JP2008125427A - Innovative heating method, its use and apparatus - Google Patents

Innovative heating method, its use and apparatus Download PDF

Info

Publication number
JP2008125427A
JP2008125427A JP2006313667A JP2006313667A JP2008125427A JP 2008125427 A JP2008125427 A JP 2008125427A JP 2006313667 A JP2006313667 A JP 2006313667A JP 2006313667 A JP2006313667 A JP 2006313667A JP 2008125427 A JP2008125427 A JP 2008125427A
Authority
JP
Japan
Prior art keywords
heating
water
steam
temperature
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006313667A
Other languages
Japanese (ja)
Inventor
Yoshitake Natatsu
義剛 名達
Yukio Ogasawara
幸雄 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UMEDA JIMUSHO KK
Taiyo Seisakusho Co Ltd
Original Assignee
UMEDA JIMUSHO KK
Taiyo Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UMEDA JIMUSHO KK, Taiyo Seisakusho Co Ltd filed Critical UMEDA JIMUSHO KK
Priority to JP2006313667A priority Critical patent/JP2008125427A/en
Publication of JP2008125427A publication Critical patent/JP2008125427A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating/sterilizing method and its apparatus for detoxifying a heat by-product by means of a gaseous liquid/hot water mixing system. <P>SOLUTION: The method of heating/sterilizing a material to be processed for detoxifying the heat by-product includes steps of continuously spraying hot water and/or steam heated to 100°C or higher into a heating chamber of a semi-closed space heated to the similar or higher temperature to generate water droplets and wet-heated steam, replacing the air in the heating chamber with the droplets and steam to fill the chamber with a gas component having a composition of humidity of 95% or higher and an oxygen concentration of 1% or low and kept at a temperature region of 90-180°C, spraying 100%-wetted steam to the gaseous liquid to stably form a highly compound heating medium consisting of the hot water, water droplets and steam, and subjecting the material to be heated to a successive amplitude heating with a temperature difference of at least 10°C in the temperature region by the compound heating medium. The apparatus for the method is also provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、被処理材料を加熱すると共に、その加熱副生物を同時に除害化する加熱方法に関するものであり、更に詳しくは、水の気体を加熱媒として利用した気体水(以下、「アクアガス」(登録商標)又は「AQG」と記載することがある。)により加熱し、その加熱副生物を同時に除害化する加熱(以下、「加熱副生物除害化加熱」と記載することがある。)を用いた加熱方法(以下、「加熱副生物除害化加熱方法」と記載することがある。)及びその装置に関するものである。本発明は、加熱室を気体水と100%湿り状態の水蒸気で置換して形成した気体水・熱水雰囲気で被処理材料を加熱する気体水・熱水による加熱副生物除害化加熱方法、該方法による加熱処理製品の加熱副生物除害化製造方法、及び該方法に使用するための気体水・熱水による加熱副生物除害化加熱装置を提供するものである。   The present invention relates to a heating method for heating a material to be treated and simultaneously detoxifying the heating by-product, and more specifically, gaseous water using a water gas as a heating medium (hereinafter referred to as “aqua gas”). (Registered trademark) or “AQG” may be used, and the heating byproduct is detoxified at the same time (hereinafter referred to as “heating byproduct detoxification heating”). ) (Hereinafter sometimes referred to as “heating byproduct detoxification heating method”) and its apparatus. The present invention relates to a heating by-product detoxification heating method using gaseous water / hot water that heats the material to be treated in gaseous water / hot water atmosphere formed by replacing the heating chamber with gaseous water and 100% wet steam. The present invention provides a heating by-product detoxification production method for a heat-treated product by the method, and a heating by-product detoxification heating apparatus using gaseous water and hot water for use in the method.

一般に、加熱水蒸気を利用した加熱方法として、例えば、飽和水蒸気を用いたいわゆるスチーム加熱(蒸煮)、ボイラーから発生させた高圧水蒸気を用いた高圧水蒸気加熱が知られており、また、ボイラーから発生させた高圧水蒸気を更に高温に加熱して形成した高温高圧の過熱水蒸気(過熱蒸気)を用いた過熱水蒸気加熱が知られている。これらのうち、上記スチーム加熱は、水を100〜120℃程度に加熱して生成した水蒸気を加熱室内に充満させて、いわゆる「蒸し」により被処理材料を加熱処理する方法である。また、ボイラーの高圧水蒸気を用いた高圧水蒸気加熱は、加圧して高温化した飽和水蒸気を熱源に用いて被処理材料を加熱処理する方法である。   In general, as a heating method using heated steam, for example, so-called steam heating (steaming) using saturated steam, high-pressure steam heating using high-pressure steam generated from a boiler is known, and also generated from a boiler. Superheated steam heating using high-temperature and high-pressure superheated steam (superheated steam) formed by further heating high-pressure steam to a higher temperature is known. Among these, the steam heating is a method of heating the material to be treated by so-called “steaming” by filling water vapor generated by heating water to about 100 to 120 ° C. into the heating chamber. Further, high-pressure steam heating using high-pressure steam of a boiler is a method in which a material to be treated is heat-treated using saturated steam that has been pressurized and heated to a heat source.

一方、上記過熱水蒸気加熱は、ボイラーから発生させた高圧水蒸気を更に加熱して140℃以上に高温化した、熱エネルギー的に準安定な過熱水蒸気を加熱室内に噴射し、充満させて、被処理材料を加熱処理する方法である。この方法では、過熱水蒸気による乾燥した高温高圧雰囲気が形成されるので、この加熱方法は、焼成に近い加熱手段として利用されている。上記過熱水蒸気加熱は、高温高圧で、高カロリーで、しかも、熱エネルギー的に準安定な乾燥水蒸気を利用できるため、例えば、食品の加熱焼成手段、農畜産物系廃棄物の焼成手段、木材等の炭化手段、金属材料表面等の洗浄手段等として、広くその応用技術が提案されている(特許文献1〜5参照)。   On the other hand, the above-mentioned superheated steam heating is performed by further heating the high-pressure steam generated from the boiler to a temperature higher than 140 ° C., and injecting and filling the heat energy metastable superheated steam into the heating chamber. This is a method of heat-treating a material. In this method, since a dry high-temperature and high-pressure atmosphere is formed by superheated steam, this heating method is used as a heating means close to firing. The above superheated steam heating can use dry steam that is high temperature and pressure, high calorie, and metastable in terms of thermal energy.For example, food heating and baking means, agricultural and livestock product waste baking means, wood, etc. The application technique is widely proposed as a carbonization means, a cleaning means for a metal material surface, etc. (see Patent Documents 1 to 5).

しかしながら、この種の加熱方法では、例えば、高温高圧水蒸気を発生させるボイラー、及びボイラーからの高温高圧水蒸気を更に加熱する高温加熱手段が必要とされること、設備が大型になること、加熱室に高温高圧の過熱水蒸気を噴射するため、エネルギーロスが大きく、既存の焼成方法と比べて効率的でないこと、いわゆる通常の水蒸気加熱で十分な場合が多く、あえて過熱水蒸気加熱を利用する必要性が少ないこと、少量処理には不向きであること、焼成効果が未だ十分に検証されていないために実用化に距離があること、等の問題があり、しかも、それらの問題は、いまだ解決されていない。   However, this type of heating method requires, for example, a boiler that generates high-temperature and high-pressure steam, and high-temperature heating means that further heats the high-temperature and high-pressure steam from the boiler, increases the size of the facility, High temperature and high pressure superheated steam is injected, so energy loss is large and it is not efficient compared to existing firing methods, so-called normal steam heating is often sufficient, and there is little need to use superheated steam heating. In addition, there are problems such as being unsuitable for a small amount of processing and having a distance in practical use because the firing effect has not been sufficiently verified yet, and these problems have not been solved yet.

また、特に、食材・食品の加熱焼成手段としての従来の加熱方法、例えば、過熱蒸気、都市ガスやプロパンなどの各種ガスや、電気やガスをエネルギー源とする各種のヒーターを用いる直火加熱等においては、加熱によって食材・食品から副生する各種副生物、特に、油脂分と油煙及びその臭気、を適切にかつ合理的に処理する手段を欠いている。そのため、加熱によって副生する各種副生物は、家庭用以外の業務用、例えば、食品加工産業や外食産業の厨房用等においては、環境負荷増大や職場環境の悪化に止まらず、生産性の低下を来たし、当該業界においては、その対策としての合理化投資負担の増大を余儀なくされ、これが、製品価格の上昇を招き、結局、そのコストアップ分は、消費者が負担するという事態が続いているのが実情である。   In particular, conventional heating methods as means for heating and baking foods and foods, for example, direct heating using various gases such as superheated steam, city gas and propane, and various heaters using electricity or gas as an energy source, etc. However, it lacks means for appropriately and rationally treating various by-products by-produced from foods and foods by heating, in particular, fats and oils, oil smoke and their odors. As a result, various by-products produced as a by-product of heating are not limited to an increase in environmental burden or deterioration of the work environment, for business use other than household use, such as for food processing industry and restaurant industry kitchens. The industry has been forced to increase the burden of rationalization investment as a countermeasure, and this has led to an increase in product prices, and eventually the cost increase has been borne by consumers. Is the actual situation.

特開平06−090677号公報Japanese Patent Laid-Open No. 06-090677 特開2001−061655号公報JP 2001-061655 A 特開2001−214177号公報JP 2001-214177 A 特開2001−323085号公報Japanese Patent Laid-Open No. 2001-323085 特開2002−194362号公報JP 2002-194362 A

このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記通常の水蒸気加熱や上記過熱水蒸気加熱とは別異の、全く新しい水蒸気による加熱方式を開発すべく鋭意研究及び検討を積み重ねた結果、従来法では水の気体としての特性を必ずしも十分に活用していないこと、加熱室を水の気体で置換して、「気体水」雰囲気を形成することで水の気体としての特性を十分に活用できること、それにより、従来法とは本質的に異なる新しい水蒸気を利用した加熱方式を実現できること、を見出し、既に特許出願を行なっている(特開2004−358236号公報)。該発明により、従来技術の欠点が大幅に改善されたが、産業用加熱焼成技術としては、加熱副生物の合理的な除害において、依然として大きな課題を残したままであり、本発明者らは、該気体水技術の更なる進化に取り組み、種々研究を積み重ねた結果、気体水に100%湿り状態の水蒸気を噴射させることによって、この最後の障害を克服できることを見出し、本発明を完成するに至った。   In such a situation, in view of the prior art, the present inventors have conducted intensive research and development to develop a completely new steam heating method different from the normal steam heating and the superheated steam heating. As a result of repeated studies, the conventional method does not necessarily fully utilize the characteristics of water as a gas, and replaces the heating chamber with water gas to form a “gas water” atmosphere. Has already been filed (Japanese Patent Application Laid-Open No. 2004-358236), and found that a new heating system using water vapor, which is essentially different from the conventional method, can be realized. Although the drawbacks of the prior art have been greatly improved by the invention, as an industrial heating and baking technique, there still remains a major problem in the rational detoxification of heating by-products. As a result of tackling the further evolution of the gaseous water technology and accumulating various researches, it was found that this last obstacle can be overcome by injecting 100% wet water vapor into the gaseous water, and the present invention has been completed. It was.

本発明は、従来の水蒸気加熱や過熱水蒸気加熱とは全く別異の、「気体水」に熱水を噴射して形成させた新しい「ハイブリッド型気体水」(以下、「h−AQG」と記載することがある。)による加熱副生物除害化加熱方法を提供することを目的とするものである。また、本発明は、上記「ハイブリッド型気体水」による加熱副生物除害化加熱方法で使用する「ハイブリッド型気体水」の発生装置及び「ハイブリッド型気体水」による加熱副生物除害化加熱装置を提供することを目的とするものである。   The present invention is a new “hybrid gas water” (hereinafter referred to as “h-AQG”) formed by injecting hot water into “gas water”, which is completely different from conventional steam heating and superheated steam heating. It is an object of the present invention to provide a heating by-product detoxification heating method. In addition, the present invention provides an apparatus for generating “hybrid gas water” used in the heating byproduct abatement heating method using the “hybrid gas water” and a heating byproduct abatement heating apparatus using “hybrid gas water”. Is intended to provide.

更に、本発明は、加熱室を水の気体で置換し、湿度99.0%以上、酸素濃度を1.0%以下のガス成分(気体水)を形成させ、同時に100%湿り状態の水蒸気を噴射させ、熱水・微細水滴・水蒸気からなる複合化加熱媒体、ハイブリッド型気体水「h−AQG」を安定的に形成させる方法、及び該方法で形成した「h−AQG」雰囲気で被処理材料を加熱副生物除害化加熱する方法、該方法により加熱処理製品を製造する方法及びその装置を提供することを目的とするものである。   Furthermore, the present invention replaces the heating chamber with a gas of water to form a gas component (gaseous water) having a humidity of 99.0% or more and an oxygen concentration of 1.0% or less, and at the same time, 100% wet water vapor. A combined heating medium comprising hot water, fine water droplets and water vapor, a method of stably forming a hybrid type gaseous water “h-AQG”, and a material to be processed in an “h-AQG” atmosphere formed by the method It is an object of the present invention to provide a method for heating by-product detoxification, a method for producing a heat-treated product by the method, and an apparatus therefor.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)被処理材料を加熱し、その加熱副生物を同時に除害化する加熱副生物除害化加熱方法であって、次の工程;
1)100℃以上に加熱された熱水及び/又は水蒸気を、これと同温度以上に加熱された準密閉空間の加熱室内に連続的に噴射させ、微細水滴と湿熱水蒸気を発生させる、
2)上記微細水滴と湿熱水蒸気で上記加熱室内の空気を置換させて、湿度95%以上及び酸素濃度1%以下の組成を有し、90〜180℃の温度領域に保持されたガス成分(気体水)で満たす、
3)上記気体水に100%湿り状態の水蒸気を噴射させ、熱水・微細水滴・水蒸気からなる複合化加熱媒体を安定的に形成させる、
4)被加熱材料に、上記複合化加熱媒体で上記温度領域で少なくとも10℃の温度差の連続振幅加熱を施して被処理材料を加熱処理する、
ことを特徴とする被処理材料の加熱副生物除害化加熱方法。
(2)前記(1)に記載の加熱副生物除害化加熱方法により食材又は食品を加熱し、その加熱副生物を同時に除害化することにより、加熱処理食材又は食品を製造することを特徴とする加熱処理食材又は食品の製造方法。
(3)前記(1)に記載の加熱副生物除害化加熱方法により食材又は食品を加熱・殺菌し、その加熱副生物を同時に除害化することにより、加熱・殺菌処理食材又は食品を製造することを特徴とする加熱・殺菌処理食材又は食品の製造方法。
(4)熱水・微細水滴・水蒸気からなる複合化加熱媒体(ハイブリッド型気体水)を発生させる装置であって、100℃以上に加熱された熱水及び/又は水蒸気の発生及び噴射手段、該熱水及び/又は水蒸気を満たす加熱室、100%湿り状態の水蒸気の発生及び噴射手段を具備してなり、上記熱水及び/又は水蒸気発生手段により発生させた熱水及び/又は水蒸気をその噴射手段を介して加熱室内に連続的に噴射させ、微細水滴と湿熱水蒸気を発生させて、上記加熱室を90〜180℃の温度領域に保持されたガス成分(気体水)で満たし、該気体水に上記100%湿り状態の水蒸気発生手段で発生させた水蒸気をその噴射手段を介して噴射させ、上記加熱室内で熱水・微細水滴・水蒸気からなる複合加熱媒体(ハイブリッド気体水)を発生させるようにしたことを特徴とする複合化加熱媒体発生装置。
(5)被処理材料を加熱し、その加熱副生物を同時に除害化する加熱副生物除害化加熱装置であって、前記(4)に記載の複合化加熱媒体発生装置を具備してなり、その加熱室を被処理材料を加熱処理する加熱室としたことを特徴とする加熱副生物除害化加熱装置。
The present invention for solving the above-described problems comprises the following technical means.
(1) A heating by-product detoxification heating method for heating a material to be treated and simultaneously detoxifying the heating by-product, wherein:
1) Hot water and / or water vapor heated to 100 ° C. or higher is continuously sprayed into a heating chamber of a semi-enclosed space heated to the same temperature or higher to generate fine water droplets and wet hot water vapor.
2) A gas component (gas) having a composition with a humidity of 95% or more and an oxygen concentration of 1% or less, maintained in a temperature range of 90 to 180 ° C., by substituting the air in the heating chamber with the fine water droplets and wet heat steam. Water),
3) 100% wet water vapor is injected into the gaseous water to stably form a composite heating medium composed of hot water, fine water droplets, and water vapor.
4) The material to be heated is subjected to continuous amplitude heating with a temperature difference of at least 10 ° C. in the above temperature range with the above-described composite heating medium, and the material to be processed is heat-treated.
A heating by-product detoxification heating method for a material to be treated.
(2) A heat-treated food or food is produced by heating the food or food by the heating by-product detoxification heating method described in (1) and simultaneously detoxifying the heated by-product. A method for producing a heat-treated food or food.
(3) Heating and sterilizing food or food by the heating byproduct detoxification heating method described in (1) above, and simultaneously heating and sterilizing the heating byproduct, thereby producing a heating and sterilizing processed food or food A method for producing a heat-sterilized food or food, characterized in that:
(4) A device for generating a composite heating medium (hybrid type gaseous water) composed of hot water, fine water droplets, and water vapor, which generates and jets hot water and / or water vapor heated to 100 ° C. or higher, A heating chamber filled with hot water and / or water vapor, 100% wet water vapor generation and injection means are provided, and the hot water and / or water vapor generated by the hot water and / or water vapor generation means is injected. And continuously injecting into the heating chamber through the means, generating fine water droplets and wet heat steam, filling the heating chamber with a gas component (gas water) held in a temperature range of 90 to 180 ° C. The steam generated by the 100% wet steam generation means is injected through the injection means to generate a composite heating medium (hybrid gas water) composed of hot water, fine water droplets and steam in the heating chamber. Composite heating medium generating apparatus is characterized in that so as to.
(5) A heating by-product detoxification heating device that heats the material to be treated and simultaneously detoxifies the heating by-product, and includes the combined heating medium generator described in (4) above. A heating by-product detoxification heating apparatus, wherein the heating chamber is a heating chamber for heat-treating a material to be processed.

次に、本発明について更に詳細に説明する。
本発明の加熱方法は、100℃以上に加熱された熱水及び/又は水蒸気を、これと同温度以上に加熱された準密閉空間の加熱室内に連続的に噴射させ、微細水滴と湿熱水蒸気を発生させること、上記微細水滴と湿熱水蒸気で上記加熱室内の空気を置換させて、湿度95%以上及び酸素濃度1%以下の組成を有し、90〜180℃の温度領域に保持されたガス成分で満たすこと、100%湿り状態の水蒸気を噴射させ、熱水・微細水滴・水蒸気からなる高度複合化加熱媒体を安定的に形成させること、上記熱水と微細水滴及び水蒸気で被処理材料に上記温度領域で少なくとも10℃の温度差の連続振幅加熱を施して加熱処理すること、を特徴とするものである。
Next, the present invention will be described in more detail.
In the heating method of the present invention, hot water and / or water vapor heated to 100 ° C. or higher is continuously injected into a heating chamber of a semi-enclosed space heated to the same temperature or higher to produce fine water droplets and wet hot water vapor. Generating, substituting the air in the heating chamber with the fine water droplets and wet heat steam, and having a composition with a humidity of 95% or more and an oxygen concentration of 1% or less, and a gas component held in a temperature range of 90 to 180 ° C. Filling with 100% wet water vapor, stably forming a highly complex heating medium consisting of hot water, fine water droplets and water vapor, and the above-mentioned hot water, fine water droplets and water vapor to the material to be treated The heat treatment is performed by performing continuous amplitude heating with a temperature difference of at least 10 ° C. in the temperature region.

本発明において、熱水と微細水滴及び水蒸気から成る「複合化加熱媒体」(h−AQG)とは、100%湿り状態の水蒸気から発生する熱水及び高湿度の湿熱水蒸気とその凝縮により部分的に生成する微細水滴との混合系を意味し、乾熱水蒸気とは、上記湿熱水蒸気の乾燥により部分的に生成する高乾燥水蒸気を意味する。本発明では、上記熱水と微細水滴及び水蒸気で被処理材料に90〜180℃の温度領域で少なくとも10℃の温度差の連続振幅加熱を施して加熱処理するが、ここで、少なくとも10℃の温度差の連続振幅加熱とは、90〜180℃の温度範囲において、短時間に10℃を上回る温度差の振幅で連続的に加熱することを意味する。本発明では、例えば、10〜50℃の温度差の振幅で連続的に被処理材料を加熱することができる。本発明では、上記熱水と微細水滴及び水蒸気の混合状態をハイブリッド型気体水(ハイブリッド型「アクアガス」(登録商標))と称する。   In the present invention, the “combined heating medium” (h-AQG) composed of hot water, fine water droplets and water vapor is partially generated by hot water generated from 100% wet water vapor, high-humidity hot water vapor and condensation thereof. The dry heat steam means high dry steam partially generated by drying the wet heat steam. In the present invention, the material to be treated is subjected to a continuous amplitude heating at a temperature difference of at least 10 ° C. in the temperature range of 90 to 180 ° C. with the hot water, fine water droplets, and water vapor. The continuous amplitude heating of the temperature difference means continuous heating with an amplitude of a temperature difference exceeding 10 ° C. in a short time in a temperature range of 90 to 180 ° C. In the present invention, for example, the material to be treated can be continuously heated with an amplitude of a temperature difference of 10 to 50 ° C. In the present invention, the mixed state of the hot water, fine water droplets and water vapor is referred to as hybrid type gas water (hybrid type “Aquagas” (registered trademark)).

本発明では、加熱室を100℃を越える所定の温度に加熱すると共に、該加熱室に熱水及び/又は水蒸気を導入し、該加熱室を水の気体(気体水)で置換し、酸素濃度を1.0%以下に低下させることにより形成した気体水に100%湿り状態の水蒸気を噴射した雰囲気で被加熱材料を加熱する。本発明において、上記加熱室は、被加熱材料を外気と遮断して加熱することができる所定の準閉鎖系空間で構成され、該加熱室として、好適には、例えば、被加熱材料を載せるためのプレート、一部にガラス窓部を形成した開閉可能なドア部を有する準密閉空間が例示される。加熱室は、好適には、ステンレス製の素材で形成される。本発明では、上記加熱室を100℃を越える所定の温度に加熱するが、この場合、好適には、該加熱室に導入する熱水及水蒸気の温度と同等又はそれ以上に加熱する。   In the present invention, the heating chamber is heated to a predetermined temperature exceeding 100 ° C., hot water and / or water vapor is introduced into the heating chamber, the heating chamber is replaced with water gas (gaseous water), and the oxygen concentration The material to be heated is heated in an atmosphere in which water vapor in a 100% wet state is jetted into gaseous water formed by lowering the content to 1.0% or less. In the present invention, the heating chamber is composed of a predetermined quasi-closed system space in which the material to be heated can be heated while being cut off from the outside air. The heating chamber is preferably, for example, for placing the material to be heated. A semi-enclosed space having an openable and closable door part in which a glass window part is partially formed is exemplified. The heating chamber is preferably formed of a stainless steel material. In the present invention, the heating chamber is heated to a predetermined temperature exceeding 100 ° C. In this case, it is preferably heated to a temperature equal to or higher than the temperature of hot water and water vapor introduced into the heating chamber.

本発明では、上記のように、加熱室を所定の温度に加熱すると共に、該加熱室で熱水と微細水滴及び水蒸気を発生させ、該加熱室内の空気をh−AQGで置換する。この場合、上記熱水と微細水滴及び水蒸気は、例えば、細管を通して所定の流速で送水された水を細管の外部からヒーターで加熱し、細管の端部に設けられたノズルを介して加熱室に導入することで生成される。上記熱水と微細水滴及び水蒸気は、100〜180℃、より好適には、95〜150℃に加熱された高温常圧の熱水とガス混合成分であり、被処理材料を高いエネルギー効率で加熱する作用を有する。加熱された水は、加熱室内にノズルを介して噴霧・噴射される。加熱室内は常圧状態で100℃以上の所定の温度に加熱制御されており、噴霧された水滴は気化して、加熱室内を熱水と微細水滴及び水蒸気の混合状態にする。その際に、噴霧される水量及び水滴径を調整することで、水蒸気雰囲気に一部微細水滴を混合させる状態を作り出すことができ、このような状態をアクアガスと呼び、同時にこれに100%湿り状態の水蒸気を噴射して熱水を形成せしめて熱水と微細水滴及び水蒸気からなる「複合化加熱媒体」(ハイブリッド型アクアガス(h−AQG))を形成させる。   In the present invention, as described above, the heating chamber is heated to a predetermined temperature, hot water, fine water droplets, and water vapor are generated in the heating chamber, and the air in the heating chamber is replaced with h-AQG. In this case, the hot water, fine water droplets, and water vapor are, for example, heated by a heater from the outside of the thin tube through a thin tube and supplied to the heating chamber via a nozzle provided at the end of the thin tube. Generated by introduction. The hot water, fine water droplets, and water vapor are 100 to 180 ° C., more preferably, high-temperature and normal-pressure hot water and gas mixed components heated to 95 to 150 ° C., and heat the material to be treated with high energy efficiency. Have the effect of The heated water is sprayed and injected through the nozzle into the heating chamber. The heating chamber is controlled to be heated to a predetermined temperature of 100 ° C. or higher under normal pressure, and the sprayed water droplets are vaporized to bring the heating chamber into a mixed state of hot water, fine water droplets, and water vapor. At that time, by adjusting the amount of water sprayed and the diameter of the water droplets, it is possible to create a state in which fine water droplets are mixed in the water vapor atmosphere. Such a state is called aqua gas, and at the same time 100% wet. The water vapor is sprayed to form hot water to form a “composite heating medium” (hybrid aqua gas (h-AQG)) composed of hot water, fine water droplets and water vapor.

本発明では、給水タンクの水を給水ポンプで汲み上げ、細管からなる導管を通して水蒸気発生蓄熱パネルに供給し、加熱ヒーターにより、例えば、105〜200℃の所定の温度に加熱し、そのまま、細管の先端に設置した水蒸気噴射ノズルから高速で熱水及び/又は水蒸気を噴射させる。この場合、水蒸気ノズルとしては、先端に微細噴射孔を形成してなる、熱水及び/又は水蒸気を微細化して噴出する機能を有するものであれば、適宜のものが用いられる。微細噴射孔の孔径、孔数、孔の穿設位置等は任意に設定できる。水蒸気噴射ノズルからの熱水及び/又は水蒸気の噴射速度は、好適には、噴射ノズル先端において160〜200/s程度であるが、これらに制限されるものではなく、装置の大きさ、種類及び使用目的等に応じて、例えば、微細噴射孔の孔径、孔数等を変更することにより任意に設定することができる。   In the present invention, water in a water supply tank is pumped up by a water supply pump, supplied to a steam generation heat storage panel through a conduit made of a thin tube, heated to a predetermined temperature of, for example, 105 to 200 ° C. by a heater, and left as it is at the tip of the thin tube The hot water and / or water vapor is jetted at a high speed from the water vapor jet nozzle installed in the. In this case, as the water vapor nozzle, an appropriate one may be used as long as it has a function of forming a fine injection hole at the tip and spraying hot water and / or water vapor. The diameter of the fine injection holes, the number of holes, the drilling position of the holes, and the like can be arbitrarily set. The spray speed of hot water and / or steam from the steam spray nozzle is preferably about 160 to 200 / s at the tip of the spray nozzle, but is not limited thereto, and the size, type and Depending on the purpose of use, it can be arbitrarily set, for example, by changing the hole diameter, the number of holes, etc. of the fine injection holes.

本発明では、例えば、上記微細噴射ノズルから噴射された水蒸気を加熱室に導入するが、その際に、噴射ノズルの先端に近接して設置した循環ファンに水蒸気を噴射して、循環ファンの回転による衝撃力と風力により所定の風向にh−AQGを移送すると共に、それらの風向に合わせて設置された加熱ヒーターにh−AQGを接触させて、h−AQGをその温度を低下させずに加熱室全体に導入し、該加熱室を所定の温度に保持されたh−AQGで置換し、湿度95%以上、酸素濃度1.0%以下、より好適には、湿度99.0%以上、酸素濃度1.0%以下の熱水・ガス成分で加熱室を満たすことにより、加熱室内にh−AQG雰囲気を形成することができる。微細噴射口から噴射された熱水及び/又は水蒸気は、循環ファンに衝突することで更に微細化する。また、循環ファンにより形成された風向の風下に設置された加熱ヒーターは、その表面が噴射された熱水及び/又は水蒸気に直接的に、かつ広面積で接触するように、好適には、噴射された熱水及び/又は水蒸気をなるべく遮るような位置及び方向に設置する。それにより、加熱ヒーターによる熱を噴射された熱水及び/又は水蒸気に効率良く伝達し、噴射された熱水及び/又は水蒸気の温度低下を確実に防止することが可能となる。   In the present invention, for example, the water vapor injected from the fine injection nozzle is introduced into the heating chamber. At this time, the water vapor is injected into a circulation fan installed in the vicinity of the tip of the injection nozzle to rotate the circulation fan. The h-AQG is transferred to a predetermined wind direction by the impact force and wind force of the air, and the h-AQG is brought into contact with a heater installed in accordance with the wind direction to heat the h-AQG without lowering its temperature. It is introduced into the entire chamber, and the heating chamber is replaced with h-AQG maintained at a predetermined temperature, and the humidity is 95% or more and the oxygen concentration is 1.0% or less, more preferably, the humidity is 99.0% or more, oxygen By filling the heating chamber with hot water / gas components having a concentration of 1.0% or less, an h-AQG atmosphere can be formed in the heating chamber. The hot water and / or water vapor injected from the fine injection port is further refined by colliding with the circulation fan. Further, the heater installed in the lee of the wind direction formed by the circulation fan is preferably jetted so that the surface thereof is in direct contact with the jetted hot water and / or water vapor in a wide area. It is installed in a position and a direction so as to block the hot water and / or water vapor as much as possible. Thereby, it is possible to efficiently transfer the heat from the heater to the injected hot water and / or water vapor, and reliably prevent the temperature of the injected hot water and / or water vapor from decreasing.

上記循環ファンは、例えば、加熱室内部の後面側の中央に設置され、噴射された熱水及び/又は水蒸気を、加熱室内部の左側面部及び右側面部に位置するダクト内に設置された加熱ヒーターに直接接触するように移送する機能を有するものが例示されるが、これらに制限されるものではない。また、上記加熱ヒーターは、好適には、例えば、シーズヒーター等をヘアピン状に多数設置して、噴射された熱水及び/又は水蒸気との接触面積が増えるようにしたものが例示されるが、これらに制限されるものではなく、同様の機能を有するものであれば同様に使用することができる。上記循環ファンの回転数及び回転方向は、装置の大きさ、ダクトの位置、形状、加熱ヒーターの形状、設置位置等を考慮して、噴射された熱水及び/又は水蒸気がダクト内に循環風として循環し得るように設定される。   The circulation fan is, for example, installed in the center of the rear surface side in the heating chamber, and the heated heater and / or water vapor that is sprayed is installed in a duct located in the left side surface and right side surface of the heating chamber. Although what has the function to transfer so that it may contact directly is illustrated, it is not restrict | limited to these. In addition, the heater is preferably exemplified by a large number of sheathed heaters installed in a hairpin shape so that the contact area with the injected hot water and / or water vapor increases. However, the present invention is not limited to these and can be used in the same manner as long as they have similar functions. The number of rotations and the direction of rotation of the circulation fan is determined by taking into account the size of the device, the position and shape of the duct, the shape of the heater, the installation position, etc., and the injected hot water and / or water vapor is circulated into the duct. Is set to be able to circulate as

加熱室がh−AQGで置換された段階で、被処理材料を加熱室に導入し、上記h−AQGを熱媒体として利用して、所定の加熱処理を行う。ここで言う加熱処理とは、上記h−AQGを熱源として利用するあらゆる種類の加熱処理を含むものであり、好適には、例えば、凍結材料の加熱による解凍処理、材料の加熱加工、材料の加熱による乾燥加工、材料の加熱による溶融又は焼成加工、水を含む液体の加熱処理等が例示される。本発明において、被処理材料は、特に制限されるものではないが、好適には、例えば、凍結品、植物製品、有機物、無機物、農産物、食料品、木材、金属、セラミックス、プラスチック等が例示される。しかし、本発明は、これらに制限されるものではなく、その他、乾燥、加熱、殺菌、焼成、解凍、調理などの加熱処理が適用されるあらゆる種類の被処理材料に適用され得るものである。   In a stage where the heating chamber is replaced with h-AQG, a material to be processed is introduced into the heating chamber, and a predetermined heat treatment is performed using the h-AQG as a heat medium. The heat treatment referred to here includes all kinds of heat treatment using the above-mentioned h-AQG as a heat source, and preferably includes, for example, thawing treatment by heating a frozen material, material heat processing, and material heating. Examples include drying processing by heating, melting or baking processing by heating the material, and heat treatment of a liquid containing water. In the present invention, the material to be treated is not particularly limited, and preferably, for example, frozen products, plant products, organic materials, inorganic materials, agricultural products, food products, wood, metals, ceramics, plastics and the like are exemplified. The However, the present invention is not limited to these, and can be applied to all types of materials to which heat treatment such as drying, heating, sterilization, baking, thawing and cooking is applied.

加熱室に導入した被処理材料は、所定の加熱処理を施した後、適宜のタイミングで加熱室の外に搬出され、被処理材料に接触したh−AQGは、h−AQG排出口から系外に排出される。加熱室内に噴射された熱水及び/又は水蒸気は、まず、循環ファンに衝突し、微細化され、ダクトに移送され、ダクト内に設置した加熱ヒーターに接触し、所定の温度に加熱された後、加熱室内に導入された被処理材料に接触し、熱媒体として利用された後、系外に排出される。熱媒体としてのh−AQGの熱エネルギーは、被処理材料の加熱処理の熱源として利用されるが、本発明では、噴射された熱水及び/又は水蒸気は、そのまま、被処理材料に接触するのではなく、一旦、ダクト内に設置された加熱ヒーターにより加熱された後に、被処理材料に接触し、噴射された熱水及び/又は水蒸気の熱量を低下させることなく、被処理材料を加熱するので、被処理材料を効率よく加熱することが可能となる。   The material to be treated introduced into the heating chamber is subjected to a predetermined heat treatment and then taken out of the heating chamber at an appropriate timing. The h-AQG that has contacted the material to be treated is discharged from the h-AQG outlet to the outside of the system. To be discharged. The hot water and / or water vapor injected into the heating chamber first collides with the circulation fan, is refined, transferred to the duct, contacts the heater installed in the duct, and is heated to a predetermined temperature. After contacting the material to be treated introduced into the heating chamber and being used as a heat medium, it is discharged out of the system. The thermal energy of h-AQG as a heat medium is used as a heat source for heat treatment of the material to be treated. In the present invention, the injected hot water and / or water vapor directly contacts the material to be treated. Rather, after being heated by the heater installed in the duct, the material to be treated is heated without being brought into contact with the material to be treated and reducing the amount of heat of the injected hot water and / or water vapor. The material to be processed can be efficiently heated.

また、噴射された熱水及び/又は水蒸気は、例えば、高速で循環ファンに衝突し、その衝突により衝撃で水滴が分割されて、更に、微細化されると共に、更に、加熱ヒーターで加熱されるので、この微細化された高温の気体水は、肉眼観察で完全に透明な高熱伝導率の高温の水粒子からなり、被処理材料の内部への浸透性が高く、一旦、被処理材料の内部へ浸透して熱交換を行った気体水に対し、後続の高温の気体水が熱エネルギーをたえず供給するので、高熱伝導率を有する熱が連続的に内部へ移動し、気体水が、効率よく被処理材料の内部へ浸透し、短時間で被処理材料を加熱することができる。更に、同時併行的に噴射される100%湿り状態の水蒸気から大量に発生する熱水が充満しているために、装置内面が常に熱水で覆われる結果、装置面への加熱副生物の飛沫付着を防止するとともに、特に、ヒーター面付着物の高熱変成による除去困難な皮膜の形成を抑制することができる。   The injected hot water and / or water vapor collide with the circulation fan at a high speed, for example, and the water droplets are divided by the impact due to the collision, and further refined and further heated by the heater. Therefore, this refined high-temperature gaseous water consists of high-temperature water particles with high thermal conductivity that are completely transparent to the naked eye, and has high permeability to the inside of the material to be treated. Subsequent high-temperature gaseous water continuously supplies heat energy to the gaseous water that has permeated into the heat exchanger, so that heat with high thermal conductivity is continuously transferred to the interior, and the gaseous water is efficiently It penetrates into the inside of the material to be processed, and the material to be processed can be heated in a short time. Furthermore, since hot water generated in large quantities from 100% wet steam sprayed simultaneously is filled, the inner surface of the apparatus is always covered with hot water, and as a result, splashes of heating by-products on the apparatus surface. In addition to preventing adhesion, it is possible to suppress the formation of a film that is difficult to remove, particularly due to high-temperature transformation of deposits on the heater surface.

本発明において、上記噴出された熱水及び/又は水蒸気の水滴は、必要により、循環ファンに衝突することで更に微細化され、界面活性を有する殺菌性の微細な水粒子として加熱室に充満する。実験の結果、給水タンクから採取された水のpHは約6.9〜7.1であったが、この界面活性な殺菌性微細水粒子のpHは、約8.5〜9.8であり、105℃以上の高温条件と協動して、加熱室内で高殺菌性h−AQG雰囲気を形成するのみならず、従来技術では不可能とされて来た加熱副生物の合理的な除害化が加熱処理と同時並行的に行うことが可能となる。したがって、本発明を、例えば、農産物、食料品に適用した場合には、高界面活性性殺菌性雰囲気下で被処理材料を加熱処理することができるので、加熱と同時に高殺菌効果を付与できるばかりか、加熱副生物による装置汚染と環境汚染を合理的に解決可能である。   In the present invention, the jetted hot water and / or water vapor droplets are further refined as necessary by colliding with a circulation fan, and fill the heating chamber as microbicidal water particles having surface activity. . As a result of the experiment, the pH of the water collected from the water supply tank was about 6.9 to 7.1, but the pH of the surface active bactericidal fine water particles was about 8.5 to 9.8. In addition to forming a highly bactericidal h-AQG atmosphere in the heating chamber in cooperation with high temperature conditions of 105 ° C. or higher, rational detoxification of heating by-products that has been impossible with the prior art Can be performed simultaneously with the heat treatment. Therefore, when the present invention is applied to, for example, agricultural products and food products, the material to be treated can be heat-treated in a highly surface-active bactericidal atmosphere, so that a high bactericidal effect can be imparted simultaneously with heating. Or, it is possible to rationally solve the equipment contamination and environmental pollution by heating by-products.

本発明では、熱水・微細水滴(気体水)と水蒸気を複合化してなる複合化加熱媒体(ハイブリッド型気体水)を発生させる装置が提供される。該装置は、100℃以上に加熱された熱水及び/又は水蒸気の発生及び噴射手段、該熱水及び/又は水蒸気を満たす加熱室、及び100%湿り状態の水蒸気の発生及び噴射手段を具備してなり、上記熱水及び/又は水蒸気発生手段により発生させた熱水及び/又は水蒸気をその噴射手段を介して加熱室内に連続的に噴射させ、微細水滴と湿熱水蒸気を発生させて、上記加熱室を90〜180℃の温度領域に保持されたガス成分(気体水)で満たし、該気体水に上記100%湿った状態の水蒸気発生手段で発生させた水蒸気をその噴射手段を介して噴射させ、上記加熱室内で熱水・微細水滴・水蒸気からなる複合化加熱媒体(ハイブリッド気体水)を発生させるようにした複合化加熱媒体(ハイブリッド気体水)発生装置である。   The present invention provides an apparatus for generating a combined heating medium (hybrid type gaseous water) formed by combining hot water / fine water droplets (gas water) and water vapor. The apparatus comprises hot water and / or steam generating and jetting means heated to 100 ° C. or higher, a heating chamber filled with the hot water and / or steam, and 100% wet steam generating and jetting means. The hot water and / or water vapor generated by the hot water and / or water vapor generating means is continuously injected into the heating chamber through the injection means to generate fine water droplets and wet heat water vapor, and the heating The chamber is filled with a gas component (gaseous water) held in a temperature range of 90 to 180 ° C., and water vapor generated by the water vapor generating means in the 100% wet state is injected into the gaseous water through the injection means. A combined heating medium (hybrid gas water) generator configured to generate a combined heating medium (hybrid gas water) composed of hot water, fine water droplets, and water vapor in the heating chamber.

また、本発明では、被処理材料を加熱し、その加熱副生物を同時に除害化する加熱副生物除害化加熱装置であって、上述の複合化加熱媒体発生装置を具備してなり、その加熱室を被処理材料を加熱処理する加熱室とした加熱副生物除害化加熱装置が提供される。上記加熱室としては、例えば、被処理材料その内部に収容して外気と遮断して加熱できる空間を有する加熱室が使用され、必要に応じて、開閉可能なドア部、そのハンドル及び窓、操作パネル、及び供給水の加熱装置が構成要素として付加される。該加熱室は、単一又は複数であっても良く、例えば連続式の装置では、処理温度の異なる複数の加熱室を設置することができる。上記装置は、水を供給するための水供給手段、水蒸気発生蓄熱パネル、微細水蒸気噴出ノズル、噴射された高温水蒸気を更に微細化するための回転循環ファン、ダイト、所定の温度に加熱する加熱ヒーターからなる熱水及び水蒸気の発生及び噴射系統と、更に、ヒーター線を配設した細管を経由して水を加熱する水蒸気発生蓄熱パネル、噴射ノズルからなる100%湿り状態の水蒸気の発生及び噴射系統を有する。これらの各手段の具体的な構成は、装置のサイズ、種類、形態及び使用目的等に応じて任意に設計することができる。   Further, in the present invention, a heating by-product detoxification heating device that heats a material to be treated and simultaneously detoxifies the heating by-product, comprising the above-described combined heating medium generator, A heating by-product detoxification heating apparatus is provided in which the heating chamber is a heating chamber for heat-treating a material to be processed. As the heating chamber, for example, a heating chamber having a space that can be heated by being stored inside the material to be processed and cut off from the outside air is used. If necessary, the door portion that can be opened and closed, its handle and window, operation Panels and feed water heating devices are added as components. The heating chamber may be single or plural. For example, in a continuous apparatus, a plurality of heating chambers having different processing temperatures can be installed. The above apparatus includes a water supply means for supplying water, a steam generation heat storage panel, a fine steam jet nozzle, a rotary circulation fan for further miniaturizing the jetted high temperature steam, a die, and a heater for heating to a predetermined temperature. Generation and injection system of hot water and water vapor, and further, a water vapor generation and storage panel for heating water via a thin tube provided with a heater wire, and a generation and injection system of 100% wet water vapor comprising an injection nozzle Have The specific configuration of each of these means can be arbitrarily designed according to the size, type, form, purpose of use, and the like of the apparatus.

次に、本発明のh−AQGによる加熱装置の一実施の形態を図に基づいて具体的に説明する。ただし、図は、本発明の装置の一例を示すものであり、本発明は、これに制限されるものではなく、また、各構成要素は、同様の機能を有する同様の手段に置換することが可能であり、更に、公知の手段を任意に付加することができる。図1は、本発明の加熱装置の正面図であり、被処理材料を外気と遮断して加熱するための加熱室1、その正面に設置された開閉可能なドア部2、そのハンドル3及び窓4、操作パネル5、及び供給水の加熱装置15を構成要素として含むバッチ式の装置を示す。加熱室1は、被処理材料(図示せず)をその内部に収容して加熱処理し得る所定の空間を形成する。加熱室1の正面に設置されたドア部2は、ハンドル3を操作して適宜開閉し得る構造を有し、窓4は、被処理材料の加熱状況を確認するために設置される。尚、加熱室は、単一又は複数であっても良く、例えば、連続式の装置では、処理温度の異なる複数の加熱室を設けることが可能であり、その場合、ドア部は省略することができる。   Next, an embodiment of a heating apparatus using h-AQG of the present invention will be specifically described with reference to the drawings. However, the drawing shows an example of the apparatus of the present invention, and the present invention is not limited to this, and each component can be replaced by similar means having the same function. In addition, known means can be arbitrarily added. FIG. 1 is a front view of a heating apparatus according to the present invention, a heating chamber 1 for heating a material to be treated from outside air, an openable / closable door 2 installed on the front, a handle 3 and a window thereof. 4 shows a batch-type apparatus including an operation panel 5 and a feed water heating apparatus 15 as constituent elements. The heating chamber 1 forms a predetermined space in which a material to be processed (not shown) is accommodated and heat-treated. The door part 2 installed in the front of the heating chamber 1 has a structure that can be opened and closed as needed by operating the handle 3, and the window 4 is installed to check the heating status of the material to be processed. The heating chamber may be single or plural. For example, in a continuous apparatus, it is possible to provide a plurality of heating chambers having different processing temperatures, and in that case, the door portion may be omitted. it can.

図2は、上記装置の縦断平面図であり、水蒸気発生蓄熱パネル6を通して加熱された水は、高温水蒸気として微細水蒸気噴出ノズルを介して加熱室内に噴出され、回転する循環ファン7に衝突して微細化されると共に、左右に設置されたダクト8、8′に移送され、ダクト内8、8′内に設置された加熱ヒーター9に接触して、所定の温度に加熱され、循環風向10として被処理材料(図示せず)に接触し、被処理材料を加熱する。熱源として利用された熱水混合気体水は、排出口11から系外に排出される。加熱室内に噴射された水蒸気は、循環ファン7により、装置の左側面部及び右側面部に設けられたダクト8、8′に移送され、加熱ヒーター9により加熱される。   FIG. 2 is a longitudinal plan view of the above-described apparatus. Water heated through the steam generation heat storage panel 6 is ejected as high temperature steam into the heating chamber through a fine steam ejection nozzle and collides with the rotating circulation fan 7. While being miniaturized, it is transferred to the ducts 8 and 8 ′ installed on the left and right sides, is brought into contact with the heater 9 installed in the ducts 8 and 8 ′, and is heated to a predetermined temperature. A material to be processed (not shown) is contacted to heat the material to be processed. The hot water mixed gas water used as a heat source is discharged from the discharge port 11 to the outside of the system. The water vapor injected into the heating chamber is transferred by the circulation fan 7 to the ducts 8 and 8 ′ provided on the left and right side portions of the apparatus, and is heated by the heater 9.

本発明では、加熱ヒーター9の温度条件は、好適には、噴射された熱水及び/又は水蒸気の温度レベルに合わせるか、それ以上の温度に設定することが重要である。それにより、噴射された熱水及び/又は水蒸気の温度レベルを低下させることなく、噴射された熱水及び/又は水蒸気の温度レベルを維持した気体水で加熱室を満たすことが可能となるが、仮に、加熱ヒーターを設置しない場合には、このような気体水雰囲気を形成することはできない。また、加熱室内及び噴射された熱水及び/又は水蒸気を加熱するための加熱ヒーターと、供給された水を加熱して所定の温度の高温水蒸気を発生させるための加熱手段とを独立して設置し、これらを併用することにより、噴射される熱水及び/又は水蒸気の温度と、加熱室内の温度を独立して制御することが可能となり、それにより、噴射された熱水及び/又は水蒸気の熱量を過度にロスすることなく、省エネルギーでh−AQGによる被処理材料の加熱処理を実施することができる。   In the present invention, it is important that the temperature condition of the heater 9 is preferably set to a temperature higher than or equal to the temperature level of the injected hot water and / or water vapor. Thereby, it becomes possible to fill the heating chamber with gaseous water maintaining the temperature level of the injected hot water and / or water vapor without reducing the temperature level of the injected hot water and / or water vapor, If no heater is installed, such a gaseous water atmosphere cannot be formed. Also, a heating chamber for heating the sprayed hot water and / or steam and a heating means for heating the supplied water to generate high-temperature steam at a predetermined temperature are installed independently. By using these together, it is possible to independently control the temperature of the hot water and / or steam to be injected and the temperature in the heating chamber, so that the temperature of the injected hot water and / or steam can be controlled. The heat treatment of the material to be treated by h-AQG can be performed with energy saving without excessive loss of heat.

図3は、図2の水蒸気発生高熱パネルの一実施例であり、給水タンクから給水ポンプを介して供給される水を、ヒーター線を配設した細管を経由して水を加熱すると共に、その先端に設置された噴射ノズル11から、微細水粒子12を噴出する。図3には、U字状の細管を多数組み合わせた水蒸気発生蓄熱パネル6の一例を示したが、これに制限されるものではなく、同様の機能を有するものであれば同様に使用することができる。本発明では、上記水蒸気発生蓄熱パネルにより、水を、好適には、105〜200℃に加熱するが、高効率の加熱をするには、水を約108〜115℃に加熱して噴出させることが好ましい。本発明において、熱媒体としての気体水を最も効率よく利用するには、約108〜115℃に設定された加熱室に約108〜115℃に加熱された熱水及び/又は水蒸気を噴出することが好適なものとして例示されるが、被処理材料の性質、加熱処理の種類及び本発明の装置の使用目的等に応じてこれらの温度条件を任意に設定することができる。   FIG. 3 is an example of the steam generation high heat panel of FIG. 2, in which water supplied from a water supply tank via a water supply pump is heated through a thin tube provided with a heater wire, Fine water particles 12 are ejected from an ejection nozzle 11 installed at the tip. FIG. 3 shows an example of the steam generation heat storage panel 6 in which a large number of U-shaped narrow tubes are combined. However, the steam generation heat storage panel 6 is not limited to this and may be used in the same manner as long as it has the same function. it can. In the present invention, water is preferably heated to 105 to 200 ° C. by the water vapor generation and storage panel, but for high efficiency heating, the water is heated to about 108 to 115 ° C. and ejected. Is preferred. In the present invention, in order to use the gaseous water as the heat medium most efficiently, hot water and / or water vapor heated to about 108 to 115 ° C. is jetted into a heating chamber set to about 108 to 115 ° C. However, these temperature conditions can be arbitrarily set according to the properties of the material to be treated, the type of heat treatment, the purpose of use of the apparatus of the present invention, and the like.

本発明において、ハイブリッド型アクアガス(アクアガス(登録商標)、h−AQGと記載することがある。)とは、開放管等の開放系の中で外部ヒータにより100℃以上に加熱された熱水及び/又は水蒸気を、圧力を生じさせないように開放系の準密閉状態で熱水及び/又は水蒸気温度と同温度以上に安定的に加熱された加熱室内で、連続的に噴射させ、微細水滴と湿熱水蒸気を発生させ、加熱室内部を常圧状態のまま水蒸気で充満させ、空気との置換により、湿度90%以上、酸素濃度1.0%以下、より好ましくは、湿度99.0%以上、酸素濃度1.0%以下にしたガス成分として定義される。   In the present invention, hybrid aqua gas (Aqua Gas (registered trademark), sometimes referred to as h-AQG) is hot water heated to 100 ° C. or more by an external heater in an open system such as an open pipe, Water vapor is sprayed continuously in a heated chamber that is stably heated to the same temperature or higher than the temperature of hot water and / or water vapor in an open quasi-sealed state so as not to generate pressure, and fine water droplets and wet heat Steam is generated, and the inside of the heating chamber is filled with water vapor in a normal pressure state. By replacement with air, the humidity is 90% or more, the oxygen concentration is 1.0% or less, more preferably, the humidity is 99.0% or more, oxygen It is defined as a gas component having a concentration of 1.0% or less.

上記加熱室内で発生させたガス成分(気体水)は、水蒸気温度と同温度以上に安定的に加熱された加熱室内では、温度低下を起こさないことから、凝縮が少なく、水蒸気の有する高い潜熱と吐出された水蒸気の密度が安定的に維持されるので、熱エネルギーのロスが少なく、高熱量の熱媒体として作用し、非酸化状態での省エネ加熱を可能とすることができる。気体水は、上記開放系の外部ヒータ(パネルヒータ)及び加熱室内の加熱ヒータの容量を選択することにより、好適には、例えば、100〜180℃の温度に維持できるが、これらに制限されるものではなく、その使用目的等に応じて、適宜の温度条件に選定できる。気体水は、水蒸気及び過熱水蒸気と比べて、より高い熱の伝導性を持ち、例えば、加工食品の歩留まりを向上させるような初期凝縮期間の調整を可能とするような、湿熱水蒸気及び微細水滴を用いた加熱媒体「アクアガス」として、特に、食品の加熱・殺菌加工に好適に用いられる。   The gas component (gaseous water) generated in the heating chamber does not cause a temperature drop in the heating chamber that is stably heated to the same temperature or higher than the steam temperature. Since the density of the discharged water vapor is stably maintained, there is little loss of thermal energy, it acts as a high heat quantity heat medium, and energy saving heating in a non-oxidized state can be realized. The gaseous water can be suitably maintained at a temperature of 100 to 180 ° C., for example, by selecting the capacity of the open external heater (panel heater) and the heater in the heating chamber, but is limited to these. It can be selected as appropriate temperature conditions according to the purpose of use. Gaseous water has higher heat conductivity than water vapor and superheated water vapor, for example, wet heat water vapor and fine water droplets that allow adjustment of the initial condensation period to improve the yield of processed foods. The heating medium “Aquagas” used is particularly suitable for food heating and sterilization.

従来、通常の蒸気による加熱方式、高温高圧水蒸気による加熱方式、スチームコンベクションオーブンによる加熱方式等が存在するが、これらの加熱方式の内、高温高圧水蒸気による加熱方法では、高温高圧水蒸気を減圧し、低圧水蒸気の状態で、圧力を生じないように開放管を設けて準密閉状態にした加熱室へ連続的に導入した場合、加熱室及び被加熱材料は、低圧水蒸気の熱エネルギーで加熱されることから、加熱室内の温度は、導入される水蒸気の温度よりも低くなり、そのために、水蒸気は常に凝縮し、液化され、潜熱量は低下し、エネルギーのロスがきわめて大きくなる。また、加熱室内部を低圧水蒸気で充満させ、残留する酸素濃度を1.0%以下に維持するためには、大量の水蒸気と熱エネルギーが必要となる。   Conventionally, there are a heating method using normal steam, a heating method using high-temperature and high-pressure steam, a heating method using a steam convection oven, etc. Among these heating methods, in the heating method using high-temperature and high-pressure steam, the high-temperature and high-pressure steam is decompressed, When continuously introduced into a semi-sealed heating chamber provided with an open pipe so as not to generate pressure in the state of low-pressure steam, the heating chamber and the material to be heated must be heated with the thermal energy of low-pressure steam. Therefore, the temperature in the heating chamber becomes lower than the temperature of the introduced water vapor, so that the water vapor is always condensed and liquefied, the amount of latent heat is reduced, and the loss of energy becomes extremely large. Further, in order to fill the inside of the heating chamber with low-pressure steam and maintain the residual oxygen concentration at 1.0% or less, a large amount of steam and heat energy are required.

この加熱方式で被処理材料を加熱する場合、導入される水蒸気より温度の低い加熱室内には、常に大量の低圧水蒸気が送り込まれ、熱交換による凝縮が発生する。そのため、例えば、130℃以下では、被処理材料は、その凝縮の影響により蒸しの状態での加熱となる。他方、スチームコンベクションオーブンによる加熱方式では、加熱室内は一定温度に加熱された状態であり、水蒸気は常に気化温度での水の蒸発により発生し、水蒸気の温度は、加熱室内部の温度の上昇により上昇する。水蒸気は、加熱室内では温度上昇過程にあり、十分な密度及び潜熱量を保つことができない。この加熱方式で被処理材料を加熱する場合、充満した水蒸気による加熱ではなく、乾燥空気が含まれた水蒸気による加熱となり、その潜熱量は小さくなる。   When a material to be treated is heated by this heating method, a large amount of low-pressure steam is always sent into a heating chamber having a temperature lower than that of the introduced steam, and condensation due to heat exchange occurs. Therefore, for example, at 130 ° C. or lower, the material to be treated is heated in a steamed state due to the condensation. On the other hand, in the heating method using the steam convection oven, the heating chamber is heated to a constant temperature, and the water vapor is always generated by evaporation of water at the vaporization temperature, and the temperature of the water vapor is increased by the temperature inside the heating chamber. To rise. The water vapor is in the process of increasing the temperature in the heating chamber and cannot maintain a sufficient density and latent heat. When the material to be treated is heated by this heating method, it is not heated by the full steam, but by the steam containing dry air, and the amount of latent heat is reduced.

これらの加熱方式に対して、本発明の加熱方式では、開放管等の開放系の中で外部ヒータにより100℃以上に加熱された水蒸気を、圧力を生じさせないように開放管を設けた準密閉状態で、かつ水蒸気温度と同温度以上に安定的に加熱された加熱室内で、連続的に熱水及び/又は水蒸気を噴射させ、微細水滴と湿熱水蒸気を発生させるので、加熱室の内部は常圧状態のまま水蒸気で充満され、空気との置換が行われ、例えば、湿度99.0%以上、酸素濃度1.0%以下のガス成分の状態となり、発生した水蒸気は温度低下を起こさないことから、高い潜熱量の維持が可能となる。この加熱方式で被処理材料を加熱する場合、加熱室内での温度低下が起こらず、水蒸気の凝縮が少なく、また、高い潜熱量を維持して、非酸化的な加熱が可能となり、かつ加熱処理の宿命とも言える加熱副生物の合理的除害化処理が自動的に行われると共に、被処理材料に90〜180℃の温度領域で少なくとも10℃の温度差の連続振幅加熱を施すことが可能となる。このように、本発明の加熱方式は、高潜熱量での省エネルギー加熱、凝縮の影響のない加熱及び非酸化状態での加熱のみならず、加熱副生物の合理的除害化処理を実現するものである。表1に、これらの加熱方式の特徴的部分を比較して示す。   In contrast to these heating systems, in the heating system of the present invention, a semi-sealed structure in which an open pipe is provided so that water vapor heated to 100 ° C. or more by an external heater in an open system such as an open pipe does not cause pressure. In the heating chamber, which is in a state and stably heated to a temperature equal to or higher than the water vapor temperature, hot water and / or water vapor is continuously jetted to generate fine water droplets and wet heat water vapor. It is filled with water vapor in the pressure state and replaced with air. For example, it becomes a gas component state with a humidity of 99.0% or more and an oxygen concentration of 1.0% or less, and the generated water vapor does not cause a temperature drop. Therefore, it is possible to maintain a high amount of latent heat. When the material to be treated is heated by this heating method, the temperature in the heating chamber does not decrease, the condensation of water vapor is small, the amount of latent heat is maintained, non-oxidative heating is possible, and the heat treatment A rational detoxification treatment of heating by-products, which can be said to be the fate of, is automatically performed, and the material to be treated can be subjected to continuous amplitude heating with a temperature difference of at least 10 ° C. in the temperature range of 90 to 180 ° C. Become. Thus, the heating method of the present invention realizes not only energy-saving heating with a high latent heat amount, heating without the influence of condensation and heating in a non-oxidized state, but also rational detoxification treatment of heating by-products. It is. Table 1 compares the characteristic parts of these heating methods.

本発明により、1)被処理材料に90〜180℃の温度領域で少なくとも10℃の温度差の連続振幅加熱を施して加熱・殺菌及び加熱副生物の除害化処理をすることができる、2)被処理材料を外界と遮断して加熱するための加熱室を、水の気体と熱水の混合系で置換し、湿度99.0%以上、酸素濃度を0.1%以下のガス成分(気体水雰囲気)にすることができる、3)上記h−AQGで被処理材料を短時間で効率よく低侵襲的に加熱・殺菌すると同時に加熱副生物の除害化処理を行うことができる、4)凍結品の解凍、農産物、食料品の加熱・殺菌調理及び加熱副生物の自動的な除害化、木材、金属、セラミック材料等の加熱、乾燥、焼成に適用できる、5)h−AQGを生成させ、それを熱媒体として利用するh−AQGによる加熱副生物除害化加熱・殺菌装置を提供することができる、等の効果が奏される。   According to the present invention, 1) The material to be treated can be subjected to continuous amplitude heating at a temperature difference of at least 10 ° C. in the temperature range of 90 to 180 ° C. to perform heating / sterilization and detoxification treatment of the heated byproduct. ) Replace the heating chamber for heating the material to be treated from the outside with a mixed system of water gas and hot water, and a gas component (humidity 99.0% or more and oxygen concentration 0.1% or less) 3) The material to be treated can be efficiently and minimally invasively heated and sterilized in a short time with the h-AQG, and at the same time, the detoxification treatment of the heated byproduct can be performed. Applicable for thawing frozen products, heating and sterilization cooking of agricultural products and foods, automatic detoxification of heating by-products, heating, drying and firing of wood, metal, ceramic materials, etc. 5) h-AQG Heating with h-AQG that generates and uses it as a heating medium It is possible to provide a biological removal Gaika heating and sterilizing apparatus, effects etc. are obtained.

次に、試験例及び実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   Next, the present invention will be specifically described based on test examples and examples, but the present invention is not limited to the following examples.

試験例1
本試験例では、図1に示すh−AQG発生装置を用いて、ハイブリッド型アクアガスの発生試験を実施した。アクアガス発生装置の運転を開始し、準密閉状態の加熱室(加熱チャンバー)を水蒸気温度と同温度に加熱し、次いで、該チャンバーに300℃に加熱された水蒸気を連続的に噴射させて、チャンバーの内部を常圧状態のまま水蒸気で充満させた。運転開始から25分経過後に微細水滴と湿熱水蒸気の混合状態を作り出し、約7分後に湿度99.9%、酸素濃度0.01%のハイブリッド型「気体水」の状態に達した。上記h−AQG発生装置によるh−AQG生成過程におけるチャンバー内の温度、湿度、酸素濃度、排気温度を測定した結果を図4に示す。図中で、25分経過後に、チャンバー内の酸素濃度の急激な低下及び湿度の急激な上昇を経て、h−AQGが生成されることが分かる。
Test example 1
In this test example, a generation test of a hybrid aqua gas was performed using the h-AQG generator shown in FIG. The operation of the aqua gas generator is started, the semi-sealed heating chamber (heating chamber) is heated to the same temperature as the water vapor temperature, and then the water vapor heated to 300 ° C. is continuously jetted into the chamber. The inside of was filled with water vapor in a normal pressure state. After a lapse of 25 minutes from the start of the operation, a mixed state of fine water droplets and wet heat steam was created, and after about 7 minutes, a hybrid type “gas water” state having a humidity of 99.9% and an oxygen concentration of 0.01% was reached. FIG. 4 shows the results of measuring the temperature, humidity, oxygen concentration, and exhaust temperature in the chamber during the h-AQG generation process by the h-AQG generator. In the figure, it can be seen that after 25 minutes, h-AQG is generated through a rapid decrease in oxygen concentration and a rapid increase in humidity in the chamber.

試験例2
本試験例では、図1に示す装置において、水蒸気発生用パネルヒータ(2kw)、加熱室内の加熱ヒータ(10kw)を用いて、ハイブリッド型アクアガス発生装置の運転時の100℃から300℃までの水蒸気吐出温度と、装置内温度、装置内湿度、及び装置内酸素濃度との関係を調べた。その結果を図5に示す。上記パネルヒータは100℃以上において、連続最大運転とし、上記加熱ヒータは110℃以上において、連続最大運転とした。ただし、100℃以下においては、その設定温度に設定した。図に示されるように、約100〜115℃の気化発生期の水蒸気では、温度上昇に時間を要し、約120℃以上の水蒸気は装置内温度に連動して短時間、かつ安定な温度上昇を示し、装置内温度と水蒸気温度がきわめて安定に制御し得ることが分かった。他方、115℃前後の水蒸気は、準安定状態ではあるが、高密度で高い潜熱量を有する熱媒体として利用し得ると考えられる。これにより、本発明では、これらの準安定及び安定状態のh−AQGを、その特性を生かして、被加熱材料の種類、加熱加工の目的等に応じて任意に選択し、使用することが可能であることが分かった。
Test example 2
In this test example, in the apparatus shown in FIG. 1, water vapor from 100 ° C. to 300 ° C. during operation of the hybrid aqua gas generator using a panel heater for steam generation (2 kW) and a heater in the heating chamber (10 kW). The relationship between the discharge temperature, the apparatus internal temperature, the apparatus internal humidity, and the apparatus oxygen concentration was examined. The result is shown in FIG. The panel heater was continuously operated at 100 ° C. or higher, and the heater was continuously operated at 110 ° C. or higher. However, the temperature was set to 100 ° C. or lower. As shown in the figure, the vaporization period of steam of about 100 to 115 ° C. takes time to increase the temperature, and steam of about 120 ° C. or more requires a short time and a stable temperature increase in conjunction with the temperature in the apparatus. It was found that the temperature inside the apparatus and the water vapor temperature can be controlled very stably. On the other hand, it is considered that water vapor at around 115 ° C. can be used as a heat medium having a high density and a high latent heat amount although it is in a metastable state. Accordingly, in the present invention, these metastable and stable h-AQGs can be arbitrarily selected and used in accordance with the type of the material to be heated, the purpose of the heating process, etc., taking advantage of the characteristics thereof. It turns out that.

試験例3
本試験例では、図1に示す装置を用いて、h−AQG発生時における水蒸気及び微細水滴噴射ノズル付近の温度変化を調べた。その結果を図6に示す。図に示されるように、約95〜150℃の温度領域で約10〜40℃の温度差の振幅で連続的かつ短時間の温度変化が生起することが分かった。また、上記温度差の振幅と、微細水滴と湿熱水蒸気及び乾熱水蒸気の組成は、噴射する水蒸気の温度と装置内温度を調節することにより、変化させ得ることが分かった。また、h−AQG発生時における装置内温度とh−AQG温度を比較した。供給水を加熱装置15で余熱し、供給水量は定量ポンプ115spm(3.62l/h)とした。その結果を図7に示す。図に示されるように、装置内温度を約120〜150℃の温度範囲で調節することにより、h−AQGの約20〜50℃の温度差の振幅の条件で連続振幅加熱できることが分かった。
Test example 3
In this test example, the temperature change in the vicinity of the water vapor and fine water droplet injection nozzles when h-AQG was generated was examined using the apparatus shown in FIG. The result is shown in FIG. As shown in the figure, it was found that a continuous and short-time temperature change occurs in the temperature range of about 95 to 150 ° C. with a temperature difference of about 10 to 40 ° C. It was also found that the amplitude of the temperature difference and the composition of fine water droplets, wet heat steam and dry heat steam can be changed by adjusting the temperature of the sprayed steam and the temperature in the apparatus. Further, the in-device temperature and the h-AQG temperature were compared when h-AQG was generated. The supplied water was preheated by the heating device 15 and the amount of supplied water was set to 115 spm (3.62 l / h). The result is shown in FIG. As shown in the figure, it was found that by adjusting the temperature in the apparatus in a temperature range of about 120 to 150 ° C., continuous amplitude heating can be performed under the condition of an amplitude difference of about 20 to 50 ° C. of h-AQG.

また、上記と同様にして、h−AQG発生時における装置内温度とh−AQG温度を比較した。その結果を図8に示す。図に示されるように、装置内温度を約115〜165℃の温度範囲で調節することにより、h−AQGの約20〜50℃の温度差の振幅の条件で連続振幅加熱できることが分かった。更に、約115〜165℃の温度範囲のh−AQGを用いて、水道水(100ml)を95℃に加熱するための加熱時間を比較した。その結果を図9に示す。図に示されるように、約115℃の温度条件のh−AQGを用いたとき、最も加熱時間が短く、高いエネルギー効率を示すことが分かった。   Further, in the same manner as described above, the in-device temperature and the h-AQG temperature when h-AQG was generated were compared. The result is shown in FIG. As shown in the figure, it was found that by adjusting the temperature in the apparatus in a temperature range of about 115 to 165 ° C., continuous amplitude heating can be performed under the condition of an amplitude difference of about 20 to 50 ° C. of h-AQG. Furthermore, the heating time for heating tap water (100 ml) to 95 ° C. was compared using h-AQG having a temperature range of about 115 to 165 ° C. The result is shown in FIG. As shown in the figure, it was found that when h-AQG having a temperature condition of about 115 ° C. was used, the heating time was the shortest and high energy efficiency was exhibited.

試験例4
上記試験例3と同様にして作り出したハイブリッド型アクアガスの温度と時間の関係を調べた。図10に、115℃のh−AQGの温度時間曲線(庫内)、図11に、115℃のh−AQGの温度時間曲線(噴射ノズル部)を示す。比較例として、過熱水蒸気及び飽和水蒸気の温度時間曲線(庫内及び噴射ノズル部)を図12及び図13に示す。h−AQGの温度時間曲線は、過熱水蒸気及び飽和水蒸気の温度時間曲線と本質的に相違していることが分かる。
Test example 4
The relationship between the temperature and time of the hybrid aqua gas produced in the same manner as in Test Example 3 was examined. FIG. 10 shows a 115 ° C. h-AQG temperature time curve (inside the chamber), and FIG. 11 shows a 115 ° C. h-AQG temperature time curve (injection nozzle portion). As comparative examples, temperature time curves (inside the chamber and the injection nozzle portion) of superheated steam and saturated steam are shown in FIGS. It can be seen that the temperature time curve of h-AQG is essentially different from the temperature time curve of superheated steam and saturated steam.

本実施例では、各食材に対し、ハイブリッド型アクアガスで加熱副生物除害化加熱処理を施した。
1)男爵薯の加熱調理試験
h−AQGとAQGの加熱基礎性能を、従来技術の過熱蒸気(以下、「SHS」と記載することがある。)とスチームコンベクションオーブン(以下、「SCO」と記載することがある。)を対照とし、被加熱体として男爵薯を用いて比較した。
In this example, each food material was subjected to heat by-product detoxification heat treatment with hybrid aqua gas.
1) Heat cooking test of baron 薯 Basic heating performance of h-AQG and AQG is described as conventional superheated steam (hereinafter referred to as “SHS”) and steam convection oven (hereinafter referred to as “SCO”). ) Was used as a control and compared using a baron as a heated object.

(1)原料男爵薯
平成17年度北海道産の男爵薯(生産農家「坂口農園」(北海道函館市))をダンボールに入れ専用ストッカーに8℃で保存したMサイズを、1区5個、合計20個を重量選別して使用した。
(2)使用加(過)熱装置
1)h−AQG加熱装置
(株)タイヨー製作所製の実験機を使用した。
2)AQG加熱装置
(株)タイヨー製作所製の実験機を使用した。
3)SHS過熱装置
(株)タイヨー製作所製の実験機を使用した。
4)SCO加熱装置
市販のスチームコンベクションオーブン((株)マルゼン製SSC−06DCNSTU)を使用した。
(1) Baron Mushroom Raw Baron Mushroom (produced farmer “Sakaguchi Farm” (Hakodate City, Hokkaido) in 2005) placed in cardboard and stored in a dedicated stocker at 8 ° C, 5 sizes in 1 ward, total 20 The pieces were used after sorting by weight.
(2) Use heat (over) heat device
1) h-AQG heating device An experimental machine manufactured by Taiyo Corporation was used.
2) AQG heating device An experimental machine manufactured by Taiyo Corporation was used.
3) SHS superheater An experimental machine manufactured by Taiyo Corporation was used.
4) SCO heating apparatus A commercially available steam convection oven (manufactured by Marzen Co., Ltd., SSC-06DCNSTU) was used.

(3)試験条件
1)原料処理
流水洗浄した「皮付き」と「皮芽取」の2種を調製し加熱に供した。
2)加熱条件
男爵薯中心温度が95℃到達後更に10分間加熱を続けて調理した。中心温度はK型熱電対センサー(CLASS:1)(株)岡崎製作所製)3本を最大厚さ箇所の中心点に挿入し、最低温度記録センサーの値で測定した。
3)媒体温度
h−AQGとAQGが115℃、SHSは160℃でSCOは99℃スチームモードに設定して使用した。
4)歩留り測定
冷蔵原料の重量と加熱終了後放熱検体重量から計算した。
5)加熱速度の測定
加熱開始時の芯温と95℃から正味の加熱温度上昇値を求め、これを95℃加熱所要時間で除した。
(3) Test condition 1) Raw material treatment Two kinds of “with skin” and “skin bud” washed with running water were prepared and subjected to heating.
2) Heating conditions After the barn bowl center temperature reached 95 ° C, cooking was continued for 10 minutes. The center temperature was measured with the value of the minimum temperature recording sensor by inserting three K-type thermocouple sensors (CLASS: 1) (manufactured by Okazaki Manufacturing Co., Ltd.) at the center point of the maximum thickness.
3) Medium temperature h-AQG and AQG were set to 115 ° C, SHS was set to 160 ° C, and SCO was set to a 99 ° C steam mode.
4) Yield measurement Calculated from the weight of the refrigerated raw material and the weight of the heat-dissipated specimen after the heating.
5) Measurement of heating rate The net heating temperature rise value was calculated from the core temperature at the start of heating and 95 ° C, and this was divided by the required heating time of 95 ° C.

(4)試験結果
1)皮付男爵薯の加熱調理
結果を纏めて表2に示した。
(4) Test result 1) Table 2 summarizes the results of cooking with bark with a skin.

この結果から、各媒体の男爵薯芯温95℃加熱速度の比較を図14に示した。h−AQGは、SHSと同等、AQG及びSCOより加熱速度が大きいことが明らかにされた。
また、歩留りの結果を図15に示した。これから、SHS加熱が特異的に歩留りが低く、h−AQGとAQG、及びSCOは、略同等で高い歩留りを示した。以上の加熱速度と歩留りの結果をまとめて図16に示したが、これから総合評価すると、h−AQGの優位性が実証された。
From this result, a comparison of heating rates of barn core temperature 95 ° C. for each medium is shown in FIG. It was clarified that h-AQG is equivalent to SHS and has a heating rate higher than that of AQG and SCO.
The yield results are shown in FIG. From this, SHS heating showed a low yield specifically, and h-AQG, AQG, and SCO showed substantially the same and high yield. The results of the above heating rate and yield are collectively shown in FIG. 16, and comprehensive evaluation will demonstrate the superiority of h-AQG.

2)皮芽取男爵薯の加熱調理
結果をまとめて表3に示した。この結果から、各媒体の皮芽取男爵薯芯温95℃加熱速度の比較を図17に示した。h−AQGは、SHS同等で、AQGよりやや大きい傾向で、SCOよりは加熱速度が大きいことが明らかにされた。また、歩留りの結果を図18に示した。これから、SHS加熱は、特異的に歩留りが低く、h−AQGとAQG、及びSCOは、略同等で高い歩留りを示した。以上の加熱速度と歩留りの結果をまとめて図19に示した。これから総合評価すると、h−AQGの優位性が実証された。
2) Table 3 summarizes the results of cooking with bark moult baron. From this result, the comparison of the heating rate of the bark shell baron core temperature 95 ° C. of each medium is shown in FIG. It was clarified that h-AQG is equivalent to SHS, tends to be slightly larger than AQG, and has a higher heating rate than SCO. The yield results are shown in FIG. From this, SHS heating showed a low yield specifically, and h-AQG, AQG, and SCO showed substantially the same and high yield. The above heating rate and yield results are summarized in FIG. When comprehensively evaluated, the superiority of h-AQG was demonstrated.

2)農産物の加熱殺菌
旬の地場(北海道)産を主体とした代表的な農産物9種をh−AQG加熱し、一般生菌数を測定した結果を表4に示した。尚、食材の前処理、加熱条件、得られた加熱農産物食品の定性的な官能試験結果に付いても表3に要約した。h−AQG加熱調理は、上記の結果も踏まえると、経済性・安全性・高品質性・安定性に優れた加熱調理方法であることが実証された。
2) Heat sterilization of agricultural products Table 4 shows the results of measuring the number of general viable bacteria by h-AQG heating of nine representative agricultural products mainly from seasonal local (Hokkaido). Table 3 also summarizes the qualitative sensory test results of food pretreatment, heating conditions, and the resulting heated agricultural food. Based on the above results, h-AQG cooking was proved to be a cooking method excellent in economy, safety, high quality, and stability.

本実施例においては、高脂肪・多脂肪性食材・部位のh−AQGによる加熱副生脂質の除害化加熱処理を行って、その優れた脱油・脱脂機能を示した。
1)成鶏生表皮部の加熱
鹿児島県産の成鶏生表皮部0.5kgをその加熱処理条件を変えながらh−AQGで加熱して、その脱脂・脱油作用を検証した。加熱条件とその残存脂肪分の分析結果を図20に示した。その結果、h−AQG105℃で15分間回転加熱した場合が最も残存脂肪分が少なく、約50%の脱脂・脱油作用を示した。繰り返し10回、合計生皮処理量が5Kgに達したにも拘わらず、加熱処理試験終了後のh−AQG装置内は鶏油の重合被覆が全く認められず、副生油脂の残存分も少なく、水道水のシャワーで簡単に流去され、鶏臭も残らなかった。
In this example, the detoxification heat treatment of the heated by-product lipids by h-AQG was performed on the high-fat, multi-fat food material / part, and the excellent deoiling / degreasing function was shown.
1) Heating of raw chicken skin The raw chicken skin 0.5 kg produced in Kagoshima Prefecture was heated with h-AQG while changing its heat treatment conditions, and its degreasing and deoiling action was verified. The heating conditions and the analysis results of the residual fat are shown in FIG. As a result, the amount of residual fat was the smallest when rotating for 15 minutes at h-AQG 105 ° C., and the effect of degreasing and deoiling was about 50%. Repeated 10 times, even though the total rawhide treatment amount reached 5 kg, no polymerization coating of chicken oil was observed in the h-AQG apparatus after completion of the heat treatment test, and there was little residual by-product oil and fat, It was easily washed away with a tap water shower, leaving no chicken odor.

2)豚三枚肉の加熱調理
北海道北斗市の食品スーパー「魚長」で購入した豚三枚肉(八雲ユーラップチルド豚肉)カット(665g)をトレーでh−AQGで30分間加熱した。歩留り87.9%で加熱調理三枚肉が得られ、食味は良好であった(図21)。この調理後の装置の汚染状態とその水による洗浄性を試験した。60g前後の豚脂が溶出したにも拘らず、図22に示した様に、その汚れは軽度でしかも常温の水道水をシャワーするだけで容易に除去可能であった。また、異臭もなかった。
2) Heat cooking of three pieces of pork Cut three pieces of pork (Yakumo Eurup chilled pork) purchased at a food supermarket “Foocho” in Hokuto, Hokkaido, was heated with h-AQG for 30 minutes in a tray. A cooked three-piece meat was obtained at a yield of 87.9%, and the taste was good (FIG. 21). The cooked device was tested for contamination and its detergency with water. Despite the elution of about 60 g of pork fat, as shown in FIG. 22, the dirt was mild and could be easily removed by just showering room temperature tap water. There was no off-flavor.

3)高脂肪性魚の加熱調理試験
北海道北斗市の食品スーパー「魚長」で購入した輸入「チリ産塩トラウトハラス」片ハラ(255g)をトレー上で10分間h−AQG加熱を施した。歩留り90.7%で調理済みトラウトハラスが得られ、食味は良好であった。高度不飽和脂質を多く含む魚油が20g程度の溶出したにも拘わらず、装置内部への付着や重合油の被覆等は認められず、常温の水道水のシャワーで短時間処理するだけで、容易に洗い流すことができ、魚臭も気にならなかった。
3) Heat cooking test of high-fat fish Imported “Chile salt trout harass” single harassment (255 g) purchased at the food supermarket “Fishaga” in Hokuto, Hokkaido, was subjected to h-AQG heating on a tray for 10 minutes. A cooked trout harass was obtained at a yield of 90.7%, and the taste was good. Despite the elution of about 20 g of highly unsaturated lipid-rich fish oil, no adhesion to the inside of the device or coating with polymerized oil is observed, and it is easy by simply treating it with a tap water at room temperature for a short time. I was able to wash it away and I didn't mind the fishy smell.

以上詳述したように、本発明は、ハイブリッド型気体水による加熱副生物除害化加熱・殺菌方法及び加熱副生物除害化加熱・殺菌装置に係るものであり、本発明により、被処理材料に90〜180℃の温度領域で少なくとも10℃の温度差の連続振幅加熱を施して加熱副生物除害化加熱・殺菌処理することができる。被処理材料を外界と遮断して加熱するための加熱室を、水の気体及び100%湿り状態の水蒸気で置換し、湿度99.0%以上、酸素濃度を0.1%以下のガスと熱水混合成分(h−AQG雰囲気)にすることができる。上記h−AQGで被処理材料を短時間で効率よく低侵襲的に加熱副生物除害化加熱・殺菌することができる。凍結品の解凍、農産物、食料品の加熱副生物除害化加熱・殺菌調理、木材、金属、セラミック材料等の加熱、乾燥、焼成に適用できる。h−AQGを生成させ、それを熱媒体として利用するh−AQGによる加熱副生物除害化加熱・殺菌装置を提供することができる。   As described in detail above, the present invention relates to a heating byproduct abatement heating / sterilization method and a heating byproduct abatement heating / sterilization apparatus using hybrid gas water. In the temperature range of 90 to 180 ° C., continuous amplitude heating with a temperature difference of at least 10 ° C. can be applied to heat and sterilize by-products. A heating chamber for heating the material to be processed to be cut off from the outside is replaced with water gas and 100% wet steam, and a gas and heat with a humidity of 99.0% or more and an oxygen concentration of 0.1% or less. A water-mixed component (h-AQG atmosphere) can be obtained. With the h-AQG, the material to be treated can be heated and sterilized by heating and by-product detoxification in a short time efficiently and invasively. It can be applied to thawing frozen products, heating and sterilization cooking of agricultural products and food products, heating, drying and baking of wood, metal, ceramic materials, etc. It is possible to provide a heating and byproduct detoxification heating and sterilization apparatus using h-AQG that generates h-AQG and uses it as a heat medium.

図1は、本発明の装置の一実施例の正面図である。FIG. 1 is a front view of an embodiment of the apparatus of the present invention. 図2は、上記装置の縦断平面図である。FIG. 2 is a longitudinal plan view of the apparatus. 図3は、水蒸気発生蓄熱パネルの一例の概念図である。FIG. 3 is a conceptual diagram of an example of a steam generation heat storage panel. 図4は、水蒸気発生装置による気体水生成過程におけるチャンバー内の温度、湿度、酸素濃度、排気温度を測定した結果を示す。FIG. 4 shows the results of measuring the temperature, humidity, oxygen concentration, and exhaust temperature in the chamber during the process of generating gaseous water by the water vapor generator. 図5は、水蒸気発生装置において、水蒸気発生用パネルヒータ(2kw)、加熱室内の加熱ヒータ(10kw)を用いて、水蒸気発生装置の運転時の100℃から300℃までの水蒸気吐出温度と、装置内温度、装置内湿度、及び装置内酸素濃度との関係を示す。FIG. 5 shows a water vapor generating apparatus using a water vapor generating panel heater (2 kw) and a heater (10 kw) in a heating chamber, and a water vapor discharge temperature from 100 ° C. to 300 ° C. during operation of the water vapor generating device. The relationship between internal temperature, apparatus humidity, and apparatus oxygen concentration is shown. 図6は、水蒸気(アクアガス)噴射ノズル付近の温度変化を示す。FIG. 6 shows a temperature change near the water vapor (aqua gas) injection nozzle. 図7は、装置内温度/水蒸気(アクアガス)温度の比較を示す。FIG. 7 shows a comparison of the in-apparatus temperature / water vapor (aqua gas) temperature. 図8は、装置内温度/水蒸気(アクアガス)温度の比較を示す。FIG. 8 shows a comparison of the in-apparatus temperature / water vapor (aqua gas) temperature. 図9は、水道水(100ml)を95℃に加熱するための加熱時間の比較テストの結果を示す。FIG. 9 shows the result of a comparative test of the heating time for heating tap water (100 ml) to 95 ° C. 115℃のアクアガスの温度時間曲線(庫内)を示す。A temperature time curve (inside the chamber) of aqua gas at 115 ° C. is shown. 115℃のアクアガスの温度時間曲線(噴射ノズル部)を示す。The temperature time curve (injection nozzle part) of 115 degreeC aqua gas is shown. 115℃の過熱水蒸気状態の温度の時間曲線(庫内及び噴射ノズル部)を示す。The time curve (inside a warehouse and an injection nozzle part) of the temperature of a 115 degreeC superheated steam state is shown. 115℃の飽和水蒸気状態の温度の時間曲線(庫内及び噴射ノズル部)を示す。The time curve (the inside of a warehouse and a jet nozzle part) of the temperature of a 115 degreeC saturated water vapor state is shown. 男爵薯皮付きの各種媒体加熱による加熱速度比較試験の結果を示す。The result of the heating rate comparison test by various medium heating with baron husk is shown. 男爵薯皮付きの各種媒体加熱による歩留り比較試験の結果を示す。The result of the yield comparison test by various medium heating with baron husk is shown. 男爵薯皮付きの各種媒体加熱による比較試験まとめを示す。The comparison test summary by various media heating with baron husk is shown. 男爵薯皮芽なしの各種媒体加熱による加熱速度比較試験の結果を示す。The result of the heating rate comparison test by various medium heating without baron buds is shown. 男爵薯皮芽なしの各種媒体加熱による歩留り比較試験の結果を示す。The result of the yield comparison test by various medium heating without baron buds is shown. 男爵薯皮芽なしの各種媒体加熱による比較試験まとめを示す。The comparison test summary by various media heating without baron buds is shown. 成鶏生表皮部の加熱試験の結果を示す。The result of the heating test of the adult chicken raw epidermis is shown. 豚三枚肉の加熱調理試験の結果を示す。The result of the heat cooking test of three pieces of pork is shown. 豚三枚肉の加熱調理後のh−AQG加熱装置の汚染状態とその水洗浄試験の結果を示す。The contamination state of the h-AQG heating apparatus after cooking the three pieces of pork and the result of the water washing test are shown. 高脂肪魚の加熱調理試験の結果を示す。The result of the heat cooking test of a high fat fish is shown.

符号の説明Explanation of symbols

1 加熱室
2 ドア部
3 ハンドル
4 窓
5 操作パネル
6 水蒸気発生蓄熱パネル
7 循環ファン
8 ダクト
8′ダクト
9 加熱ヒーター
10 循環風向
11 排出口
12 給水パネル
13 微細水蒸気噴出ノズル
14 噴出した微細水粒子
15 供給水の加熱装置
DESCRIPTION OF SYMBOLS 1 Heating chamber 2 Door part 3 Handle 4 Window 5 Operation panel 6 Steam generation | occurrence | production thermal storage panel 7 Circulation fan 8 Duct 8 'Duct 9 Heating heater 10 Circulation wind direction 11 Outlet 12 Water supply panel 13 Fine water vapor ejection nozzle 14 Fine water particle 15 which ejected Feed water heating device

Claims (5)

被処理材料を加熱し、その加熱副生物を同時に除害化する加熱副生物除害化加熱方法であって、次の工程;
(1)100℃以上に加熱された熱水及び/又は水蒸気を、これと同温度以上に加熱された準密閉空間の加熱室内に連続的に噴射させ、微細水滴と湿熱水蒸気を発生させる、
(2)上記微細水滴と湿熱水蒸気で上記加熱室内の空気を置換させて、湿度95%以上及び酸素濃度1%以下の組成を有し、90〜180℃の温度領域に保持されたガス成分(気体水)で満たす、
(3)上記気体水に100%湿り状態の水蒸気を噴射させ、熱水・微細水滴・水蒸気からなる複合化加熱媒体を安定的に形成させる、
(4)被加熱材料に、上記複合化加熱媒体で上記温度領域で少なくとも10℃の温度差の連続振幅加熱を施して被処理材料を加熱処理する、
ことを特徴とする被処理材料の加熱副生物除害化加熱方法。
A heating by-product detoxification heating method for heating a material to be treated and simultaneously detoxifying the heating by-product, wherein the next step;
(1) Hot water heated to 100 ° C. or higher and / or water vapor is continuously injected into the heating chamber of the semi-enclosed space heated to the same temperature or higher to generate fine water droplets and wet hot water vapor.
(2) A gas component having a composition with a humidity of 95% or more and an oxygen concentration of 1% or less and maintained in a temperature range of 90 to 180 ° C. by substituting the air in the heating chamber with the fine water droplets and wet heat steam. Gas water),
(3) Injecting 100% wet water vapor into the gaseous water to stably form a composite heating medium composed of hot water, fine water droplets and water vapor,
(4) The material to be heated is subjected to continuous amplitude heating with a temperature difference of at least 10 ° C. in the temperature range with the composite heating medium, and the material to be processed is heat-treated.
A heating by-product detoxification heating method for a material to be treated.
請求項1に記載の加熱副生物除害化加熱方法により食材又は食品を加熱し、その加熱副生物を同時に除害化することにより、加熱処理食材又は食品を製造することを特徴とする加熱処理食材又は食品の製造方法。   A heat treatment characterized by producing a heat-treated food or food by heating the food or food by the heating by-product detoxification heating method according to claim 1, and simultaneously detoxifying the heat by-product. A method for producing food or food. 請求項1に記載の加熱副生物除害化加熱方法により食材又は食品を加熱・殺菌し、その加熱副生物を同時に除害化することにより、加熱・殺菌処理食材又は食品を製造することを特徴とする加熱・殺菌処理食材又は食品の製造方法。   Heating and sterilizing food or food by the heating by-product detoxification heating method according to claim 1, and simultaneously heating and sterilizing the heating by-product to produce a heating or sterilizing processed food or food A method for producing a heat-sterilized food or food. 熱水・微細水滴・水蒸気からなる複合化加熱媒体(ハイブリッド型気体水)を発生させる装置であって、100℃以上に加熱された熱水及び/又は水蒸気の発生及び噴射手段、該熱水及び/又は水蒸気を満たす加熱室、100%湿り状態の水蒸気の発生及び噴射手段を具備してなり、上記熱水及び/又は水蒸気発生手段により発生させた熱水及び/又は水蒸気をその噴射手段を介して加熱室内に連続的に噴射させ、微細水滴と湿熱水蒸気を発生させて、上記加熱室を90〜180℃の温度領域に保持されたガス成分(気体水)で満たし、該気体水に上記100%湿り状態の水蒸気発生手段で発生させた水蒸気をその噴射手段を介して噴射させ、上記加熱室内で熱水・微細水滴・水蒸気からなる複合加熱媒体(ハイブリッド気体水)を発生させるようにしたことを特徴とする複合化加熱媒体発生装置。   An apparatus for generating a composite heating medium (hybrid type gaseous water) composed of hot water, fine water droplets, and water vapor, comprising: hot water heated to 100 ° C. and / or steam generation and injection means; A heating chamber filled with water vapor, and 100% wet water vapor generation and injection means, and the hot water and / or water vapor generated by the water vapor generation means is passed through the injection means. Are continuously sprayed into the heating chamber to generate fine water droplets and wet heat steam, and the heating chamber is filled with a gas component (gas water) held in a temperature range of 90 to 180 ° C. The steam generated by the steam generating means in a wet state is injected through the spraying means to generate a composite heating medium (hybrid gas water) composed of hot water, fine water droplets and steam in the heating chamber. Composite heating medium generating apparatus being characterized in that as. 被処理材料を加熱し、その加熱副生物を同時に除害化する加熱副生物除害化加熱装置であって、請求項4に記載の複合化加熱媒体発生装置を具備してなり、その加熱室を被処理材料を加熱処理する加熱室としたことを特徴とする加熱副生物除害化加熱装置。   A heating by-product detoxification heating device for heating a material to be treated and simultaneously detoxifying the heating by-product, comprising the combined heating medium generator according to claim 4, wherein the heating chamber A heating by-product detoxification heating apparatus characterized by comprising a heating chamber for heat-treating the material to be processed.
JP2006313667A 2006-11-20 2006-11-20 Innovative heating method, its use and apparatus Pending JP2008125427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006313667A JP2008125427A (en) 2006-11-20 2006-11-20 Innovative heating method, its use and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006313667A JP2008125427A (en) 2006-11-20 2006-11-20 Innovative heating method, its use and apparatus

Publications (1)

Publication Number Publication Date
JP2008125427A true JP2008125427A (en) 2008-06-05

Family

ID=39551892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006313667A Pending JP2008125427A (en) 2006-11-20 2006-11-20 Innovative heating method, its use and apparatus

Country Status (1)

Country Link
JP (1) JP2008125427A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010114182A1 (en) * 2009-04-02 2010-10-07 有限会社梅田事務所 Method for manufacturing processing raw material and processed part
JP5357005B2 (en) * 2007-02-21 2013-12-04 有限会社梅田事務所 Functional material manufacturing method, functional material and continuous heat treatment apparatus for obtaining the same
JP6920706B1 (en) * 2020-12-17 2021-08-18 広島県 How to introduce substances into foodstuffs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189722A (en) * 1997-09-16 1999-04-06 Hiroshi Shishido Food processing, cooking method and apparatus for the same in atmosphere where temperature and humidity of low presser and high temperature superheated steam are controlled
JP2004358236A (en) * 2003-05-12 2004-12-24 Umeda Jimusho:Kk Method and apparatus for heating with gaseous water
WO2006009150A1 (en) * 2004-07-16 2006-01-26 Umeda Jimusho Ltd. Innovative pasteurization method, use thereof and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189722A (en) * 1997-09-16 1999-04-06 Hiroshi Shishido Food processing, cooking method and apparatus for the same in atmosphere where temperature and humidity of low presser and high temperature superheated steam are controlled
JP2004358236A (en) * 2003-05-12 2004-12-24 Umeda Jimusho:Kk Method and apparatus for heating with gaseous water
WO2006009150A1 (en) * 2004-07-16 2006-01-26 Umeda Jimusho Ltd. Innovative pasteurization method, use thereof and apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5357005B2 (en) * 2007-02-21 2013-12-04 有限会社梅田事務所 Functional material manufacturing method, functional material and continuous heat treatment apparatus for obtaining the same
WO2010114182A1 (en) * 2009-04-02 2010-10-07 有限会社梅田事務所 Method for manufacturing processing raw material and processed part
JP5784486B2 (en) * 2009-04-02 2015-09-24 有限会社梅田事務所 Manufacturing method of processed materials and processed products
JP6920706B1 (en) * 2020-12-17 2021-08-18 広島県 How to introduce substances into foodstuffs
WO2022130812A1 (en) * 2020-12-17 2022-06-23 広島県 Method for introducing substances into foodstuff

Similar Documents

Publication Publication Date Title
JP4997566B2 (en) Method for improving storage stability and method and apparatus for producing the same
JP4336244B2 (en) Method and apparatus for heating material to be heated
US6152024A (en) Apparatus and method for producing a food product
CN100345595C (en) Method and apparatus for disinfection and sterilization using superheated vapour
JP5832031B2 (en) Method and apparatus for drying ingredients
CN108291722B (en) Cooking device
TW200824571A (en) Method and device for improving flavor of smoke and process and device for producing smoked food
JP4620732B2 (en) Superheated steam generator, food production method and heating method using superheated steam
JP2007064564A (en) Heating medium controlling type general-purpose heating apparatus
JP5540209B2 (en) Heating medium generation method
JP5360454B2 (en) Heating medium generation method and apparatus
JP2008125427A (en) Innovative heating method, its use and apparatus
CN105473961B (en) Method for running Domestic refrigerator, fluid is introduced in storage area and Domestic refrigerator in the Domestic refrigerator
KR102005827B1 (en) Apparatus for making pickled chinese cabbage of kimchi
JP2013063031A (en) Method of producing roasted nut by superheated steam
DE102014114537A1 (en) Oven for commercial kitchens with a device for seasoning the food
JP5051682B2 (en) High quality okara manufacturing method
JP2003325118A (en) Method and apparatus for cooking with high-temperature hot water containing superheated steam
JP2020018252A (en) Continuous superheated steam processing device
JP5704493B2 (en) Heating medium
KR101834130B1 (en) Agricultural and Marine Products Drying Equipment
CN212760000U (en) Fishy smell processing apparatus
JP5189219B1 (en) Superheated steam apparatus and heat treatment method using superheated steam
CN216724145U (en) Steam stove
SU921498A1 (en) Device for hot-smoking fishes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120419