JP6920706B1 - How to introduce substances into foodstuffs - Google Patents

How to introduce substances into foodstuffs Download PDF

Info

Publication number
JP6920706B1
JP6920706B1 JP2020209454A JP2020209454A JP6920706B1 JP 6920706 B1 JP6920706 B1 JP 6920706B1 JP 2020209454 A JP2020209454 A JP 2020209454A JP 2020209454 A JP2020209454 A JP 2020209454A JP 6920706 B1 JP6920706 B1 JP 6920706B1
Authority
JP
Japan
Prior art keywords
substance
temperature
food material
food
introduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020209454A
Other languages
Japanese (ja)
Other versions
JP2022096383A (en
Inventor
由希 下久
由希 下久
賢哉 柴田
賢哉 柴田
石井 裕子
裕子 石井
弥生 渡邊
弥生 渡邊
暁 谷本
暁 谷本
みのり 坂本
みのり 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima Prefecture
Original Assignee
Hiroshima Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima Prefecture filed Critical Hiroshima Prefecture
Priority to JP2020209454A priority Critical patent/JP6920706B1/en
Application granted granted Critical
Publication of JP6920706B1 publication Critical patent/JP6920706B1/en
Priority to PCT/JP2021/040403 priority patent/WO2022130812A1/en
Publication of JP2022096383A publication Critical patent/JP2022096383A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L13/00Meat products; Meat meal; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L13/00Meat products; Meat meal; Preparation or treatment thereof
    • A23L13/70Tenderised or flavoured meat pieces; Macerating or marinating solutions specially adapted therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L19/00Products from fruits or vegetables; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/30Physical treatment, e.g. electrical or magnetic means, wave energy or irradiation

Abstract

【課題】食材内に導入する物質の導入量及び/又は導入深度を簡便な方法で制御することができる方法の提供。【解決手段】本発明による食材への物質導入方法は、食材の温度昇降による食材内の気体の体積変化を利用して導入駆動力を発生させて、外観で認識可能な形状を保持した食材内に物質を導入する方法であって、食材を昇温させ、食材内溶存気体の気化、食材内水分の気化、及びこれらを含む食材内気体の体積膨張を引き起こし、続いて、常圧下で、食材を導入物質に接触させることで降温させ、食材内水蒸気の凝集及び食材内気体の体積収縮を引き起こすことにより発生する導入駆動力を調節して、食材内への物質の導入量及び/又は導入深度を制御することを特徴とする。【選択図】なしPROBLEM TO BE SOLVED: To provide a method capable of controlling the introduction amount and / or the introduction depth of a substance to be introduced into a food material by a simple method. SOLUTION: In the method for introducing a substance into a food material according to the present invention, an introduction driving force is generated by utilizing a change in the volume of gas in the food material due to a temperature rise and fall of the food material, and the inside of the food material retains a shape recognizable in appearance. It is a method of introducing a substance into a substance, which raises the temperature of the food material, causes vaporization of the dissolved gas in the food material, vaporization of water in the food material, and volume expansion of the gas in the food material containing these, and subsequently, the food material under normal pressure. The temperature is lowered by contacting the substance with the introduced substance, and the introduction driving force generated by causing the aggregation of the water vapor in the food and the volume contraction of the gas in the food is adjusted, and the amount and / or the introduction depth of the substance into the food is adjusted. It is characterized by controlling. [Selection diagram] None

Description

本発明は、食材の温度昇降による食材内の気体の体積変化を利用して導入駆動力を発生させて、外観で認識可能な形状を保持した食材内に物質を導入する方法に関する。 The present invention relates to a method of introducing a substance into a food material having a shape that can be recognized by appearance by generating an introduction driving force by utilizing a change in the volume of gas in the food material due to a temperature increase or decrease of the food material.

超高齢化社会を背景として、高齢者用食品の需要が高まっている。これまでの高齢者用食品として主流であった刻み食や流動食、成型食に加えて、近年では、形状保持軟化食品が注目を集めている。形状保持軟化食品は、見た目が自然で、食べ応えがある大きさであるにもかかわらず、その色や形、味や香りが楽しめ、食材本来の素材感を残したまま軟らかいものである。 Against the backdrop of a super-aging society, demand for food for the elderly is increasing. In recent years, shape-retaining softened foods have been attracting attention in addition to chopped foods, liquid foods, and molded foods that have been the mainstream foods for the elderly. Shape-retaining softened foods are soft in appearance, and despite their size that makes them satisfying to eat, they can enjoy their color, shape, taste and aroma, and retain the original texture of the food.

従来、食材を軟らかく加工する方法として、常圧下で長時間加熱して軟らかく煮込む方法や、加圧状態で加熱する加圧加熱法が用いられてきた。しかし、近年、従来法では成し得なかった軟らかさを形状保持したまま実現する方法として、食材に食品用分解酵素を含浸し、食材内の組織接着物質を分解して軟らかく調製する方法が用いられている。 Conventionally, as a method for processing foods softly, a method of heating under normal pressure for a long time and boiling softly, or a pressure heating method of heating under a pressurized state has been used. However, in recent years, as a method of achieving softness while maintaining the shape, which could not be achieved by the conventional method, a method of impregnating a food material with a food-grade degrading enzyme and decomposing the tissue adhesive substance in the food material to prepare the food material to be soft has been used. Has been done.

これまでに、本発明者らは、凍結食材を酵素液中で解凍して減圧し、減圧下に5〜60分間保持して酵素を食材内に含浸する方法を発明した(特許文献1参照)。この方法は凍結含浸法とよばれ、食材を凍結解凍して細胞間隙を緩和する前処理と、食材内細胞間隙の空気及び水分と食材外の酵素とを急速置換する減圧圧力処理が必須工程となっている。本発明者らは、凍結含浸法を発展させ、さらに短時間に効率よく食材内に酵素を急速含浸する方法も発明した(特許文献2参照)。この方法は、食材を加温状態で減圧処理する方法で、食材内で気化して発生する水蒸気及び水と食材外の酵素とを急速置換することができる。このように、通常、食材への酵素の含浸には、浸漬処理ではなく減圧含浸処理が利用される。減圧含浸処理は短時間に分解酵素を食材中心部まで導入できるため、厚みがある形状保持食材においても食材内部の組織接着物質を偏りなく分解でき、食材をムラなく均一に軟化できる。 So far, the present inventors have invented a method of thawing a frozen food in an enzyme solution, reducing the pressure, and holding the frozen food under reduced pressure for 5 to 60 minutes to impregnate the food with the enzyme (see Patent Document 1). .. This method is called the freeze-impregnation method, and requires pretreatment to freeze and thaw the food to relax the intercellular spaces, and decompression pressure treatment to rapidly replace the air and moisture in the intercellular spaces inside the food with enzymes outside the food. It has become. The present inventors have developed a freeze-impregnation method, and have also invented a method for rapidly impregnating an enzyme into a food material in a short time and efficiently (see Patent Document 2). This method is a method of decompressing the food material in a heated state, and can rapidly replace the water vapor and water generated by vaporization inside the food material with the enzyme outside the food material. As described above, normally, a vacuum impregnation treatment is used instead of a dipping treatment for impregnating the food material with the enzyme. Since the decomposing enzyme can be introduced to the center of the food material in a short time in the vacuum impregnation treatment, the tissue adhesive substance inside the food material can be decomposed evenly even in a thick shape-retaining food material, and the food material can be softened evenly and uniformly.

凍結含浸法は、物質を食材に浸み込ませる、いわゆる「物質含浸技術」の1つである。これまでに、物質含浸技術は、塩漬け、味噌漬け、かす漬けなどの調味漬けに代表される浸漬法が古くから用いられてきた。食材を調味料に浸けるだけでよく、調味成分等の物質は浸透拡散により浸み込む。食材に調味成分が浸み込み、美味しく加工できる。しかし、浸漬法は食材内部に物質が浸み込むまでに時間がかかるという課題がある(特許文献3参照)。そこで食材を浸漬した状態で煮込む加熱法や、加圧状態で加熱する加圧加熱法などが考えられ普及しているが、これらの方法は加熱エネルギーを用いて物質の浸透を促進するため、過剰な熱エネルギーを与えられることで食材の型崩れや硬化など品質劣化が起き易い。さらに、酵素のように加熱変性しやすい物質を含浸することはできない。 The freeze impregnation method is one of the so-called "substance impregnation techniques" in which a substance is impregnated into foodstuffs. So far, as a substance impregnation technique, a dipping method typified by seasoning pickling such as salt pickling, miso pickling, and dregs pickling has been used for a long time. All you have to do is immerse the ingredients in the seasoning, and substances such as seasoning ingredients are infiltrated by permeation and diffusion. The seasoning ingredients soak into the ingredients and can be processed deliciously. However, the dipping method has a problem that it takes time for the substance to permeate into the food material (see Patent Document 3). Therefore, a heating method in which the ingredients are boiled in a soaked state and a pressure heating method in which the ingredients are heated in a pressurized state are considered and widely used. By being given a large amount of heat energy, quality deterioration such as shape loss and hardening of foodstuffs is likely to occur. Furthermore, it cannot be impregnated with a substance that is easily denatured by heat, such as an enzyme.

特開2003−284522号公報Japanese Unexamined Patent Publication No. 2003-284522 国際公開第2016−199766号International Publication No. 2016-199766 特開2010−213651号公報Japanese Unexamined Patent Publication No. 2010-213651

近年、高齢者・要介護者用の食品開発が進み、形状保持軟化食品が注目されている。特に酵素を食材に含浸することで、加熱法および加圧加熱法以上に軟らかく形状に優れた食材を得ることができる。酵素は熱に弱く加熱法及び加圧加熱法での含浸が困難であること、浸漬法では食材内部まで十分に酵素を浸透させることが難しいことから、現在酵素含浸の方法として減圧含浸法が主流となっている。一方で減圧含浸法では食材を減圧できる減圧装置の導入が必須であり、大がかりな装置導入が必要となることが課題となる。また減圧処理では目標真空度までの到達及び常圧復帰に一定の時間が必要とするため、処理工程において律速となり大量生産における課題といえる。すなわち、本発明が解決しようとする課題は、減圧装置などの圧力制御装置を用いることなく、低分子物質、高分子物質及び粘性物質等の物質を食材に短時間で大量に導入できる簡便かつ新規な方法を提供することにある。 In recent years, the development of foods for the elderly and those requiring long-term care has progressed, and shape-retaining softened foods are attracting attention. In particular, by impregnating the food material with an enzyme, it is possible to obtain a food material that is softer and has an excellent shape than the heating method and the pressure heating method. Since the enzyme is sensitive to heat and it is difficult to impregnate it by the heating method and the pressure heating method, and it is difficult to sufficiently permeate the enzyme into the food by the dipping method, the reduced pressure impregnation method is currently the mainstream as the enzyme impregnation method. It has become. On the other hand, in the decompression impregnation method, it is essential to introduce a decompression device capable of depressurizing foodstuffs, and the problem is that a large-scale introduction of the device is required. Further, in the depressurization process, it takes a certain amount of time to reach the target vacuum degree and return to the normal pressure, so that it becomes a rate-determining process in the processing process, which can be said to be a problem in mass production. That is, the problem to be solved by the present invention is simple and novel that a large amount of substances such as small molecule substances, polymer substances and viscous substances can be introduced into foodstuffs in a short time without using a pressure control device such as a decompression device. Is to provide a good method.

本発明者らは、物質導入方法について鋭意検討した結果、食材の温度昇降による食材内の気体の体積変化を利用して強力な導入駆動力を発生させることにより、高価な圧力装置を用いることなく、簡便かつ有用な物質導入方法が実現できるとの知見を得た。かかる知見に基づき、本発明を完成するに至った。 As a result of diligent studies on the substance introduction method, the present inventors have generated a strong introduction driving force by utilizing the volume change of the gas in the food material due to the temperature rise and fall of the food material, without using an expensive pressure device. It was found that a simple and useful substance introduction method can be realized. Based on such findings, the present invention has been completed.

すなわち、本発明は以下のとおりである。
[1] 食材の温度昇降による食材内の気体の体積変化を利用して導入駆動力を発生させて、外観で認識可能な形状を保持した食材内に物質を導入する方法であって、
食材を昇温させ、食材内溶存気体の気化、食材内水分の気化、及びこれらを含む食材内気体の体積膨張を引き起こし、
続いて、常圧下で、食材を導入物質に接触させることで降温させ、
食材内水蒸気の凝集及び食材内気体の体積収縮を引き起こすことにより発生する導入駆動力を調節して、食材内への物質の導入量及び/又は導入深度を制御することを特徴とする、食材への物質導入方法。
[2] 前記食材が動物性素材であり、下記数式で定義される導入駆動力S1を233以上に調節する、[1]に記載の食材への物質導入方法。

Figure 0006920706
(式中、S1:導入駆動力、E1:食材(動物性素材)の理論上の膨張率(%)、t:降温後の温度(℃)、t:昇温後の温度(℃)、a、b、cは係数とする。)
[3] 前記食材が植物性素材であり、下記数式で定義される導入駆動力S2を216以上に調節する、[1]に記載の食材への物質導入方法。
Figure 0006920706
(式中、S2:導入駆動力、E2:食材(植物性素材)の理論上の膨張率(%)、t:降温後の温度(℃)、t:昇温後の温度(℃)、a、b、cは係数とする。)
[4] 前記食材の昇温後の温度が、40℃以上100℃以下である、[1]〜[3]のいずれかに記載の食材への物質導入方法。
[5] 前記食材の昇温後の温度と前記導入物質の温度の差が、10℃以上である、[1]〜[4]のいずれかに記載の食材への物質導入方法。
[6] 前記導入物質が、タンパク質、油脂、酵素、多糖類、増粘剤、乳化剤、澱粉、及び微生物からなる群から選択される少なくとも一種である、[1]〜[5]のいずれかに記載の食材への物質導入方法。
[7] 前記食材の昇温方法として、湿熱加熱、誘電加熱、飽和水蒸気加熱、過熱水蒸気加熱、焼成加熱、及びジュール加熱からなる群から選択される少なくとも一種を利用する、[1]〜[6]のいずれかに記載の食材への物質導入方法。
[8] 前記食材の前処理工程として、冷凍、湿熱加熱、誘電加熱、飽和水蒸気加熱、過熱水蒸気加熱、加圧加熱、焼成加熱、ジュール加熱、筋切り、タンブリング、脱水、脱脂、乾燥、酸処理、アルカリ処理、酵素処理、誘電処理、超音波処理、重曹処理、アルコール浸漬からなる群から選択される少なくとも一種を用いる、[1]〜[7]のいずれかに記載の食材への物質導入方法。
[9] 前記導入物質の提供方法が、浸漬、噴霧、塗布、及び物質保持基材との接触からなる群から選択される少なくとも一種である、[1]〜[8]のいずれかに記載の食材への物質導入方法。
[10] 前記食材内に2種類以上の導入物質を層状に導入する、[1]〜[9]のいずれかに記載の食材への物質導入方法。
[11] 食材の温度及び導入物質の温度を制御できる加熱装置を用いる、[1]〜[10]のいずれかに記載の食材への物質導入方法。
[12] [1]〜[11]のいずれかに記載の食材への物質導入方法を用いる、物質導入食材の製造方法。
[13] [12]に記載の方法により製造された物質導入食材を用いる、加工食品の製造方法。 That is, the present invention is as follows.
[1] A method of introducing a substance into a food material having a shape that can be recognized by appearance by generating an introduction driving force by utilizing a change in the volume of gas in the food material due to a temperature increase or decrease of the food material.
The temperature of the food is raised, causing the vaporization of the dissolved gas in the food, the vaporization of the water in the food, and the volume expansion of the gas in the food containing these.
Then, under normal pressure, the temperature of the food is lowered by bringing it into contact with the introduced substance.
To a foodstuff, which is characterized by controlling the introduction amount and / or the introduction depth of a substance into the foodstuff by adjusting the introduction driving force generated by causing the aggregation of water vapor in the foodstuff and the volume contraction of the gas in the foodstuff. Material introduction method.
[2] The method for introducing a substance into a foodstuff according to [1], wherein the foodstuff is an animal material and the introduction driving force S1 defined by the following mathematical formula is adjusted to 233 or more.
Figure 0006920706
(In the formula, S1: introduction driving force, E1: theoretical expansion coefficient (%) of foodstuff (animal material), t 1 : temperature after temperature reduction (° C.), t 2 : temperature after temperature rise (° C.) , A, b, c are coefficients.)
[3] The method for introducing a substance into a foodstuff according to [1], wherein the foodstuff is a vegetable material and the introduction driving force S2 defined by the following mathematical formula is adjusted to 216 or more.
Figure 0006920706
(In the formula, S2: introduction driving force, E2: theoretical expansion coefficient (%) of foodstuff (vegetable material), t 3 : temperature after temperature decrease (° C), t 4 : temperature after temperature rise (° C) , A, b, c are coefficients.)
[4] The method for introducing a substance into a food material according to any one of [1] to [3], wherein the temperature of the food material after the temperature rise is 40 ° C. or higher and 100 ° C. or lower.
[5] The method for introducing a substance into a food material according to any one of [1] to [4], wherein the difference between the temperature of the food material after the temperature rise and the temperature of the introduced substance is 10 ° C. or more.
[6] The introduced substance is any one of [1] to [5], which is at least one selected from the group consisting of proteins, fats and oils, enzymes, polysaccharides, thickeners, emulsifiers, starches, and microorganisms. How to introduce substances into the listed ingredients.
[7] As a method for raising the temperature of the food material, at least one selected from the group consisting of moist heat heating, dielectric heating, saturated steam heating, superheated steam heating, baking heating, and Joule heating is used, [1] to [6]. ] The method of introducing a substance into the ingredients described in any of.
[8] As the pretreatment step of the food material, freezing, moist heat heating, dielectric heating, saturated steam heating, superheated steam heating, pressure heating, baking heating, Joule heating, streak cutting, tumbling, dehydration, degreasing, drying, acid treatment The method for introducing a substance into a food material according to any one of [1] to [7], wherein at least one selected from the group consisting of alkali treatment, enzyme treatment, dielectric treatment, ultrasonic treatment, baking soda treatment, and alcohol immersion is used. ..
[9] The method according to any one of [1] to [8], wherein the method for providing the introduced substance is at least one selected from the group consisting of immersion, spraying, coating, and contact with a substance-retaining substrate. How to introduce substances into foodstuffs.
[10] The method for introducing a substance into a food material according to any one of [1] to [9], wherein two or more kinds of introduced substances are introduced into the food material in layers.
[11] The method for introducing a substance into a food material according to any one of [1] to [10], which uses a heating device capable of controlling the temperature of the food material and the temperature of the introduced substance.
[12] A method for producing a substance-introduced food material, which uses the method for introducing a substance into the food material according to any one of [1] to [11].
[13] A method for producing a processed food using a substance-introduced food material produced by the method according to [12].

本発明の物質導入方法は、食材の温度昇降による食材内の気体の体積変化(膨張・収縮現象)を利用した導入法であり、物質の浸透拡散現象を利用して物質導入する従来の浸漬法と比べ、大きい導入駆動力が得られる。そのため、同一形状の食材においては、飛躍的な物質導入時間の短縮と導入量の増加が見られる。例えば、食材中心部まで調味料を導入して加工食品を製造する工程において、従来1時間以上かかった味付け工程が、数分に短縮できる。 The substance introduction method of the present invention is an introduction method utilizing the volume change (expansion / contraction phenomenon) of the gas in the food material due to the temperature rise and fall of the food material, and is a conventional immersion method in which the substance is introduced by utilizing the permeation / diffusion phenomenon of the substance. Compared with, a large introduction driving force can be obtained. Therefore, in the case of foodstuffs having the same shape, a dramatic reduction in the substance introduction time and an increase in the introduction amount can be seen. For example, in the process of introducing a seasoning to the center of a food material to produce a processed food, the seasoning process that conventionally took one hour or more can be shortened to several minutes.

また、本発明の物質導入方法は減圧含浸法や加圧含浸法と異なり、高価な圧力装置を必要とせず、簡便な方法で多量な物質導入を実現できる。すなわち、減圧含浸法や加圧含浸法において律速となる圧力制御工程が必要なく、大量・連続生産が可能となるため、従来法と比べ導入コスト及び製造コストを抑えられる。 Further, unlike the vacuum impregnation method and the pressure impregnation method, the substance introduction method of the present invention does not require an expensive pressure device, and a large amount of substance can be introduced by a simple method. That is, since the pressure control step that is rate-determining in the vacuum impregnation method and the pressure impregnation method is not required and mass production and continuous production are possible, the introduction cost and the manufacturing cost can be suppressed as compared with the conventional method.

さらに、本発明の物質導入方法は、食材及び導入物質の接触時の温度を調整することで、食材内気体の膨張・収縮の程度を調整することができ、発現する導入駆動力を任意に制御できる。すなわち、食材内に導入する物質の導入量及び/又は導入深度を任意に制御できる。食材の降温工程中は前述した導入駆動力が継続して発現するため、降温工程中に複数の導入物質に別途接触させることで、食材内部に物質を段階的(層状)に導入することもできる。導入物質に粘性などの性質をもたせることで、導入後の物質の拡散を抑制することも可能である。この性質を利用し、複数物質を段階的に導入した新規食品の製造が可能である。 Further, in the substance introduction method of the present invention, the degree of expansion / contraction of the gas in the food material can be adjusted by adjusting the temperature at the time of contact between the food material and the material to be introduced, and the generated introduction driving force can be arbitrarily controlled. can. That is, the introduction amount and / or the introduction depth of the substance to be introduced into the food material can be arbitrarily controlled. Since the above-mentioned introduction driving force is continuously generated during the temperature lowering process of the food material, the substances can be introduced stepwise (layered) into the food material by separately contacting a plurality of introduced substances during the temperature lowering process. .. By giving the introduced substance properties such as viscosity, it is possible to suppress the diffusion of the introduced substance after introduction. Utilizing this property, it is possible to manufacture new foods in which multiple substances are introduced step by step.

本発明の物質導入方法で導入可能な物質は塩類や単糖類などの低分子物質に限らず、多糖類や酵素などの高分子物質も導入可能である。さらに加熱法や加圧加熱法と異なり、導入物質に熱を加える工程がないため、加熱分解を受けやすいビタミン類等の栄養成分なども導入できる。さらに減圧法と異なり、導入物質を減圧処理する工程がないため、減圧下で揮発しやすい香気成分や、発泡しやすい重曹液、粘性物質なども導入できる。すなわち、機能性成分や香気成分などこれまでに食材に多量に導入することが困難だった物質を高含有する新規食品も製造できる。 The substances that can be introduced by the substance introduction method of the present invention are not limited to low molecular substances such as salts and monosaccharides, but high molecular substances such as polysaccharides and enzymes can also be introduced. Further, unlike the heating method and the pressurized heating method, since there is no step of applying heat to the introduced substance, nutritional components such as vitamins that are easily decomposed by heat can be introduced. Further, unlike the decompression method, since there is no step of depressurizing the introduced substance, it is possible to introduce an aroma component that easily volatilizes under reduced pressure, a baking soda solution that easily foams, a viscous substance, and the like. That is, it is possible to produce a new food containing a high amount of substances such as functional components and aroma components that have been difficult to introduce into foods in large quantities.

[物質導入方法]
本発明は、外観で認識可能な形状を保持した食材内への物質導入方法を提供するものであり、食材の温度昇降による食材内の気体の体積変化を利用して導入駆動力を発生させる物質導入方法である。
[Material introduction method]
The present invention provides a method for introducing a substance into a food material that retains a shape that can be recognized by appearance, and a substance that generates an introduction driving force by utilizing a change in the volume of gas in the food material due to a temperature increase or decrease of the food material. This is the introduction method.

(1)食材
本発明に用いられる外観で認識可能な形状を保持した食材とは、外観から食材そのものが何の食材であるかを十分認識できる形状を保持した食材である。このような形状保持食材は、元の組織構造を有するものであり、ミキサーなどですり潰し、食材組織が崩壊した流動食やペースト食は対象としない。通常の食事で食する形状ある食材を利用でき、食材をそのまま利用することもできるし、切断して利用することもできる。切断して調製する場合は、例えば、銀杏切り、輪切り、半月切り、短冊切り、スライス切り、乱切りなどで調製された食材とすることができる。
(1) Foodstuffs The foodstuffs used in the present invention that retain a shape that can be recognized by appearance are foodstuffs that retain a shape that allows the foodstuff itself to be sufficiently recognized from the appearance. Such shape-retaining foodstuffs have the original tissue structure, and do not include liquid foods or paste foods that have been mashed with a mixer or the like and whose foodstuff structure has collapsed. You can use the shaped foods that you eat in a normal meal, and you can use the foods as they are, or you can cut them and use them. When prepared by cutting, for example, the food material can be prepared by cutting ginkgo, round slices, half-moon slices, strip slices, slice slices, random slices, or the like.

このような食材の種類としては動物性素材および植物性素材のいずれであってもよく、生の状態の食材や、煮る、焼く、蒸す、揚げるなどの加熱や調理した食材も用いることかができる。具体的には、動物性素材としては、鶏肉、豚肉、牛肉、馬肉、羊肉、猪肉などの肉類、鯛、鮪、鯵、鯖、鰯、鱈、鰤、鮭、赤魚、ホッケ、イカ、タコ、ホタテ、アサリ、ハマグリなどの魚介類等が挙げられる。また、植物性素材としては、ダイコン、ニンジン、牛蒡、筍、生姜、キャベツ、白菜、アスパラガス、葱、玉葱、ほうれん草、小松菜、ブロッコリー、カリフラワー、胡瓜、茄子、インゲンなどの野菜類、ジャガイモ、サツマイモ、サトイモ、カボチャなどの芋類、大豆、小豆、金時豆、黒豆、エンドウ豆、ひよこ豆などの豆類、米、小麦、粟などの穀類、みかん、りんご、もも、サクランボ、梨、パイナップル、バナナ、イチゴ、梅、栗などの果実類、椎茸、シメジ、エノキ、ナメコ、松茸、エリンギなどのキノコ類、コンブ、海苔、ヒジキなどの藻類等が挙げられる。さらに上記食材を加工した加工食品であってもよい。加工食品としては、肉団子、ハンバーグ、焼売などの畜肉練製品、卵焼き、オムレツ、ゆで卵などの卵製品、蒲鉾、竹輪などの水産練製品、漬物、総菜、麺類、各種菓子など、いずれの加工食品であってもよい。また、肉じゃが、筑前煮などの総菜でもよい。これら加工食品は、再成型によって本発明の組織構造を持った外観で認識可能な形状保持食材とすることができる。 The type of such ingredients may be any of animal and vegetable materials, and raw ingredients and cooked or cooked ingredients such as boiled, baked, steamed, and fried can also be used. .. Specifically, animal materials include meat such as chicken, pork, beef, horse meat, mutton, and clams, clams, clams, clams, mackerel, clams, clams, clams, salmon, red fish, atka mackerel, squid, and octopus. , Seafood such as scallops, clams, and horse meat. In addition, as plant materials, vegetables such as daikon, carrot, beef shimeji mushroom, shimeji mushroom, ginger, cabbage, white vegetables, asparagus, green beans, onions, spinach, komatsuna, broccoli, cauliflower, gourd, eggplant, green beans, potatoes, and sweet beans. , Sweet potatoes, pumpkins and other potatoes, soybeans, red beans, Kintoki beans, black beans, pea beans, chick beans and other beans, rice, wheat, awa and other grains, tangerines, apples, thighs, cherry blossoms, pears, pineapples, Fruits such as bananas, strawberries, plums and chestnuts, mushrooms such as shiitake mushrooms, shimeji mushrooms, enoki mushrooms, nameko, pine mushrooms and eringi, and algae such as combs, seaweeds and elbows can be mentioned. Further, it may be a processed food obtained by processing the above ingredients. Processed foods include meatballs, hamburgers, meatballs such as grilled meatballs, egg products such as omelets, omelets, and boiled eggs, marine products such as kamaboko and chikuwa, pickles, delicatessen items, noodles, and various confectioneries. It may be food. In addition, meat potatoes and delicatessen such as Chikuzen-ni may be used. These processed foods can be remolded into shape-retaining foodstuffs having the organizational structure of the present invention and recognizable in appearance.

(2)食材の前処理
食材には、物質の導入処理に先立って組織間隙を緩和する前処理を施すことができる。組織間隙を緩和することにより、後述する加熱処理による食材内溶存気体の気化、食材内水分の気化及び食材内気体の膨張が可能となり、食材内に強力な物質導入駆動力が発生する。前処理により、食材の中心部まで物質を効率的に導入することができる。組織緩和の前処理方法としては、冷凍、湿熱加熱、誘電加熱、飽和水蒸気加熱、過熱水蒸気加熱、加圧加熱、焼成加熱、ジュール加熱、筋切り(テンダライズ)、タンブリング(圧延)、脱水、脱脂、乾燥、酸処理、アルカリ処理、酵素処理、誘電処理、超音波処理、重曹処理、アルコール浸漬等が挙げられ、これら群から選ばれる1または2以上を組合せて処理することができる。ここで組織間隙とは、例えば、植物性食材であれば細胞と細胞が接着している細胞間隙、動物性食材であれば筋繊維タンパク質や筋原繊維タンパク質、結合繊維タンパク質などのタンパク質繊維間隙や、脂肪細胞間隙などとすることができる。
(2) Pretreatment of foodstuffs Foodstuffs can be pretreated to relax tissue gaps prior to the introduction treatment of substances. By relaxing the tissue gap, it becomes possible to vaporize the dissolved gas in the food material, vaporize the water in the food material, and expand the gas in the food material by the heat treatment described later, and a strong substance introduction driving force is generated in the food material. The pretreatment allows the substance to be efficiently introduced to the center of the food. Pretreatment methods for tissue relaxation include freezing, moist heat heating, dielectric heating, saturated steam heating, superheated steam heating, pressure heating, baking heating, Joule heating, streak cutting (tenderizing), tumbling (rolling), dehydration, and degreasing. Examples thereof include drying, acid treatment, alkali treatment, enzyme treatment, dielectric treatment, ultrasonic treatment, baking soda treatment, alcohol immersion and the like, and one or two or more selected from these groups can be treated in combination. Here, the tissue gaps are, for example, cell gaps in which cells are adhered to each other in the case of vegetable foodstuffs, and protein fiber gaps such as muscle fiber proteins, myofibrillar proteins, and bound fiber proteins in the case of animal foodstuffs. , Fat cell gap, etc.

冷凍や解凍処理は食材内の水分の氷結晶生成及び融解現象により組織を緩和できる。冷凍には、一般的な冷凍装置が使用でき、−18℃などの緩慢冷凍から、−40℃などの急速冷凍も利用できる。急速冷凍では氷結晶が成長しにくく、食材によっては十分な組織緩和効果が得られない場合もあるが、加熱などの他の組織緩和方法と組み合わせることにより利用することができる。 Freezing and thawing treatments can relax the structure by forming ice crystals and thawing of water in the food. For freezing, a general freezing device can be used, from slow freezing at -18 ° C to rapid freezing at -40 ° C. Ice crystals do not grow easily in quick freezing, and depending on the foodstuff, a sufficient tissue relaxation effect may not be obtained, but it can be used in combination with other tissue relaxation methods such as heating.

解凍方法は、自然解凍、流水中解凍、冷蔵庫解凍や、加熱解凍、誘電加熱解凍などを用いることができる。ただし、食材からのドリップを最小限にとどめる方法が品質の面から好ましく、食材に応じて適宜選択する。 As the thawing method, natural thawing, thawing in running water, thawing in a refrigerator, heat thawing, dielectric heating thawing and the like can be used. However, a method of minimizing the drip from the ingredients is preferable from the viewpoint of quality, and an appropriate selection is made according to the ingredients.

加熱処理を利用した組織緩和方法は、加熱分解による軟化によって、組織を緩和できる。とりわけ誘電加熱と過熱水蒸気加熱では、加熱による軟化とともに、食材表面の乾燥により空隙が生成されることから、相乗的に組織緩和に効果的である。肉類のように動物性食材の場合には、タンパク質を例えば65℃以上に加熱して熱変性させて収縮させることにより、組織間に空隙を設けて緩和させることができる。また一方では、例えば65℃以下の低温で加熱することにより、組織の柔軟性を残すことで組織をより緩和させることもできる。 In the tissue relaxation method using heat treatment, the tissue can be relaxed by softening by thermal decomposition. In particular, dielectric heating and superheated steam heating are synergistically effective in mitigating the structure because voids are generated by drying the surface of the food material as well as softening by heating. In the case of animal foods such as meat, the protein can be relaxed by heating it to, for example, 65 ° C. or higher, heat-denaturing it, and contracting it to provide voids between tissues. On the other hand, for example, by heating at a low temperature of 65 ° C. or lower, the tissue can be further relaxed by leaving the flexibility of the tissue.

テンダライズ、タンブリング、圧延処理は、食材の物理的破壊により組織を緩和できる。特に肉類や魚介類などの食材に用いられ、テンダライズによる筋切りにより組織の柔軟性を高めることによって組織緩和できる。テンダライザーとして、突き刺し型、ロール回転型のいずれも利用することができ、刃の密度やピッチ幅は、形状が崩壊しないように食材の大きさや厚みによって適宜選択するとよい。タンブリング処理では、食材の形状が崩壊しないように回転数を設定して処理することができる。タンブリング処理では食材への味付けなどを同時に行うこともでき、真空タンブリングを利用することもできる。圧延処理では、ミートハンマーなどを利用して食材を処理することにより組織を一部破壊して柔軟化し、組織を緩和させることができる。 Tenderizing, tumbling and rolling can alleviate the texture by physically destroying the ingredients. In particular, it is used for foodstuffs such as meat and fish and shellfish, and can be relaxed by increasing the flexibility of the tissue by cutting the muscle by tendering. As the tenderizer, either a piercing type or a roll rotating type can be used, and the density and pitch width of the blade may be appropriately selected according to the size and thickness of the food material so that the shape does not collapse. In the tumbling process, the number of rotations can be set so that the shape of the food material does not collapse. In the tumbling process, the ingredients can be seasoned at the same time, and vacuum tumbling can also be used. In the rolling process, the structure can be partially destroyed and softened by processing the food material using a meat hammer or the like, and the structure can be relaxed.

脱水は、食材内の一部水分を取り除くことにより、組織内に空隙ができることから組織緩和できる。脱水方法として、遠心分離機のような装置を用いてもよく、吸水紙などの吸水作用をもつ素材に接触させて脱水しても良い。また食塩などの塩類を利用して浸透圧効果で脱水してもよい。 Dehydration can alleviate the tissue by removing some water in the food material because voids are formed in the tissue. As a dehydration method, a device such as a centrifuge may be used, or a material having a water-absorbing action such as water-absorbing paper may be brought into contact with the dehydrating material. Further, it may be dehydrated by an osmotic effect using salts such as salt.

乾燥は食材の水分減少により空隙を生成させることで組織を緩和することができる。乾燥方法は熱風や冷風などの送風乾燥、真空乾燥、凍結乾燥、マイクロ波乾燥などが利用できる。本発明では食材内の水の相転移を利用するため、過度に乾燥させることなく、食材内の一部水分を乾燥させたのち、保管して食材内の水分分布を均質化させると食材内に空隙が増えて組織が緩和される。 Drying can relax the tissue by creating voids by reducing the water content of the food. As the drying method, air drying such as hot air or cold air, vacuum drying, freeze drying, microwave drying and the like can be used. In the present invention, since the phase transition of water in the food material is used, a part of the water content in the food material is dried without being excessively dried, and then stored to homogenize the water distribution in the food material. The voids increase and the tissue is relaxed.

酸、アルカリ処理は食材組織を変性させることにより組織緩和できる。酸処理としてはクエン酸、リンゴ酸、酢酸、リン酸などの食品添加物が使用でき、アルカリ処理としては、炭酸塩、リン酸塩、クエン酸塩などの食品添加物が使用できる。酵素処理は食材表面の組織を分解することにより、食材組織を緩和する。肉類や魚類などの動物性食材では予めプロテアーゼ酵素液に浸漬し、野菜や果実類の植物性食材では予めペクチナーゼやセルラーゼ酵素液などに浸漬し、食材表面を分解することにより組織が緩和される。 Acid and alkali treatment can alleviate the structure by denaturing the food structure. Food additives such as citric acid, malic acid, acetic acid, and phosphoric acid can be used as the acid treatment, and food additives such as carbonate, phosphate, and citrate can be used as the alkali treatment. Enzymatic treatment relaxes the texture of the food by decomposing the tissue on the surface of the food. Animal foods such as meat and fish are soaked in a protease enzyme solution in advance, and vegetable foods such as vegetables and fruits are soaked in pectinase or cellulase enzyme liquid in advance to decompose the surface of the food to relax the tissue.

(3)導入物質
食材に導入する物質は、低分子物質、高分子物質、粘性物質、及び微生物のいずれからも選択が可能で、1種または2種以上を組合せて導入することもできる。具体的には、一般的に食品の調理や加工に使用されるタンパク質、油脂、酵素、多糖類、増粘剤、乳化剤、及び澱粉等の高分子物質及び粘性物質とともに、食用色素、ビタミン類や、鉄、カルシウム、亜鉛、ヨウ素等のミネラル類、グリシン、グルタミン酸、アスパラギン酸などの各種アミノ酸、あるいは医療用検査食に使用されるヨード造影剤(イオパミドールなど)、バリウム造影剤(硫酸バリウムなど)等の医療用造影剤などの低分子物質も導入できる。
(3) Substances to be introduced The substances to be introduced into the foodstuffs can be selected from any of low molecular weight substances, high molecular weight substances, viscous substances, and microorganisms, and one type or a combination of two or more types can be introduced. Specifically, along with high-molecular substances and viscous substances such as proteins, fats and oils, enzymes, polysaccharides, thickeners, emulsifiers, and starches generally used for cooking and processing foods, edible pigments, vitamins and the like , Minerals such as iron, calcium, zinc, iodine, various amino acids such as glycine, glutamic acid, aspartic acid, iodine contrast media (iopamidol, etc.), barium contrast media (barium sulfate, etc.) used in medical test foods, etc. Low molecular weight substances such as medical contrast media can also be introduced.

例えば、形状保持軟化食品を製造するためには酵素を導入し、さらに離水抑制機能を付与する場合は増粘剤や加工澱粉を導入する。また、ミネラルやビタミン類などの栄養強化食品とする場合には、それらの物質を導入する。また食材の調味も同時に行う場合には、調味料やアミノ酸等を導入する。新食感食品、機能性食品、および造影検査用食品の製造においても同様に、適宜、導入物質を選択して作製することができる。 For example, an enzyme is introduced to produce a shape-retaining softened food, and a thickener or modified starch is introduced to impart a water separation suppressing function. In addition, when making fortified foods such as minerals and vitamins, introduce those substances. If the ingredients are seasoned at the same time, seasonings, amino acids, etc. are introduced. Similarly, in the production of a new texture food, a functional food, and a food for contrast examination, the introduced substance can be appropriately selected and produced.

酵素としては、例えば、プロテアーゼ、ペプチダーゼなどタンパク質をアミノ酸及びペプタイドに分解する酵素、アミラーゼ、グルカナーゼ、セルラーゼ、ペクチナーゼ、ペクチンエステラーゼ、ヘミセルラーゼ、β−グルコシダーゼ、マンナーゼ、キシラナーゼ、アルギン酸リアーゼ、キトサナーゼ、イヌリナーゼ、キチナーゼなどデンプン、セルロース、イヌリン、グルコマンナン、キシラン、アルギン酸、フコイダンなどの多糖類をオリゴ糖に分解する酵素、リパーゼなど脂肪を分解する酵素、パンクレアチン、ペプシンなど食材の消化・分解作用のある酵素、タンパク質を接着するトランスグルタミナーゼなどを例示することができる。これらは1種または相互に作用を阻害しない範囲で2種以上を組み合わせて使用することもできる。 Examples of enzymes include enzymes that decompose proteins such as proteases and peptidases into amino acids and peptide, amylase, glucanase, cellulase, pectinase, pectinesterase, hemicellulase, β-glucosidase, mannase, xylanase, alginate lyase, chitosanase, inulinase, and chitinase. Enzymes that decompose polysaccharides such as starch, cellulose, inulin, glucomannan, xylan, alginic acid, and fucoidan into oligosaccharides, enzymes that decompose fat such as lipase, enzymes that digest and decompose ingredients such as pancreatin and pepsin, Examples thereof include transglutaminase that adheres proteins. These may be used alone or in combination of two or more as long as they do not inhibit the interaction.

油脂としてはサラダ油、コーン油、大豆油、ゴマ油、菜種油、米油、綿実油、パーム油、豚油、牛脂、乳脂など一般的に食品として用いられる油脂を例示することができる。油脂は単独で使用しても良いし、乳化油脂として用いることもできる。あるいは乳化剤のみを導入しても良い。乳化剤としては、例えば、グリセリン脂肪酸エステル、ショ糖脂肪酸エステルや、レシチン、カゼインナトリウムなど、食品加工に用いられる乳化剤を利用できる。 Examples of fats and oils include oils and fats generally used as foods such as salad oil, corn oil, soybean oil, sesame oil, rapeseed oil, rice oil, cottonseed oil, palm oil, pork oil, beef tallow, and milk fat. The fats and oils may be used alone or as emulsified fats and oils. Alternatively, only the emulsifier may be introduced. As the emulsifier, for example, emulsifiers used in food processing such as glycerin fatty acid ester, sucrose fatty acid ester, lecithin, and sodium casein can be used.

増粘剤及び澱粉としては、例えば、小麦デンプン、米デンプン、コーンスターチ、馬鈴薯デンプン、タピオカデンプン、サツマイモデンプン、カードラン、寒天、ゼラチン、ペクチン、CMC、キサンタンガム、グアーガム、ジェランガムなどを例示することができる。デンプンは加工デンプンとして利用することもできる。澱粉は未糊化状態あるいは糊化状態のいずれでも使用することができる。これらの物質を食材内に導入することで、物質の拡散を防止することもできる。これにより2種類以上の導入物質を食材内で層状に維持することもできる。 Examples of the thickener and starch include wheat starch, rice starch, cornstarch, potato starch, tapioca starch, sweet potato starch, curdran, agar, gelatin, pectin, CMC, xanthan gum, guar gum, gellan gum and the like. .. Starch can also be used as modified starch. Starch can be used in either the ungelatinized state or the gelatinized state. By introducing these substances into foodstuffs, it is possible to prevent the diffusion of the substances. Thereby, two or more kinds of introduced substances can be maintained in layers in the food material.

微生物としては、例えば乳酸菌、枯草菌(納豆菌)、酢酸菌、カビ(コウジカビ、アオカビなど)、酵母(ビール酵母、清酒酵母、パン酵母など)の発酵食品等で利用されている微生物を例示することができる。 Examples of microorganisms include microorganisms used in fermented foods such as lactic acid bacteria, Bacillus subtilis (Bacillus natto), acetic acid bacteria, molds (Koji mold, blue mold, etc.), yeasts (beer yeast, sake yeast, baker's yeast, etc.). be able to.

導入物質を2種以上組合せて使用する場合には、複数の物質が相互に阻害しない範囲で使用する。導入物質は、食材に液体でも粉体でもどちらの状態でも提供できる。導入物質の提供方法は、食材に浸漬する、噴霧する、塗布するなどの方法で接触させてもよいし、食材に、物質を保持させた基材と接触させることでもよい。なお、導入物質を溶媒に溶解して接触する場合には、導入物質の性質に合わせて、pHを調整することもできる。酵素などのタンパク質を導入する場合には、タンパク質が変性しないようにリン酸やクエン酸、あるいはその塩類等を用いて、pH3〜10の範囲で調整するとよい。 When two or more kinds of introduced substances are used in combination, use within a range in which a plurality of substances do not interfere with each other. The introduced substance can be provided to the food in either liquid or powder state. The method of providing the introduced substance may be contact by a method such as immersing in the food material, spraying, or coating, or the food material may be brought into contact with the base material holding the substance. When the introduced substance is dissolved in a solvent and brought into contact with the substance, the pH can be adjusted according to the properties of the introduced substance. When introducing a protein such as an enzyme, it is advisable to adjust the pH in the range of 3 to 10 by using phosphoric acid, citric acid, or salts thereof so that the protein is not denatured.

(4)物質導入方法
本発明の物質導入方法は、(i)食材を昇温させ、食材内溶存気体の気化、食材内水分の気化、及びこれらを含む食材内気体の体積膨張を引き起こす工程、(ii)常圧下で、食材を導入物質に接触させることで降温させる工程、(iii)食材の降温により、食材内水蒸気の凝集及び食材内気体の体積収縮を引き起こし、導入駆動力を発生させて、食材組織内に物質を導入する工程、を実施することを特徴とする。発生する導入駆動力は、既存の浸漬法で発生する浸透・拡散現象を利用した含浸駆動力よりも著しく大きい。さらに組織緩和した食材を用いることで、その食材の柔軟性を利用でき、食材内気体の体積変化が確実に起こり、物質の速やかな導入と十分な導入量を確保できる。
(4) Material introduction method The substance introduction method of the present invention is (i) a step of raising the temperature of a food material to cause vaporization of dissolved gas in the food material, vaporization of water in the food material, and volume expansion of the gas in the food material containing these. (Ii) The step of lowering the temperature of the food by bringing the food into contact with the introduced substance under normal pressure, (iii) The temperature of the food causes the aggregation of water vapor in the food and the volume contraction of the gas in the food to generate the introduction driving force. It is characterized by carrying out a process of introducing a substance into a food material tissue. The introduction driving force generated is significantly larger than the impregnation driving force utilizing the permeation / diffusion phenomenon generated by the existing immersion method. Furthermore, by using a food material with a relaxed structure, the flexibility of the food material can be utilized, the volume of the gas in the food material changes reliably, and the rapid introduction of the substance and a sufficient introduction amount can be secured.

(i)食材を昇温させ、食材内溶存気体の気化、食材内水分の気化、及びこれらを含む食材内気体の体積膨張を起こす工程
導入前にあらかじめ食材を加温することにより、食材内水分の気化と食材内気体の膨張が起こる。加熱時の食材内気体の体積はボイル・シャルルの法則(1)に従う。

Figure 0006920706
(式中 P:圧力 T:温度(K) V:気体体積)
すなわち、常圧下においては食材内気体の体積は温度に比例して大きくなる。理論上、食材温度(食材の中心温度)が10℃(283K)のときと比べて、食材内気体の体積は70℃(343K)のとき約1.21倍、80℃(353K)のとき約1.25倍、90℃(363K)のとき約1.28倍に膨張することになる。
さらに食材の加熱時には食材内溶存気体の気化及び食材内水分の気化が起こる。食材内の水分は気化により理論上1、700倍に体積膨張することから、加熱エネルギーによる食材内水分の気化が進む加熱条件を実施した場合には、ボイル・シャルルの法則により増加する食材内気体の膨張に加えて、更に強力な気体膨脹が起こり、強力な導入駆動力が発現する。また、食材温度の上昇に伴って起こる食材内成分の相変化(油脂の溶解など)や加熱変性(タンパク質変性)等による食材構造の軟化(柔軟性増加)は、食材の昇温による食材内気体の体積膨張をより促進する作用として働き、好都合である。 (I) A step of raising the temperature of the food material to vaporize the dissolved gas in the food material, vaporizing the water content in the food material, and expanding the volume of the gas in the food material containing these. Vaporization and expansion of gas in the foodstuff occur. The volume of gas in the food during heating follows Boyle-Charles' law (1).
Figure 0006920706
(P in the formula: pressure T: temperature (K) V: gas volume)
That is, under normal pressure, the volume of gas in the food material increases in proportion to the temperature. Theoretically, the volume of gas in the food is about 1.21 times when the temperature of the food (center temperature of the food) is 10 ° C (283K) and about 1.21 times when the temperature of the gas in the food is 70 ° C (343K) and about 80 ° C (353K). At 1.25 times and 90 ° C. (363K), it expands about 1.28 times.
Further, when the food material is heated, the dissolved gas in the food material is vaporized and the water content in the food material is vaporized. Moisture in foodstuffs theoretically expands 1,700 times in volume due to vaporization, so when heating conditions are implemented in which the moisture in foodstuffs is vaporized by heating energy, the gas in foodstuffs increases according to Boyle-Charles' law. In addition to the expansion of the gas, a stronger gas expansion occurs, and a strong introduction driving force is developed. In addition, the softening of the food structure (increased flexibility) due to phase changes (dissolution of fats and oils, etc.) and heat denaturation (protein denaturation) of the ingredients in the food that occur as the temperature of the food rises is the gas in the food due to the temperature rise of the food. It works as an action to further promote the volume expansion of the protein, which is convenient.

食材の昇温は、特に限定されず、食材の調理加工に用いられる従来公知の昇温方法によって行うことができる。食材の昇温後の温度は、通常40℃以上100℃以下であり、下限値は好ましくは50℃以上であり、より好ましくは60℃以上である。食材の昇温方法としては、例えば、煮る、焼く、蒸す、揚げる等の加熱処理が挙げられる。加熱処理には、湿熱加熱、誘電加熱、飽和水蒸気加熱、過熱水蒸気加熱、焼成加熱、及びジュール加熱が例示でき、伝導、輻射、対流によるいずれの加熱原理を用いても良い。 The temperature rise of the food material is not particularly limited, and can be performed by a conventionally known heating method used for cooking and processing the food material. The temperature of the food material after the temperature rise is usually 40 ° C. or higher and 100 ° C. or lower, and the lower limit is preferably 50 ° C. or higher, more preferably 60 ° C. or higher. Examples of the method for raising the temperature of the food material include heat treatment such as boiling, baking, steaming, and frying. Examples of the heat treatment include moist heat heating, dielectric heating, saturated steam heating, superheated steam heating, firing heating, and Joule heating, and any heating principle of conduction, radiation, or convection may be used.

(ii)食材に導入物質を接触させて、降温させる工程
導入物質と食材の接触は、塗布、噴霧、浸漬などの方法が用いられ、導入物質は粉末状でも水などの溶媒に溶解させた溶液状態でも、あるいは溶媒に分散させた状態でも、乳化剤で乳化させた状態でも用いることができる。液体状で接触させる場合は、接触後に食材を液体から取り出してその後の処理を実施しても良く、液体に浸漬したままその後の処理を実施しても良い。
(Ii) Step of bringing the introduced substance into contact with the food material to lower the temperature For the contact between the introduced substance and the food material, methods such as coating, spraying, and dipping are used, and the introduced substance is a solution dissolved in a solvent such as water even if it is in powder form. It can be used in a state, dispersed in a solvent, or emulsified with an emulsifier. In the case of contacting in a liquid state, the foodstuff may be taken out from the liquid after the contact and the subsequent treatment may be carried out, or the subsequent treatment may be carried out while being immersed in the liquid.

(iii)食材の降温により導入駆動力を発生させて食材組織内に物質を導入する工程
昇温後の食材を導入物質に接触させることで食材を降温させる。食材の降温温度は特に限定されないが、十分な導入駆動力を発生させるために、好ましくは5℃以上であり、より好ましくは10℃以上であり、さらに好ましくは20℃以上である。また、昇温後の食材の温度と導入物質の温度の差は、食材の温度を十分に降温させるために、好ましくは10℃以上であり、より好ましくは15℃以上であり、さらに好ましくは20℃以上である。なお、導入物質の温度は、食材の昇温後の温度に応じて適宜調節することができるが、好ましくは60℃以下、より好ましくは50℃以下である。
導入駆動力の発生原理からすれば、導入駆動力をもっとも効果的に発生させる方法として、昇温した食材に対し、別途用意した食材温度より低温の導入物質を直接接触させることにより、昇温食材内で発生している膨張気体を急激に収縮させる方法とすることができ、強力な導入駆動力を得ることができる。
食材を調味液等の溶液中で加熱して昇温させる場合、食材を加熱した後、食材を溶液から取り出して、食材温度より低温の導入物質溶液に漬けかえて強力な導入駆動力を発生させる方法をとることができる。更には、溶液中で加熱して昇温した食材に、より低温の導入物質溶液を注いで溶液ごと急冷し、昇温食材と溶液の温度差を生じさせて導入駆動力を発生させることもできる。
(i)で述べたとおり、食材内気体の体積はボイル・シャルルの法則に従うため、導入物質に接触した状態で食材温度が降温するほど、食材内物質導入量は多くなる。一方で、冷却すると固化する動物性油脂や糖類などを導入物質とするときは、導入物質が溶液状態を保持できるように適宜、30〜50℃などの温度帯に調整して食材と接触する方がよい。
以上の(i)から(iii)の工程を実施することにより、高価な圧力装置を必要とすることなく、強力な物質導入駆動力を得て、短時間で物質を食材に導入することができる。
(Iii) Step of introducing a substance into a food material tissue by generating an introduction driving force by lowering the temperature of the food material The temperature of the food material is lowered by bringing the food material after the temperature rise into contact with the introduced substance. The temperature at which the food is lowered is not particularly limited, but is preferably 5 ° C. or higher, more preferably 10 ° C. or higher, and even more preferably 20 ° C. or higher in order to generate a sufficient introduction driving force. Further, the difference between the temperature of the food material and the temperature of the introduced substance after the temperature rise is preferably 10 ° C. or higher, more preferably 15 ° C. or higher, and further preferably 20 ° C. in order to sufficiently lower the temperature of the foodstuff. It is above ℃. The temperature of the introduced substance can be appropriately adjusted according to the temperature of the food material after the temperature rise, but is preferably 60 ° C. or lower, more preferably 50 ° C. or lower.
According to the principle of generating the introduction driving force, the most effective way to generate the introduction driving force is to directly contact the introduced substance whose temperature is lower than the separately prepared food material temperature with the heated food material. It can be a method of rapidly contracting the expanding gas generated inside, and a strong introduction driving force can be obtained.
When the foodstuff is heated in a solution such as a seasoning liquid to raise the temperature, after heating the foodstuff, the foodstuff is taken out from the solution and immersed in the introduction substance solution lower than the foodstuff temperature to generate a strong introduction driving force. You can take the method. Furthermore, it is also possible to pour a lower temperature introduction substance solution into the foodstuff heated in the solution and quench the solution together to generate a temperature difference between the temperature-raising foodstuff and the solution to generate an introduction driving force. ..
As described in (i), since the volume of the gas in the food material follows Boyle-Charles' law, the amount of the substance introduced in the food material increases as the temperature of the food material decreases in contact with the introduced substance. On the other hand, when animal fats and oils and sugars that solidify when cooled are used as introduction substances, those who come into contact with foodstuffs by adjusting the temperature range to 30 to 50 ° C as appropriate so that the introduction substances can maintain the solution state. Is good.
By carrying out the above steps (i) to (iii), a strong substance introduction driving force can be obtained without the need for an expensive pressure device, and the substance can be introduced into the food material in a short time. ..

(5)導入駆動力の調整
食材が動物性素材の場合、下記数式で定義される導入駆動力S1を、好ましくは233以上、より好ましくは405以上、さらに好ましくは789以上に調節することで、食材への強力な物質導入を実施することができる。

Figure 0006920706
(式中、S1:導入駆動力、E1:食材(動物性素材)の理論上の膨張率(%)、t:降温後の温度(℃)、t:昇温後の温度(℃)、a、b、cは係数とする。)
なお、係数a、b、cは各食材の膨張率の実測値から求められる。膨張率の実測値は式(IV)を用いて、10℃から90℃まで10℃間隔で算出する。算出した膨張率の実測値と加熱温度の関係から、最小二乗法を用いて求められる指数近似式を算出し、係数a、b、cの値を決定する。このとき、基準温度(10℃)における膨張率は100%とし、近似式はこの点を通るものとする。
=H1/H2×100 ・・・(IV)
(式中、E:食材(動物性素材)の膨張率の実測値(%)、H1:降温後の食材の硬さ、H2:昇温後の食材の硬さとする)
ここで、食材の昇温による膨張率は食材体積変化の実測値から求めることもできるが、食材の膨張は食材内気体の膨張や収縮と連動しており、気体からなる食材内空隙が変動していることから、食材の物性測定による硬さ変化で求めることができる。 (5) Adjustment of introduction driving force When the food material is an animal material, the introduction driving force S1 defined by the following formula is preferably adjusted to 233 or more, more preferably 405 or more, and further preferably 789 or more. It is possible to carry out powerful substance introduction into foodstuffs.
Figure 0006920706
(In the formula, S1: introduction driving force, E1: theoretical expansion coefficient (%) of foodstuff (animal material), t 1 : temperature after temperature reduction (° C.), t 2 : temperature after temperature rise (° C.) , A, b, c are coefficients.)
The coefficients a, b, and c are obtained from the measured values of the expansion coefficient of each food material. The measured value of the expansion coefficient is calculated from 10 ° C. to 90 ° C. at 10 ° C. intervals using the formula (IV). From the relationship between the calculated measured value of the expansion coefficient and the heating temperature, an exponential approximation formula obtained by using the least squares method is calculated, and the values of the coefficients a, b, and c are determined. At this time, the expansion coefficient at the reference temperature (10 ° C.) is 100%, and the approximate expression passes through this point.
E A = H1 / H2 × 100 ··· (IV)
(Wherein, E A: measured value of the expansion rate of the food (animal material) (%), H1: Hardness ingredients after cooling, H2: the hardness of the food after heating)
Here, the expansion rate due to the temperature rise of the food material can be obtained from the measured value of the change in the volume of the food material, but the expansion of the food material is linked with the expansion and contraction of the gas in the food material, and the void in the food material made of gas fluctuates. Therefore, it can be obtained by changing the hardness of the food by measuring the physical properties of the food.

食材が植物性素材の場合、下記数式で定義される導入駆動力S2を、好ましくは216以上、より好ましくは401以上、さらに好ましくは764以上に調節することで、強力な物質導入駆動力を得ることができる。

Figure 0006920706
(式中、S2:導入駆動力、E2:食材(植物性素材)の理論上の膨張率(%)、t:降温後の温度(℃)、t:昇温後の温度(℃)、a、b、cは係数とする。)
なお、係数a、b、cは各食材の膨張率の実測値から求められる。膨張率の実測値は式(VIII)を用いて、10℃から90℃まで10℃間隔で算出する。算出した膨張率の実測値と加熱温度の関係から、最小二乗法を用いて求められる指数近似式を算出し、係数a、b、cの値を決定する。このとき、基準温度(10℃)における膨張率は100%とし、近似式はこの点を通るものとする。
=H3/H4×100 ・・・(VIII)
(式中、E:食材(植物性素材)の膨張率の実測値(%)、H3:昇温前の食材の硬さ、H4:昇温後の食材の硬さとする)
ここで、食材の昇温による膨張率は食材体積変化の実測値から求めることもできるが、食材の膨張は食材内気体の膨張や収縮と連動しており、気体からなる食材内空隙が変動していることから、食材の物性測定による硬さ変化で求めることができる。 When the food material is a vegetable material, a strong substance introduction driving force is obtained by adjusting the introduction driving force S2 defined by the following formula to preferably 216 or more, more preferably 401 or more, and further preferably 764 or more. be able to.
Figure 0006920706
(In the formula, S2: introduction driving force, E2: theoretical expansion coefficient (%) of foodstuff (vegetable material), t 3 : temperature after temperature decrease (° C), t 4 : temperature after temperature rise (° C) , A, b, c are coefficients.)
The coefficients a, b, and c are obtained from the measured values of the expansion coefficient of each food material. The measured value of the expansion coefficient is calculated from 10 ° C. to 90 ° C. at 10 ° C. intervals using the formula (VIII). From the relationship between the calculated measured value of the expansion coefficient and the heating temperature, an exponential approximation formula obtained by using the least squares method is calculated, and the values of the coefficients a, b, and c are determined. At this time, the expansion coefficient at the reference temperature (10 ° C.) is 100%, and the approximate expression passes through this point.
E B = H3 / H4 × 100 ··· (VIII)
(Wherein, E B: Ingredients (measured value of plant material) expansion rate (%), H3: hardness of heated before food, H4: the hardness of the food after heating)
Here, the expansion rate due to the temperature rise of the food material can be obtained from the measured value of the change in the volume of the food material, but the expansion of the food material is linked with the expansion and contraction of the gas in the food material, and the void in the food material made of gas fluctuates. Therefore, it can be obtained by changing the hardness of the food by measuring the physical properties of the food.

(6)物質導入食材及び加工食品の製造方法
本発明の物質導入食材の製造方法によれば、上記の物質導入方法を用いて、食材内に、速やかにかつ大量に物質を導入できる。物質を導入した食材あるいは食品は、さらに加工処理して加工食品とすることができる。例えば、加熱、冷凍、乾燥などを行い、日持ちのよい加工食品を製造することもできるし、導入食品を加工原料として、新たな加工食品を製造することもできる。
(6) Method for Producing Substance-Introduced Foodstuff and Processed Food According to the method for producing a substance-introduced foodstuff of the present invention, a large amount of substance can be quickly and mass-introduced into the foodstuff by using the above-mentioned substance-introducing method. Ingredients or foods into which a substance has been introduced can be further processed into processed foods. For example, processed foods having a long shelf life can be produced by heating, freezing, drying, etc., or new processed foods can be produced using the introduced food as a processing raw material.

(7)加熱装置
本発明の物質導入方法においては、食材の温度制御や導入物質の温度制御を行える加熱装置を用いることが好ましい。加熱装置としては、市販の装置を用いてもよい。例えば、家庭用の電子レンジオーブンやホットプレート、スチーマー等が挙げられる。これら加熱装置は、導入物質を保持できる溶液タンク等を具備し、食材の加熱に続いて導入物質を食材と自動で接触させ、食材への物質導入を自動で実施する装置とすることもでき、簡便に利用することもできる。
(7) Heating device In the substance introduction method of the present invention, it is preferable to use a heating device capable of controlling the temperature of the food material and the temperature of the introduced substance. As the heating device, a commercially available device may be used. For example, a microwave oven, a hot plate, a steamer, etc. for home use can be mentioned. These heating devices can also be equipped with a solution tank or the like capable of holding the introduced substance, and can be a device that automatically brings the introduced substance into contact with the food material following heating of the food material and automatically introduces the substance into the food material. It can also be used easily.

本発明の物質導入方法について、以下の実施例により具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。 The substance introduction method of the present invention will be specifically described with reference to the following examples, but the present invention is not limited to these examples.

(1)温度昇降による食材内の気体の体積変化を利用したダイコンへの物質(色素)導入
[実施例1]
<食材調製>
市販のダイコンを2cm厚の輪切りした後、中心部を3.5×3.5cmの型抜きでくり抜き、3.5×3.5×2cmに成型した。成型後の試料はスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で95℃20分加熱した。加熱後は荒熱をとり、1晩冷凍庫で冷凍した。冷凍後の試料を流水で解凍し、試験に用いた。
(1) Introduction of a substance (dye) into a Japanese radish utilizing a change in the volume of gas in the food material due to temperature rise and fall [Example 1]
<Ingredient preparation>
A commercially available radish was sliced into 2 cm thick slices, and then the central portion was hollowed out by a 3.5 × 3.5 cm die-cutting to form a 3.5 × 3.5 × 2 cm shape. The molded sample was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) at 95 ° C. for 20 minutes. After heating, the heat was removed and the product was frozen in a freezer overnight. The frozen sample was thawed under running water and used for the test.

<食材の温度調製>
試料を沸騰水中で5分ボイルした。そのときの食材温度は92℃だった。食材温度とは食材の中心温度(芯温)を示し、ニードル型温度センサ(アズワン(株)製、H9631−02型)を接続した温度ロガー(アズワン(株)製、TL3663型)を使用して測定した。
<Temperature adjustment of ingredients>
The sample was boiled in boiling water for 5 minutes. The temperature of the ingredients at that time was 92 ° C. The food material temperature indicates the core temperature (core temperature) of the food material, and a temperature logger (manufactured by AS ONE Co., Ltd., TL3663 type) connected to a needle type temperature sensor (manufactured by AS ONE Co., Ltd., H9631-02 type) is used. It was measured.

<導入溶液の調製>
導入物質として食用赤色101号(三栄化学工業(株)製)を使用した。精製水に溶解して0.01%(w/v)に調製した。
<Preparation of introduction solution>
Edible Red No. 101 (manufactured by Sanei Chemical Industry Co., Ltd.) was used as the introduction substance. It was dissolved in purified water to prepare 0.01% (w / v).

<物質導入処理>
加熱直後の試料を4℃に冷却した導入溶液に5分間浸漬した。浸漬後、試料を導入溶液から取り出した。浸漬終了後の食材温度は10℃だった。
<Substance introduction processing>
Immediately after heating, the sample was immersed in an introduction solution cooled to 4 ° C. for 5 minutes. After immersion, the sample was removed from the introduction solution. The temperature of the food material after the immersion was completed was 10 ° C.

[実施例2]
試料をスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)を用いて97℃10分加温した以外は、実施例1と同様に処理した。加熱後の食材温度は95℃、浸漬後の食材温度は10℃だった。
[Example 2]
The sample was treated in the same manner as in Example 1 except that the sample was heated at 97 ° C. for 10 minutes using a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type). The temperature of the food after heating was 95 ° C, and the temperature of the food after immersion was 10 ° C.

[実施例3]
試料をスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)のコンビネーションモードを用いて120℃7分加温した以外は、実施例1と同様に処理した。加熱後の食材温度は97℃、浸漬後の食材温度は10℃だった。
[Example 3]
The sample was treated in the same manner as in Example 1 except that the sample was heated at 120 ° C. for 7 minutes using a combination mode of a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type). The temperature of the food after heating was 97 ° C, and the temperature of the food after immersion was 10 ° C.

[実施例4]
試料を電子レンジ(松下電器産業(株)製、NE−SU30HA)のあたためモードを用いて加熱した以外は、実施例1と同様に処理した。加熱後の食材温度は95℃、浸漬後の食材温度は10℃だった。
[Example 4]
The sample was treated in the same manner as in Example 1 except that the sample was heated using the warming mode of a microwave oven (NE-SU30HA, manufactured by Matsushita Electric Industrial Co., Ltd.). The temperature of the food after heating was 95 ° C, and the temperature of the food after immersion was 10 ° C.

[実施例5]
試料を電気フライヤー(象印マホービン(株)製、EFK−A10−TJ)を用いて180℃3分加熱した以外は、実施例1と同様に処理した。フライ油はサラダ油(日清オイリオグループ(株)製)を用いた。そのときの加熱温度は97℃、浸漬後の食材温度は10℃だった。
[Example 5]
The sample was treated in the same manner as in Example 1 except that the sample was heated at 180 ° C. for 3 minutes using an electric fryer (EFK-A10-TJ manufactured by Zojirushi Mahobin Co., Ltd.). Salad oil (manufactured by Nisshin Oillio Group Co., Ltd.) was used as the frying oil. The heating temperature at that time was 97 ° C., and the temperature of the food material after immersion was 10 ° C.

[実施例6]
加熱直後の試料を、4℃に冷却した導入溶液を染み込ませた不織布2枚に挟み込み、5分間接触させた以外は、実施例1と同様に処理した。加熱後の食材温度は92℃、不織布に接触させた後の食材温度は30℃だった。不織布は天然パルプ製のものを10cm×10cmに成型して使用した。
[Example 6]
The sample immediately after heating was treated in the same manner as in Example 1 except that the sample immediately after heating was sandwiched between two non-woven fabrics impregnated with the introduction solution cooled to 4 ° C. and contacted for 5 minutes. The temperature of the food material after heating was 92 ° C., and the temperature of the food material after contact with the non-woven fabric was 30 ° C. As the non-woven fabric, a non-woven fabric made of natural pulp was molded into a size of 10 cm × 10 cm and used.

[実施例7]
加熱直後の試料の表面に、4℃に冷却した導入溶液を塗布した以外は、実施例1と同様に処理した。加熱後の食材温度は92℃、導入液を塗布して5分後の試料温度は35℃だった。
[Example 7]
The treatment was carried out in the same manner as in Example 1 except that the introduction solution cooled to 4 ° C. was applied to the surface of the sample immediately after heating. The temperature of the food material after heating was 92 ° C., and the sample temperature 5 minutes after applying the introduction liquid was 35 ° C.

[比較例1]
試料を加熱後10℃まで冷却し、4℃に冷却した導入溶液に5分間浸漬した以外は、実施例1と同様に処理した。
[Comparative Example 1]
The sample was treated in the same manner as in Example 1 except that the sample was heated, cooled to 10 ° C., and immersed in the introduction solution cooled to 4 ° C. for 5 minutes.

<物質導入の確認>
上記の実施例1〜7および比較例1で得られた試料の赤道面を2分割した。断面を写真撮影し、解析ソフトPopImaging4.0を用いて色相−10〜10、彩度65〜190、明度80〜150の色領域抽出を行って、赤色色素の導入を確認した。断面積全体に対する抽出された赤色領域面積の割合を算出し、算出結果を表1に示した。表1の結果より、食材の温度昇降による食材内の気体の体積変化を利用することで、食材の昇温方法及び物質の接触方法に依らず、ダイコンに物質を急速かつ大量に導入できることが確認された。
<Confirmation of substance introduction>
The equatorial plane of the samples obtained in Examples 1 to 7 and Comparative Example 1 above was divided into two. The cross section was photographed, and the color region of hue -10 to 10, saturation 65 to 190, and lightness 80 to 150 was extracted using the analysis software PopImaging 4.0 to confirm the introduction of the red dye. The ratio of the extracted red area to the entire cross-sectional area was calculated, and the calculation results are shown in Table 1. From the results in Table 1, it was confirmed that by utilizing the volume change of the gas in the food material due to the temperature rise and fall of the food material, it is possible to rapidly and mass-introduce the substance into the radish regardless of the method of raising the temperature of the food material and the method of contacting the substance. Was done.

Figure 0006920706
Figure 0006920706

(2)導入駆動力S1の調節による各種動物性素材への物質(酵素)導入
[実施例8]
<食材調製>
市販のサバの切り身(60g、1.5cm厚、冷凍)を解凍し、筋切機(JACCARD製)でテンダライズしたものを2cm幅にカットし、食材を調製した。試料をスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)を用いて90℃で15分加熱した。室温で放熱したものを試験に用いた。
(2) Introduction of substances (enzymes) into various animal materials by adjusting the introduction driving force S1 [Example 8]
<Ingredient preparation>
Commercially available mackerel fillets (60 g, 1.5 cm thick, frozen) were thawed, tenderized with a muscle cutting machine (manufactured by JACCARD), and cut into 2 cm widths to prepare foodstuffs. The sample was heated at 90 ° C. for 15 minutes using a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type). Those radiated at room temperature were used in the test.

<導入物質溶液調製>
導入物質としてタンパク質分解酵素(植物由来プロテアーゼ、新日本化学工業(株)製)を使用した。1%食塩水に溶解して0.1%(w/v)に調製した。
<Preparation of introduced substance solution>
A proteolytic enzyme (plant-derived protease, manufactured by Shin Nihon Kagaku Kogyo Co., Ltd.) was used as the introduction substance. It was dissolved in 1% saline solution to adjust to 0.1% (w / v).

<食材の温度調製>
事前加熱済みの試料を所定の温度(92℃、82℃、72℃、62℃、52℃)のスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で15分加熱した。40℃及び30℃は42℃及び32℃に設定した恒温器(三洋電機(株)製、MOV−212S)で試料を1時間あたためて調製した。20℃は室温、10℃は冷蔵庫で温度調製した。食材温度が各温度(90、80、70、60、50、40、30、20及び10℃)に達温したことを確認し、試験に使用した。
<Temperature adjustment of ingredients>
The preheated sample was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) at a predetermined temperature (92 ° C., 82 ° C., 72 ° C., 62 ° C., 52 ° C.) for 15 minutes. The sample was prepared by warming the sample for 1 hour with an incubator (manufactured by Sanyo Electric Co., Ltd., MOV-212S) set at 42 ° C. and 32 ° C. at 40 ° C. and 30 ° C. The temperature was adjusted at 20 ° C. at room temperature and at 10 ° C. in a refrigerator. It was confirmed that the temperature of the food material reached each temperature (90, 80, 70, 60, 50, 40, 30, 20 and 10 ° C.) and used in the test.

<導入駆動力S1の算出>
温度調製した試料を、クリープメータ((株)山電製)を用いて硬さを測定した。硬さは直径3mmのプランジャーを速度10mm/secで70%貫入して得られる最大応力(N/m)の値とし、5個以上の試料について各2か所測定した平均値とした。硬さ測定後の試料は10℃まで冷却し、再度冷却後の硬さを測定した。これらの降温後の食材の硬さ(H1)と昇温後の食材の硬さ(H2)の測定値から食材の膨張率(E)を算出した。算出した値に基づき、下記の数式で定義される導入駆動力S1を算出した。

Figure 0006920706
(式中、S1:導入駆動力、E1:食材(動物性素材)の理論上の膨張率(%)、t:降温後の温度(℃)、t:昇温後の温度(℃)、a、b、cは係数とする。)
なお、係数a、b、cは各食材の膨張率の実測値から求められる。膨張率の実測値は式(IV)を用いて、10℃から90℃まで10℃間隔で算出する。算出した膨張率の実測値と加熱温度の関係から、最小二乗法を用いて求められる指数近似式を算出し、係数a、b、cの値を決定する。このとき、基準温度(10℃)における膨張率は100%とし、近似式はこの点を通るものとする。
=H1/H2×100 ・・・(IV)
(式中、E:食材(動物性素材)の膨張率の実測値(%)、H1:降温後の食材の硬さ、H2:昇温後の食材の硬さとする)
本実施例の指数近似式は、E1=17.4×exp(0.0162×t)+79.6であった。導入駆動力S1の算出結果を表2に示した。 <Calculation of introduction driving force S1>
The hardness of the temperature-adjusted sample was measured using a creep meter (manufactured by Yamaden Co., Ltd.). The hardness was defined as the value of the maximum stress (N / m 2 ) obtained by penetrating 70% of a plunger having a diameter of 3 mm at a speed of 10 mm / sec, and was the average value measured at two locations for each of five or more samples. The sample after the hardness measurement was cooled to 10 ° C., and the hardness after cooling was measured again. It was calculated expansion ratio of ingredients from the measured value of hardness ingredients after these cooling (H1) and the hardness of the food after heating (H2) and (E A). Based on the calculated value, the introduction driving force S1 defined by the following mathematical formula was calculated.
Figure 0006920706
(In the formula, S1: introduction driving force, E1: theoretical expansion coefficient (%) of foodstuff (animal material), t 1 : temperature after temperature reduction (° C.), t 2 : temperature after temperature rise (° C.) , A, b, c are coefficients.)
The coefficients a, b, and c are obtained from the measured values of the expansion coefficient of each food material. The measured value of the expansion coefficient is calculated from 10 ° C. to 90 ° C. at 10 ° C. intervals using the formula (IV). From the relationship between the calculated measured value of the expansion coefficient and the heating temperature, an exponential approximation formula obtained by using the least squares method is calculated, and the values of the coefficients a, b, and c are determined. At this time, the expansion coefficient at the reference temperature (10 ° C.) is 100%, and the approximate expression passes through this point.
E A = H1 / H2 × 100 ··· (IV)
(Wherein, E A: measured value of the expansion rate of the food (animal material) (%), H1: Hardness ingredients after cooling, H2: the hardness of the food after heating)
The exponential approximation formula of this example was E1 = 17.4 × exp (0.0162 × t) + 79.6. The calculation results of the introduction driving force S1 are shown in Table 2.

<物質導入処理>
温度調製した試料を4℃に調製した酵素液に5分浸漬し、酵素液を導入した。浸漬後の食材温度はそれぞれ10℃だった。
<Substance introduction processing>
The temperature-adjusted sample was immersed in the enzyme solution prepared at 4 ° C. for 5 minutes, and the enzyme solution was introduced. The temperature of each ingredient after immersion was 10 ° C.

<酵素反応及び酵素失活処理>
酵素液を導入後、試料を酵素液から取り出して、4℃に設定した冷蔵庫内で16時間酵素反応した。続いて80℃に設定したスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で20分加熱して、酵素を完全に失活させた。
<Enzyme reaction and enzyme inactivation treatment>
After introducing the enzyme solution, the sample was taken out from the enzyme solution and subjected to an enzymatic reaction in a refrigerator set at 4 ° C. for 16 hours. Subsequently, the enzyme was completely inactivated by heating in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) set at 80 ° C. for 20 minutes.

[実施例9]
試料として、市販の豚ヒレ肉を1晩冷凍庫で冷凍したものを解凍し、筋切機(JACCARD製)でテンダライズした後に3×3×1cmにカットしたものを用いた以外は、実施例8と同様にして、導入駆動力S1の算出を行った。本実施例の指数近似式は、E1=18.2×exp(0.0171×t)+78.4であった。導入駆動力S1の算出結果を表2に示した。さらに、実施例8と同様にして、試料に物質導入処理を行った後、酵素反応及び酵素失活処理を行った。
[Example 9]
As a sample, except that commercially available pork tenderloin frozen in a freezer overnight, thawed, tenderized with a muscle cutting machine (manufactured by JACCARD), and then cut into 3 × 3 × 1 cm was used. In the same manner, the introduction driving force S1 was calculated. The exponential approximation formula of this example was E1 = 18.2 × exp (0.0171 × t) + 78.4. The calculation results of the introduction driving force S1 are shown in Table 2. Further, in the same manner as in Example 8, the sample was subjected to a substance introduction treatment, followed by an enzyme reaction and an enzyme deactivation treatment.

[実施例10]
試料として、市販のトリムネ肉を1晩冷凍庫で冷凍したものを解凍し、筋切機(JACCARD製)でテンダライズした後に2cm角にカットしたものを用いた以外は、実施例8と同様にして、導入駆動力S1の算出を行った。本実施例の指数近似式は、E1=2085×exp(0.000359×t)−1993であった。導入駆動力S1の算出結果を表2に示した。さらに、実施例8と同様にして、試料に物質導入処理を行った後、酵素反応及び酵素失活処理を行った。
[Example 10]
As a sample, the same as in Example 8 except that a commercially available breast breast meat frozen in a freezer overnight was thawed, tenderized with a muscle cutting machine (manufactured by JACCARD), and then cut into 2 cm squares was used. The introduction driving force S1 was calculated. The exponential approximation formula of this example was E1 = 2085 × exp (0.000359 × t) -1993. The calculation results of the introduction driving force S1 are shown in Table 2. Further, in the same manner as in Example 8, the sample was subjected to a substance introduction treatment, followed by an enzyme reaction and an enzyme deactivation treatment.

[実施例11]
試料として、市販のタラの切り身(60g、1.5cm厚、冷凍)を解凍し、筋切機(JACCARD製)でテンダライズした後に2cm幅にカットしたものを用いた以外は、実施例8と同様にして、導入駆動力S1の算出を行った。本実施例の指数近似式は、E1=12.1×exp(0.0253×t)+84.4であった。導入駆動力S1の算出結果を表2に示した。さらに、実施例8と同様にして、試料に物質導入処理を行った後、酵素反応及び酵素失活処理を行った。
[Example 11]
As a sample, the same as in Example 8 except that a commercially available cod fillet (60 g, 1.5 cm thick, frozen) was thawed, tenderized with a muscle cutting machine (manufactured by JACCARD), and then cut into a width of 2 cm. Then, the introduction driving force S1 was calculated. The exponential approximation formula of this example was E1 = 12.1 × exp (0.0253 × t) + 84.4. The calculation results of the introduction driving force S1 are shown in Table 2. Further, in the same manner as in Example 8, the sample was subjected to a substance introduction treatment, followed by an enzyme reaction and an enzyme deactivation treatment.

[実施例12]
試料として、市販の牛モモ肉を1晩冷凍庫で冷凍したものを解凍し、筋切機(JACCARD製)でテンダライズした後に3×3×1cmにカットしたものを用いた以外は、実施例8と同様にして、導入駆動力S1の算出を行った。本実施例の指数近似式は、E1=138×exp(0.00539×t)−45.6であった。導入駆動力S1の算出結果を表2に示した。さらに、実施例8と同様にして、試料に物質導入処理を行った後、酵素反応及び酵素失活処理を行った。
[Example 12]
As a sample, except that a commercially available beef thigh meat frozen in a freezer overnight was thawed, tenderized with a muscle cutting machine (manufactured by JACCARD), and then cut into 3 × 3 × 1 cm, the same as in Example 8. In the same manner, the introduction driving force S1 was calculated. The exponential approximation formula of this example was E1 = 138 × exp (0.00539 × t) -45.6. The calculation results of the introduction driving force S1 are shown in Table 2. Further, in the same manner as in Example 8, the sample was subjected to a substance introduction treatment, followed by an enzyme reaction and an enzyme deactivation treatment.

[実施例13]
食材調製時の事前加熱を行わなかった以外は、実施例12と同様にして、導入駆動力S1の算出を行った。本実施例の指数近似式は、E1=13.0×exp(0.0225×t)+83.7であった。導入駆動力S1の算出結果を表2に示した。さらに、実施例8と同様にして、試料に物質導入処理を行った後、酵素反応及び酵素失活処理を行った。
[Example 13]
The introduction driving force S1 was calculated in the same manner as in Example 12 except that the preheating was not performed at the time of preparing the food material. The exponential approximation formula of this example was E1 = 13.0 × exp (0.0225 × t) + 83.7. The calculation results of the introduction driving force S1 are shown in Table 2. Further, in the same manner as in Example 8, the sample was subjected to a substance introduction treatment, followed by an enzyme reaction and an enzyme deactivation treatment.

<結果>
酵素反応及び酵素失活処理後の各試料を、訓練されたパネラーにより、下記の評価基準で官能評価を行った。評価結果を表2に示した。各動物性素材について、導入駆動力S1を調節することで、物質(酵素)を食材内部に十分導入させ、食材を十分に軟化させることができた。また、導入駆動力S1を調節することで、物質導入量を調節して、食材の軟化度合いを調節することができた。
[評価基準]
〇:10℃処理区に比べて十分に軟化していた。
△:10℃処理区に比べて軟化していた。
×:10℃処理区との差がほとんどなかった。
<Result>
Each sample after the enzyme reaction and the enzyme inactivation treatment was subjected to sensory evaluation by a trained panelist according to the following evaluation criteria. The evaluation results are shown in Table 2. By adjusting the introduction driving force S1 for each animal material, the substance (enzyme) could be sufficiently introduced into the food material and the food material could be sufficiently softened. Further, by adjusting the introduction driving force S1, the amount of the substance introduced could be adjusted and the degree of softening of the food material could be adjusted.
[Evaluation criteria]
〇: It was sufficiently softened as compared with the treatment group at 10 ° C.
Δ: It was softened as compared with the 10 ° C. treatment group.
X: There was almost no difference from the 10 ° C. treatment group.

Figure 0006920706
Figure 0006920706

(3)導入駆動力S2の調節による各種植物性素材への物質(酵素)導入
[実施例14]
<食材調製>
市販のニンジンを購入し、皮を厚めに剥いて1cm厚の銀杏切りにカットした。95℃に設定したスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で20分加熱した。放熱後は冷凍庫で1晩冷凍し、使用時は流水で解凍して試験に用いた。
(3) Introduction of substances (enzymes) into various plant materials by adjusting the introduction driving force S2 [Example 14]
<Ingredient preparation>
A commercially available carrot was purchased, the skin was peeled thickly, and it was cut into 1 cm thick ginkgo biloba. It was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) set at 95 ° C. for 20 minutes. After heat dissipation, it was frozen overnight in a freezer, and when used, it was thawed under running water and used for the test.

<導入物質溶液調製>
導入物質として植物組織分解酵素(カビ由来、ヤクルト薬品工業(株)製)を使用し、精製水に溶解して0.1%(w/v)に調製した。
<Preparation of introduced substance solution>
A plant tissue degrading enzyme (derived from mold, manufactured by Yakult Pharmaceutical Co., Ltd.) was used as an introduction substance, and the mixture was dissolved in purified water to prepare 0.1% (w / v).

<試料の温度調製>
試料を所定の温度(92℃、82℃、72℃、62℃、52℃)のスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で15分加熱した。40℃及び30℃は42℃及び32℃に設定した恒温器(三洋電機(株)製、MOV−212S)で、20℃及び10℃は恒温水槽(ヤマト科学(株)製、BB600)で温度調製した。食材温度が各温度(90、80、70、60、50、40、30、20及び10℃)に達温したことを確認し、試験に用いた。
<Sample temperature adjustment>
The sample was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) at a predetermined temperature (92 ° C, 82 ° C, 72 ° C, 62 ° C, 52 ° C) for 15 minutes. 40 ° C and 30 ° C are incubators (manufactured by Sanyo Electric Co., Ltd., MOV-212S) set to 42 ° C and 32 ° C, and 20 ° C and 10 ° C are temperatures in a constant temperature water tank (manufactured by Yamato Scientific Co., Ltd., BB600). Prepared. It was confirmed that the temperature of the food material reached each temperature (90, 80, 70, 60, 50, 40, 30, 20 and 10 ° C.) and used in the test.

<導入駆動力S2の算出>
温度調製した試料を、クリープメータ((株)山電製)を用いて硬さを測定した。硬さは直径3mmのプランジャーを速度10mm/secで70%貫入して得られる最大応力(N/m)の値とし、10個以上の試料について各1か所測定した平均値とした。同様に昇温前の試料の硬さを測定した。これらの昇温前の食材の硬さ(H3)と昇温後の食材の硬さ(H4)の測定値から食材の膨張率(E)を算出した。算出した値に基づき、下記の数式で定義される導入駆動力S2を算出した。

Figure 0006920706
(式中、S2:導入駆動力、E2:食材(植物性素材)の理論上の膨張率(%)、t:降温後の温度(℃)、t:昇温後の温度(℃)、a、b、cは係数とする。)
なお、係数a、b、cは各食材の膨張率の実測値から求められる。膨張率の実測値は式(VIII)を用いて、10℃から90℃まで10℃間隔で算出する。算出した膨張率の実測値と加熱温度の関係から、最小二乗法を用いて求められる指数近似式を算出し、係数a、b、cの値を決定する。このとき、基準温度(10℃)における膨張率は100%とし、近似式はこの点を通るものとする。
=H3/H4×100 ・・・(VIII)
(式中、E:食材(植物性素材)の膨張率の実測値(%)、H3:昇温前の食材の硬さ、H4:昇温後の食材の硬さとする)
本実施例の指数近似式は、E2=0.579×exp(0.0549×t)+99.0であった。導入駆動力S2の算出結果を表3に示した。 <Calculation of introduction driving force S2>
The hardness of the temperature-adjusted sample was measured using a creep meter (manufactured by Yamaden Co., Ltd.). The hardness was defined as the value of the maximum stress (N / m 2 ) obtained by penetrating 70% of a plunger having a diameter of 3 mm at a speed of 10 mm / sec, and was the average value measured at one location for each of 10 or more samples. Similarly, the hardness of the sample before the temperature rise was measured. It was calculated expansion ratio of ingredients from the measured values of the hardness of these heating before food (H3) and the hardness of the food after heating (H4) (E B). Based on the calculated value, the introduction driving force S2 defined by the following mathematical formula was calculated.
Figure 0006920706
(In the formula, S2: introduction driving force, E2: theoretical expansion coefficient (%) of foodstuff (vegetable material), t 3 : temperature after temperature decrease (° C), t 4 : temperature after temperature rise (° C) , A, b, c are coefficients.)
The coefficients a, b, and c are obtained from the measured values of the expansion coefficient of each food material. The measured value of the expansion coefficient is calculated from 10 ° C. to 90 ° C. at 10 ° C. intervals using the formula (VIII). From the relationship between the calculated measured value of the expansion coefficient and the heating temperature, an exponential approximation formula obtained by using the least squares method is calculated, and the values of the coefficients a, b, and c are determined. At this time, the expansion coefficient at the reference temperature (10 ° C.) is 100%, and the approximate expression passes through this point.
E B = H3 / H4 × 100 ··· (VIII)
(Wherein, E B: Ingredients (measured value of plant material) expansion rate (%), H3: hardness of heated before food, H4: the hardness of the food after heating)
The exponential approximation formula of this example was E2 = 0.579 × exp (0.0549 × t) + 99.0. The calculation results of the introduction driving force S2 are shown in Table 3.

<物質導入処理>
温度調製した試料を4℃に調製した酵素液に5分浸漬し、酵素液を導入した。浸漬後の食材温度はそれぞれ10℃だった。
<Substance introduction processing>
The temperature-adjusted sample was immersed in the enzyme solution prepared at 4 ° C. for 5 minutes, and the enzyme solution was introduced. The temperature of each ingredient after immersion was 10 ° C.

<酵素反応及び酵素失活処理>
酵素液を導入後、試料を酵素液から取り出して、4℃に設定した冷蔵庫内で16時間酵素反応した。続いて95℃に設定したスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で20分加熱して、酵素を完全に失活させた。
<Enzyme reaction and enzyme inactivation treatment>
After introducing the enzyme solution, the sample was taken out from the enzyme solution and subjected to an enzymatic reaction in a refrigerator set at 4 ° C. for 16 hours. Subsequently, the enzyme was completely inactivated by heating in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) set at 95 ° C. for 20 minutes.

[実施例15]
試料として、市販のタケノコ(水煮)を1cm厚の銀杏切りにカットし30分沸騰水中でボイル後に1晩冷凍庫で冷凍し、流水解凍したものを用いた以外は、実施例14と同様にして、導入駆動力S2の算出を行った。本実施例の指数近似式は、E2=11.3×exp(0.0245×t)+85.6であった。導入駆動力S2の算出結果を表3に示した。さらに、実施例14と同様にして、試料に物質導入処理を行った後、酵素反応及び酵素失活処理を行った。
[Example 15]
As a sample, a commercially available bamboo shoot (boiled in water) was cut into 1 cm thick ginkgo biloba, boiled in boiling water for 30 minutes, frozen in a freezer overnight, and thawed in running water. , The introduction driving force S2 was calculated. The exponential approximation formula of this example was E2 = 11.3 × exp (0.0245 × t) + 85.6. The calculation results of the introduction driving force S2 are shown in Table 3. Further, in the same manner as in Example 14, the sample was subjected to a substance introduction treatment, followed by an enzyme reaction and an enzyme deactivation treatment.

<結果>
酵素反応及び酵素失活処理後の各試料を、訓練されたパネラーにより、下記の評価基準で官能評価を行った。評価結果を表3に示した。各植物性素材について、導入駆動力S2を調節することで、物質(酵素)を食材内部に十分導入させ、食材を十分に軟化させることができた。また、導入駆動力S2を調節することで、物質導入量を調節して、食材の軟化度合いを調節することができた。
[評価基準]
〇:10℃処理区に比べて十分に軟化していた。
△:10℃処理区に比べて軟化していた。
×:10℃処理区との差がほとんどなかった。
<Result>
Each sample after the enzyme reaction and the enzyme inactivation treatment was subjected to sensory evaluation by a trained panelist according to the following evaluation criteria. The evaluation results are shown in Table 3. By adjusting the introduction driving force S2 for each plant material, the substance (enzyme) could be sufficiently introduced into the food material and the food material could be sufficiently softened. Further, by adjusting the introduction driving force S2, the amount of the substance introduced could be adjusted and the degree of softening of the food material could be adjusted.
[Evaluation criteria]
〇: It was sufficiently softened as compared with the treatment group at 10 ° C.
Δ: It was softened as compared with the 10 ° C. treatment group.
X: There was almost no difference from the 10 ° C. treatment group.

Figure 0006920706
Figure 0006920706

(4)昇温温度及び降温温度の調節によるサバへの物質(酵素)導入
[実施例16〜18]
<食材調製>
市販のサバの切り身(60g、1.5cm厚、冷凍)を解凍し、筋切機(JACCARD製)でテンダライズしたものを2cm幅にカットし、食材を調製した。試料をスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で90℃15分加熱した。室温で放熱したものを試験に用いた。
(4) Introduction of a substance (enzyme) into mackerel by adjusting the temperature rise and fall temperature [Examples 16 to 18]
<Ingredient preparation>
Commercially available mackerel fillets (60 g, 1.5 cm thick, frozen) were thawed, tenderized with a muscle cutting machine (manufactured by JACCARD), and cut into 2 cm widths to prepare foodstuffs. The sample was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) at 90 ° C. for 15 minutes. Those radiated at room temperature were used in the test.

<導入溶液調製>
導入物質としてタンパク質分解酵素(植物由来プロテアーゼ、新日本化学工業(株)製)を使用した。1%食塩水に溶解して0.1%(w/v)に調製した。
<Preparation of introduction solution>
A proteolytic enzyme (plant-derived protease, manufactured by Shin Nihon Kagaku Kogyo Co., Ltd.) was used as the introduction substance. It was dissolved in 1% saline solution to adjust to 0.1% (w / v).

<食材の温度調製>
事前加熱後の試料を所定の温度(82℃もしくは52℃)のスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で15分加熱した。食材温度が各温度(80及び50℃)に達温したことを確認し、試験に用いた。
<Temperature adjustment of ingredients>
The sample after preheating was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) at a predetermined temperature (82 ° C. or 52 ° C.) for 15 minutes. After confirming that the temperature of the food material reached each temperature (80 and 50 ° C.), it was used in the test.

<食材降温履歴の測定>
80℃もしくは50℃に加熱した試料を4℃に調製した水に5分浸漬し、そのときの食材温度を記録した。食材温度とは食材の中心温度(芯温)を示し、ニードル型温度センサ(アズワン(株)製、H9631−02型)を接続した温度ロガー(アズワン(株)製、TL3663型)を使用し、センサを食材中心部まで差し込んで5秒間隔で計測した。
<Measurement of food temperature drop history>
A sample heated to 80 ° C. or 50 ° C. was immersed in water prepared at 4 ° C. for 5 minutes, and the temperature of the food material at that time was recorded. The food material temperature indicates the core temperature (core temperature) of the food material, and a temperature logger (manufactured by AS ONE Co., Ltd., TL3663 type) connected to a needle type temperature sensor (manufactured by AS ONE Co., Ltd., H9631-02 type) is used. The sensor was inserted all the way to the center of the food and measured at 5-second intervals.

<浸漬時間の決定>
測定した温度履歴から、試料が80℃から60℃に降温するまでに1分20秒、80℃から30℃に降温するまでに3分40秒、50℃から30℃に降温するまでに1分50秒必要だった。
<Determination of immersion time>
From the measured temperature history, it takes 1 minute and 20 seconds to cool the sample from 80 ° C to 60 ° C, 3 minutes and 40 seconds to cool it from 80 ° C to 30 ° C, and 1 minute to cool it from 50 ° C to 30 ° C. It took 50 seconds.

<物質導入処理>
80℃もしくは50℃に温度調製した試料を4℃に調製した酵素液にそれぞれ前記の浸漬時間に従って浸漬した。
<Substance introduction processing>
A sample whose temperature was adjusted to 80 ° C. or 50 ° C. was immersed in an enzyme solution prepared at 4 ° C. according to the above-mentioned immersion time.

<酵素反応及び酵素失活処理>
酵素液を導入後、試料を酵素液から取り出して、4℃に設定した冷蔵庫内で16時間酵素反応した。続いて80℃に設定したスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で20分加熱して、酵素を完全に失活させた。
<Enzyme reaction and enzyme inactivation treatment>
After introducing the enzyme solution, the sample was taken out from the enzyme solution and subjected to an enzymatic reaction in a refrigerator set at 4 ° C. for 16 hours. Subsequently, the enzyme was completely inactivated by heating in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) set at 80 ° C. for 20 minutes.

<コントロール作製>
92℃のスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で15分事前加熱した試料を、10℃まで冷却した後、4℃に調製した酵素液に所定の時間(1分20秒、1分50秒及び3分40秒)浸漬した。浸漬後は前記のとおり酵素反応及び酵素失活処理を行った。
<Control production>
A sample preheated in a steam convection oven at 92 ° C. (manufactured by Maruzen Co., Ltd., SSC-04MSC type) for 15 minutes was cooled to 10 ° C. and then placed in an enzyme solution prepared at 4 ° C. for a predetermined time (1 minute 20 seconds). (1 minute 50 seconds and 3 minutes 40 seconds) was immersed. After the immersion, the enzyme reaction and the enzyme inactivation treatment were carried out as described above.

<物性測定>
酵素反応後のサバを室温(25℃)まで冷却した後、クリープメータ((株)山電製)を用いて硬さを測定した。硬さは直径3mmのプランジャーを速度10mm/secで70%貫入して得られる最大応力(N/m)の値とし、5個以上の試料について各2か所測定した平均値とした。各試料の硬さのコントロールの硬さに対する割合を軟化率(%)とし、表4に示した。
<Measurement of physical properties>
After cooling the mackerel after the enzymatic reaction to room temperature (25 ° C.), the hardness was measured using a creep meter (manufactured by Yamaden Co., Ltd.). The hardness was defined as the value of the maximum stress (N / m 2 ) obtained by penetrating 70% of a plunger having a diameter of 3 mm at a speed of 10 mm / sec, and was the average value measured at two locations for each of five or more samples. The ratio of the hardness of each sample to the control hardness was defined as the softening rate (%) and is shown in Table 4.

<結果>
各実施例において、表2に示す値から算出した導入駆動力S1の値を示した。実施例16及び17はコントロールと比べて非常に軟らかく、内部まで滑らかに軟化していた。実施例18はコントロールと比較して表面全体に渡り表面から深度3mm程度の内部が軟化しており、食感が異なった。したがって、サバの昇温温度及び降温温度を調節することで、物質導入量及び導入深度を調節することができた。
<Result>
In each embodiment, the value of the introduction driving force S1 calculated from the values shown in Table 2 is shown. Examples 16 and 17 were very soft as compared with the control, and were softened smoothly to the inside. In Example 18, the inside of Example 18 was softened at a depth of about 3 mm from the surface over the entire surface as compared with the control, and the texture was different. Therefore, by adjusting the temperature rise and fall temperature of mackerel, the amount of substance introduced and the depth of introduction could be adjusted.

Figure 0006920706
Figure 0006920706

(5)昇温温度の調節によるトリムネ肉への物質(酵素)導入
[実施例19〜22]
市販のトリムネ肉を1晩冷凍庫で冷凍したものを解凍し、筋切機(JACCARD製)でテンダライズした後2cm角にカットし、食材を調製した。試料をスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で90℃15分加熱した。室温で放熱したものを試験に用いた。
(5) Introducing a substance (enzyme) into the breast meat by adjusting the temperature rise [Examples 19 to 22]
Commercially available breast breast meat frozen in a freezer overnight was thawed, tenderized with a muscle cutting machine (manufactured by JACCARD), and then cut into 2 cm squares to prepare foodstuffs. The sample was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) at 90 ° C. for 15 minutes. Those radiated at room temperature were used in the test.

<導入溶液調製>
導入物質としてタンパク質分解酵素(植物由来プロテアーゼ、新日本化学工業(株)製)を使用した。1%食塩水に溶解して0.1%(w/v)に調製した。
<Preparation of introduction solution>
A proteolytic enzyme (plant-derived protease, manufactured by Shin Nihon Kagaku Kogyo Co., Ltd.) was used as the introduction substance. It was dissolved in 1% saline solution to adjust to 0.1% (w / v).

<食材の温度調製>
事前加熱後の試料を所定の温度(92℃、82℃、72℃、または62℃)のスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で15分加熱した。食材温度が各温度(90、80、70及び60℃)に達温したことを確認し、試験に用いた。
<Temperature adjustment of ingredients>
The sample after preheating was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) at a predetermined temperature (92 ° C, 82 ° C, 72 ° C, or 62 ° C) for 15 minutes. It was confirmed that the temperature of the food material reached each temperature (90, 80, 70 and 60 ° C.) and used in the test.

<物質導入処理>
90℃、80℃、70℃、または60℃に加熱した試料をそれぞれ、4℃に調製した酵素液に5分間浸漬した。浸漬後の食材温度はそれぞれ10℃だった。
<Substance introduction processing>
Samples heated to 90 ° C., 80 ° C., 70 ° C., or 60 ° C. were immersed in an enzyme solution prepared at 4 ° C. for 5 minutes, respectively. The temperature of each ingredient after immersion was 10 ° C.

<酵素反応及び酵素失活処理>
酵素液を導入後、試料を酵素液から取り出して、4℃に設定した冷蔵庫内で16時間酵素反応した。続いて80℃に設定したスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で20分加熱して、酵素を完全に失活させた。
<Enzyme reaction and enzyme inactivation treatment>
After introducing the enzyme solution, the sample was taken out from the enzyme solution and subjected to an enzymatic reaction in a refrigerator set at 4 ° C. for 16 hours. Subsequently, the enzyme was completely inactivated by heating in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) set at 80 ° C. for 20 minutes.

<コントロール作製>
90℃、80℃、70℃、または60℃に加熱した試料をそれぞれ、10℃に冷却した後、4℃に調製した酵素液に5分間浸漬した以外は、各実施例と同様にして酵素反応及び酵素失活処理を行った。
<Control production>
The enzyme reaction was carried out in the same manner as in each example, except that the samples heated to 90 ° C., 80 ° C., 70 ° C., or 60 ° C. were cooled to 10 ° C. and then immersed in the enzyme solution prepared at 4 ° C. for 5 minutes. And enzyme deactivation treatment was performed.

<物性測定>
酵素反応後のトリムネ肉を室温(25℃)まで冷却した後、クリープメータ((株)山電製)を用いて硬さを測定した。硬さは直径3mmのプランジャーを速度10mm/secで70%貫入して得られる最大応力(N/m)の値とし、5個以上の試料について各2か所測定した平均値とした。各試料の硬さのコントロールの硬さに対する割合を軟化率(%)とし、表5に示した。
<Measurement of physical properties>
After cooling the breast breast meat after the enzymatic reaction to room temperature (25 ° C.), the hardness was measured using a creep meter (manufactured by Yamaden Co., Ltd.). The hardness was defined as the value of the maximum stress (N / m 2 ) obtained by penetrating 70% of a plunger having a diameter of 3 mm at a speed of 10 mm / sec, and was the average value measured at two locations for each of five or more samples. The ratio of the hardness of each sample to the control hardness was defined as the softening rate (%) and is shown in Table 5.

<結果>
各実施例において、表2に示す値から算出した導入駆動力S1の値を示した。実施例19〜22では、食材の昇温温度、及び食材の昇温温度と降温温度の温度差を調節することで、物質導入量を調節することができた。
<Result>
In each embodiment, the value of the introduction driving force S1 calculated from the values shown in Table 2 is shown. In Examples 19 to 22, the amount of the substance introduced could be adjusted by adjusting the temperature rise temperature of the food material and the temperature difference between the temperature rise temperature and the temperature decrease temperature of the food material.

Figure 0006920706
Figure 0006920706

(6)降温温度の調節によるトリムネ肉への物質(酵素)導入
[実施例23〜25]
市販のトリムネ肉を1晩冷凍庫で冷凍したものを解凍し、筋切機(JACCARD製)でテンダライズした後2cm角にカットし、食材を調製した。試料をスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で90℃15分加熱した。室温で放熱したものを試験に用いた。
(6) Introducing a substance (enzyme) into the breast meat by adjusting the temperature decrease [Examples 23 to 25]
Commercially available breast breast meat frozen in a freezer overnight was thawed, tenderized with a muscle cutting machine (manufactured by JACCARD), and then cut into 2 cm squares to prepare foodstuffs. The sample was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) at 90 ° C. for 15 minutes. Those radiated at room temperature were used in the test.

<導入溶液調製>
導入物質としてタンパク質分解酵素(植物由来プロテアーゼ、新日本化学工業(株)製)を使用した。1%食塩水に溶解して0.1%(w/v)に調製した。
<Preparation of introduction solution>
A proteolytic enzyme (plant-derived protease, manufactured by Shin Nihon Kagaku Kogyo Co., Ltd.) was used as the introduction substance. It was dissolved in 1% saline solution to adjust to 0.1% (w / v).

<食材の温度調製>
事前加熱後の試料を92℃のスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で15分加熱した。食材温度が90℃に達温したことを確認し、試験に用いた。
<Temperature adjustment of ingredients>
The sample after preheating was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) at 92 ° C. for 15 minutes. After confirming that the temperature of the food material reached 90 ° C., it was used in the test.

<物質導入処理>
90℃に加熱した試料を、50℃、40℃、30℃に保温した酵素液に5分間浸漬した。浸漬後の食材温度はそれぞれ50、40、30℃だった。
<Substance introduction processing>
The sample heated to 90 ° C. was immersed in an enzyme solution kept at 50 ° C., 40 ° C., and 30 ° C. for 5 minutes. The temperature of the food after immersion was 50, 40, and 30 ° C., respectively.

<酵素反応及び酵素失活処理>
酵素液を導入後、試料を酵素液から取り出して、4℃に設定した冷蔵庫内で16時間酵素反応した。続いて80℃に設定したスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で20分加熱して、酵素を完全に失活させた。
<Enzyme reaction and enzyme inactivation treatment>
After introducing the enzyme solution, the sample was taken out from the enzyme solution and subjected to an enzymatic reaction in a refrigerator set at 4 ° C. for 16 hours. Subsequently, the enzyme was completely inactivated by heating in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) set at 80 ° C. for 20 minutes.

<コントロール作製>
90℃に加熱した試料を10℃に冷却した後、4℃に調製した酵素液に5分間浸漬した以外は、各実施例と同様にして酵素反応及び酵素失活処理を行った。
<Control production>
After cooling the sample heated to 90 ° C. to 10 ° C., the enzyme reaction and the enzyme deactivation treatment were carried out in the same manner as in each example except that the sample was immersed in the enzyme solution prepared at 4 ° C. for 5 minutes.

<物性測定>
酵素反応後のトリムネ肉を室温(25℃)まで冷却した後、クリープメータ((株)山電製)を用いて硬さを測定した。硬さは直径3mmのプランジャーを速度10mm/secで70%貫入して得られる最大応力(N/m)の値とし、5個以上の試料について各2か所測定した平均値とした。各試料の硬さのコントロールの硬さに対する割合を軟化率(%)とし、表6に示した。
<Measurement of physical properties>
After cooling the breast breast meat after the enzymatic reaction to room temperature (25 ° C.), the hardness was measured using a creep meter (manufactured by Yamaden Co., Ltd.). The hardness was defined as the value of the maximum stress (N / m 2 ) obtained by penetrating 70% of a plunger having a diameter of 3 mm at a speed of 10 mm / sec, and was the average value measured at two locations for each of five or more samples. The ratio of the hardness of each sample to the control hardness was defined as the softening rate (%) and is shown in Table 6.

<結果>
各実施例において、表2に示す値から算出した導入駆動力S1の値を示した。また、実施例19の結果を併記した。実施例23〜25では、食材の降温温度、及び食材の昇温温度と降温温度の温度差を調節することで、物質導入量を調節することができた。
<Result>
In each embodiment, the value of the introduction driving force S1 calculated from the values shown in Table 2 is shown. In addition, the results of Example 19 are also shown. In Examples 23 to 25, the amount of the substance introduced could be adjusted by adjusting the temperature difference between the temperature decrease temperature of the food material and the temperature difference between the temperature rise temperature and the temperature decrease temperature of the food material.

Figure 0006920706
Figure 0006920706

(7)昇温後の温度と導入物質の温度差及び降温温度の調節によるダイコンへの物質(調味料)導入
[実施例26]
<食材調製>
市販のダイコンを2cm厚の輪切りした後、中心部を3.5×3.5cmの型抜きでくり抜き、3.5×3.5×2cmに成型した。成型後の試料はスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で95℃20分加熱した。加熱後は荒熱をとり、1晩冷凍庫で冷凍した。冷凍後の試料を流水で解凍し試験に用いた。
(7) Introduction of a substance (seasoning) into Japanese radish by adjusting the temperature difference between the temperature after temperature rise and the introduced substance and the temperature falling temperature [Example 26]
<Ingredient preparation>
A commercially available radish was sliced into 2 cm thick slices, and then the central portion was hollowed out by a 3.5 × 3.5 cm die-cutting to form a 3.5 × 3.5 × 2 cm shape. The molded sample was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) at 95 ° C. for 20 minutes. After heating, the heat was removed and the product was frozen in a freezer overnight. The frozen sample was thawed under running water and used for the test.

<導入溶液の調製>
導入溶液として濃口醤油(キッコーマン(株)製)を精製水で2倍希釈した。
<Preparation of introduction solution>
As an introductory solution, concentrated soy sauce (manufactured by Kikkoman Co., Ltd.) was diluted 2-fold with purified water.

<導入駆動力S2の算出>
実施例14及び15に記載の方法に従って、導入駆動力S2を算出した。
<Calculation of introduction driving force S2>
The introduction driving force S2 was calculated according to the method described in Examples 14 and 15.

<試料の温度調製>
試料をスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で92℃10分加熱した。食材温度が90℃に達温したことを確認し、試験に用いた。
<Sample temperature adjustment>
The sample was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) at 92 ° C. for 10 minutes. After confirming that the temperature of the food material reached 90 ° C., it was used in the test.

<物質導入処理>
加熱直後、試料を75℃に保温した導入溶液に3分浸漬した。浸漬後の品温は78℃だった。浸漬後、液を除去し、試料表面の醤油をふき取った。
<Substance introduction processing>
Immediately after heating, the sample was immersed in an infusion solution kept at 75 ° C. for 3 minutes. The product temperature after immersion was 78 ° C. After soaking, the liquid was removed and the soy sauce on the sample surface was wiped off.

[実施例27]
導入液の液温を80℃とした以外は実施例26と同様に物質導入処理を行った。浸漬後の品温は85℃だった。
[Example 27]
The substance introduction treatment was carried out in the same manner as in Example 26 except that the temperature of the introduction liquid was set to 80 ° C. The product temperature after immersion was 85 ° C.

[実施例28]
導入液の液温を80℃とし、浸漬時間を5分とした以外は実施例26と同様に物質導入処理を行った。浸漬後の品温は81℃だった。
[Example 28]
The substance introduction treatment was carried out in the same manner as in Example 26 except that the temperature of the introduction liquid was 80 ° C. and the immersion time was 5 minutes. The product temperature after immersion was 81 ° C.

<物質導入の確認>
上記の実施例26〜28で得られた試料の赤道面を2分割した。断面を写真撮影し、画像解析ソフトPopImaging4.0を用いて色相0〜23、彩度58〜180、明度0〜160の色領域抽出を行いて、醤油の導入を確認した。分割面全体に対する物質の導入面積割合を算出し、算出結果を表7に示した。昇温後の温度と導入物質の温度差及び降温温度を調節することで、ダイコンへの物質(醤油)導入量を調節できることが確認された。
<Confirmation of substance introduction>
The equatorial plane of the samples obtained in Examples 26 to 28 above was divided into two. A cross section was photographed, and color regions of hue 0 to 23, saturation 58 to 180, and lightness 0 to 160 were extracted using image analysis software PopImaging 4.0 to confirm the introduction of soy sauce. The ratio of the introduced area of the substance to the entire divided surface was calculated, and the calculation results are shown in Table 7. It was confirmed that the amount of the substance (soy sauce) introduced into the radish can be adjusted by adjusting the temperature difference between the temperature after the temperature rise and the temperature difference and the temperature decrease.

Figure 0006920706
Figure 0006920706

(8)ダイコンへの物質(香気成分)導入
[実施例29]
<食材調製>
市販のダイコンを2cm厚の輪切りした後、中心部を3.5×3.5cmの型抜きでくり抜き、3.5×3.5×2cmに成型した。成型後の試料はスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で95℃20分加熱した。加熱後は荒熱をとり、1晩冷凍庫で冷凍した。冷凍後の試料を流水で解凍し、試験に用いた。
(8) Introduction of substance (fragrance component) into Japanese radish [Example 29]
<Ingredient preparation>
A commercially available radish was sliced into 2 cm thick slices, and then the central portion was hollowed out by a 3.5 × 3.5 cm die-cutting to form a 3.5 × 3.5 × 2 cm shape. The molded sample was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) at 95 ° C. for 20 minutes. After heating, the heat was removed and the product was frozen in a freezer overnight. The frozen sample was thawed under running water and used for the test.

<導入溶液の調製>
導入溶液として穀物酢((株)ミツカン製)を精製水で10倍希釈した。
<Preparation of introduction solution>
Grain vinegar (manufactured by Mizkan Co., Ltd.) was diluted 10-fold with purified water as an introduction solution.

<試料の温度調製>
試料をスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で92℃10分加熱した。食材温度が90℃に達温したことを確認し、試験に用いた。
<Sample temperature adjustment>
The sample was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) at 92 ° C. for 10 minutes. After confirming that the temperature of the food material reached 90 ° C., it was used in the test.

<物質導入処理>
加熱直後、試料を4℃に冷却した導入溶液に5分浸漬した。浸漬後の試料温度は10℃だった。浸漬後は液を除去し、試料表面を水洗いして軽くふき取った後、バット上に並べてラップをかけて冷蔵庫で1晩静置して、試料表面の香気成分を揮発させた。
<Substance introduction processing>
Immediately after heating, the sample was immersed in an infusion solution cooled to 4 ° C. for 5 minutes. The sample temperature after immersion was 10 ° C. After the immersion, the liquid was removed, the surface of the sample was washed with water and lightly wiped off, and then the sample surface was placed side by side on a vat, wrapped and left to stand overnight in a refrigerator to volatilize the aroma components on the sample surface.

[比較例2]
温度調製後の試料を10℃まで冷却して用いた以外は、実施例29と同様にして、試料に物質導入処理を行った。
[Comparative Example 2]
The sample was subjected to a substance introduction treatment in the same manner as in Example 29, except that the sample after temperature adjustment was cooled to 10 ° C. and used.

<官能評価>
試料の表面5mmをそぎ落とし、中心部のみを評価した。6名の訓練されたパネラーA〜Fによって行い、試料から穀物酢の香りを感じるか否かを下記の基準により評価した。評価結果を表8に示した。
[評価基準]
◎:穀物酢の香りを強く感じた。
○:穀物酢の香りを感じた。
△:穀物酢の香りを微かに感じた。
×:穀物酢の香りを感じなかった。
<Sensory evaluation>
The surface of the sample was scraped off by 5 mm, and only the central portion was evaluated. It was carried out by 6 trained panelists A to F, and whether or not the scent of grain vinegar was felt from the sample was evaluated according to the following criteria. The evaluation results are shown in Table 8.
[Evaluation criteria]
◎: I strongly felt the scent of grain vinegar.
◯: I felt the scent of grain vinegar.
Δ: I felt a faint scent of grain vinegar.
X: No scent of grain vinegar was felt.

<結果>
実施例29では6名中4名のパネラーが強い穀物酢の香りがすると評価し、2名が穀物酢の香りがすると評価した。実施例では試料の中心部まで導入液が導入しており、保存後も香気成分が保持できたと考えられた。一方、比較例2では6名中1名のパネラーが微かに穀物酢の香りを感じると評価し、5名が穀物酢の香りを感じないと評価した。比較例2では試料の中心部に導入液が導入できていなかったと考えられた。
<Result>
In Example 29, 4 out of 6 panelists evaluated that they had a strong scent of grain vinegar, and 2 evaluated that they had a strong scent of grain vinegar. In the examples, the introduction liquid was introduced to the center of the sample, and it was considered that the aroma component could be retained even after storage. On the other hand, in Comparative Example 2, 1 out of 6 panelists evaluated that they felt a faint scent of grain vinegar, and 5 evaluated that they did not feel the scent of grain vinegar. In Comparative Example 2, it was considered that the introduction liquid could not be introduced into the central part of the sample.

Figure 0006920706
Figure 0006920706

(9)ダイコンへの粘性物質(醤油)導入
[実施例30]
<食材調製>
市販のダイコンを2cm厚の輪切りした後、中心部を3.5×3.5cmの型抜きでくり抜き、3.5×3.5×2cmに成型した。成型後の試料はスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で95℃20分加熱した。加熱後は荒熱をとり、1晩冷凍庫で冷凍した。冷凍後の試料を流水で解凍し、試験に用いた。
(9) Introduction of viscous substance (soy sauce) to Japanese radish [Example 30]
<Ingredient preparation>
A commercially available radish was sliced into 2 cm thick slices, and then the central portion was hollowed out by a 3.5 × 3.5 cm die-cutting to form a 3.5 × 3.5 × 2 cm shape. The molded sample was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) at 95 ° C. for 20 minutes. After heating, the heat was removed and the product was frozen in a freezer overnight. The frozen sample was thawed under running water and used for the test.

<塩分濃度の測定>
試料表面を水で洗った後、表面の水をふき取り、中心部を1.5×1.5cmの型抜きでくり抜き、1.5×1.5×2cmに成型した。成型後の試料の重量を測定し、等重量の精製水を加え、粉砕機(ミルサー800DG−C、イワタニ(株)製)で粉砕した。粉砕後の試料の塩分濃度を塩分計((株)アタゴ製、SALTMATAR)で測定し、試料中心部の塩分濃度を求めた。塩分濃度は未処理の試料(blank)の測定値との差とした。
<Measurement of salinity>
After washing the surface of the sample with water, the water on the surface was wiped off, the central part was hollowed out with a 1.5 × 1.5 cm die-cutting, and the sample was molded into a size of 1.5 × 1.5 × 2 cm. The weight of the sample after molding was measured, equal weight of purified water was added, and the sample was pulverized with a crusher (Miller 800DG-C, manufactured by Iwatani Corporation). The salt concentration of the sample after pulverization was measured with a salt meter (SALTMATAL, manufactured by Atago Co., Ltd.), and the salt concentration at the center of the sample was determined. The salt concentration was the difference from the measured value of the untreated sample (blank).

<導入溶液の調製>
導入溶液として濃口醤油(キッコーマン(株)製)にキサンタンガム(三菱商事フードテック(株)製)を1%溶解し、粘性溶液を作製した。
<Preparation of introduction solution>
As an introductory solution, 1% of xanthan gum (manufactured by Mitsubishi Corporation Food Tech Co., Ltd.) was dissolved in concentrated soy sauce (manufactured by Kikkoman Co., Ltd.) to prepare a viscous solution.

<試料の温度調製>
試料をスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で92℃10分加熱した。食材温度が90℃に達温したことを確認し、試験に用いた。
<Sample temperature adjustment>
The sample was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) at 92 ° C. for 10 minutes. After confirming that the temperature of the food material reached 90 ° C., it was used in the test.

<物質導入処理>
加熱直後、試料を4℃に冷却した導入溶液に5分浸漬した。浸漬後、液を除去し、試料中心部の塩分濃度を測定した。浸漬後の食材温度は10℃だった。
<Substance introduction processing>
Immediately after heating, the sample was immersed in an infusion solution cooled to 4 ° C. for 5 minutes. After immersion, the liquid was removed and the salt concentration in the center of the sample was measured. The temperature of the food after immersion was 10 ° C.

[比較例3]
温度調製後の試料を10℃まで冷却して用いた以外は、実施例30と同様にして、試料に物質導入処理を行った。
[Comparative Example 3]
The sample was subjected to a substance introduction treatment in the same manner as in Example 30 except that the sample after temperature adjustment was cooled to 10 ° C. and used.

<結果>
実施例30及び比較例3の試料中心部の塩分濃度を表9に示す。実施例30では、粘性がある溶液でも、比較例と比べて中心部まで導入することができた。
<Result>
Table 9 shows the salinity of the sample center of Example 30 and Comparative Example 3. In Example 30, even a viscous solution could be introduced to the center as compared with Comparative Example.

Figure 0006920706
Figure 0006920706

(10)ジャガイモへの物質(油脂)導入
[実施例31]
<食材調製>
市販のジャガイモ(メークイン)を2cm幅に輪切りにした後、直径2cm、厚さ2cmの円柱型に型抜きした。スチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で100℃、10分加熱した。加熱後に室温で粗熱を取ったあと、冷凍庫中で一晩冷凍した。冷凍後の試料を流水で解凍し、試験に用いた。
(10) Introduction of substances (oils and fats) into potatoes [Example 31]
<Ingredient preparation>
A commercially available potato (make-in) was sliced into 2 cm wide slices, and then die-cut into a cylindrical shape having a diameter of 2 cm and a thickness of 2 cm. It was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) at 100 ° C. for 10 minutes. After heating, the crude heat was removed at room temperature, and then the product was frozen overnight in a freezer. The frozen sample was thawed under running water and used for the test.

<着色乳化油脂調整>
キャノーラ油(日清オイリオグループ(株)製)60gに対して、油脂を着色するために、0.006gズダンIII(関東化学(株)製)を添加して溶解し、着色油脂を得た。乳化剤(ポエムJ−0381V、理研ビタミン(株)製)2gを精製水140mlに溶かした乳化剤溶液を、着色油脂に加えて、粉砕機(ミルサー800DG−C、イワタニ(株)製)で30秒間攪拌し、油脂含量30%の着色乳化油脂を調製した。調製した着色乳化油脂は4℃に冷却した。
<Adjustment of colored emulsified oils and fats>
To 60 g of canola oil (manufactured by Nisshin Oillio Group Co., Ltd.), 0.006 g of Sudan III (manufactured by Kanto Chemical Co., Inc.) was added and dissolved to obtain colored fats and oils. An emulsifier solution prepared by dissolving 2 g of an emulsifier (Poem J-0381V, manufactured by RIKEN Vitamin Co., Ltd.) in 140 ml of purified water is added to colored fats and oils, and stirred with a crusher (Miller 800DG-C, manufactured by Iwatani Corporation) for 30 seconds. Then, a colored emulsified fat and oil having a fat and oil content of 30% was prepared. The prepared colored emulsified fat was cooled to 4 ° C.

<試料の温度調製>
試料を97℃に設定したスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で15分間加温した。食材温度が95℃に達温したことを確認し、試験に用いた。
<Sample temperature adjustment>
The sample was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) set at 97 ° C. for 15 minutes. After confirming that the temperature of the food material reached 95 ° C., it was used in the test.

<物質導入処理>
加温したジャガイモを4℃に冷却した着色乳化油脂液に浸漬し、5分後に溶液から取り出した。浸漬後の食材温度は10℃だった。
<Substance introduction processing>
The heated potatoes were immersed in a colored emulsified oil / fat solution cooled to 4 ° C. and removed from the solution after 5 minutes. The temperature of the food after immersion was 10 ° C.

<断面観察>
着色乳化油脂を用いて導入処理を行ったジャガイモを、周りの油をふき取った後に赤道面で輪切りにして、ジャガイモの断面を観察した。ジャガイモの断面を写真撮影し、画像解析ソフトPopImaging4.0を用いて色相0−20、彩度55−150、明度100−200の色領域抽出を行い、試料断面積における抽出領域面積の割合を算出した。
<Cross-section observation>
The potatoes that had been introduced using colored emulsified fats and oils were sliced along the equatorial plane after wiping off the surrounding oil, and the cross section of the potatoes was observed. A cross section of a potato is photographed, and a color region of hue 0-20, saturation 55-150, and brightness 100-200 is extracted using image analysis software PopImaging 4.0, and the ratio of the extracted region area to the sample cross-sectional area is calculated. bottom.

[比較例4]
温度調製後の試料を10℃まで冷却した以外は、実施例31と同様にして、試料に物質導入処理を行った。
[Comparative Example 4]
The sample was subjected to a substance introduction treatment in the same manner as in Example 31 except that the sample after temperature adjustment was cooled to 10 ° C.

<結果>
実施例31及び比較例4で作成したジャガイモの断面について、画像解析を行った結果を表10に示した。実施例31の95℃で加温したジャガイモでは内部まで着色油脂が導入されたが、比較例4の加温していないジャガイモでは、内部に油脂が導入されなかった。
<Result>
Table 10 shows the results of image analysis of the cross sections of the potatoes prepared in Example 31 and Comparative Example 4. In the potato heated at 95 ° C. of Example 31, colored fats and oils were introduced to the inside, but in the unheated potatoes of Comparative Example 4, no fats and oils were introduced into the inside.

Figure 0006920706
Figure 0006920706

(11)物質の分散濃度を調節したダイコンへの物質導入
[実施例32]
<食材調製>
市販のダイコンを2cm厚の輪切りした後、中心部を3.5×3.5cmの型抜きでくり抜き、3.5×3.5×2cmに成型した。成型後の試料はスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で95℃20分加熱した。加熱後は荒熱をとり、1晩冷凍庫で冷凍した。冷凍後の試料を流水で解凍し、試験に用いた。
(11) Introduction of a substance into a Japanese radish in which the dispersion concentration of the substance is adjusted [Example 32]
<Ingredient preparation>
A commercially available radish was sliced into 2 cm thick slices, and then the central portion was hollowed out by a 3.5 × 3.5 cm die-cutting to form a 3.5 × 3.5 × 2 cm shape. The molded sample was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) at 95 ° C. for 20 minutes. After heating, the heat was removed and the product was frozen in a freezer overnight. The frozen sample was thawed under running water and used for the test.

<食材の温度調製>
試料をスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で92℃10分加熱した。食材温度が90℃に達温したことを確認し、試験に用いた。
<Temperature adjustment of ingredients>
The sample was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) at 92 ° C. for 10 minutes. After confirming that the temperature of the food material reached 90 ° C., it was used in the test.

<導入溶液の調製>
導入物質として食用赤色101号(三栄化学工業(株)製を使用した。精製水に溶解して0.01%(w/v)に調製した。さらに、導入溶液に米澱粉(松谷化学工業(株)製を分散させて澱粉濃度0.1%(w/v)に調製した。
<Preparation of introduction solution>
Edible Red No. 101 (manufactured by Sanei Chemical Industry Co., Ltd.) was used as the introduction substance. It was dissolved in purified water to prepare 0.01% (w / v). Further, rice starch (Matsutani Chemical Industry Co., Ltd. (Matsutani Chemical Industry Co., Ltd.) The product was dispersed to prepare a starch concentration of 0.1% (w / v).

<物質導入処理>
加熱直後の試料を4℃に冷却した導入溶液に5分間浸漬した。浸漬後、試料を導入溶液から取り出した。浸漬後の食材温度は10℃だった。
<Substance introduction processing>
Immediately after heating, the sample was immersed in an introduction solution cooled to 4 ° C. for 5 minutes. After immersion, the sample was removed from the introduction solution. The temperature of the food after immersion was 10 ° C.

[実施例33]
導入溶液に澱粉を分散させて澱粉濃度0.3%(w/v)に調製した以外は、実施例32と同様にして物質導入処理を行った。
[Example 33]
The substance introduction treatment was carried out in the same manner as in Example 32 except that the starch was dispersed in the introduction solution to prepare the starch concentration at 0.3% (w / v).

<物質導入の確認>
上記の実施例32及び33で得られた試料の赤道面を2分割した。断面を写真撮影し、実施例1と同様にして画像解析を行って、赤色色素の導入を確認した。分割面全体に対する物質の導入面積割合を算出し、算出結果を表11に示した。また、導入溶液に澱粉を加えていない実施例1の結果を対照として併記した。澱粉濃度を変えることで、ダイコンへの物質(色素)導入量を調節できることが確認された。
<Confirmation of substance introduction>
The equatorial plane of the samples obtained in Examples 32 and 33 above was divided into two. A cross section was photographed and image analysis was performed in the same manner as in Example 1 to confirm the introduction of the red pigment. The ratio of the introduced area of the substance to the entire divided surface was calculated, and the calculation results are shown in Table 11. In addition, the results of Example 1 in which starch was not added to the introduction solution are also shown as controls. It was confirmed that the amount of substance (dye) introduced into radish can be adjusted by changing the starch concentration.

Figure 0006920706
Figure 0006920706

(12)物質の分散粒度を調節したダイコンへの物質導入
[実施例34]
<食材調製>
市販のダイコンを2cm厚の輪切りした後、中心部を3.5×3.5cmの型抜きでくり抜き、3.5×3.5×2cmに成型した。成型後の試料はスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で95℃20分加熱した。加熱後は荒熱をとり、1晩冷凍庫で冷凍した。冷凍後の試料を流水で解凍し、試験に用いた。
(12) Introducing a substance into a radish whose dispersion particle size is adjusted [Example 34]
<Ingredient preparation>
A commercially available radish was sliced into 2 cm thick slices, and then the central portion was hollowed out by a 3.5 × 3.5 cm die-cutting to form a 3.5 × 3.5 × 2 cm shape. The molded sample was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) at 95 ° C. for 20 minutes. After heating, the heat was removed and the product was frozen in a freezer overnight. The frozen sample was thawed under running water and used for the test.

<食材の温度調製>
試料をスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で92℃10分加熱した。食材温度が90℃に達温したことを確認し、試験に用いた。
<Temperature adjustment of ingredients>
The sample was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) at 92 ° C. for 10 minutes. After confirming that the temperature of the food material reached 90 ° C., it was used in the test.

<導入溶液の調製>
導入物質として食用赤色101号(三栄化学工業(株)製を使用した。精製水に溶解して0.01%(w/v)に調製した。さらに、導入溶液に米澱粉(松谷化学工業(株)製、粒子径:2〜5μm)を分散させて澱粉濃度0.1%(w/v)に調製した。
<Preparation of introduction solution>
Edible Red No. 101 (manufactured by Sanei Chemical Industry Co., Ltd.) was used as the introduction substance. It was dissolved in purified water to prepare 0.01% (w / v). Further, rice starch (Matsutani Chemical Industry Co., Ltd. (Matsutani Chemical Industry Co., Ltd.) Co., Ltd., particle size: 2 to 5 μm) was dispersed to prepare a starch concentration of 0.1% (w / v).

<物質導入処理>
加熱直後の試料を4℃に冷却した導入溶液に5分間浸漬した。浸漬後、試料を導入溶液から取り出した。浸漬後の食材温度は10℃だった。
<Substance introduction processing>
Immediately after heating, the sample was immersed in an introduction solution cooled to 4 ° C. for 5 minutes. After immersion, the sample was removed from the introduction solution. The temperature of the food after immersion was 10 ° C.

[実施例35]
導入溶液に馬鈴薯澱粉(アルドリッチジャパン(株)製、粒子径:30〜40μm)を分散させて澱粉濃度0.1%(w/v)に調製した以外は、実施例34と同様にして物質導入処理を行った。
[Example 35]
The substance was introduced in the same manner as in Example 34 except that potato starch (manufactured by Aldrich Japan Co., Ltd., particle size: 30-40 μm) was dispersed in the introduction solution to prepare the starch concentration at 0.1% (w / v). Processing was performed.

<物質導入の確認>
上記の実施例34及び35で得られた試料の赤道面を2分割した。断面を写真撮影し、解析ソフトPopImaging4.0を用いて色相−10〜10、彩度80〜190、明度80〜150の色領域抽出を行って、赤色色素の導入を確認した。分割面全体に対する物質の導入面積割合を算出し、算出結果を表12に示した。異なる種類の澱粉を用いて粒度を調節することで、ダイコンへの物質(色素)導入量を調節できることが確認された。
<Confirmation of substance introduction>
The equatorial plane of the samples obtained in Examples 34 and 35 above was divided into two. The cross section was photographed, and the color region of hue -10 to 10, saturation 80 to 190, and lightness 80 to 150 was extracted using the analysis software PopImaging 4.0 to confirm the introduction of the red dye. The ratio of the introduced area of the substance to the entire divided surface was calculated, and the calculation results are shown in Table 12. It was confirmed that the amount of substance (dye) introduced into radish can be adjusted by adjusting the particle size using different types of starch.

Figure 0006920706
Figure 0006920706

(13)ダイコンへの2種類の物質導入
[実施例36]
<食材調製>
市販のダイコンを2cm厚の輪切りした後、中心部を3.5×3.5cmの型抜きでくり抜き、3.5×3.5×2cmに成型した。成型後の試料はスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で95℃20分加熱した。加熱後は荒熱をとり、1晩冷凍庫で冷凍した。冷凍後の試料を流水で解凍し、試験に用いた。
<食材の温度調製>
試料をスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で92℃10分加熱した。食材温度が90℃に達温したことを確認し、試験に用いた。
(13) Introduction of two types of substances into Japanese radish [Example 36]
<Ingredient preparation>
A commercially available radish was sliced into 2 cm thick slices, and then the central portion was hollowed out by a 3.5 × 3.5 cm die-cutting to form a 3.5 × 3.5 × 2 cm shape. The molded sample was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) at 95 ° C. for 20 minutes. After heating, the heat was removed and the product was frozen in a freezer overnight. The frozen sample was thawed under running water and used for the test.
<Temperature adjustment of ingredients>
The sample was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) at 92 ° C. for 10 minutes. After confirming that the temperature of the food material reached 90 ° C., it was used in the test.

<導入溶液の調製>
導入物質としてクチナシ色素 緑(共立食品(株)製)を精製水に溶解して0.03%(w/v)に調製して、緑色導入溶液を得た。また、導入物質として食用赤色101号(三栄化学工業(株)製)を精製水に溶解して0.01%(w/v)に調製して、赤色導入溶液Aを得た。さらに、導入物質として食用赤色101号(三栄化学工業(株)製)0.01%及びとろみ調整剤((株)サナス製)1.5%を精製水に溶解して、粘性を有する赤色導入溶液Bを得た。
<Preparation of introduction solution>
As an introduction substance, crocin pigment green (manufactured by Kyoritsu Foods Co., Ltd.) was dissolved in purified water to prepare 0.03% (w / v) to obtain a green introduction solution. Further, as an introduction substance, Edible Red No. 101 (manufactured by Sanei Chemical Industry Co., Ltd.) was dissolved in purified water to prepare 0.01% (w / v) to obtain a red introduction solution A. Furthermore, as an introduction substance, 0.01% of edible red No. 101 (manufactured by Sanei Chemical Industry Co., Ltd.) and 1.5% of a thickening agent (manufactured by Sunus Co., Ltd.) are dissolved in purified water to introduce a viscous red color. Solution B was obtained.

<物質導入処理>
加熱直後の試料を4℃に冷却した緑色導入溶液に3分間浸漬した後、4℃に冷却した赤色導入溶液Aに1分間浸漬した。浸漬後、赤色試料を導入溶液から取り出した。緑色導入溶液に浸漬後の食材温度は50℃、赤色導入溶液Aに浸漬後の食材温度は30℃だった。
<Substance introduction processing>
The sample immediately after heating was immersed in a green introduction solution cooled to 4 ° C. for 3 minutes, and then immersed in a red introduction solution A cooled to 4 ° C. for 1 minute. After immersion, the red sample was removed from the introduction solution. The temperature of the food material after being immersed in the green introduction solution was 50 ° C., and the temperature of the food material after being immersed in the red introduction solution A was 30 ° C.

[実施例37]
加熱直後の試料を4℃に冷却した緑色導入溶液に3.5分間浸漬した後、4℃に冷却した赤色導入溶液Aに0.5分間浸漬した以外は、実施例36と同様にして物質導入処理を行った。緑色導入溶液に浸漬後の食材温度は45℃、赤色導入溶液Aに浸漬後の食材温度は30℃だった。
[Example 37]
The substance was introduced in the same manner as in Example 36 except that the sample immediately after heating was immersed in a green introduction solution cooled to 4 ° C. for 3.5 minutes and then immersed in a red introduction solution A cooled to 4 ° C. for 0.5 minutes. Processing was performed. The temperature of the food material after being immersed in the green introduction solution was 45 ° C., and the temperature of the food material after being immersed in the red introduction solution A was 30 ° C.

[実施例38]
加熱直後の試料を4℃に冷却した緑色導入溶液に3.5分間浸漬した後、4℃に冷却した赤色導入溶液Bに0.5分間浸漬した以外は、実施例36と同様にして物質導入処理を行った。緑色導入溶液に浸漬後の食材温度は45℃、赤色導入溶液Bに浸漬後の食材温度は30℃だった。
[Example 38]
The substance was introduced in the same manner as in Example 36 except that the sample immediately after heating was immersed in a green introduction solution cooled to 4 ° C. for 3.5 minutes and then immersed in a red introduction solution B cooled to 4 ° C. for 0.5 minutes. Processing was performed. The temperature of the food material after being immersed in the green introduction solution was 45 ° C., and the temperature of the food material after being immersed in the red introduction solution B was 30 ° C.

<物質導入の確認>
上記の実施例36〜38で得られた試料の赤道面を2分割した。断面を写真撮影し、実施例1と同様にして画像解析を行って、各色素の導入を確認した。分割面全体に対する物質(赤色色素)の導入面積割合を算出し、算出結果を表13に示した。2種類の色素を時間差で段階的に導入することで、断面の着色度合いを調節できることが確認された。また、赤色色素とともに粘性を有する物質を導入することで、食材内で赤色色素が拡散せずに側面のみを赤色に着色できることが確認された。
<Confirmation of substance introduction>
The equatorial plane of the samples obtained in Examples 36 to 38 above was divided into two. The cross section was photographed and image analysis was performed in the same manner as in Example 1 to confirm the introduction of each dye. The ratio of the introduced area of the substance (red pigment) to the entire divided surface was calculated, and the calculation results are shown in Table 13. It was confirmed that the degree of coloring of the cross section can be adjusted by gradually introducing two kinds of dyes with a time lag. It was also confirmed that by introducing a viscous substance together with the red pigment, only the side surface can be colored red without diffusing the red pigment in the food material.

Figure 0006920706
Figure 0006920706

(14)ダイコンからの成分除去
[実施例39]
<食材調製>
市販のダイコンを2cm厚の輪切りした後、中心部を3.5×3.5cmの型抜きでくり抜き、3.5×3.5×2cmに成型した。成型後の試料はスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で95℃20分加熱した。加熱後は荒熱をとり、1晩冷凍庫で冷凍した。冷凍後の試料を流水で解凍し、試料重量に対し、8%の食塩を添加し、さらに8%の食塩水を加えて1晩塩漬した。後述の塩分濃度の測定方法に従い、試料中心部の塩分濃度を測定した結果、4.98%だった。
(14) Removal of components from Japanese radish [Example 39]
<Ingredient preparation>
A commercially available radish was sliced into 2 cm thick slices, and then the central portion was hollowed out by a 3.5 × 3.5 cm die-cutting to form a 3.5 × 3.5 × 2 cm shape. The molded sample was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) at 95 ° C. for 20 minutes. After heating, the heat was removed and the product was frozen in a freezer overnight. The frozen sample was thawed under running water, 8% salt was added to the weight of the sample, 8% salt solution was further added, and the sample was salted overnight. As a result of measuring the salt concentration in the center of the sample according to the method for measuring the salt concentration described later, it was 4.98%.

<塩分濃度の測定>
試料表面を水で洗った後、表面の水をふき取り、中心部を1.5×1.5cmの型抜きでくり抜き、1.5×1.5×2cmに成型した。成型後の試料の重量を測定し、等重量の精製水を加え、粉砕機(ミルサー800DG−C、イワタニ(株)製)で粉砕した。粉砕後の試料の塩分濃度を塩分計((株)アタゴ、SALTMATAR)で測定し、試料中心部の塩分濃度を求めた。
<Measurement of salinity>
After washing the surface of the sample with water, the water on the surface was wiped off, the central part was hollowed out with a 1.5 × 1.5 cm die-cutting, and the sample was molded into a size of 1.5 × 1.5 × 2 cm. The weight of the sample after molding was measured, equal weight of purified water was added, and the sample was pulverized with a crusher (Miller 800DG-C, manufactured by Iwatani Corporation). The salinity of the sample after pulverization was measured with a salinity meter (Atago Co., Ltd., SALTMATAR), and the salinity in the center of the sample was determined.

<導入溶液の調製>
導入物質として植物組織分解酵素(カビ由来、ヤクルト薬品工業(株)製)を使用した。精製水に溶解して0.1%(w/v)に調製した。
<Preparation of introduction solution>
A plant tissue degrading enzyme (derived from mold, manufactured by Yakult Pharmaceutical Co., Ltd.) was used as the introduction substance. It was dissolved in purified water to prepare 0.1% (w / v).

<試料の温度調製>
塩漬後の試料をスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で95℃10分加熱した。食材温度が93℃に達温したことを確認し、試験に用いた。
<Sample temperature adjustment>
The salted sample was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) at 95 ° C. for 10 minutes. After confirming that the temperature of the food material reached 93 ° C., it was used in the test.

<酵素液導入処理>
加熱直後、試料を4℃に冷却した導入溶液に5分浸漬した。浸漬後の食材温度は10℃だった。
<Enzyme solution introduction treatment>
Immediately after heating, the sample was immersed in an infusion solution cooled to 4 ° C. for 5 minutes. The temperature of the food after immersion was 10 ° C.

<酵素反応及び酵素失活処理>
酵素液を導入後、試料を酵素液から取り出して、4℃に設定した冷蔵庫内で1時間酵素反応した。続いて95℃に設定したスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で10分加熱して、酵素を完全に失活させた。
<Enzyme reaction and enzyme inactivation treatment>
After introducing the enzyme solution, the sample was taken out from the enzyme solution and subjected to an enzymatic reaction for 1 hour in a refrigerator set at 4 ° C. Subsequently, the enzyme was completely inactivated by heating in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) set at 95 ° C. for 10 minutes.

<成分除去工程>
失活直後の試料を4℃に冷却した精製水に5分浸漬した。その後前述の方法に従って中心部の塩分濃度を測定した。
<Component removal process>
Immediately after deactivation, the sample was immersed in purified water cooled to 4 ° C. for 5 minutes. Then, the salt concentration in the central part was measured according to the above-mentioned method.

[比較例5]
温度調製後の導入溶液を精製水として、酵素を導入しなかった以外は、実施例39と同様に処理した。
[Comparative Example 5]
The introduction solution after temperature adjustment was used as purified water and treated in the same manner as in Example 39 except that no enzyme was introduced.

[比較例6]
温度調製後及び再加熱後に試料を10℃まで冷却した以外は、比較例5と同様に処理した。
[Comparative Example 6]
The sample was treated in the same manner as in Comparative Example 5 except that the sample was cooled to 10 ° C. after temperature adjustment and reheating.

<結果>
実施例39、比較例5及び6の試料中心部の塩分濃度を表14に示す。試料に酵素液を導入することで、塩分除去を促進できた。
<Result>
Table 14 shows the salinity of the sample center of Example 39 and Comparative Examples 5 and 6. By introducing the enzyme solution into the sample, salt removal could be promoted.

Figure 0006920706
Figure 0006920706

(15)市販の加熱機器を用いたトリムネ肉への物質(酵素)導入
[実施例40〜42]
<試料調製>
市販のトリムネ肉を1晩冷凍庫で冷凍したものを解凍し、筋切機(JACCARD製)でテンダライズした後2cm角にカットし、食材を調製した。
(15) Introduction of substance (enzyme) into chicken breast meat using a commercially available heating device [Examples 40 to 42]
<Sample preparation>
Commercially available breast breast meat frozen in a freezer overnight was thawed, tenderized with a muscle cutting machine (manufactured by JACCARD), and then cut into 2 cm squares to prepare foodstuffs.

<加熱機器1>
実施例40において電子レンジ((株)東芝製、T−E17B)を用いた。本電子レンジは、冷却した導入物質溶液を供給できる物質溶液タンクが備わり、加熱終了後に食材容器内に導入物質溶液が供給される仕組みとなっている。
<Heating equipment 1>
In Example 40, a microwave oven (manufactured by Toshiba Corporation, TE17B) was used. This microwave oven is equipped with a substance solution tank that can supply a cooled introduction substance solution, and the introduction substance solution is supplied into the food container after heating is completed.

<加熱機器2>
実施例41においてホットプレート(パナソニック(株)製、KZ−HP2000)を用いた。本ホットプレートは、冷却した導入物質溶液を供給できる物質溶液タンクが備わり、加熱終了後に食材容器内に導入物質溶液が供給される仕組みとなっている。
<Heating equipment 2>
In Example 41, a hot plate (manufactured by Panasonic Corporation, KZ-HP2000) was used. This hot plate is equipped with a substance solution tank that can supply a cooled introduction substance solution, and the introduction substance solution is supplied into the food container after heating is completed.

<加熱機器3>
実施例42において蒸し器(アカオアルミ(株)製、角型蒸器26cm)を用いた。本蒸し器は、冷却した導入物質溶液を供給できる物質溶液タンクが備わり、加熱終了後に食材容器内に導入物質溶液が供給される仕組みとなっている。
<Heating equipment 3>
In Example 42, a steamer (manufactured by Akao Aluminum Co., Ltd., square steamer 26 cm) was used. The steamer is equipped with a substance solution tank that can supply a cooled introduction substance solution, and the introduction substance solution is supplied into the food container after heating is completed.

<導入物質溶液調製>
導入物質としてタンパク質分解酵素(植物由来プロテアーゼ、新日本化学工業(株)製)を使用した。1%食塩水に溶解して0.05%(w/v)に調製した。
<Preparation of introduced substance solution>
A proteolytic enzyme (plant-derived protease, manufactured by Shin Nihon Kagaku Kogyo Co., Ltd.) was used as the introduction substance. It was dissolved in 1% saline solution to adjust to 0.05% (w / v).

<食材の温度調製>
加熱機器1〜3を使用してトリムネを加熱した。加熱機器1では500Wで1分マイクロ波加熱し、加熱機器2ではホットプレート上に設置したアルミ容器内で10分(表面5分、裏面5分)焼成加熱し、加熱機器3では硬質容器内で10分蒸煮加熱して、トリムネ温度を90℃に昇温した。
<Temperature adjustment of ingredients>
The breast breast was heated using heating devices 1 to 3. In the heating device 1, microwave heating is performed at 500 W for 1 minute, in the heating device 2, baking is heated for 10 minutes (5 minutes on the front surface and 5 minutes on the back surface) in an aluminum container installed on a hot plate, and in the heating device 3, in a hard container. By steaming and heating for 10 minutes, the trimne temperature was raised to 90 ° C.

<物質導入処理>
加熱処理後、付属した物質溶液タンクから自動で導入物質溶液(10℃に調整した酵素液)を食材容器内に注入して食材に接触させ、トリムネを急速に降温させて導入駆動力を発生させた。導入した酵素液中に5分浸漬して、トリムネ内部まで酵素液を導入した。5分後のトリムネ温度は、いずれも20℃に降温した。
<Substance introduction processing>
After the heat treatment, the introduced substance solution (enzyme solution adjusted to 10 ° C) is automatically injected from the attached substance solution tank into the food container to bring it into contact with the food, and the temperature of the breast is rapidly lowered to generate the introduction driving force. rice field. The enzyme solution was immersed in the introduced enzyme solution for 5 minutes to introduce the enzyme solution into the inside of the breast breast. The temperature of the breast breast after 5 minutes was lowered to 20 ° C.

<酵素反応及び酵素失活処理>
酵素液を導入後、試料を酵素液から取り出して、4℃に設定した冷蔵庫内で16時間酵素反応した。続いて80℃に設定したスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で20分加熱して、酵素を完全に失活させた。
<Enzyme reaction and enzyme inactivation treatment>
After introducing the enzyme solution, the sample was taken out from the enzyme solution and subjected to an enzymatic reaction in a refrigerator set at 4 ° C. for 16 hours. Subsequently, the enzyme was completely inactivated by heating in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) set at 80 ° C. for 20 minutes.

<結果>
加熱機器1〜3で加熱処理したあと冷酵素液に浸漬して酵素導入したトリムネは、酵素処理しなかったトリムネと比較して、いずれも約3分の1の軟らかさに調整された。市販の加熱機器を用いても物質を導入できることが分かった。
<Result>
The breasts, which were heat-treated with the heating devices 1 to 3 and then immersed in a cold enzyme solution to introduce the enzyme, were all adjusted to be about one-third as soft as those without the enzyme treatment. It was found that the substance can be introduced even by using a commercially available heating device.

(16)食材への物質(微生物)導入
[実施例43]
<食材調製>
市販のトリムネ肉を1晩冷凍庫で冷凍したものを解凍し、筋切機(JACCARD製)でテンダライズした後3×3×1cmにカットし、食材を調製した。
(16) Introduction of substances (microorganisms) into foodstuffs [Example 43]
<Ingredient preparation>
Commercially available breast breast meat frozen in a freezer overnight was thawed, tenderized with a muscle cutting machine (manufactured by JACCARD), and then cut into 3 × 3 × 1 cm pieces to prepare foodstuffs.

<導入溶液の調製>
導入溶液として、芽胞菌液(Bacillus subtilis、1.9×10cfu/ml)1mlを滅菌生理食塩水で10倍希釈し、80℃10分加温して加熱活性化した後、滅菌生理食塩水で30倍に希釈して6.3×10cfu/mlの芽胞菌液を調製した。
<Preparation of introduction solution>
As an introduction solution, 1 ml of spore-forming bacterial solution (Bacillus subtilis, 1.9 × 10 9 cfu / ml) was diluted 10-fold with sterile physiological saline, heated at 80 ° C. for 10 minutes to activate, and then sterile physiological saline. It was diluted 30-fold with water to prepare a 6.3 × 10 7 cfu / ml spore-forming solution.

<試料の温度調製>
試料を沸騰水中で5分加熱した。食材温度が90℃以上になっていることを確認し、試験に用いた。
<Sample temperature adjustment>
The sample was heated in boiling water for 5 minutes. It was confirmed that the temperature of the food material was 90 ° C. or higher, and it was used in the test.

<導入溶液導入処理>
加熱直後、試料を4℃に冷却した導入溶液に5分浸漬した。浸漬後の食材温度は10℃だった。浸漬後、液を除去し、試料表面を滅菌生理食塩水で洗浄した後、試料中に導入した芽胞菌数を測定した。
<Introduction solution introduction process>
Immediately after heating, the sample was immersed in an infusion solution cooled to 4 ° C. for 5 minutes. The temperature of the food after immersion was 10 ° C. After immersion, the solution was removed, the surface of the sample was washed with sterile physiological saline, and the number of spore-forming bacteria introduced into the sample was measured.

<コントロール作製>
温度調製後の試料を4℃の滅菌生理食塩水に5分浸漬した。
<Control production>
The temperature-adjusted sample was immersed in sterile saline at 4 ° C. for 5 minutes.

<芽胞菌数測定方法>
導入処理後の試料をストマッカー袋に採取し、全体重量が試料の10倍となるよう滅菌生理食塩水を加えた後、ストマッカー(オルガノ(株)製)で2分間破砕処理した。破砕処理後の試料液を滅菌生理食塩水を用いて段階希釈した後、希釈した試料液1mlを標準寒天培地(日本製薬(株))を用いて混釈培養(30℃、48時間)し、発現したコロニー数を計測した。
<Method for measuring the number of spores>
The sample after the introduction treatment was collected in a Stomacher bag, sterilized physiological saline was added so that the total weight was 10 times that of the sample, and then crushed with a Stomacher (manufactured by Organo Corporation) for 2 minutes. The sample solution after the crushing treatment was serially diluted with sterile physiological saline, and then 1 ml of the diluted sample solution was subjected to pour culture (30 ° C., 48 hours) using a standard agar medium (Nihon Pharmaceutical Co., Ltd.). The number of expressed colonies was measured.

[実施例44]
試料にニンジンを使用した以外は実施例43と同様に処理した。ニンジンは、皮を厚めに剥いて1cm厚の銀杏切りにカットした。95℃に設定したスチームコンベクションオーブン((株)マルゼン製、SSC−04MSC型)で20分加熱した。放熱後は冷凍庫で1晩冷凍し、使用時は流水で解凍して試験に用いた。
[Example 44]
Treatment was carried out in the same manner as in Example 43 except that carrots were used as the sample. The carrots were peeled thickly and cut into 1 cm thick ginkgo biloba. It was heated in a steam convection oven (manufactured by Maruzen Co., Ltd., SSC-04MSC type) set at 95 ° C. for 20 minutes. After heat dissipation, it was frozen overnight in a freezer, and when used, it was thawed under running water and used for the test.

<結果>
実施例及びコントロールの菌数測定の結果を表15に示す。実施例43及び44において、多量の微生物を食材内に導入できた。
<Result>
The results of the bacterial count measurement of the examples and controls are shown in Table 15. In Examples 43 and 44, a large amount of microorganisms could be introduced into the food material.

Figure 0006920706
Figure 0006920706

Claims (13)

食材の温度昇降による食材内の気体の体積変化を利用して導入駆動力を発生させて、外観で認識可能な形状を保持した食材内に物質を導入する方法(但し、減圧処理により導入駆動力を発生させる方法を除く)であって、
食材を昇温させ、食材内溶存気体の気化、食材内水分の気化、及びこれらを含む食材内気体の体積膨張を引き起こし、
続いて、常圧下で、食材を導入物質に接触させることで降温させ、
食材内水蒸気の凝集及び食材内気体の体積収縮を引き起こすことにより発生する導入駆動力を調節して、食材内への物質の導入量及び/又は導入深度を制御することを特徴とする、食材への物質導入方法。
A method of introducing a substance into a foodstuff that retains a shape that can be recognized by appearance by generating an introduction driving force by using the volume change of the gas in the foodstuff due to the temperature rise and fall of the foodstuff (however, the introduction driving force by decompression treatment) Except for the method of generating
The temperature of the food is raised, causing the vaporization of the dissolved gas in the food, the vaporization of the water in the food, and the volume expansion of the gas in the food containing these.
Then, under normal pressure, the temperature of the food is lowered by bringing it into contact with the introduced substance.
To a foodstuff, which is characterized by controlling the introduction amount and / or the introduction depth of a substance into the foodstuff by adjusting the introduction driving force generated by causing the aggregation of water vapor in the foodstuff and the volume contraction of the gas in the foodstuff. Material introduction method.
食材の温度昇降による食材内の気体の体積変化を利用して導入駆動力を発生させて、外観で認識可能な形状を保持した食材内に物質を導入する方法であって、
前記食材が動物性素材であり、
食材を昇温させ、食材内溶存気体の気化、食材内水分の気化、及びこれらを含む食材内気体の体積膨張を引き起こし、
続いて、常圧下で、食材を導入物質に接触させることで降温させ、
食材内水蒸気の凝集及び食材内気体の体積収縮を引き起こすことにより発生する下記数式で定義される導入駆動力S1を233以上に調節して、食材内への物質の導入量及び/又は導入深度を制御することを特徴とする、食材への物質導入方法。
Figure 0006920706
(式中、S1:導入駆動力、E1:食材(動物性素材)の理論上の膨張率(%)、t:降温後の温度(℃)、t:昇温後の温度(℃)、a、b、cは係数とする。)
It is a method of introducing a substance into a food material that retains a shape that can be recognized by appearance by generating an introduction driving force by using the volume change of the gas in the food material due to the temperature rise and fall of the food material.
The ingredients are animal materials,
The temperature of the food is raised, causing the vaporization of the dissolved gas in the food, the vaporization of the water in the food, and the volume expansion of the gas in the food containing these.
Then, under normal pressure, the temperature of the food is lowered by bringing it into contact with the introduced substance.
Adjust the introduction driving force S1 defined by the following formula, which is generated by agglomeration of water vapor in the food material and volume contraction of the gas in the food material, to 233 or more, and adjust the introduction amount and / or the introduction depth of the substance into the food material. A method of introducing substances into foodstuffs, which is characterized by controlling.
Figure 0006920706
(In the formula, S1: introduction driving force, E1: theoretical expansion coefficient (%) of foodstuff (animal material), t 1 : temperature after temperature reduction (° C.), t 2 : temperature after temperature rise (° C.) , A, b, c are coefficients.)
食材の温度昇降による食材内の気体の体積変化を利用して導入駆動力を発生させて、外観で認識可能な形状を保持した食材内に物質を導入する方法であって、
前記食材が植物性素材であり、
食材を昇温させ、食材内溶存気体の気化、食材内水分の気化、及びこれらを含む食材内気体の体積膨張を引き起こし、
続いて、常圧下で、食材を導入物質に接触させることで降温させ、
食材内水蒸気の凝集及び食材内気体の体積収縮を引き起こすことにより発生する下記数式で定義される導入駆動力S2を216以上に調節して、食材内への物質の導入量及び/又は導入深度を制御することを特徴とする、食材への物質導入方法。
Figure 0006920706
(式中、S2:導入駆動力、E2:食材(植物性素材)の理論上の膨張率(%)、t:降温後の温度(℃)、t:昇温後の温度(℃)、a、b、cは係数とする。)
It is a method of introducing a substance into a food material that retains a shape that can be recognized by appearance by generating an introduction driving force by using the volume change of the gas in the food material due to the temperature rise and fall of the food material.
The ingredients are vegetable materials
The temperature of the food is raised, causing the vaporization of the dissolved gas in the food, the vaporization of the water in the food, and the volume expansion of the gas in the food containing these.
Then, under normal pressure, the temperature of the food is lowered by bringing it into contact with the introduced substance.
Adjust the introduction driving force S2 defined by the following formula, which is generated by agglomeration of water vapor in the food material and volume contraction of the gas in the food material, to 216 or more, and adjust the introduction amount and / or the introduction depth of the substance into the food material. A method of introducing substances into foodstuffs, which is characterized by controlling.
Figure 0006920706
(In the formula, S2: introduction driving force, E2: theoretical expansion coefficient (%) of foodstuff (vegetable material), t 3 : temperature after temperature decrease (° C), t 4 : temperature after temperature rise (° C) , A, b, c are coefficients.)
前記食材の昇温後の温度が、40℃以上100℃以下である、請求項1〜3のいずれか一項に記載の食材への物質導入方法。 The method for introducing a substance into a food material according to any one of claims 1 to 3, wherein the temperature of the food material after the temperature rise is 40 ° C. or higher and 100 ° C. or lower. 前記食材の昇温後の温度と前記導入物質の温度の差が、10℃以上である、請求項1〜4のいずれか一項に記載の食材への物質導入方法。 The method for introducing a substance into a food material according to any one of claims 1 to 4, wherein the difference between the temperature of the food material after the temperature rise and the temperature of the introduced substance is 10 ° C. or more. 前記導入物質が、タンパク質、油脂、酵素、多糖類、増粘剤、乳化剤、澱粉、及び微生物からなる群から選択される少なくとも一種である、請求項1〜5のいずれか一項に記載の食材への物質導入方法。 The foodstuff according to any one of claims 1 to 5, wherein the introduced substance is at least one selected from the group consisting of proteins, fats and oils, enzymes, polysaccharides, thickeners, emulsifiers, starches, and microorganisms. How to introduce substances into. 前記食材の昇温方法として、湿熱加熱、誘電加熱、飽和水蒸気加熱、過熱水蒸気加熱、焼成加熱、及びジュール加熱からなる群から選択される少なくとも一種を利用する、請求項1〜6のいずれか一項に記載の食材への物質導入方法。 Any one of claims 1 to 6 as a method for raising the temperature of the food material, at least one selected from the group consisting of moist heat heating, dielectric heating, saturated steam heating, superheated steam heating, baking heating, and Joule heating is used. Method of introducing substances into the ingredients described in the section. 前記食材の前処理工程として、冷凍、湿熱加熱、誘電加熱、飽和水蒸気加熱、過熱水蒸気加熱、加圧加熱、焼成加熱、ジュール加熱、筋切り、タンブリング、脱水、脱脂、乾燥、酸処理、アルカリ処理、酵素処理、誘電処理、超音波処理、重曹処理、アルコール浸漬からなる群から選択される少なくとも一種を用いる、請求項1〜7のいずれか一項に記載の食材への物質導入方法。 As pretreatment steps for the ingredients, freezing, moist heat heating, dielectric heating, saturated steam heating, superheated steam heating, pressure heating, baking heating, Joule heating, muscle cutting, tumbling, dehydration, degreasing, drying, acid treatment, alkali treatment. The method for introducing a substance into a food material according to any one of claims 1 to 7, wherein at least one selected from the group consisting of enzyme treatment, dielectric treatment, ultrasonic treatment, baking soda treatment, and alcohol immersion is used. 前記導入物質の提供方法が、浸漬、噴霧、塗布、及び物質保持基材との接触からなる群から選択される少なくとも一種である、請求項1〜8のいずれか一項に記載の食材への物質導入方法。 The foodstuff according to any one of claims 1 to 8, wherein the method for providing the introduced substance is at least one selected from the group consisting of immersion, spraying, coating, and contact with a substance-retaining substrate. Material introduction method. 前記食材内に2種類以上の導入物質を層状に導入する、請求項1〜9のいずれか一項に記載の食材への物質導入方法。 The method for introducing a substance into a food material according to any one of claims 1 to 9, wherein two or more kinds of introduced substances are introduced into the food material in layers. 食材の温度及び導入物質の温度を制御できる加熱装置を用いる、請求項1〜10のいずれか一項に記載の食材への物質導入方法。 The method for introducing a substance into a food material according to any one of claims 1 to 10, wherein a heating device capable of controlling the temperature of the food material and the temperature of the introduced substance is used. 請求項1〜11のいずれか一項に記載の食材への物質導入方法を用いる、物質導入食材の製造方法。 A method for producing a substance-introduced food material, which uses the method for introducing a substance into the food material according to any one of claims 1 to 11. 請求項12に記載の方法により製造された物質導入食材を用いる、加工食品の製造方法。 A method for producing a processed food using a substance-introduced food material produced by the method according to claim 12.
JP2020209454A 2020-12-17 2020-12-17 How to introduce substances into foodstuffs Active JP6920706B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020209454A JP6920706B1 (en) 2020-12-17 2020-12-17 How to introduce substances into foodstuffs
PCT/JP2021/040403 WO2022130812A1 (en) 2020-12-17 2021-11-02 Method for introducing substances into foodstuff

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020209454A JP6920706B1 (en) 2020-12-17 2020-12-17 How to introduce substances into foodstuffs

Publications (2)

Publication Number Publication Date
JP6920706B1 true JP6920706B1 (en) 2021-08-18
JP2022096383A JP2022096383A (en) 2022-06-29

Family

ID=77269596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020209454A Active JP6920706B1 (en) 2020-12-17 2020-12-17 How to introduce substances into foodstuffs

Country Status (2)

Country Link
JP (1) JP6920706B1 (en)
WO (1) WO2022130812A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003284522A (en) * 2002-03-28 2003-10-07 Hiroshima Pref Gov Method for rapidly introducing enzyme into plant tissue
JP2008125427A (en) * 2006-11-20 2008-06-05 Umeda Jimusho:Kk Innovative heating method, its use and apparatus
JP2009089668A (en) * 2007-10-10 2009-04-30 Hiroshima Pref Gov Method for producing mature food
JP2010213651A (en) * 2009-03-18 2010-09-30 Wakayama Prefecture Method for producing japanese radish pickle, and pickle
WO2016199766A1 (en) * 2015-06-08 2016-12-15 広島県 Method for impregnating substance into food material
JP2019170215A (en) * 2018-03-27 2019-10-10 広島県 Method for impregnating agent into food material and method for producing agent impregnated processed food

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003284522A (en) * 2002-03-28 2003-10-07 Hiroshima Pref Gov Method for rapidly introducing enzyme into plant tissue
JP2008125427A (en) * 2006-11-20 2008-06-05 Umeda Jimusho:Kk Innovative heating method, its use and apparatus
JP2009089668A (en) * 2007-10-10 2009-04-30 Hiroshima Pref Gov Method for producing mature food
JP2010213651A (en) * 2009-03-18 2010-09-30 Wakayama Prefecture Method for producing japanese radish pickle, and pickle
WO2016199766A1 (en) * 2015-06-08 2016-12-15 広島県 Method for impregnating substance into food material
JP2019170215A (en) * 2018-03-27 2019-10-10 広島県 Method for impregnating agent into food material and method for producing agent impregnated processed food

Also Published As

Publication number Publication date
WO2022130812A1 (en) 2022-06-23
JP2022096383A (en) 2022-06-29

Similar Documents

Publication Publication Date Title
DK2196100T3 (en) PROCESS FOR THE PREPARATION OF FULLY matured FOOD
US7833557B2 (en) Method of impregnation treatment for foods and a vitamin C-containing egg obtained thereby
JP6218206B2 (en) Method of impregnating ingredients in food
JP2013063094A (en) Food product suitable for person who has difficulty in chewing or swallowing
JP6052654B2 (en) Soft food manufacturing method and food
KR20170027010A (en) Chicken breast and manufacturing method thereof
JP2018201506A (en) Cooked fish having texture and appearance of roasted fish, of which even bone can be eaten
CN106714575B (en) Dried animal food and its preparation method
JP7173516B2 (en) Method for producing shape-retaining softened food
JP6371617B2 (en) Softening method
JP6920706B1 (en) How to introduce substances into foodstuffs
JP2015228836A (en) Vacuum-frozen dry food, and production method therefor
JP2021000003A (en) Method of making acetic acid-containing delicatessen
JP2023027311A (en) frozen food
JP6448833B1 (en) Method of impregnating food material and manufacturing method of substance-impregnated processed food
JP5751526B1 (en) Dried food material and method for producing the same
JP2014030410A (en) Enzyme treatment liquid, tenderizing method, tenderized animal food product
JP6580241B1 (en) Substance holding substrate
JP2011000067A (en) Coated food for thermally cooking and texture-holding material
JP2011000088A (en) Processed meat product and meat quality modifying material
JP2021000075A (en) Method of making acetic acid-containing delicatessen
CN112189810A (en) Processing method of low-intensity sterilized instant penaeus vannamei boone
KR20130142463A (en) Manufacturing method for drying snack using pumpkin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210118

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210118

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210714

R150 Certificate of patent or registration of utility model

Ref document number: 6920706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150