JP6921403B2 - 吸入用水素含有ガスの製造装置 - Google Patents

吸入用水素含有ガスの製造装置 Download PDF

Info

Publication number
JP6921403B2
JP6921403B2 JP2017105122A JP2017105122A JP6921403B2 JP 6921403 B2 JP6921403 B2 JP 6921403B2 JP 2017105122 A JP2017105122 A JP 2017105122A JP 2017105122 A JP2017105122 A JP 2017105122A JP 6921403 B2 JP6921403 B2 JP 6921403B2
Authority
JP
Japan
Prior art keywords
gas
hydrogen
oxygen
engine
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017105122A
Other languages
English (en)
Other versions
JP2018199850A (ja
Inventor
誠 千葉
誠 千葉
Original Assignee
ブロードサービス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブロードサービス株式会社 filed Critical ブロードサービス株式会社
Priority to JP2017105122A priority Critical patent/JP6921403B2/ja
Publication of JP2018199850A publication Critical patent/JP2018199850A/ja
Application granted granted Critical
Publication of JP6921403B2 publication Critical patent/JP6921403B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

美容や健康増進、医療等の分野での使用を想定した吸入用水素含有ガスの製造技術に関するものである。
水素については、近年発展の著しい燃料電池等のエネルギー分野のみならず、我々に身近な美容や健康の分野、更には医療の分野などでも注目を浴びているところである。すなわち、水素の還元力に着目して、美容や健康の観点から、化粧品や飲料としての水素水商品、家庭や事業所等で用いられる水素水や水素ガスの生成器など、様々な水素関連の商品やサービスの提供が行われている状況である。
また、血管梗塞後の虚血再灌流障害に対する医学的研究などを背景に、例えば、特許文献1のように医療分野に特化した水素混合ガス供給装置の研究開発が展開されてきた経緯もある。
特許第5631524号明細書
阿部勲夫(オフィステラ)「水電解法による水素製造とそのコスト」、水素エネルギーシステム VOL.33 NO.1(2008)、平成29年5月10日検索、インターネット<http://www.hess.jp/Search/data/33-01-019.pdf> 株式会社GSユアサ産業電池電源事業部特機本部「固体高分子電解質膜形水電解式水素ガス発生装置 技術資料」、平成29年5月10日検索、インターネット<http://tokki.gyid.gs-yuasa.com/DL/data_pdf/TJ-Z09030C.pdf>
現在、製造販売されている水素ガスの生成器や供給装置では、固体高分子膜法や高温水蒸気電解法を始め、様々な水素生成方法が利用されている。
また、これらの水電解法により発生したガスについては、これを水素ガスと酸素ガスとに分離させる方式のほか、未分離のまま(非分離)とする方式もある。
分離方式においては水素濃度が99%以上に設定された高濃度水素ガスの供給とされることが多く、非分離方式では約5%から約75%の範囲内で選択して固定化された水素濃度で水素ガスを吸引させる機器が実用化されている。
このように、高濃度水素ガス(約99%)の製造と、それ以外の固定した水素濃度での水素酸素混合ガスの製造とに、二極分化される吸入用水素含有ガスの製造装置の現状において、よりきめ細かで柔軟に、かつ、簡易で迅速に、ガス流量と水素濃度を適宜に変更可能な吸入用水素含有ガスの製造方法と、それを活用したコンパクトで扱いやすい、新たな水素含有ガスの製造装置が実現できれば、使用者にとっては非常に有用である。
また、このように、製造装置が状況に応じてきめ細かに利用される場合の各種データ、例えば、水素濃度の変更履歴等の経時的データなどを随時細やかに収集し集積することができて、装置の使用状況と健康増進効果等との関連などについても分析可能なシステムであることが望ましい。更に、サロンや医療機関などにおいては、遠隔操作や多数の装置の集中管理等が可能になれば、我々の社会生活の様々な場面において、更に有用な効果が得られるものと思われる。
水素ガスの発生に関し、固体高分子のイオン交換膜を電解質として用いた水の電気分解を行う。この電気分解で発生したガスが混入した水等を、更に気液分離することにより、水素ガスと酸素ガスを分離して抽出する。そして、抽出されたこの水素ガスと酸素ガスについては、電子制御された流量調節バルブを備える流量調整機関によって、これらを混合することにより指定のガス流量及び水素ガス濃度の混合ガスとなるように、それぞれのガス流量を調整して、余剰となるガスについては排出を行う。次に、それぞれに流量調整をした後の水素ガスと酸素ガスとを混合して、又は、更に外気を導入してそれらを混合することにより、任意に使用者が指定するガス流量及び水素濃度の吸入用水素含有ガスを調製可能なものとした。
また、本装置を外部との通信が可能なものとした。これにより、ネットワークを通じたリアルタイムの情報収集や各種データの相互通信、本装置の遠隔管理や集中管理が可能になり、本装置の利点がより活かされるものとなる。
吸入用水素含有ガスの製造に必要となる水素ガスと酸素ガスを外部から供給することなく、イオン交換膜を用いた水電解により製造装置内で随時製造して即時使用するため、水素ガスや酸素ガスの高圧ボンベなど、装置の大型化の原因となるガス供給のための装置を必要としない。そのため、省スペースで簡易に吸入用水素含有ガスを製造することが可能となる。取扱いに手間と注意を要する高圧ガスを保管する必要もなく、取扱いが容易でコンパクトな水素含有ガスの製造装置の実現が可能である。
更に本装置では、水素ガス及び酸素ガスのそれぞれを任意のガス流量に調整し、この調整後の水素ガス及び酸素ガスのいずれについても有効に活用することになる。そして、これらを、又は、これらに更に外気を取り入れて適宜に混合することで、使用目的や使用状況に応じてガス流量及び水素濃度が様々に異なる吸入用水素含有ガスを、簡易かつ迅速に調製できるものとなる。
また、本装置の使用状況等に関するデータの収集や遠隔操作、多数の装置の集中管理等が可能になることで、本装置はより多方面での活用が期待できるものとなる。
吸入用水素含有ガス製造方法(工程)を表す。 吸入用水素含有ガス製造装置の概略(構成機関の関連)を表す。 吸入用水素含有ガス製造装置の全体構成を表す。 水電解機関及び気液分離機関の概要を表す。 流量調整機関の概要を表す。 混合機関の概要を表す。
以下、図を用いて本件発明の説明を行う。
本件発明は、吸入用の水素ガスを任意の水素濃度に即時調製して利用できる吸入用水素含有ガスの製造方法及び製造装置である。
本件発明においては、主要成分となる水素ガスの製造と、同時に発生して有効活用される酸素ガスの製造とに関し、イオン交換膜を用いた水の電気分解を利用する。この場合、非特許文献1のように、固体高分子イオン交換膜を電解質とする水電解が想定される。また、これに関連して活用が想定されるものとしては、例えば、非特許文献2に記載のように、株式会社GSユアサによる電解質膜形水電解セルが既に商品化されている。
この電解質膜形水電解セルは、固体高分子電解質膜の両面に、この膜と一体化するように陽極及び陰極の触媒電極が接合されているものである。陽極側に水を供給しながら両電極間に直流電圧を印加すると、次の化学式のように、陽極側では酸素分子が気体状態で生成されるとともに水素原子はイオン化する。そして、この水素イオンは固体高分子電解質膜を通過して電子を得ることにより、陰極側では水素分子が気体状態で発生する。すなわち全体として、水の電気分解により水素ガスと酸素ガスが発生するものである。
Figure 0006921403
非特許文献2によると、これにより発生した水素ガス及び酸素ガス中には、水分以外の不純物が含まれず、固体高分子電解質膜が緻密な隔膜となるため、水素と酸素を別々に取り出すことが可能とされている。
そして、このイオン交換膜を用いた水の電気分解を利用する、本件発明に関する吸入用水素含有ガスの製造方法については、図1のように、上から主たる4工程を、順次に実施するものである。
なお、この場合、第四工程において外気を導入しない方法、外気を導入する方法の2種類の製造方法が考えられる。
第一工程として、固体高分子電解質膜のようなイオン交換膜を用いて、水の電気分解を行う水電解工程がある。より具体的には、水タンク等から供給される水をイオン交換膜の両面に接合された触媒電極の陽極側に供給し、両電極に電圧を印加することにより、水の電気分解を行う。これにより、吸入用水素含有ガスの原料となる水素ガスを陰極側に発生させ、酸素ガスを陽極側に発生させる工程である。この場合、陰極で発生した水素ガス中には水分が含まれ、陽極で発生した酸素ガスの一部は電気分解に用いられなかった水中に含有される状態となることがある。
第二工程として、第一工程により発生した、ともに湿潤な状態にある水素ガスと酸素ガスを異なる経路に導き、それぞれを気液分離コアレッサー等により構成される気液分離部によって、ガス(気体)と水分(液体)に分離する気液分離工程がある。
ここでは更に必要に応じて、分離された水素ガス及び酸素ガスについて、追加的な除湿やオゾン除去等の付加的処理を行っても良い。
第三工程として、第二工程において分離して抽出された水素ガスと酸素ガスのそれぞれをともに有効活用するために、これらを任意の指定されたガス流量に調整するとともに、余剰となる水素ガス又は酸素ガスは経路外に放出する流量調整工程がある。
第四工程として、第三工程によりガス流量がそれぞれ調整された水素ガスと酸素ガスを、同一経路に導入して混合することにより、ガス流量及び水素濃度が目標値に調整された吸入用水素含有ガスを完成させるガスの混合工程がある。
更に、この第四工程に併せて、必要に応じた量の外気を取り込み、これを吸入用水素含有ガスの調製に利用することが考えられる。すなわち、外気の導入と混合を第四工程に加えるものである。この場合、目標値のガス流量及び水素濃度に調整された吸入用水素含有ガスを最終的に得るためには、水素ガス及び酸素ガスと外気の混合に関するデータを予め計算して準備する必要がある。
なお、外気を取り込んで、水素含有ガスの調製に用いることは、水素ガスと酸素ガスの混合促進と、水電解により生じるガスの発生量や発生比の制限を超えて、本装置のガス流量や水素濃度の調整範囲を拡大することに寄与する効果がある。
この吸入用水素含有ガスの製造方法では、必要となる水素ガスと酸素ガスを、その場で水電解工程及び気液分離工程により随時に製造して即時に使用できるため、水素ガスや酸素ガスの高圧ボンベなど、ガス供給のための装置を他に必要としない。そのため、場所をとらずに簡易に吸入用水素ガスの製造が可能であり、取扱いに手間を要する高圧ガスを常時保管する必要もない。
また、第三工程の流量調整工程において、水素ガス及び酸素ガスのそれぞれを任意の指定されたガス流量に調整し、更には外気を導入して、これらを適宜混合することで、使用目的や使用状況に応じて様々なガス流量及び水素濃度に調整した吸入用水素含有ガスを簡易かつ迅速に得ることができる。
次に、本件発明に係る吸入用水素含有ガスの製造装置について説明する。
図2は、吸入用水素含有ガス製造装置の構成機関の相互関係を簡略化して図示したものである。すなわち、本装置は基本的な構成要素としては、次の6つの機関、いわば6つの機能を備えるものである。
制御機関100は、本装置の使用目的や使用状況に適したガス流量やガス濃度に調整された吸入用水素含有ガスを製造するために、本装置の他の各構成機関を統合的にコントロールし、本装置を目的通りに稼働させるための全体的な制御機能を担う。また、各種センサと連結されて、各機関に指示を出したり、使用者に向けて警報を発することもある。
水電解機関200は、前記のように、イオン交換膜を電解質として利用し、水を電気分解することにより、陰極側には水素ガスを、陽極側には酸素ガスを発生させる水電解機能を担うものである。この段階で発生するガスに関しては、水中に含有された状態か、水分を含有する状態となることがあり、いずれにしてもガスは湿潤な状態となっている。
気液分離機関300は、水電解機関200からそれぞれ異なる経路に従い、本機関の気液分離部に導かれた湿潤状態の水素ガス及び酸素ガスを、ドライな気体としての水素ガス及び酸素ガスと、液体としての水とに気液分離して、以後のプロセスにおいて利用可能な水素ガス及び酸素ガスを抽出する気液分離機能を担うものである。ここで抽出された水素ガス及び酸素ガスについては、更に必要に応じて、図3のエアフィルタ(気液分離後)340による除湿やオゾン等の有害物除去などの追加処理が講じられる。
流量調整機関400は、気液分離機関300で抽出された水素ガス及び酸素ガスのガス流量を調整する流量調整機能を担うものである。
これについては、図5にも概要を示しているが、制御機関100によって電子制御される水素ガス調整部410と酸素ガス調整部440とを備えているものである。気液分離機関300で気体として分離された水素ガスは水素ガス調整部410に送られ、同じく気体として分離された酸素ガスは酸素ガス調整部440に送られる。そして水素ガスは、制御機関100により制御される水素ガス調整部410で任意かつ指定のガス流量に調整される。同様に、酸素ガスは、制御機関100により制御される酸素ガス調整部440で任意かつ指定のガス流量に調整される。また、それぞれ指定のガス流量を超えて余剰となる水素ガスや酸素ガスは、水素ガス拡散部420と酸素ガス拡散部450において装置外部に排出される。
混合機関500では、流量調整機関400によってそれぞれ任意かつ指定のガス流量に調整された水素ガスと酸素ガスが混合されて、更には取り入れた外気をこれらに併せて混合して、ここで最終的な水素含有ガスとするための混合機能が担われる。
導出機関600には、本装置の利用者が、水素含有ガスを吸入するための吸入管や吸入具等が接続可能である。
吸入に適した状態に調製された吸入用水素含有ガスを、混合機関500から利用者が着用する吸入具等まで、すなわち本装置外に導き出す導出機能を担う。
次に、本装置の各構成機関について、図2から図6までの図面を用いて、より詳しく説明する。但し、各図は、各構成機関の形状や配置を含めて、それぞれ一つの例として簡略化して図示したものである。
図3が本装置の全体構成の概要図である。
制御機関100は、ハードウエアとソフトウエアとからなるコンピュータ制御システム110を中心として、本装置の頭脳となる機関である。
これには、電源スイッチや運転ランプ等が付いた電源部120が付属する。これを介して、本装置の駆動のために必要な電力が供給され、スイッチやボタン等の操作で運転開始や運転終了を切り換える。
そして、制御機関100には、使用目的等に応じた吸入用水素含有ガスのガス流量や水素濃度の変更、運転開始時間・停止時間など、本装置の動作を選択して指定するための入力手段としての入力部130が付属する。具体的には、操作用ボタンや操作用タッチパネル、吸入時間など本装置の動作を細かく設定するためのタイマーなどである。
また、本装置の運転の現況や推移等を確認するためのモニター画面、メーター、スピーカーなどの出力部140が付属する。
そして、制御機関100は、吸入用水素含有ガスの調製データなど、本装置の稼働に必要となる各種データを保存可能であるか、又は、これらのデータを蓄積する外部システム等と接続可能なものとなっている。そのため、外部システムとの接続に関して、通信部150を備えて、データ通信可能なものであっても良い。なお、ここで言う、吸入用水素含有ガスの調製データとは、利用者の目的や装置の稼働状況に応じて適宜に選択・指定される設定値(ガス流量、水素濃度)の吸入用水素含有ガスとなるように、混合機関500において混合されるべき水素ガスと酸素ガスのガス流量の組み合わせ、更には取り入れるべき外気の量等に関する情報である。これらの各種データは、予め計算されて設定され、必要に応じて更新可能なものであることが望ましい。
図4は、水電解機関200と気液分離機関300の関係や配置を示す概要図である。但し、前述したように、図3と図4はそれぞれが異なる一例と解されるべきものであり、各機関の形状や位置関係等が直接的に対応するものではない。
このうち、水電解機関200には、水を補給可能な水タンク221、純水の利用に替えて水道水等を利用する場合にこれを濾過するための逆浸透膜等を利用した精製水製造フィルタ222、水を送出するための水ポンプ223が付属する。しかし、これらの位置関係や使用する水の種類等によっては、精製水製造フィルタ222と水ポンプ223は必須ではなく、以下においては、これらを一括して水貯留送出部220と表記する。
この水タンク221には、図3のように、タンク内の水位を適正に管理するための水位センサ224を設置することも考えられる。そして、この水位センサ224は制御機関100に接続されて、その出力部140に水タンク221の水位の状態を示したり、水位低下時には補給注水を促すための警報を発したりと、水位モニタの役割を果たす。
この水電解機関200は、イオン交換膜を電解質とする水電解部210を備えている。この水電解部210は、イオン交換膜の両面に陽極及び陰極の触媒電極が接合されている電解質膜形水電解ユニットとされ、陽極側の電極と接触させながらユニット内部に水を流動させることが可能な仕様とすることが考えられる。そして、イオン交換膜を挟み反対側となる陰極側には、発生したガス等が一時的に滞留可能な空間があり、陰極側で発生した水素ガスはここから次のプロセスに送り出されることになる。なお、この触媒電極には白金族金属などを用いることが考えられる。
そして、本装置の作動時には、水貯留送出部220から水電解部210に水が送られることになる。具体的には、水タンク221から精製水製造フィルタ222を通り、水電解部210内の触媒電極(陽極)に接触するように、水ポンプ223によって水が送り出されるとともに、陽極及び陰極の両電極間には直流電流が印加される。これにより、陽極側において水素イオンと酸素ガスが発生し、この水素イオンはイオン交換膜を透過して、陰極において電子を得て水素ガスとなる。陽極側で発生した酸素ガスは、電気分解に用いられなかった水とともに、次の気液分離機関300に送られる。陰極で発生した水素ガスは水分が含まれた湿潤な状態で、次の気液分離機関300に送られる。
また、水電解機関200には、制御機関100に接続された圧力センサ213を設置し、水電解機関200の内部圧力が既定値を超える異常時には、警告を発して排気弁を動作させ、安全のために水電解機関200の内部圧力を低下させる機能などを持たせることも考えられる。
気液分離機関300には、前記の水電解機関200から送られてきた、水素ガスが含まれる水蒸気から、水素ガスを分離して抽出するための気液分離部(水素)310と、同じく、酸素ガスが含まれた水から、酸素ガスを分離して抽出するための気液分離部(酸素)320という、2つの気液分離部が設けられる。これらの気液分離部は気液分離コアレッサー等を用いて構成することが可能である。
そして、図4の気液分離機関300には、気液分離部(水素)310で抽出した水素ガスと、気液分離部(酸素)320で抽出した酸素ガスとを、それぞれ別経路で流量調整機関400に送り出すための水素管(気液分離−流量調整)311及び酸素管(気液分離−流量調整)321の2系統の送出経路を図示している。そして、気液分離後の水が水タンク221に戻ってくる経路が還水管330である。
図5のように、この水素管(気液分離−流量調整)311は流量調整機関400の水素ガス調整部410に接続され、同じく、この酸素管(気液分離−流量調整)321は流量調整機関400の酸素ガス調整部440に接続される。
しかし、この場合においては、水素管(気液分離−流量調整)311と酸素管(気液分離−流量調整)321の途中には、前述したように、水素ガスと酸素ガスの除湿を更に進めるための図3のようなエアフィルタ(気液分離後)340を設けても良い。
また、図4の水電解部210と気液分離部(水素)310との間、水電解部210と気液分離部(酸素)320との間には、それぞれ水素管(水電解−気液分離)211と酸素管(水電解−気液分離)212とが図示されている。しかし、水電解機関200と気液分離機関300を一体的に成形する場合など、必ずしも水素管(水電解−気液分離)211や酸素管(水電解−気液分離)212のような独立した経路としての管の存在は必須のものではない。
次に、図5の流量調整機関400であるが、水素ガス調整部410・水素ガス拡散部420・水素管(流量調整−混合)430の水素系の経路と、酸素ガス調整部440・酸素ガス拡散部450・酸素管(流量調整−混合)460の酸素系の経路との2系統の処理経路がある。
そして、水素ガス調整部410及び酸素ガス調整部440は、それぞれ制御機関100に接続されて、そのコントロール下にある。いずれも制御機関100の指示に従って動作するガス流量調整バルブ(図示されていない。)を備え、気液分離機関300から送られた水素ガス及び酸素ガスの流量を指定値に調整するガス流量調整機能を果たす。
また、指定値を超えて余剰となる水素ガスや酸素ガスについて本装置の外部に排出するための水素ガス拡散部420及び酸素ガス拡散部450の両拡散部を備えるものである。そのため、この両拡散部にも制御機関100により制御されるガス放出バルブ(図示されていない。)が設置されることとなる。この時、ガス流量調整バルブとガス放出バルブが同一のもので2つの機能を併せ持つように、その構造等を設計することも考えられる。
本装置の作動時には、制御機関100などに記憶されたプログラムや吸入用水素含有ガスの調製データ等に基づき、水電解機関200等の各機関が協調して稼働すると同時に、前記のガス流量調整バルブが作動し、水素ガス及び酸素ガスの流量を指定の数値に制御する。そして、余剰な水素ガスや酸素ガスが生じる場合においては、前記のガス放出バルブが作動して、水素ガス拡散部420及び酸素ガス拡散部450から、余剰のガスが本装置の外部に放出される。
このようにして、水電解機関200及び気液分離機関300において水素ガスと酸素ガスは分離抽出され、更に、流量調整機関400においてガス流量が調整された水素ガスと酸素ガスは、次の処理のため、混合機関500に送出される。
そして、この段階において既に、これらの流量調整された水素ガスと酸素ガスを混合することにより、利用者が求めるガス流量及び水素ガス濃度の水素含有ガスが調製可能な状態となっている。
この混合機関500の一例が図6である。
混合機関500は、図5の流量調整機関400の水素ガス調整部410と酸素ガス調整部440とから、水素管(流量調整−混合)430及び酸素管(流量調整−混合)460を経由して、前記の水素系及び酸素系の各経路から送出されてきたガス流量調整後の水素ガスと酸素ガスを、1つの経路すなわち混合ガス系の1系統に統合して水素含有ガスを生成する、ガスの混合機能を果たすものである。
これは図3のように、水素ガス調整部410から水素ガスを送出するための水素管(流量調整−混合)430と、酸素ガス調整部440から酸素ガスを送出するための酸素管(流量調整−混合)460とが、一つの混合ガス管510にスムーズに一体化しつつ合流するような形状であることが考えられる。なお、図3のような刺股(さすまた)形状はその一例である。
またこの時に、水素ガスと酸素ガスとが効率的に混合されるように、水素管(流量調整−混合)430と酸素管(流量調整−混合)460とを捻るように相互に絡み合わせながら混合ガス管510に繋がるようにするなど、図3とは異なる形状とすることも考えられる。更には、水素管(流量調整−混合)430と酸素管(流量調整−混合)460とが、図6のような混合タンク520を介して混合ガス管510に繋がるものであっても良い。
また、この混合機関500には、オプションとして、図3のような外気導入部530を設けることも考えられる。この外気導入部530には、制御機関100に接続されてコントロールされる空気ポンプ531や流量調整バルブ(図示されていない。)を内蔵する空気取入口532を設け、ここから必要な量の外気を取り入れて混合機関500に注入し、水素ガスと酸素ガスの混合を加速させ促進する仕組みを付加することも想定される。
なお、前述したように、この外気の取入れは、吸入用水素含有ガスのガス流量や水素濃度に対する外気量の影響を事前に計算して設定されている必要があるが、本装置の流量調整や濃度調整のレンジを拡大する点での効果もある。
その後、ガス流量が調整されて混合された水素と酸素の混合ガスは、指定の流量や水素濃度に調製された吸入用水素含有ガスとして、混合機関500から導出機関600に送出される。
この場合、利用者の更なる安全向上のため、導出機関600の吸入ガス管610にエアフィルタ(吸入前)620を追加設置することが考えられる。吸入前の最終的な吸入用ガスの清浄化を担うものである。
また、制御機関100によって制御される湿度調整部630を、導出機関600に追加設置することも有効である。これは、人体に優しい適度な湿度を持つ吸入用水素含有ガスとして、快適性や健康への有意性をより向上させる役割を果たすものである。
そして、吸入に適した状態に加工された吸入用水素含有ガスは、吸入ガス管610に接続される吸入管等を経由して、本装置の利用者によって吸入されることとなる。
そして、導出機関600に流量センサ640を設置し、この流量センサ640からの信号を受信した制御機関100が、吸入用水素ガスの流量を最終調整する仕様とすることも考えられる。
この場合、この流量センサ640と流量調整機関400の水素ガス調整部410及び酸素ガス調整部440、水素ガス拡散部420及び酸素ガス拡散部450が連携して動作するように、予め制御機関100のプログラムを設定する必要がある。
すなわち、導出機関600の流量センサ640で計測した吸入用水素含有ガスの流量が想定より低く、より多量のガスを必要とする場合には、水素ガス調整部410及び酸素ガス調整部440のガス流量バルブを開放してガス流量を増加させ、拡散部からは外部にガスが放出されないように、これらが協調しながら作動するように設定を行う。一方、吸入用水素含有ガスの流量が想定より高く、ガス流量を抑える必要がある場合には、水素ガス調整部410及び酸素ガス調整部440のガス流量バルブを絞り、余剰となるガスについては、拡散部から本装置の外部に放出されるように調整を行う。更には、外気導入部530から取り入れる空気の量を調製して吸入用水素含有ガスの流量を調整する。
なお一般的に、前記の各構成機関については、これらを一体的に収納して運搬したり、損傷などから保護するための筐体700の内部に格納されることとなる。筐体700の材質は、一般的な電子機器などと同じく軽金属や硬質プラスティックになることが多い。
ところで本装置は、使用者毎に異なる使用目的や使用状況に個別的かつ柔軟に対応できるよう、吸入用水素含有ガスのガス流量や水素濃度を変更可能とし、これを簡易かつ迅速に実現できるものとした装置である。そのためには、吸入用水素含有ガスの調製データなどの関連データの充実が不可欠である。
そして、制御機関100のコンピュータ制御システム110には、詳細な計算を経て決定された、この吸入用水素含有ガスの調製データに基づいて本装置を制御するためのコンピュータプログラムが予め登録してある。
そして、利用目的や稼働状況に応じて、コンピュータ制御システム110が必要となる調製データを随時呼び出し、吸入用水素含有ガス中の水素濃度やガス流量が指定の数値になるように流量調整機関400の水素ガス調整部410及び酸素ガス調整部440の流量調整バルブ等を適確に動作させる。これにより利用者は、吸入用水素含有ガスのガス流量や水素濃度を細かく、又は、連続的に変更させながら、本装置を簡易かつ多様に利用できるようになる。
更に、制御機関100の入力部130であるボタン類や操作用タッチパネル画面に、予め想定する使用モデルケース毎の稼働パターンのデータを割り当てることも考えられる。このことにより、本装置の使用者は、例えば、短時間で集中して高濃度の吸入用水素含有ガスの吸入を行う場合はこのボタンを操作し、低濃度の吸入用水素含有ガスを長時間に渡りゆっくりと吸入したい場合はこのボタンを操作する、のように極めて簡単な操作で利用できることとなり、本装置は更にユーザーフレンドリーな製品仕様となる。これにより、本装置の使用者は、その時々の使用目的や使用状況に応じて、簡易かつ迅速に本装置を利用できるようになる。
そして、制御機関100の通信部150を介して、本装置をLANなどネットワークの一部に組み込み、本装置の遠隔操作や集中管理が可能なものにするとともに、本装置の詳細な稼働状況をネットワークコンピュータ上で継続的な情報収集を行うことが可能な仕様とすることも想定している。
例えば、有線又は無線によって、本装置とネットワークコンピュータが接続され、予め設定された利用者毎のデータに基づき、本装置の使用場所から離れた箇所で集中管理を行うようなケースである。そして同時に、本装置の稼働状況に関するデータも継続的に集積されるような状況である。更には、例えば、同じくネットワークコンピュータに接続され、本装置とも連動するようなウェアラブル端末から、本装置の稼働状況に対応するように、利用者の脈拍数や血圧値、血流状況などの身体データなども、同時に収集集積されるような仕組みである。
そして、そのようにして集約された各種データ間の関連性等については、後日の詳細かつ専門的な分析を経て、本装置の効果検証や次の更なる研究開発等に有効活用されることになるものと考えられる。
100 制御機関
110 コンピュータ制御システム
120 電源部
130 入力部
140 出力部
150 通信部
200 水電解機関
210 水電解部
211 水素管(水電解−気液分離)
212 酸素管(水電解−気液分離)
213 圧力センサ
220 水貯留送出部
221 水タンク
222 精製水製造フィルタ
223 水ポンプ
224 水位センサ
300 気液分離機関
310 気液分離部(水素)
311 水素管(気液分離−流量調整)
320 気液分離部(酸素)
321 酸素管(気液分離−流量調整)
330 還水管
340 エアフィルタ(気液分離後)
400 流量調整機関
410 水素ガス調整部
420 水素ガス拡散部
430 水素管(流量調整−混合)
440 酸素ガス調整部
450 酸素ガス拡散部
460 酸素管(流量調整−混合)
500 混合機関
510 混合ガス管
520 混合タンク
530 外気導入部
531 空気ポンプ
532 空気取入口
600 導出機関
610 吸入ガス管
620 エアフィルタ(吸入前)
630 湿度調整部
640 流量センサ
700 筐体

Claims (3)

  1. コンピュータ制御システム・電源部・入力部・出力部を備え、目標値とするガス流量及び水素濃度に調製した吸入用水素含有ガスを得るために予め計算して定めた水素ガス及び酸素ガスの混合に関する調製データに基づき、本装置の全体的な制御機能を担う制御機関と、
    水電解部・水貯留送出部を備え、前記水貯留送出部から送られる水を、前記水電解部において、両面に電極を接合したイオン交換膜を用いて水の電気分解を行うことにより、陰極側に水素ガス、陽極側に酸素ガスを発生させる水電解機能を担う水電解機関と、
    それぞれに気液分離部を持つ水素系及び酸素系の2系統の処理経路を備え、前記気液分離部において、水素ガスと水、及び、酸素ガスと水、にそれぞれ気液分離して、前記水電解機関で発生した水素ガス及び酸素ガスを抽出する気液分離機能を担う気液分離機関と、
    水素ガス調整部・水素ガス拡散部・水素管による水素系、及び、酸素ガス調整部・酸素ガス拡散部・酸素管による酸素系の2系統の処理経路を備え、前記調製データに基づき、前記気液分離機関により抽出された水素ガス及び酸素ガスの混合により、任意に指定するガス流量及び水素濃度の水素含有ガスとなるように、前記水素ガス調整部及び前記酸素ガス調整部により、その水素ガス及び酸素ガスのガス流量をそれぞれ調整し、前記水素ガス拡散部及び前記酸素ガス拡散部により、余剰の水素ガス及び酸素ガスを外部に放出する流量調整機能を担う流量調整機関と、
    前記流量調整機関の前記水素管及び前記酸素管が統合されて混合ガス系の1系統の処理経路となる混合ガス管を備え、前記流量調整機関によりガス流量が調整された水素ガス及び酸素ガスを前記混合ガス管に導き混合することにより、任意に指定するガス流量及び水素濃度の水素含有ガスを製造する混合機能を担う混合機関と、
    前記混合ガス管に続く吸入ガス管を備え、前記水素含有ガスを外部に導く導出機能を担う導出機関と、
    これらの各機関を内部に格納する筐体と、を有し、
    ガス流量及び水素濃度を任意に変更可能な吸入用水素ガスの製造装置。
  2. コンピュータ制御システム・電源部・入力部・出力部を備え、目標値とするガス流量及び水素濃度に調製した吸入用水素含有ガスを得るために予め計算して定めた水素ガス及び酸素ガスと外気の混合に関する調製データに基づき、本装置の全体的な制御機能を担う制御機関と、
    水電解部・水貯留送出部を備え、前記水貯留送出部から送られる水を、前記水電解部において、両面に電極を接合したイオン交換膜を用いて水の電気分解を行うことにより、陰極側に水素ガス、陽極側に酸素ガスを発生させる水電解機能を担う水電解機関と、
    それぞれに気液分離部を持つ水素系及び酸素系の2系統の処理経路を備え、前記気液分離部において、水素ガスと水、及び、酸素ガスと水、にそれぞれ気液分離して、前記水電解機関で発生した水素ガス及び酸素ガスを抽出する気液分離機能を担う気液分離機関と、
    水素ガス調整部・水素ガス拡散部・水素管による水素系、及び、酸素ガス調整部・酸素ガス拡散部・酸素管による酸素系の2系統の処理経路を備え、前記調製データに基づき、前記気液分離機関により抽出された水素ガス及び酸素ガスに外気を取り入れて混合することにより、任意に指定するガス流量及び水素濃度の水素含有ガスとなるように、前記水素ガス調整部及び前記酸素ガス調整部により、その水素ガス及び酸素ガスのガス流量をそれぞれ調整し、前記水素ガス拡散部及び前記酸素ガス拡散部により、余剰の水素ガス及び酸素ガスを外部に放出する流量調整機能を担う流量調整機関と、
    前記流量調整機関の前記水素管及び前記酸素管が統合されて混合ガス系の1系統の処理経路となる混合ガス管・前記外気量を調整して取り入れる外気導入部を備え、前記流量調整機関によりガス流量が調整された水素ガス及び酸素ガスと前記外気とを前記混合ガス管に導き混合することにより、任意に指定するガス流量及び水素濃度の水素含有ガスを製造する混合機能を担う混合機関と、
    前記混合ガス管に続く吸入ガス管を備え、前記水素含有ガスを外部に導く導出機能を担う導出機関と、
    これらの各機関を内部に格納する筐体と、を有し、
    ガス流量及び水素濃度を任意に変更可能な吸入用水素ガスの製造装置。
  3. 前記制御機関に通信部を備え、前記調製データを保存する外部システムとのデータ通信可能なことを特徴とする請求項1又は請求項2のいずれかに記載の吸入用水素ガスの製造装置。
JP2017105122A 2017-05-26 2017-05-26 吸入用水素含有ガスの製造装置 Active JP6921403B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017105122A JP6921403B2 (ja) 2017-05-26 2017-05-26 吸入用水素含有ガスの製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017105122A JP6921403B2 (ja) 2017-05-26 2017-05-26 吸入用水素含有ガスの製造装置

Publications (2)

Publication Number Publication Date
JP2018199850A JP2018199850A (ja) 2018-12-20
JP6921403B2 true JP6921403B2 (ja) 2021-08-18

Family

ID=64667888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017105122A Active JP6921403B2 (ja) 2017-05-26 2017-05-26 吸入用水素含有ガスの製造装置

Country Status (1)

Country Link
JP (1) JP6921403B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116036438B (zh) * 2023-02-21 2024-08-09 广东朝野医疗科技有限公司 一种氧氢一体机的氢气精确计量控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3788489B2 (ja) * 1997-05-29 2006-06-21 株式会社ジーエス・ユアサコーポレーション 水電解装置
JP2001302217A (ja) * 2000-04-18 2001-10-31 Sanyo Electric Industries Co Ltd 窒素供給装置
WO2014024984A1 (ja) * 2012-08-09 2014-02-13 大陽日酸株式会社 医療用の水素混合ガス供給装置
JP2014095115A (ja) * 2012-11-08 2014-05-22 Suntec Inc ガス生成装置
JP5481620B2 (ja) * 2012-12-31 2014-04-23 株式会社健康支援センター 卓上型水素ガス発生装置
JP6461727B2 (ja) * 2015-06-23 2019-01-30 日本光電工業株式会社 治療用ガス供給装置
JP6714790B2 (ja) * 2015-07-01 2020-07-01 株式会社Ops 水素吸入装置
JP5900688B1 (ja) * 2015-08-11 2016-04-06 MiZ株式会社 水素ガス生成装置

Also Published As

Publication number Publication date
JP2018199850A (ja) 2018-12-20

Similar Documents

Publication Publication Date Title
TWI494144B (zh) High concentration hydrogen supply device for living body
EP3447168B1 (en) Water electrolysis device
WO2017024969A1 (zh) 气体产生器
US20190091436A1 (en) Systems and Methods for Therapeutic Gas Delivery for Personal Medical Consumption
US11918750B2 (en) Healthy gas generating system
JP2019039071A (ja) 水電解装置
US20040146759A1 (en) Method and device for producing oxygen
JP2018031070A (ja) ガス発生器
JP6921403B2 (ja) 吸入用水素含有ガスの製造装置
KR100995713B1 (ko) 전기 분해용 전극 조립체, 이를 구비한 산소 수소 발생기및 이를 구비한 산소수 수소수 제조 장치
JP2022009018A (ja) 水素ガス生成装置
JP2003013269A (ja) 酸素供給装置および酸素供給方法
JP2018068531A (ja) 生体用水素ガス供給装置
CN109868484B (zh) 一种气体产生装置
CN205527886U (zh) 氢水产生装置
CN111527240B (zh) 便携式气体供给装置
CN210057076U (zh) 可对排出氢气进行回流的电解水制氢制氧呼吸装置
US20050136299A1 (en) Oxygen supply system
WO2017020825A1 (zh) 湿化过滤器及具有湿化过滤器的气体产生装置
CN214841508U (zh) 混合氢气的负氧离子发生器
TWM518089U (zh) 濕化過濾器及具有濕化過濾器之氣體產生裝置
US11395901B2 (en) Systems and methods for therapeutic gas delivery for personal medical consumption having safety features
TW202039018A (zh) 用於個人醫療用途之具有安全裝置或功能的治療性氣體傳輸系統及其方法
CN204891001U (zh) 多功能空气净化装置
CN219814921U (zh) 一种结构改进的制氢机

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210719

R150 Certificate of patent or registration of utility model

Ref document number: 6921403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150