JP5751526B1 - Dried food material and method for producing the same - Google Patents

Dried food material and method for producing the same Download PDF

Info

Publication number
JP5751526B1
JP5751526B1 JP2014007206A JP2014007206A JP5751526B1 JP 5751526 B1 JP5751526 B1 JP 5751526B1 JP 2014007206 A JP2014007206 A JP 2014007206A JP 2014007206 A JP2014007206 A JP 2014007206A JP 5751526 B1 JP5751526 B1 JP 5751526B1
Authority
JP
Japan
Prior art keywords
food material
oil
food
dried
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014007206A
Other languages
Japanese (ja)
Other versions
JP2015133935A (en
Inventor
津 沙弥香 中
津 沙弥香 中
邊 弥 生 渡
邊 弥 生 渡
本 宏 司 坂
本 宏 司 坂
田 賢 哉 柴
田 賢 哉 柴
場 堅 治 馬
場 堅 治 馬
川 武 石
川 武 石
林 奈 央 宮
林 奈 央 宮
野 真理子 中
野 真理子 中
野 智 範 高
野 智 範 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima Prefecture
Mishima Foods Co Ltd
Original Assignee
Hiroshima Prefecture
Mishima Foods Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima Prefecture, Mishima Foods Co Ltd filed Critical Hiroshima Prefecture
Priority to JP2014007206A priority Critical patent/JP5751526B1/en
Application granted granted Critical
Publication of JP5751526B1 publication Critical patent/JP5751526B1/en
Publication of JP2015133935A publication Critical patent/JP2015133935A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/85Food storage or conservation, e.g. cooling or drying

Landscapes

  • Freezing, Cooling And Drying Of Foods (AREA)

Abstract

【課題】素材本来の形状を保持したまま乾燥させた食品素材であって、食品素材内部に多くの細かい多孔質構造を有した、脆く、噛み易い、新しいテクスチャーの乾燥食品素材の提供。【解決手段】本発明による乾燥食品素材は、凍結後解凍させた食品素材の内部に少なくとも分解酵素と油脂とを含有させた後、蒸発乾燥させたものであり、食品素材が、本来の形状を保持したまま多孔質構造を有するものであることを特徴とする。【選択図】図4Disclosed is a food material that has been dried while retaining its original shape, and has a fine texture inside the food material, is brittle and easy to chew, and has a new texture. A dried food material according to the present invention is a food material that is thawed after freezing and contains at least a degrading enzyme and fats and oils and then evaporated to dryness. The food material has an original shape. It has a porous structure while being held. [Selection] Figure 4

Description

本発明は、乾燥食品素材およびその製造方法に関する。より詳細には、本発明は、素材本来の形状を保持したまま乾燥させた食品素材であって、食品素材内部に多くの多孔質構造を有した、脆く、噛み易い、新しいテクスチャーの乾燥食品素材およびその製造方法に関する。   The present invention relates to a dry food material and a method for producing the same. More specifically, the present invention relates to a dried food material having a new texture, which is a food material dried while maintaining the original shape of the material, and has many porous structures inside the food material, and is brittle and easy to bite. And a manufacturing method thereof.

従来から、復水性の改善を目的として、乾燥食品素材の物性を改変する方法が提案されている。特許文献1〜3は、食品素材を凍結後解凍した後、減圧または加圧操作により分解酵素を含浸することで、形状を保持させた軟化食品素材を製造する方法に関し、その後乾燥処理しても、水分を戻すと復元されることが記載されている。特許文献4は、食品素材に分解酵素液を塗布した後、緩慢に凍結して解凍することで、分解酵素を食品素材内部に導入する発明で、その後、乾燥処理しても、水分を戻すと復元されることが記載されている。   Conventionally, a method for modifying physical properties of a dried food material has been proposed for the purpose of improving water reconstitution. Patent Documents 1 to 3 relate to a method for producing a softened food material that retains its shape by impregnating with a degrading enzyme by decompression or pressurization after freezing and thawing the food material. It is described that when water is returned, it is restored. Patent Document 4 is an invention in which a degrading enzyme is introduced into a food material by slowly freezing and thawing after applying a degrading enzyme solution to the food material. It is described that it will be restored.

特許文献5は、乾燥する前に、植物性食品素材を分解酵素で軟化させておくことによって、復水性を向上させ、復水後の食品素材の形状、色および物性の再現性を良くする発明に関する。特に脱水工程として、固体から気体へ相移転する昇華による乾燥(凍結乾燥法:FD)を用いることによって、乾燥過程での食品素材内部での水分移動による組織構造の収縮・硬化をなくすことができ、15gの塊の食品素材であっても、復元できることが記載されている。   Patent Document 5 discloses an invention for improving the reconstitution property by softening a vegetable food material with a degrading enzyme before drying, and improving the reproducibility of the shape, color and physical properties of the food material after condensing. About. In particular, by using drying by sublimation (phase freeze-drying method: FD) that causes phase transfer from solid to gas as a dehydration process, it is possible to eliminate shrinkage and hardening of the tissue structure due to moisture movement inside the food material during the drying process. It is described that even a food material with a mass of 15 g can be restored.

特許文献6は、原料の野菜に膨張剤(ベーキングパウダー)と糖を含浸し、乾燥時の熱を利用して膨張剤を食品素材内部で発泡させることにより、組織の収縮による硬化を抑制させて乾燥野菜に多孔質構造を保有させる発明に関する。特許文献6および特許文献7には、野菜に油脂を塗布することで、乾燥処理後に野菜粒子が凝固することなくバラバラになることで、湯戻しによる復水のムラを生じないことが記載されている。   Patent document 6 impregnates a raw material vegetable with a swelling agent (baking powder) and sugar, and suppresses hardening due to tissue shrinkage by foaming the swelling agent inside the food material using heat during drying. The present invention relates to an invention in which dried vegetables have a porous structure. Patent Document 6 and Patent Document 7 describe that application of fats and oils to vegetables does not cause unevenness of condensate due to hot water reconstitution, because vegetable particles fall apart without being solidified after drying treatment. Yes.

非特許文献1は、特許文献1および特許文献2と同様の方法を用いて、油脂を素材内部に含浸できることを記載した論文であり、油脂を乳化することで、疎水性成分も水溶性成分と同様に含浸できることを報告している。この論文では、軟化酵素と同時に乳化油脂を含浸しても、軟化酵素単体を含浸した素材の硬さと有意差がなかったことが記載されている。   Non-Patent Document 1 is a paper that describes that oils and fats can be impregnated inside the material using the same method as Patent Documents 1 and 2, and by emulsifying oils and fats, hydrophobic components and water-soluble components are also included. It is reported that it can be impregnated as well. In this paper, it is described that even when the emulsified oil and fat were impregnated simultaneously with the softening enzyme, there was no significant difference from the hardness of the material impregnated with the softening enzyme alone.

特開2007−204413号公報JP 2007-204413 A 特許第4947630号公報Japanese Patent No. 4947630 特許第4986188号公報Japanese Patent No. 4986188 特開2013−34467号公報JP 2013-34467 A 特開2012−200196号公報JP 2012-200196 A 特許第3884875号公報Japanese Patent No. 3888875 特開平05−123100号公報JP 05-123100 A

凍結含浸法によるジャガイモへの油脂含浸、渡邊弥生、石原理子、中津沙弥香、坂本宏司、日本食品科学工学会誌、58巻、p51−54、2011年2月発行Oil impregnation in potato by freeze impregnation method, Yayoi Watanabe, Masako Ishi, Sayaka Nakatsu, Koji Sakamoto, Journal of Japan Society for Food Science and Technology, 58, p51-54, published in February 2011

しかしながら、特許文献1〜5には、食品素材に事前の酵素処理を行って乾燥させた乾燥食品素材が記載されているが、いずれも食品素材の復元に関して言及されているに過ぎない。特許文献1〜5には、乾燥食品素材に関する形状、色やテクスチャー改変については詳細なデータが無く、具体的にどのような乾燥食品素材が得られるかが不明である。   However, Patent Documents 1 to 5 describe dry food materials obtained by subjecting food materials to prior enzyme treatment and drying, but all are only mentioned regarding restoration of food materials. In Patent Documents 1 to 5, there is no detailed data on the shape, color, and texture modification related to the dry food material, and it is unclear what specific dry food material can be obtained.

特許文献5等の従来技術によれば、食品素材をペクチナーゼなどの分解酵素で処理して形状を保持したまま軟化させることで、その乾燥後に復水しても、物性を復元できる組織構造を有する乾燥食品素材であることが提案されている。本発明では、単に分解酵素で食品素材の内部組織を分解、軟化するだけでは、一定レベル以上の物性値となる組織構造を有する乾燥食品素材、具体的には最大荷重(50N以下)、破断数(5個/mm以上)、空隙率(25%〜80%)である乾燥食品素材が製造できないことを明らかにした。   According to the prior art such as Patent Document 5, the food material is treated with a degrading enzyme such as pectinase and softened while maintaining its shape, so that it has a tissue structure that can restore physical properties even after condensing after drying. It has been proposed to be a dry food material. In the present invention, simply by decomposing and softening the internal structure of a food material with a degrading enzyme, a dry food material having a tissue structure having a physical property value of a certain level or more, specifically, maximum load (50 N or less), number of breaks It was clarified that a dried food material having a porosity (5% / mm or more) and a porosity (25% to 80%) could not be produced.

従来、多孔質構造を多く有した乾燥食品を製造する場合には、昇華により脱水させる凍結乾燥法(FD)を用いることによって、乾燥過程における素材内部での水分移動による素材組織の収縮を防止し、内部に多くの隔壁を保有させることができた。凍結乾燥法(FD)に比べて製造コストを抑えることができる蒸発乾燥法では、素材内部において気液界面への水分移動が起こり、これに伴い組織の収縮が起こる。そのため、膨張剤で発泡させる方法(特許文献6)や、小さくカットして元の素材の体積を小さくするなどの処理によって、組織の収縮により乾燥素材が硬くなることを軽減し、復水性を改善させる方法が提案されている。しかし、特許文献6に記載の方法では、膨張剤であるベーキングパウダーが発泡するための温度が必要であり、冷風乾燥や天日乾燥には好ましくなく、適する乾燥温度が限定される。また、ベーキングパウダーはアルカリ性であるため、アルカリ性で赤褐色を呈するポリフェノールを多く含む牛蒡や蓮根では仕上がりの色調が悪くなり、食感以外の外観などの要素も含めて総合的に品質を判断すると、適する野菜の種類が限定される。また、特許文献6および7に記載の方法では、油脂の素材内部への導入を目的としておらず、乾燥時における素材内部に含まれる油脂の果たす役割についてはまったく記載されていない。   Conventionally, when producing dried foods with a lot of porous structure, the freeze-drying method (FD), which is dehydrated by sublimation, is used to prevent the shrinkage of the material structure due to moisture movement inside the material during the drying process. It was possible to have many partitions inside. In the evaporative drying method, which can reduce the manufacturing cost as compared with the lyophilization method (FD), moisture moves to the gas-liquid interface inside the material, and the tissue contracts accordingly. For this reason, foaming with an expanding agent (Patent Document 6) and processing such as reducing the volume of the original material by cutting it small reduces the dry material from becoming hard due to tissue shrinkage, and improves water reconstitution. There is a proposed method. However, the method described in Patent Document 6 requires a temperature for foaming the baking powder, which is an expansion agent, and is not preferable for cold air drying or sun drying, and a suitable drying temperature is limited. In addition, since baking powder is alkaline, beef bowls and lotus roots that contain a lot of alkaline and reddish brown polyphenols have a poor finished color, and it is suitable to comprehensively judge the quality including factors such as appearance other than texture. The types of vegetables are limited. In addition, the methods described in Patent Documents 6 and 7 are not intended to introduce fat into the raw material, and do not describe the role played by the fat contained in the raw material during drying.

非特許文献1では、ビタミンAなど脂溶性成分の付加技術と成り得ることを示唆しているが、乾燥食品のテクスチャー改変については全く記載されていない。   Non-Patent Document 1 suggests that it can be an additional technique for fat-soluble components such as vitamin A, but does not describe any modification of the texture of dried food.

したがって、本発明の課題は、素材本来の形状を保持したまま乾燥させた食品素材であって、食品素材内部に多くの細かい多孔質構造を有した、脆く、噛み易い、新しいテクスチャーの乾燥食品素材を提供することにある。さらに、このような乾燥食品素材を、従来の昇華を利用した凍結乾燥法(FD)ではなく、安価な蒸発乾燥法を用いて製造する方法を提供することにある。なお、本発明において、蒸発乾燥法とは、食品素材の水分を、液体から気体への相転移である蒸発により乾燥する方法である。   Accordingly, an object of the present invention is a food material that is dried while maintaining the original shape of the material, and is a dry food material with a new texture that has many fine porous structures inside the food material and is brittle and easy to chew Is to provide. It is another object of the present invention to provide a method for producing such a dried food material by using an inexpensive evaporation drying method instead of the conventional freeze drying method (FD) using sublimation. In the present invention, the evaporation drying method is a method of drying the moisture of the food material by evaporation which is a phase transition from liquid to gas.

本発明者らは、上記課題を解決するため、鋭意検討した結果、凍結後解凍させた食品素材の内部に、少なくとも油脂を含有させた後、食品素材を乾燥することで、上記課題を解決できることを知見した。より詳細には、食品素材を凍結後解凍することで組織の剛性を緩和し、かつ柔軟性を付与させた後、乾燥時の収縮抑制作用を担う油脂を食品素材の内部に導入することで、上記課題を解決できることを知見した。さらに、食品素材の骨格構造を形成している成分を脆弱化させる分解酵素や塩基性塩類を、食品素材の内部に導入することで、本発明の効果をより向上できることを知見した。かかる知見に基づき、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors can solve the above problems by drying the food material after containing at least fats and oils in the food material thawed after freezing. I found out. More specifically, after freezing the food material to relax the rigidity of the tissue, and after imparting flexibility, by introducing into the food material the fat responsible for the shrinkage suppression action during drying, It has been found that the above problems can be solved. Furthermore, it discovered that the effect of this invention can be improved more by introduce | transducing the degradation enzyme and basic salt which weaken the component which has formed the frame | skeleton structure of a food material into the inside of a food material. Based on this knowledge, the present invention has been completed.

すなわち、本発明の一態様によれば、以下の1〜19の発明が提供される。
1. 凍結後解凍させた食品素材の内部に、少なくとも油脂を含有させた後、蒸発乾燥させた食品素材であって、前記食品素材が、本来の形状を保持したまま多孔質構造を有するものであることを特徴とする、乾燥食品素材。
2. 前記油脂が、乳化油脂及び/又は食品用乳化剤を含む、1に記載の乾燥食品素材。
3. 前記凍結後解凍させた食品素材の内部に、分解酵素及び/又は塩基性塩類をさらに含有させる、1または2に記載の乾燥食品素材。
4. 前記乾燥食品素材の空隙率が、25%〜80%である、1〜3のいずれかに記載の乾燥食品素材。
5. 前記乾燥食品素材の最大荷重が、50N以下である、1〜4のいずれかに記載の乾燥食品素材。
6. 前記乾燥食品素材の破断数が、5個/mm以上である、1〜5のいずれかに記載の乾燥食品素材。
7. 1〜6のいずれかに記載の乾燥食品素材を用いて得られた、乾燥食品。
8. 凍結後解凍させた食品素材の内部に、少なくとも油脂を導入する工程と、
前記食品素材を蒸発乾燥させて、本来の形状を保持したまま多孔質構造を有する食品素材を得る工程と、
を含んでなる、乾燥食品素材の製造方法。
9. 前記油脂が、乳化油脂及び/又は食品用乳化剤を含む、8に記載の乾燥食品素材の製造方法。
10. 前記凍結後解凍させた食品素材の内部に、分解酵素及び/又は塩基性塩類をさらに導入する、8または9に記載の乾燥食品素材の製造方法。
11. 前記乾燥食品素材の空隙率が、25%〜80%である、8〜10のいずれかに記載の乾燥食品素材の製造方法。
12. 前記油脂が乳化油脂を含み、前記乳化油脂が水中油滴型乳化油脂であり、前記水中油滴型乳化油脂中の油滴の平均粒子径が、1μm〜30μmである、8〜11のいずれかに記載の乾燥食品素材の製造方法。
13. 前記油脂が乳化油脂を含み、前記乳化油脂の20℃における粘度が、1mPa・s〜100mPa・sである、8〜12のいずれかに記載の乾燥食品素材の製造方法。
14. 前記食品素材への前記油脂の導入量が、前記食品素材100gに対して0.5g〜15gである、8〜13のいずれかに記載の乾燥食品素材の製造方法。
15. 前記乾燥食品素材の最大荷重が、50N以下である、8〜14のいずれかに記載の乾燥食品素材の製造方法。
16. 前記乾燥食品素材の破断数が、5個/mm以上である、8〜15のいずれかに記載の乾燥食品素材の製造方法。
17. 前記食品素材が、イモ類、根菜類、緑黄色野菜、肉類、および魚介類からなる群から選択される少なくとも1種である、8〜16のいずれかに記載の乾燥食品素材の製造方法。
18. 前記乾燥が、熱風乾燥、低温乾燥、真空乾燥、マイクロ波乾燥、過熱水蒸気乾燥、フライ乾燥、減圧フライ乾燥、ドラム乾燥、および天日乾燥からなる群から選択される少なくとも1種により行われる、8〜17のいずれかに記載の乾燥食品素材の製造方法。
19. 8〜18のいずれかに記載の製造方法により得られた乾燥食品素材を用いる、乾燥食品の製造方法。
That is, according to one aspect of the present invention, the following inventions 1 to 19 are provided.
1. It is a food material that contains at least fats and oils in the food material that has been thawed after freezing and then evaporated to dryness, and the food material has a porous structure while retaining its original shape. A dry food material characterized by
2. 2. The dry food material according to 1, wherein the fats and oils include emulsified fats and / or food emulsifiers.
3. 3. The dry food material according to 1 or 2, further comprising a degrading enzyme and / or a basic salt in the food material thawed after freezing.
4). The dry food material according to any one of 1 to 3, wherein a porosity of the dry food material is 25% to 80%.
5. The dry food material according to any one of 1 to 4, wherein a maximum load of the dry food material is 50 N or less.
6). The dried food material according to any one of 1 to 5, wherein the number of breaks of the dried food material is 5 pieces / mm or more.
7). A dried food obtained using the dried food material according to any one of 1 to 6.
8). Introducing at least oil into the food material thawed after freezing;
Evaporating and drying the food material to obtain a food material having a porous structure while maintaining its original shape;
A method for producing a dry food material, comprising:
9. 9. The method for producing a dried food material according to 8, wherein the fat contains an emulsified fat and / or a food emulsifier.
10. 10. The method for producing a dry food material according to 8 or 9, further comprising introducing a degrading enzyme and / or a basic salt into the food material thawed after freezing.
11. The method for producing a dry food material according to any one of 8 to 10, wherein the porosity of the dry food material is 25% to 80%.
12 Any of 8 to 11, wherein the oil / fat comprises an emulsified oil / fat, the emulsified oil / fat is an oil-in-water emulsified oil / fat, and an average particle diameter of the oil droplets in the oil-in-water emulsified oil / fat is 1 μm to 30 μm A method for producing a dry food material according to 1.
13. The method for producing a dried food material according to any one of 8 to 12, wherein the fats and oils include emulsified fats and oils, and the viscosity of the emulsified fats and oils at 20 ° C is 1 mPa · s to 100 mPa · s.
14 The method for producing a dry food material according to any one of 8 to 13, wherein the amount of the fats and oils introduced into the food material is 0.5 g to 15 g with respect to 100 g of the food material.
15. The method for producing a dry food material according to any one of 8 to 14, wherein the maximum load of the dry food material is 50 N or less.
16. The method for producing a dried food material according to any one of 8 to 15, wherein the number of breaks of the dried food material is 5 pieces / mm or more.
17. The method for producing a dry food material according to any one of 8 to 16, wherein the food material is at least one selected from the group consisting of potatoes, root vegetables, green-yellow vegetables, meats, and seafood.
18. The drying is performed by at least one selected from the group consisting of hot air drying, low temperature drying, vacuum drying, microwave drying, superheated steam drying, fly drying, reduced pressure fly drying, drum drying, and sun drying. The manufacturing method of the dry food material in any one of -17.
19. The manufacturing method of dry food using the dry food raw material obtained by the manufacturing method in any one of 8-18.

本発明によって、蒸発乾燥法により食品素材内部の水分を除去しても、多孔質構造が従来よりも飛躍的に多く保持される乾燥食品を製造することができる。その結果、これまで蒸発乾燥法では製造できなかった大型食品素材(例えば、1辺5mm以上の立方体形状の素材や1辺10mm以上の葉菜類)でも、噛みやすい食感の乾燥食品を製造することができる。本発明によって、従来は凍結乾燥法(FD)でしか得ることのできなった即席麺や乾燥スープなどの具材についても、安価に製造することができる。また、従来、蒸発乾燥法では高品質なものが製造できなかった食品素材にまで利用範囲を拡大することができる。例えば、畜肉や魚介類は、凍結乾燥法(FD)以外で乾燥させると特に硬くなる。そのため、歯や咀嚼力に問題を抱える者にとって食することが困難であった。本発明は、これを容易に噛むことを可能とし、タンパク質やカルシウムの補給源として利用することを可能にする。さらに、素材の多孔質構造が確保されることにより、素材の収縮と扁平が飛躍的に緩和された乾燥畜肉、乾燥魚介類を製造することができる。そのため、ノンフライでありながら油脂の旨味とサクサクした食感を有する低油脂スナック菓子、食べ応えのあるふりかけ素材、サラミなど乾燥畜肉、乾燥魚介類のおつまみなど、既存にはない優れた外観を有し、美味しい食感と呈味性を付与した乾燥食品を製造することができる。   According to the present invention, it is possible to produce a dry food in which the porous structure is remarkably retained as compared with the prior art even when moisture inside the food material is removed by the evaporation drying method. As a result, it is possible to produce a dry food with a texture that is easy to chew even with large food materials that could not be manufactured by the evaporative drying method (for example, a cube-shaped material with a side of 5 mm or more or leafy vegetables with a side of 10 mm or more). it can. According to the present invention, ingredients such as instant noodles and dried soup, which could conventionally be obtained only by freeze-drying (FD), can be manufactured at low cost. In addition, the range of use can be expanded to food materials that could not be manufactured with high quality by the evaporation drying method. For example, livestock meat and seafood become particularly hard when dried by means other than freeze-drying (FD). Therefore, it is difficult for those who have problems with teeth and chewing power to eat. The present invention makes it possible to chew it easily and to use it as a supplement source of protein and calcium. Furthermore, by ensuring the porous structure of the material, it is possible to produce dried meat and dried seafood in which the shrinkage and flatness of the material are drastically eased. Therefore, it has an excellent appearance that does not exist, such as low-fat snack snacks that are non-fried and have a delicious taste and a crispy texture, a sprinkling material that responds to eating, dried meat such as salami, and snacks for dried seafood, It is possible to produce a dry food with a delicious texture and taste.

本発明における乾燥前の食品素材への処理工程は、素材からの水分蒸発速度を向上させる役割も担っており、乾燥時間を短縮させることで製造コストを低減することができる。本発明は、蒸発乾燥法の利用を可能にすることや、乾燥工程における多孔質構造の保持のみならず、乾燥コストそのものを下げる役割も果たすことができる。   The process for the food material before drying in the present invention also plays a role of improving the moisture evaporation rate from the material, and the manufacturing cost can be reduced by shortening the drying time. The present invention makes it possible to use the evaporation drying method and not only to maintain the porous structure in the drying process but also to reduce the drying cost itself.

本発明では、食品素材の乾燥工程として、素材の気液界面への水分移動に伴う素材組織構造の収縮が起こる蒸発による乾燥、具体的には、熱風乾燥、低温乾燥、真空乾燥、マイクロ波乾燥、過熱水蒸気乾燥、フライ乾燥、減圧フライ乾燥、ドラム乾燥など、熱や対流を食品素材に付与し、調湿下で行う乾燥方法においても、多孔質構造を多数有する乾燥食品の製造方法を提供することができる。   In the present invention, as a drying process of the food material, drying by evaporation that causes shrinkage of the material structure due to moisture movement to the gas-liquid interface of the material, specifically, hot air drying, low temperature drying, vacuum drying, microwave drying The present invention also provides a method for producing a dry food having a large number of porous structures even in a drying method in which heat or convection is applied to a food material such as superheated steam drying, fly drying, reduced pressure frying drying, drum drying, etc. be able to.

乾燥ジャガイモの空隙率の算出方法を示す図である。It is a figure which shows the calculation method of the porosity of dry potato. 荷重/歪曲線を示す図である。It is a figure which shows a load / strain curve. 乾燥前および復水後の食品素材の物性測定方法を示す図である。It is a figure which shows the physical-property measuring method of the foodstuff material before drying and after condensate. 乾燥ジャガイモのX線CT画像を示す図(写真)である。It is a figure (photograph) which shows the X-ray CT image of dried potato. 湯戻しにより復水させたジャガイモの物性を示す図である。It is a figure which shows the physical property of the potato condensated by hot water return. 凍結・解凍処理の乾燥ジャガイモの品質に及ぼす影響を示す図である。It is a figure which shows the influence which it has on the quality of the dried potato of a freezing / thawing process. 凍結・解凍処理のジャガイモの物質導入効率に及ぼす影響を示す図である。It is a figure which shows the influence which it has on the substance introduction | transduction efficiency of the potato of freezing and thawing | decompression process. 乾燥直前の湿熱加熱による酵素失活処理の乾燥ジャガイモの品質に及ぼす影響を示す図である。It is a figure which shows the influence which acts on the quality of dry potato of the enzyme deactivation process by the heat of moist heat just before drying. 10mm厚の輪切り乾燥ジャガイモを示す図(写真)である。It is a figure (photograph) which shows a 10 mm-thick round cut dried potato. 乾燥牛蒡の湯戻しによる復水を示す図(写真)である。It is a figure (photograph) which shows the condensate by the hot water return of dried beef bowl. 凍結・解凍処理の有無による乾燥蓮根の収縮性の違いを示す図(写真)である。It is a figure (photograph) which shows the difference in the shrinkage | contraction property of a dried lotus root with the presence or absence of a freezing / thawing process. 乾燥蓮根のX線CT画像を示す図である。It is a figure which shows the X-ray CT image of a dried lotus root. 凍結・解凍処理の蓮根の物質導入効率に及ぼす影響を示す図である。It is a figure which shows the influence which it has on the substance introduction | transduction efficiency of a lotus root of a freezing / thawing process. 乾燥蓮根を示す図(写真)である。It is a figure (photograph) which shows a dry lotus root. 乾燥薩摩芋を示す図(写真)である。It is a figure (photograph) which shows a dried Satsuma mushroom. 乾燥南瓜を示す図(写真)である。It is a figure (photograph) which shows a dry southern foot. 1分間湯に浸漬後の広島菜の組織を示す図(顕微鏡写真)である。It is a figure (micrograph) which shows the structure | tissue of Hiroshima rape after being immersed in hot water for 1 minute. 乾燥エビのX線CT画像を示す図である。It is a figure which shows the X-ray CT image of dry shrimp. 乾燥エビを示す図(写真)である。It is a figure (photograph) which shows dry shrimp. エビの乾燥特性曲線を示す図である。It is a figure which shows the drying characteristic curve of shrimp. 乾燥鱈を示す図(写真)である。It is a figure (photograph) which shows dry rice cake. 乾燥タコを示す図(写真)である。It is a figure (photograph) which shows a dried octopus.

<乾燥食品素材>
本発明による乾燥食品素材は、凍結後解凍させた食品素材の内部に少なくとも分解酵素と油脂とを含有させた後、乾燥させたものであり、食品素材本来の形状を保持したまま多孔質構造を有するものである。食品素材を凍結後解凍することで、食品素材組織の剛性を緩和し、柔軟性を付与させることができる。その後、食材の骨格構造を形成している成分を脆弱化させる分解酵素及び/又は塩基性塩類と、乾燥時の収縮抑制作用を担う油脂とを食品素材の内部に含有させることで、安価な蒸発乾燥法での素材内部での水分移動に伴う組織構造の圧縮を抑制することができる。その結果、乾燥食品素材は、多くの細かい多孔質構造を有するため、噛みやすいテクスチャーを有するものとなる。
<Dry food material>
The dried food material according to the present invention contains at least a degrading enzyme and fats and oils in the food material thawed after freezing and then dried, and has a porous structure while maintaining the original shape of the food material. It is what you have. By freezing the food material after freezing, the rigidity of the food material tissue can be relaxed and flexibility can be imparted. After that, by decomposing enzymes and / or basic salts that weaken the components that form the skeleton structure of foodstuffs and fats and oils that have a shrinkage-inhibiting action during drying into the food material, inexpensive evaporation It is possible to suppress the compression of the tissue structure accompanying the movement of moisture inside the material in the drying method. As a result, the dried food material has a texture that is easy to chew because it has many fine porous structures.

<定義>
本発明による乾燥食品素材は、特定の物性値、具体的には空隙率、最大荷重、破断数が特定の数値となる組織構造を有するものが好ましい。本発明における物性値の定義は以下の通りである。
<Definition>
The dried food material according to the present invention preferably has a specific physical property value, specifically, a structure having a specific numerical value of porosity, maximum load, and number of breaks. The definition of the physical property value in the present invention is as follows.

(空隙率)
空隙率は、以下の方法で算出した。
空隙率(%)={1−(ρap(見かけ密度)/ρs(真密度))}×100
見かけ密度は、液体置換法により、30℃の蒸留水中でのサンプル質量(mwater)から算出した。
見かけ密度:ρap = mair/(mair - mwater) ×ρ(水の密度)
air:常気圧中でのサンプル質量
真密度は、トルエン置換法により、粉末にしたサンプルを30℃のトルエンと伴にピクノメーターに入れて質量を測定し、算出した。
真密度:ρs= ρ/{ρw+[Mwdw)]}
乾物密度:ρd={msample/((mtolen+msample)-mtotal)}*ρtoluen
w:乾燥素材の湿量基準含水率
(Porosity)
The porosity was calculated by the following method.
Porosity (%) = {1- (ρ ap (apparent density) / ρ s (true density))} × 100
The apparent density was calculated from the sample mass (m water ) in distilled water at 30 ° C. by the liquid displacement method.
Apparent density: ρ ap = m air / (m air -m water ) x ρ w (Water density)
m air : Mass of sample at atmospheric pressure The true density was calculated by placing a powdered sample in a pycnometer with toluene at 30 ° C. by a toluene substitution method and measuring the mass.
True density: ρ s = ρ d * ρ w / {ρ w + [M wd −ρ w )]}
Dry matter density: ρ d = {m sample / ((m tolen + m sample ) −m total )} * ρ toluen
M w : moisture content moisture content of dry material

なお、開気孔の大きい乾燥素材は、液体置換法による見かけの密度を算出するのが困難な場合がある。その場合は、破壊することなく内部構造が観察できるX線CT検査装置(MMT−225:株式会社島津製作所製)を用いて、X線CT画像を取得し,画像解析ソフト(Image Factory:IMソフト製)を用いて,中心部1.0〜1.5mm厚のCT画像を解析して空隙率を測定する。空隙率の計算には、二値化した画像を用いて、以下の方法で算出した。
空隙率(%)=空隙面積/断面積×100
この方法により、乾燥ジャガイモの空隙率を算出した一例を図1に示す。図1の矢印aが示す乾燥ジャガイモの断面の内部の黒い空隙部分を空隙面積とし、図1の矢印bが示す乾燥ジャガイモの塗りつぶした白い部分を断面積として、空隙率を算出した。
Note that it may be difficult to calculate the apparent density of the dry material having large open pores by the liquid replacement method. In that case, an X-ray CT image is acquired using an X-ray CT inspection apparatus (MMT-225: manufactured by Shimadzu Corporation) that can observe the internal structure without destruction, and image analysis software (Image Factory: IM software) And a void ratio is measured by analyzing a CT image having a thickness of 1.0 to 1.5 mm in the center. The porosity was calculated by the following method using a binarized image.
Porosity (%) = void area / cross-sectional area × 100
An example of calculating the porosity of the dried potato by this method is shown in FIG. The void ratio was calculated by setting the black void portion inside the cross section of the dried potato indicated by the arrow a in FIG. 1 as the void area and the white portion painted by the dry potato indicated by the arrow b in FIG.

(最大荷重)
最大荷重は、クリープメーター(RE−33005B:株式会社山電製)を用いて、直径3mmの円筒型冶具により、圧縮速度1mm/秒、歪率80%の条件で、20℃±2℃に温度調整したサンプルを圧縮したときのもっとも大きい荷重値を最大荷重値とした。
(Maximum load)
Maximum load is 20 ° C ± 2 ° C under the conditions of a compression rate of 1 mm / second and a distortion rate of 80% with a 3 mm diameter cylindrical jig using a creep meter (RE-33005B: manufactured by Yamaden Co., Ltd.) The largest load value when the adjusted sample was compressed was taken as the maximum load value.

(破断数)
破断数は、最大荷重と同じ条件で、クリープメーター(RE−33005B:株式会社山電製)により測定し、荷重/歪曲線の中で、荷重が増加または略平行から減少に転じる頂点において、その直後の最少荷重値との差が0.1N以上である頂点を破断点とし、サンプルの厚さ1mmあたりの破断点の数を破断数とした。参考までに、荷重/歪曲線の中で破断点(矢印)の一例を図2に示す。
(Number of breaks)
The number of ruptures was measured with a creep meter (RE-33005B: manufactured by Yamaden Co., Ltd.) under the same conditions as the maximum load. In the load / strain curve, at the apex where the load increased or turned from approximately parallel to decreased. The apex where the difference from the immediately following minimum load value is 0.1 N or more was taken as the breaking point, and the number of breaking points per 1 mm thickness of the sample was taken as the breaking number. For reference, an example of the breaking point (arrow) in the load / strain curve is shown in FIG.

本発明による乾燥食品素材の空隙率は、好ましくは25〜80%であり、より好ましくは30〜75%であり、さらに好ましくは35〜70%である。乾燥食品素材の空隙率を上記数値範囲内に調節することで、乾燥食品素材のテクスチャーを改変することができる。   The porosity of the dry food material according to the present invention is preferably 25 to 80%, more preferably 30 to 75%, and further preferably 35 to 70%. By adjusting the porosity of the dried food material within the above numerical range, the texture of the dried food material can be modified.

本発明による乾燥食品素材の最大荷重は、好ましくは50N以下であり、より好ましくは5〜50Nであり、さらに好ましくは10〜45Nである。乾燥食品素材の最大荷重を上記数値範囲内に調節することで、乾燥食品素材のテクスチャーを改変することができる。   The maximum load of the dried food material according to the present invention is preferably 50 N or less, more preferably 5 to 50 N, and still more preferably 10 to 45 N. By adjusting the maximum load of the dried food material within the above numerical range, the texture of the dried food material can be modified.

本発明による乾燥食品素材の破断数は、好ましくは5個/mm以上であり、より好ましくは7〜18個/mmであり、さらに好ましくは8〜15個/mmである。乾燥食品素材の破断数を上記数値範囲内に調節することで、乾燥食品素材のテクスチャーを改変することができる。   The number of breaks of the dried food material according to the present invention is preferably 5 pieces / mm or more, more preferably 7 to 18 pieces / mm, and still more preferably 8 to 15 pieces / mm. By adjusting the number of breaks of the dried food material within the above numerical range, the texture of the dried food material can be modified.

本発明に用いる食品素材としては、植物性、動物性のいずれのものであってもよい。具体的には、植物性の素材としては、根菜類、イモ類、緑黄色野菜が適している。例えば、大根、人参、牛蒡、筍、蓮根等の根菜類、ジャガイモ、薩摩芋、里芋、南瓜等のイモ類、ブロッコリー、キャベツ、白菜、広島菜、アスパラガス、ホウレン草、小松菜、青梗菜、トマト等の緑黄色野菜などが挙げられる。また、動物性の素材としては、牛肉、豚肉、鳥肉、羊肉、馬肉、鹿肉、猪肉、山羊肉、兎肉、鯨肉、それらの内臓などの肉類や、鯵、鮎、鰯、鰹、鮭、鯖、鯛、鱈、鮪、鮑、牡蠣、帆立、蛤、エビ、カニ、イカ、タコ、ナマコなどの魚介類を例示することができる。また、蒲鉾、竹輪などの魚肉練製品や、ハム、ソーセージなどの畜肉加工製品、麺類、漬物などの加工食品であってもよい。   The food material used in the present invention may be plant or animal. Specifically, as vegetable materials, root vegetables, potatoes, and green-yellow vegetables are suitable. For example, root vegetables such as radish, carrot, beef bowl, rice bran, lotus root, potatoes such as potatoes, satsuma mushrooms, taro, nanban, broccoli, cabbage, Chinese cabbage, Hiroshima greens, asparagus, spinach, komatsuna, green pepper, tomatoes, etc. Examples include green and yellow vegetables. Animal materials include beef, pork, poultry, lamb, horse meat, venison, salmon meat, goat meat, salmon meat, whale meat, and their internal organs, salmon, salmon, salmon, salmon, Examples include seafood such as salmon, salmon, salmon, salmon, salmon, salmon, oysters, scallops, salmon, shrimp, crab, squid, octopus, sea cucumber and the like. In addition, fish paste products such as salmon and bamboo rings, processed meat products such as ham and sausage, processed foods such as noodles and pickles may be used.

これらの食品素材は、原材料として生の状態でも、煮る、焼く、蒸す、揚げるなどの加熱・調理をして用いてもよい。電子レンジ加熱や過熱水蒸気処理でも良い。加熱する場合の温度は特に問わないが、内在タンパク質を変性させる目的で、60℃以上、好ましくは65℃以上が望ましい。焼くなどの高温処理では、加熱による色や香りなどの品質変化を考慮して、加熱温度と加熱時間を決定する必要がある。また、食品素材を食塩、クエン酸などの有機酸およびその塩を溶解した水溶液で茹でるなどの処理を行なって用いても良い。   These food materials may be used as raw materials by heating and cooking such as boiled, baked, steamed, fried and so on. Microwave heating or superheated steam treatment may be used. The temperature for heating is not particularly limited. For the purpose of denaturing the endogenous protein, 60 ° C. or higher, preferably 65 ° C. or higher is desirable. In high-temperature treatment such as baking, it is necessary to determine the heating temperature and the heating time in consideration of quality changes such as color and fragrance due to heating. Further, the food material may be used by subjecting it to a treatment such as boiling with an aqueous solution in which an organic acid such as salt or citric acid and its salt are dissolved.

原材料となる食品素材の形状は、塊でも一口サイズでもいずれの形状であってもよいが、素材の大きさは適宜選択することができる。元の食品素材が外観で認識できる大きさが好ましく、摂食者の食欲をそそるものでなければならない。本発明の対象となる食品素材は、厚さ5mm以上で体積125mm以上の塊が好ましいが、緑色野菜や豆類などはその限りでない。 The shape of the food material used as the raw material may be either a lump size, a bite size, or a shape, but the size of the material can be selected as appropriate. The size should be such that the original food material is recognizable by appearance and should appeal to the appetite. The food material that is the subject of the present invention is preferably a lump having a thickness of 5 mm or more and a volume of 125 mm 3 or more, but green vegetables and beans are not limited thereto.

原材料となる食品素材は、乾燥に適する物性に改変させるための物質を導入する前に、凍結後解凍したものを用いる。凍結速度は、急速、緩慢いずれでもよいが、好ましくは初期冷却速度が5℃/分以下であることが望ましい。また、植物性素材の場合、冷凍前にブランチング処理を行い、内在酵素を失活させてもよい。   The food material used as a raw material is one that has been thawed after freezing before introducing a substance for modifying the physical properties suitable for drying. The freezing rate may be either rapid or slow, but preferably the initial cooling rate is 5 ° C./min or less. In the case of plant materials, blanching treatment may be performed before freezing to inactivate endogenous enzymes.

本発明において、食品素材の内部には、少なくとも油脂を導入する。導入する物質は、食品素材に応じて、分解酵素及び/又は塩基性塩類も併せて導入することができる。   In the present invention, at least fats and oils are introduced into the food material. As the substance to be introduced, a degrading enzyme and / or a basic salt can also be introduced according to the food material.

動物性素材の場合、予めタンブリングや針による穴空けを行なうことでより導入効果を高めることができる。   In the case of animal materials, the introduction effect can be further enhanced by tumbling or punching with a needle in advance.

植物性素材の場合、上記素材への物質導入処理後の工程として、乾燥前に植物組織分解酵素の失活または殺菌を目的とした加湿加熱処理を行わなくてもよい。動物性素材の場合、加熱処理の有無を問わない。   In the case of plant materials, it is not necessary to perform humidification heat treatment for the purpose of deactivation or sterilization of plant tissue-degrading enzymes before drying as a step after the substance introduction treatment to the materials. In the case of animal materials, it does not matter whether heat treatment is performed.

食品素材に導入する油脂は、脂肪酸エステルを含むものであれば良く、米油、大豆油、パーム油、なたね油、およびラード等の食用油脂や、グリセリン脂肪酸エステル、ショ糖脂肪酸エステル、およびレシチン等の食品用乳化剤が好ましい。   The fats and oils to be introduced into the food material only need to contain fatty acid esters, such as edible fats and oils such as rice oil, soybean oil, palm oil, rapeseed oil and lard, glycerin fatty acid esters, sucrose fatty acid esters, and lecithin. Food emulsifiers are preferred.

本発明においては、食品素材の内部への導入効果を高めるために、食品用油脂を乳化した乳化油脂を用いることが好ましく、水中油滴型(o/w型)乳化油脂がより好ましい。水中油滴型乳化油脂中の油滴の平均粒子径は、好ましくは1μm〜30μmであり、より好ましくは1μm〜25μmであり、さらに好ましくは1μm〜20μmである。水中油滴型乳化油脂中の油滴の平均粒子径が上記範囲内であれば、食品素材の内部への乳化油脂の導入効果を高めることができる。なお、平均粒子径は、レーザー回折式粒度分布測定装置SALD2200(島津製作所製)により測定した値である。   In the present invention, it is preferable to use an emulsified fat and oil emulsified with food grade fat and oil, and more preferable is an oil-in-water type (o / w type) emulsified fat and oil in order to enhance the introduction effect into the food material. The average particle diameter of the oil droplets in the oil-in-water type emulsified fat is preferably 1 μm to 30 μm, more preferably 1 μm to 25 μm, and further preferably 1 μm to 20 μm. If the average particle diameter of the oil droplets in the oil-in-water type emulsified fat is within the above range, the effect of introducing the emulsified fat into the food material can be enhanced. The average particle diameter is a value measured with a laser diffraction particle size distribution analyzer SALD2200 (manufactured by Shimadzu Corporation).

また、乳化油脂の20℃における粘度は、好ましくは1mPa・s〜100mPa・sであり、より好ましくは3mPa・s〜70mPa・sであり、さらに好ましくは5mPa・s〜50mPa・sである。乳化油脂の20℃における粘度が上記範囲内であれば、食品素材の内部への乳化油脂の導入効果を高めることができる。なお、乳化油脂の20℃における粘度とは、10rpmの測定条件でE型粘度計を用いて測定したとき、測定開始から2分後の粘度の値である。   The viscosity of the emulsified oil / fat at 20 ° C. is preferably 1 mPa · s to 100 mPa · s, more preferably 3 mPa · s to 70 mPa · s, and further preferably 5 mPa · s to 50 mPa · s. If the viscosity of the emulsified oil / fat at 20 ° C. is within the above range, the effect of introducing the emulsified oil / fat into the food material can be enhanced. The viscosity of the emulsified oil / fat at 20 ° C. is a viscosity value 2 minutes after the start of measurement when measured using an E-type viscometer under a measurement condition of 10 rpm.

食品素材に導入する分解酵素は、主に、ペクチナーゼ、プロテアーゼ、グルカナーゼまたはセルラーゼのいずれかの酵素活性を含む酵素が使用される。具体的には、プロテアーゼ、ペプチダーゼなどタンパク質を低分子化、ペプタイドあるいはアミノ酸に分解する酵素、グルカナーゼ、セルラーゼ、ペクチナーゼ、ペクチンエステラーゼ、ヘミセルラーゼ、β−グルコシダーゼ、マンナーゼ、キシラナーゼ、アルギン酸リアーゼ、キトサナーゼ、イヌリナーゼ、キチナーゼなどデンプン、ペクチン、セルロース、イヌリン、グルコマンナン、キシラン、アルギン酸、フコイダンなどの多糖類を低分子化、オリゴ糖あるいは単糖に分解する酵素を挙げることができる。これらの酵素は、1種又は相互に阻害しない範囲内で2種以上を組み合わせて使用することもできる。特に、動物性素材の場合、乾燥工程に影響のない範囲で、プロテアーゼとペプチターゼを併用して作用させることで、多くのペプタイドやアミノ酸を生成させ、呈味性を向上させることができる。分解酵素の形態としては、粉末、液体、あるいは分散液に含有されたものを使用しても良い。   As a degrading enzyme to be introduced into a food material, an enzyme having an enzyme activity of pectinase, protease, glucanase or cellulase is mainly used. Specifically, enzymes such as proteases, peptidases, etc., which lower the protein, decompose peptides or amino acids, glucanase, cellulase, pectinase, pectinesterase, hemicellulase, β-glucosidase, mannase, xylanase, alginate lyase, chitosanase, inulinase, Mention may be made, for example, of enzymes such as chitinase which lower the molecular weight of polysaccharides such as starch, pectin, cellulose, inulin, glucomannan, xylan, alginic acid and fucoidan and decompose them into oligosaccharides or monosaccharides. These enzymes can be used alone or in combination of two or more within a range not inhibiting each other. In particular, in the case of animal materials, a large amount of peptides and amino acids can be produced and the taste can be improved by using protease and peptidase together in a range that does not affect the drying process. As a form of the decomposing enzyme, a powder, liquid, or a dispersion contained in a dispersion may be used.

食品素材に導入する塩基性塩類は、クエン酸、リンゴ酸、重曹などのナトリウム塩が好ましい。乳酸などのカルシウム塩でもよい。   The basic salts to be introduced into the food material are preferably sodium salts such as citric acid, malic acid and sodium bicarbonate. Calcium salts such as lactic acid may be used.

本発明で用いる導入物質は、液体である場合は、そのまま、もしくは希釈して利用でき、粉末である場合は、水親和性の高い溶質に溶解若しくは分散させた状態で用いることができる。液状の導入物質は、pH3〜pH10の範囲で利用でき、pH4〜pH8であることがより好ましい。pHの調整には、有機酸とその塩類、調味液などを使うこともできる。酵素を用いる場合、酵素活性が高まる至適pHに調整する、あるいは食品素材と同じpHに調整して使用することもできる。   When the introduced substance used in the present invention is a liquid, it can be used as it is or after being diluted, and when it is a powder, it can be used in a state dissolved or dispersed in a solute having a high water affinity. The liquid introduction substance can be used in the range of pH 3 to pH 10, and more preferably pH 4 to pH 8. For adjusting the pH, organic acids and salts thereof, seasoning liquids and the like can also be used. When an enzyme is used, it can be adjusted to an optimum pH at which the enzyme activity is increased, or can be adjusted to the same pH as the food material.

物質の導入量は、食品素材により適宜選択することができる。具体的には、油脂の場合、食品素材100gに対して、0.5〜15.0gの範囲であることが好ましく、1〜10gの範囲であることがより好ましい。分解酵素の場合、食品素材100gに対して、0.0001〜1.0gの範囲であることが好ましく、0.001〜0.5gの範囲であることがより好ましい。   The amount of substance introduced can be appropriately selected depending on the food material. Specifically, in the case of fats and oils, it is preferably in the range of 0.5 to 15.0 g and more preferably in the range of 1 to 10 g with respect to 100 g of the food material. In the case of a degrading enzyme, it is preferably in the range of 0.0001 to 1.0 g, more preferably in the range of 0.001 to 0.5 g, with respect to 100 g of the food material.

本発明において、食品素材の内部への分解酵素や油脂の導入手段は、特に限定されない。例えば、導入手段として、圧力操作や浸漬、噴霧や塗す等を挙げることができる。   In the present invention, the means for introducing a degrading enzyme or fat into the food material is not particularly limited. For example, examples of the introducing means include pressure operation, immersion, spraying, and coating.

本発明においては、食品素材の内部への分解酵素や油脂の導入工程後、乾燥工程前に、食品素材を、再度、冷凍後解凍してもよい。   In the present invention, the food material may be thawed after freezing again after the step of introducing the degrading enzyme or fat into the food material and before the drying step.

食品素材の乾燥には、素材の気液界面からの水分蒸発による蒸発乾燥法、例えば、熱風乾燥、低温乾燥、真空乾燥、マイクロ波乾燥、過熱水蒸気乾燥、フライ乾燥、減圧フライ乾燥、ドラム乾燥、天日乾燥を行うことができ、これらの蒸発乾燥法を相互に組み合わせて行うこともできる。さらに、途中で乾燥を適宜中断して、素材表面からの水分の蒸発を抑え、内部の水分が表面に拡散するあんじょう工程を入れても良い。   For the drying of food materials, evaporative drying methods by evaporating moisture from the gas-liquid interface of the materials, such as hot air drying, low temperature drying, vacuum drying, microwave drying, superheated steam drying, fly drying, reduced pressure fly drying, drum drying, Sun drying can be performed, and these evaporation drying methods can be combined with each other. Furthermore, drying may be appropriately interrupted in the middle to suppress the evaporation of moisture from the surface of the material, and an infiltration step in which the moisture inside diffuses to the surface may be included.

乾燥前処理工程、乾燥工程の途中または乾燥後に、食品素材に調味料を添加できる。具体的には、食塩、糖類、有機酸およびその塩、増粘多糖類などの増粘剤、ビタミン、ミネラルなど栄養価を高める物質を利用することができる。   A seasoning can be added to the food material during or after the drying pretreatment process and drying process. Specifically, it is possible to use thickening agents such as salt, saccharides, organic acids and salts thereof, thickening polysaccharides, substances that increase nutritional value such as vitamins and minerals.

<乾燥食品>
本発明による乾燥食品は、上記の乾燥食品素材を用いて製造することができる。乾燥食品としては、ふりかけ具材、即席茶漬け、即席麺や即席スープなどの具材、スナックなどの菓子類、ノンフライ食品、低油脂食品、畜肉や魚介類などの珍味やおつまみ等を挙げることができる。
<Dry food>
The dried food according to the present invention can be produced using the dried food material described above. Examples of dried foods include sprinkling ingredients, instant tea pickles, ingredients such as instant noodles and instant soup, confectionery such as snacks, non-fried foods, low-fat foods, livestock meat and seafood, and other delicacies and snacks .

本発明について実施例により詳細に説明するが、本発明の技術的範囲はこれらの実施例に限定されるものではない。   Examples The present invention will be described in detail with reference to examples, but the technical scope of the present invention is not limited to these examples.

<1.乾燥食品素材の物性測定方法>
乾燥食品素材の物性は、直径3mmの円筒型冶具を用いて、圧縮速度1mm/秒、歪率80%の一軸圧縮試験により値を得た。最大荷重値は、データ取得時に得られた荷重値の中で最も大きい値とした。破断点は、荷重/歪曲線の中で、荷重が増加または略平行から減少に転じる頂点において、その直後の最少荷重値との差が0.1N以上である頂点を破断点とし、サンプルの厚さ1mmあたりの破断点の数をその個体の破断数とした。
<1. Method for measuring physical properties of dried food materials>
The physical properties of the dried food material were obtained by a uniaxial compression test using a cylindrical jig having a diameter of 3 mm and a compression rate of 1 mm / second and a distortion rate of 80%. The maximum load value was the largest value among the load values obtained at the time of data acquisition. The breaking point is the peak of the load / strain curve where the load increases or changes from approximately parallel to decreasing, and the vertex whose difference from the minimum load value immediately after that is 0.1 N or more is defined as the breaking point. The number of break points per 1 mm was taken as the number of breaks of the individual.

<2.乾燥前および復水後の食品素材の物性測定方法>
乾燥前および復水後の食品素材の物性は、直径3mmの円筒型冶具を用いて、圧縮速度10mm/秒、歪率95%で2回圧縮するテクスチャー解析試験により値を得た。1回目の圧縮で要する仕事量を硬さ(A1)、圧縮後に素材からプランジャーを引き抜くために要する仕事量を付着性(A3)、2回目の圧縮に要する仕事量をA2としたときのA2/A1を凝集性として、3つの物性値(A1〜A3)を得た(図3参照)。
<2. Method for measuring physical properties of food materials before drying and after condensing>
The physical properties of the food material before drying and after condensate were obtained by a texture analysis test in which compression was performed twice at a compression rate of 10 mm / second and a distortion rate of 95% using a cylindrical jig having a diameter of 3 mm. A2 when the work required for the first compression is hardness (A1), the work required for pulling out the plunger from the material after compression is adhesion (A3), and the work required for the second compression is A2. Three physical property values (A1 to A3) were obtained with / A1 as cohesiveness (see FIG. 3).

下記の実施例および比較例で用いた乳化油脂の詳細は、以下の通りである。
・油脂:キャノーラ油
・乳化剤:ポエムJ0021(理研ビタミン株式会社製)
・乳化条件:ホモジナイザーHF93(SMT製)を用いて100rpmで5分間撹拌
・平均粒子径:12〜15μm
・粘度:3〜40mPa・s
なお、平均粒子径は、レーザー回折式粒度分布測定装置SALD2200(島津製作所製)を用いて測定した値である。粘度は、10rpmの測定条件でE型粘度計(東機産業製)を用いて測定したとき、測定開始から2分後の粘度の値である。
The details of the emulsified fats and oils used in the following Examples and Comparative Examples are as follows.
・ Oil: Canola oil ・ Emulsifier: Poem J0021 (Riken Vitamin Co., Ltd.)
・ Emulsification condition: Stirring at 100 rpm for 5 minutes using homogenizer HF93 (manufactured by SMT) ・ Average particle size: 12 to 15 μm
・ Viscosity: 3 to 40 mPa · s
The average particle diameter is a value measured using a laser diffraction particle size distribution analyzer SALD2200 (manufactured by Shimadzu Corporation). The viscosity is a viscosity value 2 minutes after the start of measurement when measured using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd.) under measurement conditions of 10 rpm.

[実施例1]
直径28mmで厚さ10mmにカットしたジャガイモを、75℃で30分ブランチング処理し、−20℃で24時間冷凍し解凍後、乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した10%質量の乳化油脂を含む0.5%質量のペクチナーゼ(オリエンチームHP、株式会社HBI製)水溶液に浸漬し、真空チャンバーに入れて10kPaの減圧状態で5分間維持した。大気圧に戻してからジャガイモを網に並べて10℃で16時間静置後、75℃で6時間熱風乾燥(PV−210、タバイエスペック株式会社製)を行った。
[Example 1]
A potato cut to 28 mm in diameter and 10 mm in thickness was blanched at 75 ° C. for 30 minutes, frozen at −20 ° C. for 24 hours, thawed, and adjusted with poem J0021 (Riken Vitamin Co., Ltd.) as an emulsifier. It was immersed in a 0.5% mass pectinase (Orientteam HP, manufactured by HBI Co., Ltd.) aqueous solution containing a mass of emulsified oil and fat, placed in a vacuum chamber, and maintained under a reduced pressure of 10 kPa for 5 minutes. After returning to atmospheric pressure, potatoes were lined up on a net and allowed to stand at 10 ° C. for 16 hours, followed by hot-air drying (PV-210, manufactured by Tabai Espec Co., Ltd.) at 75 ° C. for 6 hours.

[実施例2]
直径28mmで厚さ10mmにカットしたジャガイモを、90℃で15分ブランチング処理し、−20℃で24時間冷凍し解凍後、乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した10%質量の乳化油脂水溶液に浸漬し、真空チャンバーに入れて10kPaの減圧状態で5分間維持した。大気圧に戻してからジャガイモを網に並べて10℃で16時間静置後、75℃で6時間熱風乾燥(PV−210、タバイエスペック株式会社製)を行った。
[Example 2]
A potato cut to 28 mm in diameter and 10 mm in thickness was blanched at 90 ° C. for 15 minutes, frozen at −20 ° C. for 24 hours, thawed, and adjusted with poem J0021 as an emulsifier (manufactured by Riken Vitamin Co., Ltd.) 10% It was immersed in a mass emulsified oil / fat aqueous solution, placed in a vacuum chamber, and maintained under a reduced pressure of 10 kPa for 5 minutes. After returning to atmospheric pressure, potatoes were lined up on a net and allowed to stand at 10 ° C. for 16 hours, followed by hot-air drying (PV-210, manufactured by Tabai Espec Co., Ltd.) at 75 ° C. for 6 hours.

[比較例1]
直径28mmで厚さ10mmにカットしたジャガイモを、75℃で30分ブランチング処理し、−20℃で24時間冷凍し解凍後、網に並べて10℃で16時間静置後、75℃で6時間熱風乾燥(PV−210、タバイエスペック株式会社製)を行った。
[Comparative Example 1]
A potato cut to 28 mm in diameter and 10 mm in thickness is blanched at 75 ° C. for 30 minutes, frozen at −20 ° C. for 24 hours, thawed, placed on a net and allowed to stand at 10 ° C. for 16 hours, and then at 75 ° C. for 6 hours. Hot air drying (PV-210, manufactured by Tabai Espec Co., Ltd.) was performed.

実施例1および2ならびに比較例1の乾燥ジャガイモの最大荷重値を表1に示す。実施例1の方法で得られた乾燥ジャガイモは17N、実施例2の方法では34N、比較例1の方法では86Nであり、酵素や油脂を導入した実施例1および実施例2の方が、凍結・解凍処理のみの比較例1に比べて噛み易い食感であった。   Table 1 shows the maximum load values of the dried potatoes of Examples 1 and 2 and Comparative Example 1. The dry potato obtained by the method of Example 1 was 17N, the method of Example 2 was 34N, the method of Comparative Example 1 was 86N, and Examples 1 and 2 into which enzymes and oils were introduced were frozen. -It was a texture that was easy to chew compared to Comparative Example 1 which was only thawed.

実施例1および2ならびに比較例1の乾燥ジャガイモについて、多孔質構造の質を示す物性パラメータとなる厚さ1mmあたりの破断数の結果を表1に示す。実施例1および2の乾燥ジャガイモは、いずれも噛み易かった。実施例1の破断数11.3個/mmのジャガイモは、実施例2の8.3個/mmのジャガイモより、さらにサクサク感の増した軽い食感であった。比較例1のジャガイモは、3.0個/mmであり、空隙が少なく、噛むために相当の咀嚼力を要した。   For the dried potatoes of Examples 1 and 2 and Comparative Example 1, the results of the number of breaks per 1 mm thickness, which is a physical property parameter indicating the quality of the porous structure, are shown in Table 1. The dried potatoes of Examples 1 and 2 were both easy to chew. The potato with the number of breaks of 11.3 pieces / mm in Example 1 was lighter than the 8.3 pieces / mm in Example 2 with a lighter texture. The potato of the comparative example 1 was 3.0 pieces / mm, there was little space | gap, and the considerable masticatory force was required in order to chew.

実施例1および2ならびに比較例1の乾燥ジャガイモの空隙率を表1に示す。空隙率は、実施例1では57%であり、実施例2では54%であり、比較例1では29%であり、比較例1は実施例1および2の約半分の値であった。   Table 1 shows the porosity of the dried potatoes of Examples 1 and 2 and Comparative Example 1. The porosity was 57% in Example 1, 54% in Example 2, 29% in Comparative Example 1, and Comparative Example 1 was about half the value of Examples 1 and 2.

実施例1および2ならびに比較例1の乾燥ジャガイモについて、X線CT検査装置(MMT−225、株式会社島津製作所製)を用いて、0.078mm毎のCT画像を取得した。X線CT画像のうち中心部の断層を図4に示す。実施例1および2の乾燥ジャガイモは、比較例1のものに比べて空隙量が多く、隔壁が細かく、より緻密な多孔質構造であることが観察できた。空隙の細かさを見るための外周長比は、外周長比=空隙の外周長/断面の外周長(−)(mm/mm)により算出した。ジャガイモの外周長比は、実施例1が13であり、実施例2が7であり、比較例1が7であった。外周長比の結果からも、実施例1の乾燥ジャガイモは、より細かい隔壁を有する多孔質構造をしていることが数値的にも示された。   For the dried potatoes of Examples 1 and 2 and Comparative Example 1, CT images for every 0.078 mm were obtained using an X-ray CT inspection apparatus (MMT-225, manufactured by Shimadzu Corporation). FIG. 4 shows a tomogram at the center of the X-ray CT image. It was observed that the dried potatoes of Examples 1 and 2 had a larger amount of voids, finer partition walls, and a denser porous structure than those of Comparative Example 1. The outer peripheral length ratio for checking the fineness of the void was calculated by the outer circumferential length ratio = the outer circumferential length of the void / the outer circumferential length of the cross section (−) (mm / mm). The outer peripheral length ratio of the potato was 13 in Example 1, 7 in Example 2, and 7 in Comparative Example 1. Also from the results of the peripheral length ratio, it was numerically shown that the dried potato of Example 1 has a porous structure having finer partition walls.

実施例1および2ならびに比較例1の乾燥ジャガイモの形状の特性値(直径、扁平率)を表1に示す。円形素材の長径と短径の平均をその個体の直径とし、(1−短径/長径)の値をその個体の扁平率として算出した。乾燥ジャガイモの直径は、比較例1の19mmに対して、実施例1および2はいずれも23mmといずれも大きく、その外観は良好であった。油脂を導入した実施例1および2の乾燥ジャガイモは、比較例1に比べて扁平率が小さく、導入された油脂が乾燥時の扁平抑制に寄与した。   Table 1 shows the characteristic values (diameter and flatness) of the shapes of the dried potatoes of Examples 1 and 2 and Comparative Example 1. The average of the major axis and the minor axis of the circular material was used as the diameter of the individual, and the value of (1-minor axis / major axis) was calculated as the flatness of the individual. The diameter of the dried potato was 19 mm in Comparative Example 1 and both Examples 1 and 2 were as large as 23 mm, and the appearance was good. The dried potatoes of Examples 1 and 2 into which the fats and oils were introduced had a smaller flatness than that of Comparative Example 1, and the introduced fats and oils contributed to the suppression of flatness during drying.

実施例1および2の乾燥ジャガイモを95℃の湯の中に3分間浸漬させ、復水性を評価した結果を図5に示す。乾燥前および復水後のジャガイモの物性は、クリープメーター(RE−33005B:株式会社山電製)により、直径3mmの円筒型冶具を用いて、圧縮速度10mm/秒、歪率95%で2回圧縮するテクスチャー解析試験により値を得た。1回目の圧縮で要する仕事量を硬さ(A1)、圧縮後に素材からプランジャーを引き抜くために要する仕事量を付着性(A3)、2回目の圧縮に要する仕事量をA2としたときのA2/A1を凝集性として、3つの物性値を得た。なお比較例1は、中心部に水が浸透せず、硬いままであり復元できなかった。復元可能であった実施例1および2のジャガイモについて、乾燥前の硬さ(A1)、付着性(A3)、凝集性(A2/A1)の3つの物性値を比較すると、いずれのジャガイモにおいても3つの物性値に有意差が認められず、復元が良好であった。特に、実施例1は復元性が高く、油脂と酵素の併用導入によって乾燥ジャガイモの復元性がより高まる効果が認められた。   FIG. 5 shows the results of evaluating the water condensability by immersing the dried potatoes of Examples 1 and 2 in 95 ° C. hot water for 3 minutes. The physical properties of potato before drying and after condensate were measured twice with a creep meter (RE-33005B: manufactured by Yamaden Co., Ltd.) using a cylindrical jig with a diameter of 3 mm at a compression rate of 10 mm / second and a distortion rate of 95%. Values were obtained by compressive texture analysis tests. A2 when the work required for the first compression is hardness (A1), the work required for pulling out the plunger from the material after compression is adhesion (A3), and the work required for the second compression is A2. Three physical property values were obtained using / A1 as cohesiveness. In Comparative Example 1, water did not permeate into the central portion and was hard and could not be restored. Regarding the potatoes of Examples 1 and 2 that were able to be restored, the three physical property values of hardness (A1), adhesion (A3), and cohesiveness (A2 / A1) before drying were compared. There was no significant difference in the three physical property values, and the restoration was good. In particular, Example 1 has a high restorability, and the effect of further improving the restorability of dried potatoes was confirmed by the combined use of fats and oils and enzymes.

[比較例2]
直径28mmで厚さ10mmにカットしたジャガイモを、75℃で30分ブランチング処理し、冷却後、凍結せずに乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した10%質量の乳化油脂を含む0.5%質量のペクチナーゼ(オリエンチームHP、株式会社HBI製)水溶液に浸漬し、真空チャンバーに入れて10kPaの減圧状態で5分間維持した。大気圧に戻してからジャガイモを網に並べて10℃で16時間静置後、75℃で6時間熱風乾燥(風速3.0m/秒)行った。
[Comparative Example 2]
A 10% mass emulsified oil prepared by pouring potato cut at 28 mm in diameter and 10 mm in thickness at 75 ° C. for 30 minutes, and after cooling, was adjusted with Poem J0021 (manufactured by Riken Vitamin Co., Ltd.) as an emulsifier without freezing. Was immersed in an aqueous solution of 0.5% pectinase (Orientam HP, manufactured by HBI Co., Ltd.), placed in a vacuum chamber and maintained at a reduced pressure of 10 kPa for 5 minutes. After returning to atmospheric pressure, the potatoes were arranged in a net and allowed to stand at 10 ° C. for 16 hours, followed by hot-air drying (wind speed 3.0 m / sec) at 75 ° C. for 6 hours.

[比較例3]
直径28mmで厚さ10mmにカットしたジャガイモを、90℃で30分ブランチング処理し、冷却後、凍結せずに乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した10%質量の乳化油脂を含む0.5%質量のペクチナーゼ(オリエンチームHP、株式会社HBI製)水溶液に浸漬し、真空チャンバーに入れて10kPaの減圧状態で5分間維持した。大気圧に戻してからジャガイモを網に並べて10℃で16時間静置後、75℃で6時間熱風乾燥(風速3.0m/秒)行った。
[Comparative Example 3]
A 10% mass emulsified fat prepared by poem J0021 (manufactured by Riken Vitamin Co., Ltd.), an emulsifier, which was blanched at 90 ° C. for 30 minutes, boiled at 90 ° C. for 30 minutes and then frozen without cooling. Was immersed in an aqueous solution of 0.5% pectinase (Orientam HP, manufactured by HBI Co., Ltd.), placed in a vacuum chamber and maintained at a reduced pressure of 10 kPa for 5 minutes. After returning to atmospheric pressure, the potatoes were arranged in a net and allowed to stand at 10 ° C. for 16 hours, followed by hot-air drying (wind speed 3.0 m / sec) at 75 ° C. for 6 hours.

事前に凍結処理を行わない比較例2および3の乾燥ジャガイモは、圧縮、扁平が激しく、多孔質構造を有しなかった(図6)。表1に示すように、これらの最大荷重は、比較例2では70Nであり、比較例3では55Nであり、事前に凍結処理を行った実施例1の乾燥ジャガイモの17Nと比較して、3〜4倍の値となった。破断数は、比較例2では3.7個/mm、比較例3では6.9個/mmであり、実施例1の11.3個/mmに比べると1/3から2/3であり、表1に示すように乾燥食品として好ましい食感となるには内部の空隙量が不足していた。   The dried potatoes of Comparative Examples 2 and 3, which were not subjected to freezing treatment in advance, were severely compressed and flattened and did not have a porous structure (FIG. 6). As shown in Table 1, these maximum loads were 70 N in Comparative Example 2 and 55 N in Comparative Example 3, which was 3 N compared to 17 N of the dried potato of Example 1 that had been previously subjected to the freezing treatment. The value was 4 times. The number of breaks was 3.7 pieces / mm in Comparative Example 2, 6.9 pieces / mm in Comparative Example 3, and 1/3 to 2/3 compared to 11.3 pieces / mm in Example 1. As shown in Table 1, the amount of voids in the interior was insufficient to provide a preferable texture as a dry food.

実施例1および比較例3で作製した乾燥ジャガイモの乾燥前の硬さは、クリープメーター(RE−33005B:株式会社山電製)により、直径3mmの円筒型冶具を用いて、圧縮速度10mm/秒、歪率95%で2回圧縮するテクスチャー解析試験により、1回目の圧縮で要する仕事量(A1)をその値として得た。実施例1の物質導入直後のジャガイモの硬さ(A1)は、比較例3の3倍の値であったが、導入された酵素の作用によって乾燥直前には比較例3と同等の硬さになった(図7)。図7に物質導入直後のテクスチャー解析試験の波形を示す。圧縮開始から破断するまでの荷重と歪が直線的な関係性を持つ範囲において、その傾き(弾性率)の値を比較したところ、事前に凍結・解凍処理を行う実施例1は、その処理を行わない比較例3の1/10の弾性率となり、素材組織がより柔軟となったことに起因して、油脂および酵素の導入量が多くなったことを証明した。   The hardness before drying of the dried potatoes produced in Example 1 and Comparative Example 3 was measured with a creep meter (RE-33005B: manufactured by Yamaden Co., Ltd.) using a cylindrical jig having a diameter of 3 mm and a compression speed of 10 mm / second. The amount of work required for the first compression (A1) was obtained as a value by a texture analysis test in which compression was performed twice at a distortion rate of 95%. The hardness (A1) of the potato immediately after the introduction of the substance of Example 1 was three times the value of Comparative Example 3, but it was as hard as Comparative Example 3 immediately before drying due to the action of the introduced enzyme. (Fig. 7). FIG. 7 shows a waveform of a texture analysis test immediately after substance introduction. In a range in which the load and strain from the start of compression to breakage have a linear relationship, the slope (elastic modulus) value was compared. It was proved that the amount of introduction of fats and oils increased due to the elasticity of 1/10 of Comparative Example 3 not being performed and the material structure becoming more flexible.

実施例1および比較例3の乾燥直前のジャガイモについて、ジエチルエーテルを用いてソックスレー法で16時間脂質抽出を行い、導入された油脂量を測定した。実施例1は、素材100gに対して油脂が1.92g導入されており、比較例3の素材100gに対して0.47gの油脂導入量に比べて4倍多かった。実施例1は、弾性率が低く柔軟性が高いことから、物質導入時に目的とする物質が染み込み易くなり、乾燥素材の物性改善に必要な酵素量が導入されて組織の脆弱化が進行し、加えて乾燥時の収縮抑制に必要な油脂量が素材内部に確保されて、乾燥時の内在水分の移動に伴う組織構造の収縮が軽減され、目標とするサクサクとした噛み易い軽い食感が実現した。   About the potato just before drying of Example 1 and Comparative Example 3, lipid extraction was performed for 16 hours by Soxhlet method using diethyl ether, and the amount of introduced fats and oils was measured. In Example 1, 1.92 g of fats and oils were introduced with respect to 100 g of the raw material, and four times more than the amount of introduced fats and oils of 0.47 g with respect to 100 g of the raw material of Comparative Example 3. In Example 1, since the elastic modulus is low and the flexibility is high, the target substance is easily infiltrated at the time of substance introduction, the amount of enzyme necessary for improving the physical properties of the dry material is introduced, and the weakening of the tissue proceeds. In addition, the amount of fats and oils necessary to suppress shrinkage during drying is secured inside the material, reducing the shrinkage of the tissue structure due to movement of internal moisture during drying, and realizing a light texture that is easy to bite with a target. did.

同じブランチング条件である実施例1および比較例2の乾燥直前のジャガイモについて、内部水分を抽出した。内部水分の抽出には、テンシプレッサー(TTP−50BX:有限会社タケトモ電機製)を用いて50kgのロードセルにより素材を圧縮した。抽出した内部水分は、自動接触角計(OCA15Pro:データフィジックス社製)で表面張力を測定した。実施例1のジャガイモから抽出した内部水分の表面張力は63mN/mだったのに対して、比較例2のジャガイモから抽出した内部水分の表面張力は71mN/mであった。同条件で測定した水の表面張力は73mN/mであった。実施例1の方法で内部に乳化油脂を導入されたジャガイモは、導入された乳化剤によって、ジャガイモの気液界面の表面張力が10mN/m低下し、このことによって、蒸発乾燥による内在水分の移動に伴う組織構造に加わる圧力が軽減されたことを示した。   Internal moisture was extracted from the potato immediately before drying in Example 1 and Comparative Example 2 under the same blanching conditions. For extraction of internal moisture, the material was compressed by a 50 kg load cell using a tensipresser (TTP-50BX: Taketomo Electric Co., Ltd.). The extracted internal moisture was measured for surface tension with an automatic contact angle meter (OCA15Pro: manufactured by Data Physics). The surface tension of the internal moisture extracted from the potato of Example 1 was 63 mN / m, whereas the surface tension of the internal moisture extracted from the potato of Comparative Example 2 was 71 mN / m. The surface tension of water measured under the same conditions was 73 mN / m. In the potato into which the emulsified oil and fat is introduced by the method of Example 1, the surface tension at the gas-liquid interface of the potato is reduced by 10 mN / m due to the introduced emulsifier. It was shown that the pressure applied to the accompanying tissue structure was reduced.

[比較例4]
直径28mmで厚さ10mmにカットしたジャガイモを、75℃で30分ブランチング処理し、−20℃で24時間冷凍し解凍後、0.5%質量のペクチナーゼ(オリエンチームHP、株式会社HBI製)水溶液に浸漬し、真空チャンバーに入れて10kPaの減圧状態で5分間維持した。大気圧に戻してから90℃で10分スチーム加熱処理して素材に含まれる酵素を失活させた後、ジャガイモを網に並べて10℃で16時間静置後、75℃で6時間熱風乾燥(PV−210、タバイエスペック株式会社製)を行った。得られたジャガイモの最大荷重は57Nであり、[実施例1]の17Nと比較すると約3倍の値となった。乾燥直前の酵素失活処理により糊化デンプンによって表面が覆われ、表面からの水分蒸発が不十分になり、乾燥速度が低下し、空隙が潰れて硬くなった(図8)。すなわち、乾燥直前の加熱処理は、素材内部の空隙を塞ぎ、乾燥食材の物性を硬くする方向に変化させることから、乾燥直前の加熱処理は、ポーラス構造を有する噛み易いテクスチャーの乾燥素材を得るために逆の効果となることが明確になった。
[Comparative Example 4]
A potato cut to 28 mm in diameter and 10 mm in thickness is blanched at 75 ° C. for 30 minutes, frozen at −20 ° C. for 24 hours, and thawed, then 0.5% mass pectinase (Orientteam HP, manufactured by HBI Corporation) It was immersed in an aqueous solution, placed in a vacuum chamber and maintained at a reduced pressure of 10 kPa for 5 minutes. After returning to atmospheric pressure and steam heating at 90 ° C. for 10 minutes to inactivate the enzyme contained in the material, the potatoes were lined up on a net, allowed to stand at 10 ° C. for 16 hours, and then dried with hot air at 75 ° C. for 6 hours ( PV-210, manufactured by Tabai Espec Co., Ltd.). The maximum load of the obtained potato was 57N, which was about three times the value of 17N of [Example 1]. The surface was covered with gelatinized starch by the enzyme deactivation treatment immediately before drying, moisture evaporation from the surface became insufficient, the drying rate was reduced, and the voids were crushed and hardened (FIG. 8). That is, since the heat treatment immediately before drying closes the voids inside the material and changes the physical properties of the dried food in a direction to make it harder, the heat treatment just before drying is to obtain a dry material having a porous structure and an easily chewable texture. It became clear that it would have the opposite effect.

[実施例3]
厚さ10mmの輪切りにカットしたジャガイモを、90℃で10分ブランチング処理し、−20℃で24時間冷凍し解凍後、乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した15%質量の乳化油脂を含む0.5%質量のペクチナーゼ(オリエンチームHP、株式会社HBI製)水溶液に浸漬し、真空チャンバーに入れて10kPaの減圧状態で5分間維持した。大気圧に戻してからジャガイモを網に並べて10℃で16時間静置後、80℃で10時間真空乾燥(DP43、ヤマト科学株式会社製)行った。得られた乾燥ジャガイモは、収縮が少なく、サクサクして軽い食感であり、適度に油脂が含有されているため旨味が増し、口腔内でまとまり易かった(図9)。乾燥ジャガイモを95℃の湯の中に浸漬させると、3分後には完全に復元した。復元後のジャガイモは、煮込んだような滑らかな食感であった。
[Example 3]
A potato cut into 10 mm thick slices was blanched at 90 ° C. for 10 minutes, frozen at −20 ° C. for 24 hours, thawed, and adjusted with poem J0021 (made by Riken Vitamin Co., Ltd.) as an emulsifier. Was immersed in an aqueous solution of 0.5% by mass pectinase (Orientam HP, manufactured by HBI Co., Ltd.) containing the emulsified oil and fat, placed in a vacuum chamber, and maintained at a reduced pressure of 10 kPa for 5 minutes. After returning to atmospheric pressure, potatoes were arranged in a net and allowed to stand at 10 ° C. for 16 hours, followed by vacuum drying (DP43, manufactured by Yamato Scientific Co., Ltd.) at 80 ° C. for 10 hours. The obtained dried potatoes had little shrinkage, a crispy and light texture, and since they contained oils and fats moderately, their umami taste increased and they were easily collected in the oral cavity (FIG. 9). When the dried potato was immersed in hot water at 95 ° C., it completely recovered after 3 minutes. The restored potatoes had a smooth texture that was boiled.

食品素材としてジャガイモを用いた実施例および比較例の結果の一覧を表1に示す。
Table 1 shows a list of results of Examples and Comparative Examples using potato as a food material.

[実施例4]
厚さ5mmの輪切りにカットした牛蒡を、沸騰水中で10分ブランチング処理し、乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した5%質量の乳化油脂を含む0.1%質量のセルラーゼ(ヘミセルラーゼ「アマノ」90、天野エンザイム株式会社製)水溶液に4℃で5時間浸漬後、−20℃で24時間冷凍した。解凍後、網に並べて10℃で16時間静置後、100Wで30秒を3回繰り返すマイクロ波乾燥(NE−SV30HA、パナソニック電工株式会社製)を行った。
[Example 4]
A beef bowl cut into 5 mm thick slices was blanched in boiling water for 10 minutes, and 0.1% by mass of 5% by mass of emulsified fat and oil prepared with Poem J0021 (manufactured by Riken Vitamin Co., Ltd.) as an emulsifier. After being immersed in a cellulase (hemicellulase “Amano” 90, Amano Enzyme Co., Ltd.) aqueous solution at 4 ° C. for 5 hours, it was frozen at −20 ° C. for 24 hours. After thawing, it was placed on a net and allowed to stand at 10 ° C. for 16 hours, and then microwave drying (NE-SV30HA, manufactured by Panasonic Electric Works Co., Ltd.) was repeated 3 times at 100 W for 30 seconds.

[実施例5]
厚さ5mmの輪切りにカットした牛蒡を、沸騰水中で10分ブランチング処理し、乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した5%質量の乳化油脂水溶液に4℃で5時間浸漬後、−20℃で24時間冷凍した。解凍後、網に並べて10℃で16時間静置後、100Wで30秒を3回繰り返すマイクロ波乾燥(NE−SV30HA、パナソニック電工株式会社製)を行った。
[Example 5]
A beef bowl cut into 5 mm thick slices was blanched in boiling water for 10 minutes and immersed in a 5% mass emulsified oil / fat aqueous solution prepared by Poem J0021 (manufactured by Riken Vitamin Co., Ltd.) as an emulsifier for 5 hours. Thereafter, it was frozen at −20 ° C. for 24 hours. After thawing, it was placed on a net and allowed to stand at 10 ° C. for 16 hours, and then microwave drying (NE-SV30HA, manufactured by Panasonic Electric Works Co., Ltd.) was repeated 3 times at 100 W for 30 seconds.

[比較例5]
厚さ5mmの輪切りにカットした牛蒡を、沸騰水中で10分ブランチング処理後、−20℃で24時間冷凍した。解凍後、網に並べて10℃で16時間静置後、100Wで30秒を3回繰り返すマイクロ波乾燥(NE−SV30HA、パナソニック電工株式会社製)を行った。
[Comparative Example 5]
The beef bowl cut into 5 mm thick slices was blanched in boiling water for 10 minutes and then frozen at −20 ° C. for 24 hours. After thawing, it was placed on a net and allowed to stand at 10 ° C. for 16 hours, and then microwave drying (NE-SV30HA, manufactured by Panasonic Electric Works Co., Ltd.) was repeated 3 times at 100 W for 30 seconds.

実施例4の乾燥牛蒡は、サクサクした食感であった。表2に示すように、最大荷重値は、実施例4では26Nであり、噛み易い範囲の値であるのに対し、比較例5では65Nであり、噛むために大きな咀嚼力を要した。   The dried beef bowl of Example 4 had a crisp texture. As shown in Table 2, the maximum load value was 26N in Example 4, which was a value within a range that can be easily chewed, whereas it was 65N in Comparative Example 5, and a large masticatory force was required to chew.

実施例4および比較例5の乾燥牛蒡の直径と比較した結果を表2に示す。乾燥前の直径と比較して、実施例4では81%であり、実施例5では69%であり、比較例5では64%であり、実施例4の乾燥牛蒡がもっとも収縮が少なかった。   Table 2 shows the result of comparison with the diameter of the dried beef bowl of Example 4 and Comparative Example 5. Compared to the diameter before drying, it was 81% in Example 4, 69% in Example 5, and 64% in Comparative Example 5, and the dried cowpox of Example 4 had the least shrinkage.

実施例4の乾燥牛蒡を95℃の湯の中に浸漬させると、直ちに発泡しながら湯が浸透し、1分以内に完全に内部まで水が浸透した(図10)。実施例5の乾燥牛蒡も発泡しながら湯が浸透し、1分以内に完全に内部まで水が浸透したが、比較例5の乾燥牛蒡は、湯に浮いてなじみにくく、1分以内に内部にまで水が浸透しなかった。復水後の牛蒡の直径は、実施例4では乾燥時の81%から86%、実施例5では69%から74%にまで回復したが、比較例5では直径の回復が認められなかった(表2)。復水後の牛蒡の硬さは、クリープメーター(RE−33005B:株式会社山電製)により、直径3mmの円筒型冶具を用いて、圧縮速度10mm/秒、歪率95%で2回圧縮するテクスチャー解析試験により、1回目の圧縮で要する仕事量(A1)をその値として得た。表2に示すように、復水後の実施例4の牛蒡の硬さは、比較例5の復水後の牛蒡の硬さの1/3以下の値であり、容易に噛み切れて食べ易かった。   When the dried beef bowl of Example 4 was immersed in hot water at 95 ° C., the hot water penetrated immediately while foaming, and the water completely penetrated into the interior within 1 minute (FIG. 10). While the dried beef bowl of Example 5 also foamed, the water penetrated and the water penetrated completely within 1 minute, but the dried beef bowl of Comparative Example 5 floated in the hot water and was not easily adapted to the inside within 1 minute. Until the water did not penetrate. The diameter of the cowpox after condensate recovered from 81% to 86% when dried in Example 4 and from 69% to 74% in Example 5, but no recovery of diameter was observed in Comparative Example 5 ( Table 2). The hardness of the beef bowl after condensate is compressed twice with a creep meter (RE-33005B: manufactured by Yamaden Co., Ltd.) using a cylindrical jig with a diameter of 3 mm at a compression rate of 10 mm / sec and a distortion rate of 95%. Through the texture analysis test, the work amount (A1) required for the first compression was obtained as the value. As shown in Table 2, the hardness of the beef bowl of Example 4 after the condensate is a value of 1/3 or less of the hardness of the beef bowl after the condensate of Comparative Example 5, and it is easy to chew and eat easily. It was.

食品素材として牛蒡を用いた実施例および比較例の結果の一覧を表2に示す。
Table 2 shows a list of results of Examples and Comparative Examples using beef bowl as a food material.

[実施例6]
厚さ10mmの半月切りにカットした水煮蓮根を、沸騰水中で20分ブランチング処理し、−20℃で24時間冷凍し解凍後、乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した10%質量の乳化油脂と0.05%質量のセルラーゼ(ヘミセルラーゼ「アマノ」90、天野エンザイム株式会社製)水溶液に浸漬し、真空チャンバーに入れて10kPaの減圧状態で3分間維持した。大気圧に戻してから蓮根を網に並べて80℃で8時間真空乾燥(DP43、ヤマト科学株式会社製)を行った。
[Example 6]
Boiled lotus root cut into half-month cuts with a thickness of 10 mm was blanched in boiling water for 20 minutes, frozen at -20 ° C. for 24 hours, thawed, and then adjusted with emulsifier Poem J0021 (manufactured by Riken Vitamin Co., Ltd.). It was immersed in an aqueous solution of 10% by mass of emulsified oil and fat and 0.05% by mass of cellulase (hemicellulase “Amano” 90, manufactured by Amano Enzyme Co., Ltd.), placed in a vacuum chamber and maintained at a reduced pressure of 10 kPa for 3 minutes. After returning to atmospheric pressure, the lotus roots were arranged on a net and vacuum dried (DP43, manufactured by Yamato Scientific Co., Ltd.) at 80 ° C. for 8 hours.

[比較例6]
厚さ10mmの半月切りにカットした水煮蓮根を、沸騰水中で20分ブランチング処理し、冷却後、凍結処理を行わずに乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した10%質量の乳化油脂と0.05%質量のセルラーゼ(ヘミセルラーゼ「アマノ」90、天野エンザイム株式会社製)水溶液に浸漬し、真空チャンバーに入れて10kPaの減圧状態で3分間維持した。大気圧に戻してから蓮根を網に並べて80℃で8時間真空乾燥(DP43、ヤマト科学株式会社製)を行った。
[Comparative Example 6]
Boiled lotus root cut into 10 mm thick half-moon slices was blanched in boiling water for 20 minutes, and after cooling, 10% adjusted with poem J0021 (manufactured by Riken Vitamin Co., Ltd.) as an emulsifier without freezing. It was immersed in a mass emulsified oil and fat and a 0.05% mass cellulase (hemicellulase “Amano” 90, Amano Enzyme Co., Ltd.) aqueous solution, placed in a vacuum chamber, and maintained at a reduced pressure of 10 kPa for 3 minutes. After returning to atmospheric pressure, the lotus roots were arranged on a net and vacuum dried (DP43, manufactured by Yamato Scientific Co., Ltd.) at 80 ° C. for 8 hours.

実施例6の乾燥蓮根は、表3に示すように、最大荷重が30Nであり、破断数が10.7個/mmで噛み易い食感であったのに対し、比較例6は、最大荷重が94Nであり、破断数が3.7個/mmで硬く、噛み砕くことが困難であった。図11にそれらの外観を示す。実施例6は、ほぼ収縮が認められず、多孔質構造を有していたが、比較例6は、収縮により形状が歪んでいた。図12は、実施例6の乾燥蓮根のX線CT画像(MMT−225、株式会社島津製作所製)のうち中心部の断層写真であり、内部に多くの隔壁を有する多孔質構造であることを示している。   As shown in Table 3, the dried lotus root of Example 6 had a maximum load of 30 N and a texture that was easy to chew at 10.7 pieces / mm, whereas Comparative Example 6 had a maximum load. Was 94N, the number of breaks was 3.7 / mm, and it was hard to chew. FIG. 11 shows their appearance. In Example 6, almost no shrinkage was observed and had a porous structure, but in Comparative Example 6, the shape was distorted by shrinkage. FIG. 12 is a tomographic photograph of the center of the dried lotus root X-ray CT image (MMT-225, manufactured by Shimadzu Corporation) of Example 6 and shows a porous structure having many partition walls inside. Show.

実施例6の乾燥蓮根の乾燥前の物性は、クリープメーター(RE−33005B:株式会社山電製)により、直径3mmの円筒型冶具を用いて、圧縮速度10mm/秒、歪率95%で2回圧縮するテクスチャー解析試験により、その値を得た。図13に示す物質導入直後のテクスチャー解析試験の波形は、事前に凍結・解凍処理を行うことで、圧縮開始から破断するまでの荷重と歪が直線的な関係性を持つ範囲において、その傾き(弾性率)の値に7倍の違いがあることを示した。実施例6の弾性率が0.3Nに対して、比較例6が2.1Nであり、実施例6は、比較例6に比べて物質導入時の素材組織の柔軟性が高かったことを示した。   The physical properties before drying of the dried lotus root of Example 6 were 2 with a creep meter (RE-33005B: manufactured by Yamaden Co., Ltd.) using a cylindrical jig with a diameter of 3 mm and a compression rate of 10 mm / second and a distortion rate of 95%. The value was obtained by a texture analysis test in which compression was performed twice. The waveform of the texture analysis test immediately after the introduction of the substance shown in FIG. 13 has a slope (in the range in which the load and strain from the start of compression to breakage have a linear relationship by performing freezing and thawing processing in advance. It was shown that there was a 7-fold difference in the value of elastic modulus. The elastic modulus of Example 6 is 0.3 N, whereas Comparative Example 6 is 2.1 N. Example 6 shows that the material structure at the time of substance introduction was more flexible than Comparative Example 6. It was.

実施例6および比較例6の乾燥直前の蓮根について、ジエチルエーテルを用いてソックスレー法で16時間脂質抽出を行い、導入された油脂量を測定した。実施例6の油脂導入量は1.6%質量であり、0.3%質量の比較例6に比べて、物質導入率が5倍高かった。実施例6は、乾燥素材中に多孔質構造を有するために必要な量の油脂が導入されたことによって、乾燥時の内在水分の移動に伴う構造骨格の収縮が軽減され、目標とした噛み易い食感が実現した。   The lotus root immediately before drying of Example 6 and Comparative Example 6 was subjected to lipid extraction for 16 hours by Soxhlet method using diethyl ether, and the amount of introduced fat was measured. The amount of fat introduced in Example 6 was 1.6% by mass, and the substance introduction rate was 5 times higher than that in Comparative Example 6 having a mass of 0.3%. In Example 6, the amount of fats and oils necessary for having a porous structure in the dry material was introduced, so that the shrinkage of the structural skeleton caused by the movement of internal moisture during drying was reduced, and the target bite was easy The texture was realized.

[比較例7]
厚さ10mmの半月切りにカットした水煮蓮根を、沸騰水中で20分ブランチング処理し、−20℃で24時間冷凍し解凍後、0.05%質量のセルラーゼ(ヘミセルラーゼ「アマノ」90、天野エンザイム株式会社製)水溶液に浸漬し、真空チャンバーに入れて10kPaの減圧状態で3分間維持した。大気圧に戻してから90℃で10分スチーム加熱処理して素材に含まれる酵素を失活させた後、網に並べて80℃で8時間真空乾燥(DP43、ヤマト科学株式会社製)を行った。
[Comparative Example 7]
Boiled lotus root cut into half-month slices with a thickness of 10 mm was blanched in boiling water for 20 minutes, frozen at −20 ° C. for 24 hours, thawed, and 0.05% mass cellulase (hemicellulase “Amano” 90, (Amano Enzyme Co., Ltd.) was immersed in an aqueous solution, placed in a vacuum chamber, and maintained at a reduced pressure of 10 kPa for 3 minutes. After returning to atmospheric pressure, steam heat treatment was performed at 90 ° C. for 10 minutes to inactivate the enzyme contained in the material, and then, vacuum drying (DP43, manufactured by Yamato Scientific Co., Ltd.) was performed at 80 ° C. for 8 hours. .

比較例7の蓮根の最大荷重は、62Nであり、実施例6の30Nと比較すると2倍の値となった。比較例7は、図14に示すように、乾燥直前の酵素失活処理により糊化デンプンによって表面が覆われ、表面からの水分蒸発が不十分になり、内部に十分な空隙を有することができず硬くなった   The maximum load of the lotus root of Comparative Example 7 was 62N, which was twice that of 30N of Example 6. In Comparative Example 7, as shown in FIG. 14, the surface is covered with gelatinized starch by the enzyme deactivation treatment immediately before drying, moisture evaporation from the surface becomes insufficient, and there can be sufficient voids inside. Became stiff

食品素材として蓮根を用いた実施例および比較例の結果の一覧を表3に示す。
Table 3 shows a list of results of Examples and Comparative Examples using lotus root as a food material.

[実施例7]
直径28mmで厚さ10mmにカットした薩摩芋を、75℃で30分ブランチング処理し、−20℃で24時間冷凍し解凍後、乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した15%質量の乳化油脂を含む0.1%質量のペクチナーゼ(オリエンチームHP、株式会社HBI製)水溶液に浸漬し、真空チャンバーに入れて10kPaの減圧状態で5分間維持した。大気圧に戻してから薩摩芋を網に並べて10℃で16時間静置後、80℃で3時間熱風乾燥(PV−210、タバイエスペック株式会社製)後、10℃16時間あんじょうし、さらに80℃で3時間熱風乾燥(PV−210、タバイエスペック株式会社製)を行った。
[Example 7]
Satsuma mushroom cut to 28 mm in diameter and 10 mm in thickness was blanched at 75 ° C. for 30 minutes, frozen at −20 ° C. for 24 hours, thawed, and adjusted with poem J0021 as an emulsifier (made by Riken Vitamin Co., Ltd.) 15% It was immersed in a 0.1% mass pectinase (Orientteam HP, manufactured by HBI Co., Ltd.) aqueous solution containing a mass of emulsified oil and fat, placed in a vacuum chamber, and maintained at a reduced pressure of 10 kPa for 5 minutes. After returning to atmospheric pressure, the Satsuma mushrooms were arranged in a net, allowed to stand at 10 ° C. for 16 hours, dried with hot air at 80 ° C. for 3 hours (PV-210, manufactured by Tabai Espec Co., Ltd.), 10 ° C. for 16 hours, and then 80 ° C. Then, hot air drying (PV-210, manufactured by Tabai Espec Co., Ltd.) was performed for 3 hours.

[比較例8]
直径28mmで厚さ10mmにカットした薩摩芋を、75℃で30分ブランチング処理し、−20℃で24時間冷凍し解凍後、10%質量のグルコースを含む1.0%質量の重曹水溶液に浸漬し、真空チャンバーに入れて10kPaの減圧状態で5分間維持した。大気圧に戻してから薩摩芋を網に並べて、80℃で3時間熱風乾燥(PV−210、タバイエスペック株式会社製)後、10℃16時間あんじょうし、再度80℃で3時間熱風乾燥(PV−210、タバイエスペック株式会社製)を行った。
[Comparative Example 8]
Satsuma mushroom cut to 28 mm in diameter and 10 mm in thickness was blanched at 75 ° C. for 30 minutes, frozen at −20 ° C. for 24 hours, thawed, and immersed in 1.0% by weight aqueous sodium bicarbonate solution containing 10% by weight glucose And placed in a vacuum chamber and maintained at a reduced pressure of 10 kPa for 5 minutes. After returning to atmospheric pressure, the Satsuma mushrooms are arranged on a net, dried with hot air at 80 ° C. for 3 hours (PV-210, manufactured by Tabai Espec Co., Ltd.), then dried for 10 hours at 16 ° C., and then again dried with hot air at 80 ° C. for 3 hours (PV- 210, manufactured by Tabai Espec Co., Ltd.).

実施例7の乾燥薩摩芋は、多孔質構造を有しており、サクっと噛み易い食感であった。比較例8は、石の様に硬く、噛み砕けなかった。図15が示すように、実施例7は、比較例8と比べて外観も良好であった。   The dried Satsuma mash of Example 7 had a porous structure and a texture that was easy to chew. Comparative Example 8 was hard like a stone and could not be chewed. As shown in FIG. 15, the appearance of Example 7 was better than that of Comparative Example 8.

食品素材として摩芋を用いた実施例および比較例の結果の一覧を表4に示す。
Table 4 shows a list of results of Examples and Comparative Examples in which Maya is used as a food material.

[実施例8]
10×10×厚さ40mmの四角柱型にカットした南瓜を、90℃で10分ブランチング処理し、−20℃で24時間冷凍し解凍後、乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した10%質量の乳化油脂を含む0.1%質量のペクチナーゼ(オリエンチームHP、株式会社HBI製)水溶液に浸漬し、真空チャンバーに入れて10kPaの減圧状態で3分間維持した。大気圧に戻してから南瓜を網に並べて4℃で16時間静置後、70℃で8時間熱風乾燥(PV−210、タバイエスペック株式会社製)を行った。
[Example 8]
10 × 10 × 40 mm-thick quadrangular pillar-shaped Nanban, blanched at 90 ° C. for 10 minutes, frozen at −20 ° C. for 24 hours, thawed, and emulsifier Poem J0021 (manufactured by Riken Vitamin Co., Ltd.) The sample was immersed in a 0.1% mass pectinase (Orientteam HP, manufactured by HBI Co., Ltd.) aqueous solution containing 10% mass emulsified oil and fat prepared in the above, placed in a vacuum chamber, and maintained at a reduced pressure of 10 kPa for 3 minutes. After returning to atmospheric pressure, the ridges were arranged in a net and allowed to stand at 4 ° C. for 16 hours, followed by hot-air drying (PV-210, manufactured by Tabai Espec Co., Ltd.) at 70 ° C. for 8 hours.

[実施例9]
10×10×厚さ40mmの四角柱型にカットした南瓜を、90℃で10分ブランチング処理し、−20℃で24時間冷凍し解凍後、乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した10%質量の乳化油脂溶液に浸漬し、真空チャンバーに入れて10kPaの減圧状態で3分間維持した。大気圧に戻してから南瓜を網に並べて4℃で16時間静置後、70℃で8時間熱風乾燥(PV−210、タバイエスペック株式会社製)を行った
[Example 9]
10 × 10 × 40 mm-thick quadrangular pillar-shaped Nanban, blanched at 90 ° C. for 10 minutes, frozen at −20 ° C. for 24 hours, thawed, and emulsifier Poem J0021 (manufactured by Riken Vitamin Co., Ltd.) The sample was immersed in a 10% mass emulsified oil / fat solution prepared in step 1 and placed in a vacuum chamber and maintained at a reduced pressure of 10 kPa for 3 minutes. After returning to atmospheric pressure, Nanban was lined up on the net and allowed to stand at 4 ° C. for 16 hours, followed by hot-air drying (PV-210, manufactured by Tabai Espec Co., Ltd.) at 70 ° C. for 8 hours.

[比較例9]
10×10×厚さ40mmの四角柱型にカットした南瓜を、90℃で10分ブランチング処理し、−20℃で24時間冷凍し解凍後、南瓜を網に並べて4℃で16時間静置後、70℃で8時間熱風乾燥(PV−210、タバイエスペック株式会社製)を行った。
[Comparative Example 9]
10 × 10 × 40 mm thick rectangular column-shaped Nanban was blanched at 90 ° C. for 10 minutes, frozen at −20 ° C. for 24 hours, thawed, and then placed in a net and left at 4 ° C. for 16 hours. Thereafter, hot air drying (PV-210, manufactured by Tabai Espec Co., Ltd.) was performed at 70 ° C. for 8 hours.

実施例8の乾燥南瓜の最大荷重は11Nであり、破断数は11.3個/mmであり、図16に示すように収縮せず、外観はそのままに、サクサクとスナック菓子様の食感であった。実施例9の乾燥南瓜の最大荷重は32Nであり、破断数は9.9個/mmであり、実施例8とは異る噛みやすい食感を有した。比較例9の乾燥南瓜の最大荷重は162Nと大きく、破断数は4.2個/mmと少なく、噛み砕くことが困難であった。   The maximum load of the dried Nanban of Example 8 is 11 N, the number of breaks is 11.3 pieces / mm, and it does not shrink as shown in FIG. 16, and it has a crispy and snack-like texture without changing the appearance. It was. The maximum load of the dried paddle of Example 9 was 32 N, the number of breaks was 9.9 pieces / mm, and it had a texture that was easy to chew different from Example 8. The maximum load of the dried Nanban of Comparative Example 9 was as large as 162N, the number of breaks was as small as 4.2 pieces / mm, and it was difficult to chew.

食品素材として南瓜を用いた実施例および比較例の結果の一覧を表5に示す。
Table 5 shows a list of results of Examples and Comparative Examples using Nanban as a food material.

[実施例10]
一辺5〜20mmにカットした広島菜を、1.0〜5.0%質量の重曹、1.0〜5.0%の馬鈴薯デンプン、0.1〜0.5%質量のサラダ油、0.1〜0.5%質量の乳化油脂を含む、30〜40%質量のトレハロース溶液に、25℃で1〜2時間浸漬し、真空チャンバーに入れて5kPaの減圧状態で5分間維持した。大気圧に戻してから、水分70〜90%に脱水した広島菜を網に並べて、70〜90℃で平均風速0.5〜1.2m/sで1〜5時間乾燥後、25℃、湿度70%で8時間あんじょうを行った後、70〜90℃で平均風速0.5〜1.2m/sで1〜5時間乾燥を行った。
[Example 10]
Hiroshima vegetable cut to 5-20 mm on a side, 1.0-5.0% by weight baking soda, 1.0-5.0% potato starch, 0.1-0.5% by weight salad oil, 0.1 It was immersed in a trehalose solution of 30 to 40% by mass containing ~ 0.5% by mass of emulsified oil and fat at 25 ° C. for 1 to 2 hours, placed in a vacuum chamber and maintained at a reduced pressure of 5 kPa for 5 minutes. After returning to atmospheric pressure, Hiroshima vegetables dehydrated to a moisture content of 70-90% are arranged on a net, dried at 70-90 ° C at an average wind speed of 0.5-1.2 m / s for 1-5 hours, and then at 25 ° C, humidity After carrying out the 8 hours of mixing at 70%, drying was carried out at 70 to 90 ° C. at an average wind speed of 0.5 to 1.2 m / s for 1 to 5 hours.

[比較例10]
一辺5〜20mmにカットした広島菜を、−25℃で凍結し,20〜25時間凍結乾燥(FDU−1100,EYELA)した。
[Comparative Example 10]
Hiroshima vegetables cut to 5-20 mm on a side were frozen at −25 ° C. and freeze-dried (FDU-1100, EYELA) for 20-25 hours.

図17に、乾燥後の広島菜を90℃の湯に3分間浸漬後、組織の状態をデジタルマイクロスコープ(VHX−1000、KEYENCE)により×300の倍率で観察した。 実施例10の広島菜は、乾燥状態で崩れない程度の硬さを有しながら、特に茎部の細胞の復水性がよく、細胞の形がよく復元していたが、比較例10の凍結乾燥した広島菜は、乾燥状態で脆くなり過ぎていたため、崩れている細胞が多く、復水後も細胞の形が崩れた状態であった。   In FIG. 17, the dried Hiroshima vegetables were immersed in 90 ° C. hot water for 3 minutes, and the state of the tissue was observed with a digital microscope (VHX-1000, KEYENCE) at a magnification of x300. The Hiroshima vegetables of Example 10 had a hardness that did not collapse in the dry state, and particularly the reconstitution of the cells in the stem portion was good and the shape of the cells was well restored. Since the Hiroshima greens were too brittle in the dry state, there were many cells that had collapsed, and the shape of the cells had collapsed even after condensate.

食品素材として南瓜を用いた広島菜および比較例の結果の一覧を表6に示す。
Table 6 shows a list of the results of Hiroshima vegetables using Nanban as a food material and comparative examples.

[実施例11]
外殻を除去した無頭エビ(バナメイ)を90℃で10分加熱し、−20℃で24時間冷凍した。解凍後、乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した10%質量の乳化油脂を含む0.05%質量のプロテアーゼ(パパインW−40、天野エンザイム会社製)水溶液に浸漬し、真空チャンバーに入れて10kPaの減圧状態で3分間維持した。大気圧に戻してから90℃で10分加熱後、エビを網に並べて、60℃で16時間熱風乾燥(PV−210、タバイエスペック株式会社製)を行った。得られた乾燥エビは、図18のX線CT画像(MMT−225、株式会社島津製作所製)が示すように、内部に大きな空隙を有しており、最大荷重20Nであり、破断数11.7個/mmでサクサクした軽い食感であった。その外観は、綺麗な橙色であった(図19)。
[Example 11]
The headless shrimp (Banamei) from which the outer shell was removed was heated at 90 ° C. for 10 minutes and frozen at −20 ° C. for 24 hours. After thawing, the sample was immersed in a 0.05% mass protease (papain W-40, Amano Enzyme) aqueous solution containing 10% mass emulsified oil and fat adjusted with emulsifier Poem J0021 (manufactured by Riken Vitamin Co., Ltd.). The chamber was placed in a chamber and maintained at a reduced pressure of 10 kPa for 3 minutes. After returning to atmospheric pressure and heating at 90 ° C. for 10 minutes, the shrimps were arranged in a net and dried with hot air (PV-210, manufactured by Tabai Espec) at 60 ° C. for 16 hours. As shown in the X-ray CT image (MMT-225, manufactured by Shimadzu Corporation) of FIG. 18, the obtained dried shrimp has a large void inside, has a maximum load of 20 N, and has a fracture number of 11. It was a light texture that was crunchy at 7 pieces / mm. The appearance was a beautiful orange color (FIG. 19).

[実施例12]
外殻を除去した無頭エビ(バナメイ)を90℃で10分加熱し、−20℃で24時間冷凍した。解凍後、乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した10%質量の乳化油脂溶液に浸漬し、真空チャンバーに入れて10kPaの減圧状態で3分間維持した。大気圧に戻してから90℃で10分加熱後、エビを網に並べて、60℃で16時間熱風乾燥(PV−210、タバイエスペック株式会社製)を行った。得られた乾燥エビは、最大荷重38Nであり、破断数8.7個/mmであり、実施例11より歯ごたえのある食感であり、油脂により旨味が増してスナック菓子のようであった。その外観は、綺麗な橙色であった(図19)。
[Example 12]
The headless shrimp (Banamei) from which the outer shell was removed was heated at 90 ° C. for 10 minutes and frozen at −20 ° C. for 24 hours. After thawing, it was immersed in a 10% by mass emulsified oil / fat solution prepared with Poem J0021 (manufactured by Riken Vitamin Co., Ltd.) as an emulsifier, and placed in a vacuum chamber and maintained at a reduced pressure of 10 kPa for 3 minutes. After returning to atmospheric pressure and heating at 90 ° C. for 10 minutes, the shrimps were arranged in a net and dried with hot air (PV-210, manufactured by Tabai Espec) at 60 ° C. for 16 hours. The obtained dried shrimp had a maximum load of 38 N, a breaking number of 8.7 pieces / mm, a texture that was more crunchy than Example 11, and the umami increased with oils and fats, which looked like a snack. The appearance was a beautiful orange color (FIG. 19).

[実施例13]
外殻を除去した無頭エビ(バナメイ)を90℃で10分加熱し、−20℃で24時間冷凍した。解凍後、乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した10%質量の乳化油脂を含む1.0%質量の重曹水溶液に浸漬し、真空チャンバーに入れて10kPaの減圧状態で3分間維持した。大気圧に戻してから90℃で10分加熱後、エビを網に並べて、60℃で16時間熱風乾燥(PV−210、タバイエスペック株式会社製)を行った。得られた乾燥エビは、最大荷重32Nであり、破断数9.2個/mmであり、実施例11より歯ごたえのある食感であった。
[Example 13]
The headless shrimp (Banamei) from which the outer shell was removed was heated at 90 ° C. for 10 minutes and frozen at −20 ° C. for 24 hours. After thawing, it is immersed in a 1.0% by weight aqueous sodium bicarbonate solution containing 10% by weight emulsified oil and fat adjusted with emulsifier Poem J0021 (manufactured by Riken Vitamin Co., Ltd.), placed in a vacuum chamber for 3 minutes under a reduced pressure of 10 kPa. Maintained. After returning to atmospheric pressure and heating at 90 ° C. for 10 minutes, the shrimps were arranged in a net and dried with hot air (PV-210, manufactured by Tabai Espec) at 60 ° C. for 16 hours. The obtained dried shrimp had a maximum load of 32 N, a number of breaks of 9.2 pieces / mm, and a texture that was more chewy than Example 11.

[実施例14]
外殻を除去した無頭エビ(バナメイ)を90℃で10分加熱し、−20℃で24時間冷凍した。解凍後、乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した10%質量の乳化油脂を含む1.0質量%のクエン酸ナトリウム水溶液に浸漬し、真空チャンバーに入れて10kPaの減圧状態で3分間維持した。大気圧に戻してから90℃で10分加熱後、エビを網に並べて、60℃で16時間熱風乾燥(PV−210、タバイエスペック株式会社製)を行った。得られた乾燥エビは、最大荷重33Nであり、破断数8.8個/mmであり、実施例11より歯ごたえのある食感であった。
[Example 14]
The headless shrimp (Banamei) from which the outer shell was removed was heated at 90 ° C. for 10 minutes and frozen at −20 ° C. for 24 hours. After thawing, it is immersed in a 1.0% by mass sodium citrate aqueous solution containing 10% by mass emulsified fats and oils adjusted with emulsifier Poem J0021 (manufactured by Riken Vitamin Co., Ltd.), put in a vacuum chamber and under reduced pressure of 10 kPa. Maintained for 3 minutes. After returning to atmospheric pressure and heating at 90 ° C. for 10 minutes, the shrimps were arranged in a net and dried with hot air (PV-210, manufactured by Tabai Espec) at 60 ° C. for 16 hours. The obtained dried shrimp had a maximum load of 33 N, a breaking number of 8.8 pieces / mm, and a texture that was more chewy than Example 11.

[比較例11]
外殻を除去した無頭エビ(バナメイ)を90℃で10分加熱し、−20℃で24時間冷凍した。解凍後、90℃で10分加熱し、エビを網に並べて、60℃で16時間熱風乾燥(PV−210、タバイエスペック株式会社製)を行った。得られた乾燥エビは、最大荷重64Nで噛むために多大な咀嚼力を要した。
[Comparative Example 11]
The headless shrimp (Banamei) from which the outer shell was removed was heated at 90 ° C. for 10 minutes and frozen at −20 ° C. for 24 hours. After thawing, it was heated at 90 ° C. for 10 minutes, shrimp were arranged on a net, and hot air drying (PV-210, manufactured by Tabai Espec Co., Ltd.) was performed at 60 ° C. for 16 hours. The obtained dried shrimp required a large masticatory force to chew at a maximum load of 64N.

表7に、実施例11および12ならびに比較例11の乾燥エビを95℃の湯の中に3分間浸漬させたときの硬さ(A1)を示す。復水後のエビの硬さ(A1)は、クリープメーター(RE−33005B:株式会社山電製)により、直径3mmの円筒型冶具を用いて、圧縮速度10mm/秒、歪率95%で2回圧縮するテクスチャー解析試験により、1回目の圧縮で要する仕事量(A1)として値を得た。実施例11および12のエビは、軟らかい食感で食べ易かった。比較例11の乾燥エビは、中心部まで水が浸透せずゴムのように噛みにくい食感であった。   Table 7 shows the hardness (A1) when the dried shrimps of Examples 11 and 12 and Comparative Example 11 were immersed in hot water at 95 ° C. for 3 minutes. The hardness (A1) of the shrimp after condensate was 2 at a compression rate of 10 mm / sec and a distortion rate of 95% using a 3 mm diameter cylindrical jig by a creep meter (RE-33005B: manufactured by Yamaden Co., Ltd.). A value was obtained as the work amount (A1) required for the first compression by the texture analysis test for the second compression. The shrimps of Examples 11 and 12 were easy to eat with a soft texture. The dried shrimp of Comparative Example 11 had a texture that water did not penetrate to the center and was difficult to chew like rubber.

図20に実施例11および12ならびに比較例11の乾燥特性曲線を示す。実施例11の乾燥速度は、いずれの含水率においても比較例11に比べて高かった。油脂を導入処理した実施例11および12は、特に含水率が低下した乾燥後期においても乾燥速度が大きかった。比較例11は、平衡含水率に到達するまでに14時間要するのに対して、実施例11は8時間であり、6時間の乾燥時間を削減できた。実施例11の出来上がった乾燥エビの湿量基準含水率は4%前後であり、比較例11の湿量基準含水率9%に比べて低く、サクサクと噛みやすい食感となった。   FIG. 20 shows the drying characteristic curves of Examples 11 and 12 and Comparative Example 11. The drying rate of Example 11 was higher than that of Comparative Example 11 at any moisture content. In Examples 11 and 12, in which the fats and oils were introduced, the drying rate was particularly high even in the late drying period when the moisture content decreased. Comparative Example 11 took 14 hours to reach the equilibrium moisture content, whereas Example 11 was 8 hours, and the drying time of 6 hours could be reduced. The moisture content on the basis of the moisture content of the dried shrimp obtained in Example 11 was around 4%, which was lower than the moisture content on the moisture content basis of 9% in Comparative Example 11, and the texture was easy to chew.

食品素材としてエビを用いた実施例および比較例の結果の一覧を表7に示す。
Table 7 shows a list of results of examples and comparative examples using shrimp as food materials.

[実施例15]
冷凍真鱈を解凍し、厚さ10mmの切り身にカットして、乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した10%質量の乳化油脂を含む0.05%質量のプロテアーゼ(パパインW−40、天野エンザイム会社製)水溶液に浸漬後、真空チャンバーに入れて10kPaの減圧状態で3分間維持した。大気圧に戻してから90℃で10分加熱してタンパク質を変性させた後、70℃で10時間熱風乾燥(PV−210、タバイエスペック株式会社製)を行った。得られた乾燥鱈は、図21に示すように身が白くて外観が良く、多孔質構造を有しながら崩れ難く、最大荷重35Nであり、破断数8.1個/mmで噛みやすい食感であった。元の鱈自体に油脂がほとんど含まれないため、適量の油脂が導入されたことによって旨味が増し、口腔内での滑らかさが付加された。
[Example 15]
Thawed frozen snapper, cut into 10 mm thick slices, and 0.05% mass protease (papain W) containing 10% mass emulsified oil and fat prepared with emulsifier Poem J0021 (manufactured by Riken Vitamin Co., Ltd.) (-40, manufactured by Amano Enzyme Co., Ltd.) After being immersed in an aqueous solution, it was placed in a vacuum chamber and maintained under a reduced pressure of 10 kPa for 3 minutes. After returning to atmospheric pressure, the protein was denatured by heating at 90 ° C. for 10 minutes, and then hot-air drying (PV-210, manufactured by Tabai Espec Co., Ltd.) was performed at 70 ° C. for 10 hours. As shown in FIG. 21, the obtained dried rice cake is white and has a good appearance, has a porous structure, is not easily collapsed, has a maximum load of 35 N, and is easy to chew at a breaking number of 8.1 pieces / mm. Met. Since the original koji itself contains almost no fats and oils, the introduction of a suitable amount of fats and oils increased the taste and added smoothness in the oral cavity.

[実施例16]
冷凍真鱈を解凍し、厚さ10mmの切り身にカットして、乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した10%質量の乳化油脂溶液に浸漬後、真空チャンバーに入れて10kPaの減圧状態で3分間維持した。大気圧に戻してから90℃で10分加熱してタンパク質を変性させた後、70℃で10時間熱風乾燥(PV−210、タバイエスペック株式会社製)を行った。得られた乾燥鱈は、最大荷重41Nであり、破断数7.0個/mmで、実施例15よりも噛みごたえのある食感であった。
[Example 16]
Thaw the frozen snapper, cut into 10 mm thick slices, immerse in a 10% mass emulsified oil and fat solution prepared with Poem J0021 (manufactured by Riken Vitamin Co., Ltd.) which is an emulsifier, and then put into a vacuum chamber for 10 kPa. Maintained under vacuum for 3 minutes. After returning to atmospheric pressure, the protein was denatured by heating at 90 ° C. for 10 minutes, and then hot-air drying (PV-210, manufactured by Tabai Espec Co., Ltd.) was performed at 70 ° C. for 10 hours. The obtained dried koji had a maximum load of 41 N, a breaking number of 7.0 pieces / mm, and a texture that was more chewy than Example 15.

[実施例17]
冷凍真鱈を解凍し、厚さ10mmの切り身にカットして、乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した10%質量の乳化油脂を含む0.2%質量の重曹水溶液に浸漬後、真空チャンバーに入れて10kPaの減圧状態で3分間維持した。大気圧に戻してから90℃で10分加熱してタンパク質を変性させた後、70℃で10時間熱風乾燥(PV−210、タバイエスペック株式会社製)を行った。得られた乾燥鱈は、最大荷重39Nであり、破断数7.8個/mmで、噛みやすい食感であった。
[Example 17]
Thaw frozen snapper, cut into 10 mm thick slices, and immerse in 0.2% by weight sodium bicarbonate aqueous solution containing 10% by weight emulsified oil and fat prepared with emulsifier Poem J0021 (manufactured by Riken Vitamin Co., Ltd.) Then, it put into the vacuum chamber and maintained for 3 minutes in the pressure reduction state of 10 kPa. After returning to atmospheric pressure, the protein was denatured by heating at 90 ° C. for 10 minutes, and then hot-air drying (PV-210, manufactured by Tabai Espec Co., Ltd.) was performed at 70 ° C. for 10 hours. The obtained dried koji had a maximum load of 39 N, a breaking number of 7.8 pieces / mm, and a chewy texture.

[比較例12]
冷凍真鱈を解凍し、厚さ10mmの切り身にカットして、90℃で10分加熱してタンパク質を変性させた後、70℃で10時間熱風乾燥(PV−210、タバイエスペック株式会社製)を行った。得られた乾燥真鱈は、図21が示すように油脂と酵素を併用して導入した実施例15に比べて身の色が茶褐色であり、最大荷重86Nであり、破断数5.0個/mmで噛むために多大な咀嚼力を要した。
[Comparative Example 12]
Thaw frozen snapper, cut into 10 mm thick slices, heat at 90 ° C. for 10 minutes to denature the protein, and then dry with hot air at 70 ° C. for 10 hours (PV-210, manufactured by Tabai Espec) Went. As shown in FIG. 21, the obtained dried snapper has a brown color, a maximum load of 86 N, and a breaking number of 5.0 / In order to chew with mm, a great masticatory force was required.

食品素材として真鱈を用いた実施例および比較例の結果の一覧を表8に示す。
Table 8 shows a list of the results of Examples and Comparative Examples in which authentic food is used as a food material.

[実施例18]
真タコの触腕を20分間煮沸処理し、厚さ5mmの輪切りにカットして、−20℃で24時間冷凍し解凍後、乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した15%質量の乳化油脂を含む0.3%質量のプロテアーゼ(パパインW−40、天野エンザイム会社製)水溶液に4℃で5時間浸漬した。浸漬液を排除後、真空チャンバーに入れて10kPaの減圧状態で3分間維持した。大気圧に戻してから10℃で16時間静置後、90℃で10分加熱してタンパク質を変性させ、70℃で8時間真空乾燥(DP43、ヤマト科学株式会社製)を行った。得られた乾燥タコは、図22に示すように外観が良く、表皮が暗赤色で筋肉部位は白く、最大荷重47Nで噛みやすい食感であった。95℃の湯の中に3分間浸漬させると、内部まで水が浸透し、容易に噛み切れる食べやすいタコとなった。
[Example 18]
Boiled octopus arm for 20 minutes, cut into 5 mm thick slices, frozen at −20 ° C. for 24 hours, thawed, and adjusted with poem J0021 (Riken Vitamin Co., Ltd.) as an emulsifier It was immersed in a 0.3% mass protease (papain W-40, manufactured by Amano Enzyme Company) aqueous solution containing a mass of emulsified oil and fat at 4 ° C. for 5 hours. After removing the immersion liquid, it was placed in a vacuum chamber and maintained at a reduced pressure of 10 kPa for 3 minutes. After returning to atmospheric pressure, the mixture was allowed to stand at 10 ° C. for 16 hours, then heated at 90 ° C. for 10 minutes to denature the protein, and vacuum dried (DP43, manufactured by Yamato Scientific Co., Ltd.) at 70 ° C. for 8 hours. The obtained dried octopus had a good appearance as shown in FIG. 22, the skin was dark red, the muscle part was white, and the mouthfeel was easy to chew at a maximum load of 47N. When immersed in hot water at 95 ° C. for 3 minutes, the water penetrated into the interior and became an easy-to-eat octopus that could be easily bitten.

[比較例13]
真タコの触腕を20分間煮沸処理し、厚さ5mmの輪切りにカットして、−20℃で24時間冷凍し解凍後、90℃で10分加熱してタンパク質を変性させ、70℃で8時間真空乾燥(DP43、ヤマト科学株式会社製)を行った。得られた乾燥タコは、最大荷重170Nで、硬くて噛み切れず、空隙が少なくて小さく、95℃の湯の中に3分間浸漬させても内部まで水が浸透しなかった。
[Comparative Example 13]
The octopus arm is boiled for 20 minutes, cut into 5 mm thick slices, frozen at −20 ° C. for 24 hours, thawed, and heated at 90 ° C. for 10 minutes to denature the protein. Time vacuum drying (DP43, manufactured by Yamato Scientific Co., Ltd.) was performed. The obtained dried octopus had a maximum load of 170 N, was hard and could not be bitten, had small voids and was small, and even when immersed in hot water at 95 ° C. for 3 minutes, water did not penetrate inside.

食品素材として真タコを用いた実施例および比較例の結果の一覧を表9に示す。
Table 9 shows a list of results of Examples and Comparative Examples using true octopus as a food material.

[実施例19]
豚ヒレ肉を40×30×厚さ10mmにカットし、−20℃で24時間冷凍して解凍した。乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した20%質量の乳化油脂と0.01%質量のペプチダーゼ(ウマミザイムG、天野エンザイム会社製)を含む0.05%質量のプロテアーゼ(パパインW−40、天野エンザイム会社製)水溶液に4℃で5〜30分浸漬後、水溶液から取り出して真空チャンバーに入れて10kPaの減圧状態で3分間維持した。大気圧に戻してから90℃で10分加熱してタンパク質を変性させた後、65℃で8時間熱風乾燥(PV−210、タバイエスペック株式会社製)を行った。
[Example 19]
Pork fillet was cut into 40 × 30 × 10 mm thickness, frozen at −20 ° C. for 24 hours and thawed. 0.05% mass protease (papain W) containing 20% mass emulsified oil and fat and 0.01% mass peptidase (Umamizyme G, Amano Enzyme Company) prepared with Poem J0021 (Riken Vitamin Co., Ltd.), an emulsifier. (-40, manufactured by Amano Enzyme Co., Ltd.) After being immersed in an aqueous solution at 4 ° C. for 5 to 30 minutes, the solution was taken out from the aqueous solution and placed in a vacuum chamber and maintained at a reduced pressure of 10 kPa for 3 minutes. After returning to atmospheric pressure, the protein was denatured by heating at 90 ° C. for 10 minutes, and then hot-air drying (PV-210, manufactured by Tabai Espec) was performed at 65 ° C. for 8 hours.

[実施例20]
豚ヒレ肉を40×30×厚さ10mmにカットし、−20℃で24時間冷凍して解凍した。乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した20%質量の乳化油脂溶液に4℃で5〜30分浸漬後、溶液から取り出して真空チャンバーに入れて10kPaの減圧状態で3分間維持した。大気圧に戻してから90℃で10分加熱してタンパク質を変性させた後、65℃で8時間熱風乾燥(PV−210、タバイエスペック株式会社製)を行った。
[Example 20]
Pork fillet was cut into 40 × 30 × 10 mm thickness, frozen at −20 ° C. for 24 hours and thawed. After being immersed in a 20% mass emulsified oil / fat solution adjusted with emulsifier Poem J0021 (manufactured by Riken Vitamin Co., Ltd.) at 4 ° C. for 5 to 30 minutes, the solution is taken out from the solution and placed in a vacuum chamber and maintained at a reduced pressure of 10 kPa for 3 minutes. did. After returning to atmospheric pressure, the protein was denatured by heating at 90 ° C. for 10 minutes, and then hot-air drying (PV-210, manufactured by Tabai Espec) was performed at 65 ° C. for 8 hours.

[実施例21]
豚ヒレ肉を40×30×厚さ10mmにカットし、−20℃で24時間冷凍して解凍した。乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した20%質量の乳化油脂を含む0.5%質量の重曹水溶液に4℃で5〜30分浸漬後、水溶液から取り出して真空チャンバーに入れて10kPaの減圧状態で3分間維持した。大気圧に戻してから90℃で10分加熱してタンパク質を変性させた後、65℃で8時間熱風乾燥(PV−210、タバイエスペック株式会社製)を行った。
[Example 21]
Pork fillet was cut into 40 × 30 × 10 mm thickness, frozen at −20 ° C. for 24 hours and thawed. Immerse it in a 0.5% by weight aqueous sodium bicarbonate solution containing 20% by weight emulsified fats and oils prepared with the emulsifier Poem J0021 (manufactured by Riken Vitamin Co., Ltd.) at 4 ° C. for 5 to 30 minutes. And maintained at a reduced pressure of 10 kPa for 3 minutes. After returning to atmospheric pressure, the protein was denatured by heating at 90 ° C. for 10 minutes, and then hot-air drying (PV-210, manufactured by Tabai Espec) was performed at 65 ° C. for 8 hours.

[比較例14]
豚ヒレ肉を40×30×厚さ10mmにカットし、−20℃で24時間冷凍し解凍後、90℃で10分加熱してタンパク質を変性させた後、65℃で8時間熱風乾燥(PV−210、タバイエスペック株式会社製)を行った。
[Comparative Example 14]
Cut pork fillet into 40 x 30 x 10 mm thickness, freeze at -20 ° C for 24 hours, thaw, heat at 90 ° C for 10 minutes to denature the protein, and then dry with hot air at 65 ° C for 8 hours (PV -210, manufactured by Tabai Espec Co., Ltd.).

実施例19は、最大荷重が15Nであり、破断数が11.4個/mmであり、豚ヒレ肉の実施例の中ではもっとも軽い食感であった。実施例20および21は、実施例19とはそれぞれ最大荷重値と破断数が異なるためにサクサク感も異なったが、いずれも噛みやすい食感であった。比較例14は、最大荷重が117Nであり、破断数が4.5個/mmであり、硬くて噛めなかった。   In Example 19, the maximum load was 15 N, the number of breaks was 11.4 pieces / mm, and it was the lightest texture among the pork fillet examples. Examples 20 and 21 were different from Example 19 in terms of the maximum load value and the number of breaks, and thus the crispy feeling was different, but both were easy to chew. In Comparative Example 14, the maximum load was 117 N, the number of breaks was 4.5 pieces / mm, and it was hard and could not be bitten.

実施例19の乾燥豚ヒレ肉は、95℃の湯の中に3分間浸漬させると内部まで水が浸透し、復水後は箸でほぐれる軟らかさであった。   The dried pork fillet of Example 19 was soft enough to penetrate into the interior when immersed in hot water at 95 ° C. for 3 minutes and to be loosened with chopsticks after condensing.

実施例19の乾燥豚ヒレ肉は、内在するペプタイドおよびアミノ酸量が増加し、官能においても呈味性の向上が評価された。   The dried pork fillet of Example 19 had an increased amount of peptide and amino acid, and the taste was evaluated to be improved in taste.

食品素材として豚ヒレ肉を用いた実施例および比較例の結果の一覧を表10に示す。
Table 10 shows a list of results of Examples and Comparative Examples using pork fillet as a food material.

[実施例22]
鶏胸肉を20×20×厚さ3mmにカットし、−20℃で24時間冷凍して解凍した。乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した30%質量の乳化油脂を含む0.1%質量のプロテアーゼ(パパインW−40、天野エンザイム会社製)水溶液に4℃で0.5〜1時間浸漬後、水溶液から取り出して真空チャンバーに入れて10kPaの減圧状態で3分間維持した。大気圧に戻してから180℃で30分過熱水蒸気乾燥(NF−5135CB−R(L)、直本工業株式会社製)を行った。得られた乾燥鶏胸肉は、最大荷重41Nであり、適度な油分を有する噛みやすい食感であった。
[Example 22]
Chicken breast was cut into 20 × 20 × 3 mm thickness, frozen at −20 ° C. for 24 hours and thawed. In an aqueous solution of 0.1% protease (papain W-40, manufactured by Amano Enzyme Co.) containing 30% emulsified oil and fat prepared with Poem J0021 (manufactured by Riken Vitamin Co., Ltd.) as an emulsifier, 0.5 to After being immersed for 1 hour, it was taken out from the aqueous solution, placed in a vacuum chamber, and maintained at a reduced pressure of 10 kPa for 3 minutes. After returning to atmospheric pressure, superheated steam drying (NF-5135CB-R (L), manufactured by Naomoto Kogyo Co., Ltd.) was performed at 180 ° C. for 30 minutes. The obtained dried chicken breast had a maximum load of 41 N and a chewy texture with a moderate oil content.

[実施例23]
鶏胸肉を20×20×厚さ3mmにカットし、−20℃で24時間冷凍して解凍した。乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した30%質量の乳化油脂溶液に4℃で0.5〜1時間浸漬後、水溶液から取り出して真空チャンバーに入れて10kPaの減圧状態で3分間維持した。大気圧に戻してから180℃で30分過熱水蒸気乾燥(NF−5135CB−R(L)、直本工業株式会社製)を行った。得られた乾燥鶏胸肉は、適度な油分を有する噛みやすい食感であった。
[Example 23]
Chicken breast was cut into 20 × 20 × 3 mm thickness, frozen at −20 ° C. for 24 hours and thawed. After being immersed in a 30% mass emulsified oil / fat solution prepared with Poem J0021 (produced by Riken Vitamin Co., Ltd.) as an emulsifier at 4 ° C. for 0.5 to 1 hour, the solution is taken out from the aqueous solution and placed in a vacuum chamber and 3 in a reduced pressure state of 10 kPa. Maintained for a minute. After returning to atmospheric pressure, superheated steam drying (NF-5135CB-R (L), manufactured by Naomoto Kogyo Co., Ltd.) was performed at 180 ° C. for 30 minutes. The obtained dried chicken breast had a chewy texture with an appropriate oil content.

[実施例24]
鶏胸肉を20×20×厚さ3mmにカットし、−20℃で24時間冷凍して解凍した。乳化剤であるポエムJ0021(理研ビタミン株式会社製)で調整した30%質量の乳化油脂を含む2.0%質量の重曹水溶液に4℃で0.5〜1時間浸漬後、水溶液から取り出して真空チャンバーに入れて10kPaの減圧状態で3分間維持した。大気圧に戻してから180℃で30分過熱水蒸気乾燥(NF−5135CB−R(L)、直本工業株式会社製)を行った。得られた乾燥鶏胸肉は、適度な油分を有する噛みやすい食感であった。
[Example 24]
Chicken breast was cut into 20 × 20 × 3 mm thickness, frozen at −20 ° C. for 24 hours and thawed. After dipping in a 2.0% mass aqueous sodium bicarbonate solution containing 30% mass emulsified oil and fat adjusted with Poem J0021 (produced by Riken Vitamin Co., Ltd.) as an emulsifier at 4 ° C. for 0.5 to 1 hour, taken out from the aqueous solution and vacuum chamber And maintained at a reduced pressure of 10 kPa for 3 minutes. After returning to atmospheric pressure, superheated steam drying (NF-5135CB-R (L), manufactured by Naomoto Kogyo Co., Ltd.) was performed at 180 ° C. for 30 minutes. The obtained dried chicken breast had a chewy texture with an appropriate oil content.

[比較例15]
鶏胸肉を20×20×厚さ3mmにカットし、−20℃で24時間冷凍し解凍した。1.0%食塩水に4℃で0.5〜1時間浸漬後、水溶液から取り出して真空チャンバーに入れて10kPaの減圧状態で3分間維持した。大気圧に戻してから後、180℃で30分過熱水蒸気乾燥(NF−5135CB−R(L)、直本工業株式会社製)を行った。得られた乾燥鶏胸肉は、最大荷重93Nで硬くて噛み切れなかった。
[Comparative Example 15]
Chicken breast was cut into 20 × 20 × 3 mm thickness, frozen at −20 ° C. for 24 hours and thawed. After being immersed in 1.0% saline at 4 ° C. for 0.5 to 1 hour, the solution was taken out from the aqueous solution, placed in a vacuum chamber, and maintained at a reduced pressure of 10 kPa for 3 minutes. After returning to atmospheric pressure, superheated steam drying (NF-5135CB-R (L), manufactured by Naomoto Kogyo Co., Ltd.) was performed at 180 ° C. for 30 minutes. The obtained dried chicken breast was hard at a maximum load of 93 N and could not be bitten.

食品素材として鶏胸肉を用いた実施例および比較例の結果の一覧を表11に示す。
Table 11 shows a list of results of Examples and Comparative Examples using chicken breast as a food material.

Claims (19)

凍結後解凍させた厚さ5mm以上で体積125mm 以上の大きさに切断した食品素材の内部に、食品用油脂と食品用乳化剤とから形成される少なくとも1種の乳化油脂を含有させた後、蒸発乾燥させた食品素材であって、
乾燥食品素材が、外観で認識できる大きさと形を保持したまま多孔質構造を有するものであり、前記多孔質構造が、素材内部に導入した前記乳化油脂により収縮抑制されて得られたものであり、前記乳化油脂が素材内部に保持されており、
前記乳化油脂が、米油、大豆油、パーム油、なたね油、及びラードからなる群から選択される少なくとも1種の食品用油脂と、グリセリン脂肪酸エステル、ショ糖脂肪酸エステル、及びレシチンからなる群から選択される少なくとも1種の食品用乳化剤とから形成される少なくとも1種であり、
前記乾燥食品素材の空隙率が、25%〜80%である、乾燥食品素材。
Inside the food material is cut to a volume 125 mm 3 or more in size in a thickness of 5mm or more obtained by thawing after freezing, after at least one emulsified oil fat is formed from edible fats and food emulsifier Evaporatively dried food material,
But dry food materials state, and it is not having a porous structure while retaining the size and shape that can be recognized by the appearance, in which the porous structure is obtained by being contracted suppressed by the emulsified oil introduced therein Material Yes, the emulsified fat is held inside the material,
The emulsified fat is selected from the group consisting of at least one food fat selected from the group consisting of rice oil, soybean oil, palm oil, rapeseed oil, and lard, glycerin fatty acid ester, sucrose fatty acid ester, and lecithin. At least one formed from at least one food emulsifier,
A dry food material, wherein the dry food material has a porosity of 25% to 80% .
前記凍結後解凍させた食品素材の内部に、分解酵素及び/又は塩基性塩類をさらに含有させる、請求項1に記載の乾燥食品素材。   The dried food material according to claim 1, further comprising a decomposing enzyme and / or a basic salt in the food material thawed after freezing. 前記乾燥食品素材の最大荷重が、50N以下である、請求項1又は2に記載の乾燥食品素材。 The dry food material according to claim 1 or 2 , wherein a maximum load of the dry food material is 50 N or less. 前記乾燥食品素材の破断数が、5個/mm以上である、請求項1〜のいずれか一項に記載の乾燥食品素材。 The dry food material according to any one of claims 1 to 3 , wherein the number of breaks of the dry food material is 5 pieces / mm or more. 乾燥食品素材を含む乾燥食品であって、
前記乾燥食品素材は、凍結後解凍させた厚さ5mm以上で体積125mm 以上の大きさに切断した食品素材の内部に、食品用油脂と食品用乳化剤とから形成される少なくとも1種の乳化油脂を含有させた後、蒸発乾燥させた食品素材であり、
前記乾燥食品素材が、外観で認識できる大きさと形を保持したまま多孔質構造を有するものであり、前記多孔質構造が、素材内部に導入した前記乳化油脂により収縮抑制されて得られたものであり、前記乳化油脂が素材内部に保持されており、
前記乳化油脂が、米油、大豆油、パーム油、なたね油、及びラードからなる群から選択される少なくとも1種の食品用油脂と、グリセリン脂肪酸エステル、ショ糖脂肪酸エステル、及びレシチンからなる群から選択される少なくとも1種の食品用乳化剤とから形成される少なくとも1種であり、
前記乾燥食品素材の空隙率が、25%〜80%である、乾燥食品。
A dry food containing dry food material,
The dried food material, inside the food material is cut to a volume 125 mm 3 or more in size in a thickness of 5mm or more obtained by thawing after freezing, at least one emulsifying oil is formed from edible fats and food emulsifier It is a food material that contains fat and is evaporated to dryness.
Those wherein the dried food material state, and it is not having a porous structure while retaining the size and shape that can be recognized by the appearance, in which the porous structure is obtained by the shrinkage inhibiting by the emulsified oil introduced therein Material The emulsified oil is held inside the material,
The emulsified fat is selected from the group consisting of at least one food fat selected from the group consisting of rice oil, soybean oil, palm oil, rapeseed oil, and lard, glycerin fatty acid ester, sucrose fatty acid ester, and lecithin. At least one formed from at least one food emulsifier,
The dried food material, wherein the dry food material has a porosity of 25% to 80% .
前記乾燥食品が、ふりかけ具材、即席茶漬け、即席麺、即席スープ及びそれらの具材、菓子類、ノンフライ食品、低油脂食品、珍味、並びにおつまみからなる群から選択される、請求項の乾燥食品。 The dry food is sprinkled ingredient, instant chazuke, instant noodles, instant soups and their ingredients, confectionery, non-fried food, low fat food, delicacies, and is selected from the group consisting of snacks, dried according to claim 5 Food. 前記乾燥食品が、即席茶漬け、即席麺、即席スープ、及びそれらの具材からなる群から選択される、請求項の乾燥食品。 The dried food according to claim 6 , wherein the dried food is selected from the group consisting of instant tea pickles, instant noodles, instant soup, and ingredients. 凍結後解凍させた厚さ5mm以上で体積125mm 以上の大きさに切断した食品素材の内部に、食品用油脂と食品用乳化剤とから形成される少なくとも1種の乳化油脂を導入する工程と、
前記食品素材を蒸発乾燥させて、外観で認識できる大きさと形を保持したまま前記乳化油脂により収縮抑制されて得られた多孔質構造を有し、前記乳化油脂を素材内部に保持し、かつ空隙率が25%〜80%である乾燥食品素材を得る工程と、
を含んでなる、乾燥食品素材の製造方法であって、
前記乳化油脂が、米油、大豆油、パーム油、なたね油、及びラードからなる群から選択される少なくとも1種の食品用油脂と、グリセリン脂肪酸エステル、ショ糖脂肪酸エステル、及びレシチンからなる群から選択される少なくとも1種の食品用乳化剤とから形成される少なくとも1種である、乾燥食品素材の製造方法
Inside the food material is cut to a volume 125 mm 3 or more in size in a thickness of 5mm or more obtained by thawing after freezing, a step of introducing at least one emulsified oil fat which is formed from food fats and food emulsifier ,
Wherein the food material is evaporated dry, by the emulsified oil while retaining the size and shape that can be recognized by appearance to have a porous structure obtained is shrinkage inhibiting, holding the emulsified oil inside the material, and voids Obtaining a dry food material having a rate of 25% to 80% ;
A method for producing a dry food material comprising :
The emulsified fat is selected from the group consisting of at least one food fat selected from the group consisting of rice oil, soybean oil, palm oil, rapeseed oil, and lard, glycerin fatty acid ester, sucrose fatty acid ester, and lecithin. A method for producing a dry food material, which is at least one kind formed from at least one food emulsifier .
前記凍結後解凍させた食品素材の内部に、分解酵素及び/又は塩基性塩類をさらに導入する、請求項に記載の乾燥食品素材の製造方法。 The method for producing a dried food material according to claim 8 , further comprising introducing a degrading enzyme and / or a basic salt into the food material thawed after freezing. 前記油脂が乳化油脂を含み、前記乳化油脂が水中油滴型乳化油脂であり、前記水中油滴型乳化油脂中の油滴の平均粒子径が、1μm〜30μmである、請求項8又は9に記載の乾燥食品素材の製造方法。 The fat comprises emulsified oil, the emulsified oil is oil-in-water emulsified oil, the average particle size of the oil droplets of the oil-in-water emulsion in oil is a 1 to 30 [mu] m, to claim 8 or 9 A method for producing the described dry food material. 前記油脂が乳化油脂を含み、前記乳化油脂の20℃における粘度が、1mPa・s〜100mPa・sである、請求項10のいずれか一項に記載の乾燥食品素材の製造方法。 The method for producing a dry food material according to any one of claims 8 to 10 , wherein the fat / oil includes emulsified fat / oil, and the viscosity of the emulsified fat / oil at 20 ° C. is 1 mPa · s to 100 mPa · s. 前記食品素材への前記油脂の導入量が、前記食品素材100gに対して0.5g〜15gである、請求項11のいずれか一項に記載の乾燥食品素材の製造方法。 The method for producing a dry food material according to any one of claims 8 to 11 , wherein the amount of the fats and oils introduced into the food material is 0.5g to 15g with respect to 100g of the food material. 前記乾燥食品素材の最大荷重が、50N以下である、請求項12のいずれか一項に記載の乾燥食品素材の製造方法。 The method for producing a dry food material according to any one of claims 8 to 12 , wherein a maximum load of the dry food material is 50 N or less. 前記乾燥食品素材の破断数が、5個/mm以上である、請求項13のいずれか一項に記載の乾燥食品素材の製造方法。 The method for producing a dried food material according to any one of claims 8 to 13 , wherein the number of breaks of the dried food material is 5 pieces / mm or more. 前記食品素材が、イモ類、根菜類、緑黄色野菜、肉類、及び魚介類からなる群から選択される少なくとも1種である、請求項14のいずれか一項に記載の乾燥食品素材の製造方法。 The dry food material according to any one of claims 8 to 14 , wherein the food material is at least one selected from the group consisting of potatoes, root vegetables, green-yellow vegetables, meats, and seafood. Method. 前記乾燥が、熱風乾燥、低温乾燥、真空乾燥、マイクロ波乾燥、過熱水蒸気乾燥、フライ乾燥、減圧フライ乾燥、ドラム乾燥、及び天日乾燥からなる群から選択される少なくとも1種により行われる、請求項15のいずれか一項に記載の乾燥食品素材の製造方法。 The drying is performed by at least one selected from the group consisting of hot air drying, low temperature drying, vacuum drying, microwave drying, superheated steam drying, fly drying, reduced pressure fly drying, drum drying, and sun drying. Item 16. A method for producing a dry food material according to any one of Items 8 to 15 . 前記乾燥が、熱風乾燥で行われる、請求項16に記載の乾燥食品素材の製造方法。 The method for producing a dried food material according to claim 16 , wherein the drying is performed by hot air drying. 前記熱風乾燥が、60〜90℃で行われる、請求項17に記載の乾燥食品素材の製造方法。 The method for producing a dried food material according to claim 17 , wherein the hot air drying is performed at 60 to 90 ° C. 凍結後解凍させた厚さ5mm以上で体積125mm 以上の大きさに切断した食品素材の内部に、食品用油脂と食品用乳化剤とから形成される少なくとも1種の乳化油脂を導入する工程と、
前記食品素材を蒸発乾燥させて、外観で認識できる大きさと形を保持したまま前記乳化油脂により収縮抑制されて得られた多孔質構造を有し、前記乳化油脂を素材内部に保持し、かつ空隙率が25%〜80%である乾燥食品素材を得る工程と、
を含んでなる方法により得られた乾燥食品素材を用いる、乾燥食品の製造方法であって、
前記乳化油脂が、米油、大豆油、パーム油、なたね油、及びラードからなる群から選択される少なくとも1種の食品用油脂と、グリセリン脂肪酸エステル、ショ糖脂肪酸エステル、及びレシチンからなる群から選択される少なくとも1種の食品用乳化剤とから形成される少なくとも1種である、乾燥食品の製造方法
Inside the food material is cut to a volume 125 mm 3 or more in size in a thickness of 5mm or more obtained by thawing after freezing, a step of introducing at least one emulsified oil fat which is formed from food fats and food emulsifier ,
Wherein the food material is evaporated dry, by the emulsified oil while retaining the size and shape that can be recognized by appearance to have a porous structure obtained is shrinkage inhibiting, holding the emulsified oil inside the material, and voids Obtaining a dry food material having a rate of 25% to 80% ;
A method for producing a dry food using a dry food material obtained by a method comprising :
The emulsified fat is selected from the group consisting of at least one food fat selected from the group consisting of rice oil, soybean oil, palm oil, rapeseed oil, and lard, glycerin fatty acid ester, sucrose fatty acid ester, and lecithin. A method for producing a dry food, which is at least one formed from at least one food emulsifier .
JP2014007206A 2014-01-17 2014-01-17 Dried food material and method for producing the same Active JP5751526B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014007206A JP5751526B1 (en) 2014-01-17 2014-01-17 Dried food material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014007206A JP5751526B1 (en) 2014-01-17 2014-01-17 Dried food material and method for producing the same

Publications (2)

Publication Number Publication Date
JP5751526B1 true JP5751526B1 (en) 2015-07-22
JP2015133935A JP2015133935A (en) 2015-07-27

Family

ID=53638047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014007206A Active JP5751526B1 (en) 2014-01-17 2014-01-17 Dried food material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5751526B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6799916B2 (en) * 2015-12-14 2020-12-16 株式会社Mizkan Holdings Non-fried dried vegetables and their manufacturing method and dried foods containing them
JP6489531B2 (en) * 2016-10-14 2019-03-27 智子 寺本 Powder processing method and powder seasoning

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623735A (en) * 1985-06-29 1987-01-09 Fuji Oil Co Ltd Production of dried meat
JPH0213346A (en) * 1988-06-30 1990-01-17 Toshimitsu Kitamura Production of dry thick vegetable with restoration property
JPH0775489A (en) * 1993-09-09 1995-03-20 Nisshin Oil Mills Ltd:The Production of dried food of marine product
JP2001178358A (en) * 1999-12-27 2001-07-03 Nagatanien:Kk Method of producing dried vegetables
JP3825335B2 (en) * 2002-02-19 2006-09-27 株式会社永谷園 Method for producing dried fish flakes
JP3686912B2 (en) * 2002-03-28 2005-08-24 広島県 Rapid introduction of enzymes into plant tissues
JP4947630B2 (en) * 2006-07-06 2012-06-06 広島県 Method for producing cooked food

Also Published As

Publication number Publication date
JP2015133935A (en) 2015-07-27

Similar Documents

Publication Publication Date Title
CA2700717C (en) Food product suitable for person who has difficulty in chewing or swallowing
JP5093658B2 (en) Aged food manufacturing method
TWI674070B (en) Method of improving flavor of yeast cells and food quality improvement agent
JP6218206B2 (en) Method of impregnating ingredients in food
JP5145471B1 (en) Method for producing softened food
US10244770B2 (en) Method for producing dried food
Santana et al. The addition of hydrocolloids (carboxymethylcellulose, alginate and konjac) to improve the physicochemical properties and sensory characteristics of fish sausage formulated with surimi powder
JP6600048B2 (en) Cooked fish with the texture and appearance of grilled fish that can be eaten up to bone
CN106714575B (en) Dried animal food and its preparation method
JP6293531B2 (en) Instant dried seasoned meat and method for producing the same
JP5751526B1 (en) Dried food material and method for producing the same
JP7173516B2 (en) Method for producing shape-retaining softened food
JP4671929B2 (en) Method for producing freeze-dried tempura-like food
JP2000210042A (en) Dried vegetables and production thereof
JP6293532B2 (en) Instant dried seasoned meat and method for producing the same
JP6954859B2 (en) Manufacturing method of processed dried meat products and processed dried meat products
WO2018008476A1 (en) Processed soybean product having meat-like texture, method for manufacturing same and prepared food
JP6920706B1 (en) How to introduce substances into foodstuffs
JP6033094B2 (en) Method for producing dried food
KR102639892B1 (en) Manufacturing method of sous-vide treated beef short ribs
JP2014082994A (en) Powder composition for batter liquid
JP2015029491A (en) Method for producing fried food-like food product
JP2777611B2 (en) Method for producing non-bleaching protein food material, protein food material obtained by the method, and protein food using the same
JPH01277469A (en) Production of thawable dried food fried without coating
JPS58162237A (en) Preparation of animal dried food or food of delicate flavor having improved restoring properties with water

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150508

R150 Certificate of patent or registration of utility model

Ref document number: 5751526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250