversion element and luminaire