JP6920592B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP6920592B2
JP6920592B2 JP2018211893A JP2018211893A JP6920592B2 JP 6920592 B2 JP6920592 B2 JP 6920592B2 JP 2018211893 A JP2018211893 A JP 2018211893A JP 2018211893 A JP2018211893 A JP 2018211893A JP 6920592 B2 JP6920592 B2 JP 6920592B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
header
flow path
indoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018211893A
Other languages
Japanese (ja)
Other versions
JP2020079651A (en
Inventor
一彦 丸本
一彦 丸本
憲昭 山本
憲昭 山本
崇裕 大城
崇裕 大城
拓也 奥村
拓也 奥村
健二 名越
健二 名越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2018211893A priority Critical patent/JP6920592B2/en
Publication of JP2020079651A publication Critical patent/JP2020079651A/en
Application granted granted Critical
Publication of JP6920592B2 publication Critical patent/JP6920592B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Description

本発明は空気調和機に関し、特に、一対のヘッダ流路の間を多数の伝熱流路で接続した多パス型熱交換器を用いた空気調和機に関する。 The present invention relates to an air conditioner, and more particularly to an air conditioner using a multi-pass heat exchanger in which a pair of header flow paths are connected by a large number of heat transfer flow paths.

一般に空気調和機は、圧縮機によって圧縮した冷媒を凝縮器や蒸発器等の熱交換器に循環させ、被熱交換流体と熱交換させて冷房もしくは暖房を行う。この時、空気調和機としての性能や省エネ性は熱交換器の熱交換効率によって大きく左右される。従って、熱交換器は高効率化が強く求められている。 Generally, an air conditioner circulates a refrigerant compressed by a compressor through a heat exchanger such as a condenser or an evaporator and exchanges heat with a heat exchange fluid to cool or heat the air conditioner. At this time, the performance and energy saving of the air conditioner are greatly affected by the heat exchange efficiency of the heat exchanger. Therefore, heat exchangers are strongly required to have high efficiency.

近年、空気調和機の性能や省エネ性の向上のため、一対のヘッダ流路間に複数の伝熱流路を接続して構成した多パス型熱交換器を用いる取り組みがなされている。多パス型熱交換器は、伝熱流路数、すなわちパス数を多くできるため、体積比率の熱交換効率を高効率にできる。 In recent years, in order to improve the performance and energy saving of air conditioners, efforts have been made to use a multi-pass heat exchanger configured by connecting a plurality of heat transfer channels between a pair of header channels. Since the multi-pass heat exchanger can increase the number of heat transfer channels, that is, the number of passes, the heat exchange efficiency of the volume ratio can be made high.

しかし、多パス型熱交換器は、蒸発器として使用している時、ヘッダ流路に流入する冷媒が気液二相状態となる。そのため、ヘッダ流路内の冷媒を多数の伝熱流路全体に均一に分配することが難しい。 However, when the multi-pass heat exchanger is used as an evaporator, the refrigerant flowing into the header flow path is in a gas-liquid two-phase state. Therefore, it is difficult to uniformly distribute the refrigerant in the header flow path to the entire number of heat transfer flow paths.

そこで、特許文献1には、図14及び図15に示すように、熱交換器101の冷媒入口102の上流側に気液分離器103を設けて気液二相状態の冷媒をガス冷媒104と液冷媒105とに分離し、熱交換器101には液冷媒105のみを単相状態で供給して各パスに分配することが開示されている。これにより、冷媒の均一な分配を実現することが考えられている。 Therefore, in Patent Document 1, as shown in FIGS. 14 and 15, a gas-liquid separator 103 is provided on the upstream side of the refrigerant inlet 102 of the heat exchanger 101, and the refrigerant in the gas-liquid two-phase state is referred to as the gas refrigerant 104. It is disclosed that the liquid refrigerant 105 is separated from the liquid refrigerant 105, and only the liquid refrigerant 105 is supplied to the heat exchanger 101 in a single-phase state and distributed to each path. As a result, it is considered to realize uniform distribution of the refrigerant.

特許第3158722号公報Japanese Patent No. 3158722

しかしながら、従来の気液分離器103で気液を分離して液体状態の冷媒のみを熱交換器101に供給するとしても、現実的には気液分離器の気液分離効率が悪い。そのため、熱交換器に供給される液冷媒は気液二相状態となり、伝熱流路群に冷媒を均一に分配するのは現実的には困難である。 However, even if the conventional gas-liquid separator 103 separates the gas-liquid and supplies only the liquid refrigerant to the heat exchanger 101, the gas-liquid separation efficiency of the gas-liquid separator is actually poor. Therefore, the liquid refrigerant supplied to the heat exchanger is in a gas-liquid two-phase state, and it is practically difficult to uniformly distribute the refrigerant to the heat transfer flow path group.

熱交換器101の入り口側のヘッダ流路には気液二相状態の冷媒が流入する。この時、気液二相状態の冷媒はヘッダ流路内で波状流または層状流であると考えられる。そのため、ヘッダ内の上部には主に気体状態の冷媒が、また下部には主に液体状態の冷媒が流れる。そして、流速の速い気体状態の冷媒はヘッダ下部の液体状態の冷媒を巻き込みながら伝熱流路に供給されることになる。ここで、気液二相状態の冷媒の冷媒流動状態は均一の流れではない。したがって、ヘッダ流路からの冷媒は伝熱流路に均一に分配されない状態となる。そのため、伝熱流路部で熱交換量にバラつきが生じる。 A gas-liquid two-phase refrigerant flows into the header flow path on the inlet side of the heat exchanger 101. At this time, the gas-liquid two-phase state refrigerant is considered to be a wavy flow or a layered flow in the header flow path. Therefore, the refrigerant in a gaseous state mainly flows in the upper part of the header, and the refrigerant in a liquid state mainly flows in the lower part. Then, the gaseous refrigerant having a high flow velocity is supplied to the heat transfer flow path while entraining the liquid refrigerant in the lower part of the header. Here, the refrigerant flow state of the refrigerant in the gas-liquid two-phase state is not a uniform flow. Therefore, the refrigerant from the header flow path is not uniformly distributed to the heat transfer flow path. Therefore, the amount of heat exchange varies in the heat transfer flow path portion.

特に、気液分離器が熱交換器よりも低い位置に設置されるような場合には、気液分離器の気液分離効率が低下しやすいので、伝熱流路での熱交換バラつきが大きくなるものであった。 In particular, when the gas-liquid separator is installed at a position lower than the heat exchanger, the gas-liquid separation efficiency of the gas-liquid separator tends to decrease, so that the heat exchange variation in the heat transfer flow path becomes large. It was a thing.

以上のようなところから、従来の気液分離器を設けただけの構成では伝熱流路へ冷媒を均一に分配できず、伝熱流路での熱交換に熱交換ムラが生じる。 From the above points, the refrigerant cannot be uniformly distributed to the heat transfer flow path with the conventional configuration in which the gas-liquid separator is provided, and heat exchange unevenness occurs in the heat exchange in the heat transfer flow path.

本発明はこのような点に鑑み鋭意検討してなしたもので、熱交換のバラつきを抑制し、熱交換効率を高めた空気調和機の提供を目的としたものである。 The present invention has been diligently studied in view of these points, and an object of the present invention is to provide an air conditioner that suppresses variations in heat exchange and enhances heat exchange efficiency.

本発明は、上記目的を達成するため、圧縮機と室外熱交換器と絞り装置と室内熱交換器とを有し、冷媒を循環する冷凍サイクルにおいて、前記絞り装置と戦記室内熱交換器との間に気液分離器と、前記気液分離器で分離された気体状態の冷媒の流量を調整する流量調整弁とを含み、前記気体状態の冷媒が前記室内熱交換器を迂回するバイパス流路を設け、
前記室内熱交換器はプレートフィンを積層して形成するプレート積層型熱交換器であって、前記プレートフィンは前記プレートフィンの端部に2つのヘッダ流路と、2つの前記ヘッダ流路を接続する複数の伝熱流路と、少なくとも前記ヘッダ流路のうち前記室内熱交換器を蒸発器として利用する場合の入口側のヘッダ流路の周囲に前記ヘッダ流路の直径よりも大きな環状溝と、を有し、前記気液分離器は、前記プレートフィン積層型熱交換器の入口側の前記冷媒の乾き度を0.1以下にする構成としてある。これにより、熱交換器入口の冷媒の乾き度が0.1以下であれば、ヘッダ流路内下部に存在する液冷媒が、ヘッダ流路周りの環状溝部分を毛細管現象によって略均一に上昇し、気相冷媒と混合して伝熱流路へと流れる。そのため、伝熱流路には十分な蒸発能力を発揮する略均一の乾き度の冷媒が流れるようになる。したがって、ヘッダ流路内の二相状態の冷媒が均一の流れではない場合でも、室内熱交換器の入口側の冷媒の乾き度が0.1以下であれば、伝熱流路各部の熱交換量のバラつきを抑制して高い熱交換効率を実現できる。
In order to achieve the above object, the present invention has a compressor, an outdoor heat exchanger, a throttle device, and an indoor heat exchanger, and in a refrigeration cycle in which a refrigerant is circulated, the throttle device and the war record indoor heat exchanger are used. A bypass flow path that includes a gas-liquid separator and a flow control valve that adjusts the flow rate of the gaseous refrigerant separated by the gas-liquid separator, and the gaseous refrigerant bypasses the indoor heat exchanger. Set up,
The indoor heat exchanger is a plate-laminated heat exchanger formed by laminating plate fins, and the plate fins connect two header flow paths and two header flow paths to the ends of the plate fins. A plurality of heat transfer channels, and at least an annular groove having a diameter larger than the diameter of the header flow path around the header flow path on the inlet side when the indoor heat exchanger is used as an evaporator among the header flow paths. The gas-liquid separator has a configuration in which the dryness of the refrigerant on the inlet side of the plate fin laminated heat exchanger is 0.1 or less. As a result, if the dryness of the refrigerant at the inlet of the heat exchanger is 0.1 or less, the liquid refrigerant existing in the lower part of the header flow path rises substantially uniformly in the annular groove portion around the header flow path due to the capillary phenomenon. , Mixes with the gas phase refrigerant and flows into the heat transfer flow path. Therefore, a refrigerant having a substantially uniform degree of dryness, which exhibits sufficient vaporization ability, flows through the heat transfer flow path. Therefore, even if the two-phase state refrigerant in the header flow path is not a uniform flow, if the dryness of the refrigerant on the inlet side of the indoor heat exchanger is 0.1 or less, the amount of heat exchange in each part of the heat transfer flow path. High heat exchange efficiency can be achieved by suppressing the variation in the heat exchange.

本発明は、上記構成により、ヘッダ流路内の二相状態の冷媒が均一の流れでなくても熱交換バラつきを抑制して高い熱交換効率を持つ空気調和機とすることができる。 According to the above configuration, the present invention can provide an air conditioner having high heat exchange efficiency by suppressing heat exchange variation even if the two-phase state refrigerant in the header flow path does not flow uniformly.

本発明の実施の形態1における空気調和機の冷媒回路図Refrigerant circuit diagram of the air conditioner according to the first embodiment of the present invention 同空気調和機の室内熱交換器における熱交換器入口乾き度と熱交換器能力の関係を示す図The figure which shows the relationship between the dryness of the heat exchanger inlet and the heat exchanger capacity in the indoor heat exchanger of the air conditioner. 同空気調和機の室内熱交換器の外観を示す斜視図Perspective view showing the appearance of the indoor heat exchanger of the air conditioner 同空気調和機の室内熱交換器を分離した状態で示す分解斜視図An exploded perspective view showing the indoor heat exchanger of the air conditioner in a separated state. 同空気調和機の室内熱交換器を構成するプレートフィンの平面図Top view of plate fins constituting the indoor heat exchanger of the air conditioner 同空気調和機の室内熱交換器を構成するプレートフィンのヘッダ領域を示す拡大平面図Enlarged plan view showing the header area of the plate fins constituting the indoor heat exchanger of the air conditioner. 同空気調和機の室内熱交換器を構成するプレートフィンの構成の一部を拡大して示す分解図An exploded view showing a part of the structure of the plate fins that make up the indoor heat exchanger of the air conditioner in an enlarged manner. 同空気調和機の室内熱交換器におけるヘッダ流路部分を切断して示す斜視図Perspective view showing the header flow path portion of the indoor heat exchanger of the air conditioner cut out. 同空気調和機の室内熱交換器におけるヘッダ流路部分の断面図Cross-sectional view of the header flow path in the indoor heat exchanger of the air conditioner 同空気調和機の室内熱交換器におけるヘッダ流路部分での冷媒流れを説明する説明図Explanatory drawing explaining the refrigerant flow in the header flow path part in the indoor heat exchanger of the air conditioner 本発明の実施の形態2における空気調和機の冷媒回路図Refrigerant circuit diagram of the air conditioner according to the second embodiment of the present invention 本発明の実施の形態3における空気調和機の冷媒回路図Refrigerant circuit diagram of the air conditioner according to the third embodiment of the present invention 本発明の実施の形態4における空気調和機の冷媒回路図Refrigerant circuit diagram of the air conditioner according to the fourth embodiment of the present invention. 従来の空気調和機の冷媒回路図Refrigerant circuit diagram of conventional air conditioner 従来の空気調和機の気液分離型熱交換器の詳細図Detailed view of the gas-liquid separation type heat exchanger of a conventional air conditioner

第1の発明は、圧縮機と室外熱交換器と絞り装置室内熱交換器とを有し、冷媒を循環する冷凍サイクルにおいて、前記絞り装置と戦記室内熱交換器との間に気液分離器と、前記気液分離器で分離された気体状態の冷媒の流量を調整する流量調整弁とを含み、前記気体状態の冷媒が前記室内熱交換器を迂回するバイパス流路を設け、前記室内熱交換器はプレートフィンを積層して形成するプレート積層型熱交換器であって、前記プレートフィンは前記プレートフィンの端部に2つのヘッダ流路と、2つの前記ヘッダ流路を接続する複数の伝熱流路と、少なくとも前記ヘッダ流路のうち前記室内熱交換器を蒸発器として利用する場合の入口側のヘッダ流路の周囲に前記ヘッダ流路の直径よりも大きな環状溝と、を有し、前記気液分離器は、前記プレートフィン積層型熱交換器の入口側の前記冷媒の乾き度を0.1以下にする構成としてある。これにより、ヘッダ流路内の二相状態の冷媒が均一の流れでない場合でも、熱交換器入口の冷媒の乾き度が0.1以下であれば、気体状態の下部に存在する液体状態の冷媒が伝熱流路との間に位置するヘッダ流路周りの環状溝部分を毛細管現象によって略均一に上昇し、気体状態の冷媒と混合し伝熱流路へと流れる。したがって、伝熱流路には十分な蒸発能力を発揮する略均一の乾き度の冷媒が流れる。そのため、伝熱流路各部の熱交換量のバラつきを抑制して高い熱交換効率を実現できる。 The first invention has a compressor, an outdoor heat exchanger, and a squeezing device indoor heat exchanger, and in a refrigeration cycle in which a refrigerant is circulated, a gas-liquid separator between the squeezing device and the war memorial indoor heat exchanger. And a flow rate adjusting valve for adjusting the flow rate of the gaseous refrigerant separated by the gas-liquid separator, a bypass flow path for the gaseous refrigerant to bypass the indoor heat exchanger is provided, and the indoor heat is provided. The exchanger is a plate-laminated heat exchanger formed by laminating plate fins, and the plate fins connect two header flow paths and two header flow paths to the ends of the plate fins. It has a heat transfer flow path and at least an annular groove larger than the diameter of the header flow path around the header flow path on the inlet side when the indoor heat exchanger is used as an evaporator. The gas-liquid separator is configured to reduce the dryness of the refrigerant on the inlet side of the plate fin laminated heat exchanger to 0.1 or less. As a result, even if the two-phase state refrigerant in the header flow path is not a uniform flow, if the dryness of the refrigerant at the heat exchanger inlet is 0.1 or less, the liquid state refrigerant existing in the lower part of the gas state Raises substantially uniformly in the annular groove portion around the header flow path located between the heat transfer flow path and the heat transfer flow path, mixes with the gaseous refrigerant, and flows into the heat transfer flow path. Therefore, a refrigerant having a substantially uniform dryness, which exhibits sufficient vaporization ability, flows through the heat transfer flow path. Therefore, it is possible to realize high heat exchange efficiency by suppressing variation in the amount of heat exchange in each part of the heat transfer flow path.

第2の発明は、圧縮機と室外熱交換器と絞り装置と室内熱交換器とを有し、冷媒を循環する冷凍サイクルにおいて、前記絞り装置と戦記室内熱交換器との間に気液分離器を設け、前記気液分離器で分離された気体状態の冷媒の流量を調整する流量調整弁と、前記気液分離器と前記室内熱交換器との間に第二絞り装置とを含み、前記気体状態の冷媒を前記圧縮機に供給するするインジェクション回路を設け、前記室内熱交換器はプレートフィンを積層して形成するプレート積層型熱交換器であって、前記プレートフィンは前記プレートフィンの端部に2つのヘッダ流路と、2つの前記ヘッダ流路を接続する複数の伝熱流路と、少なくとも前記ヘッダ流路のうち前記室内熱交換器を蒸発器として利用する場合の入口側のヘッダ流路の周囲に前記ヘッダ流路の直径よりも大きな環状溝と、を有し、前記気液分離器は、前記プレートフィン積層型熱交換器の入口側の前記冷媒の乾き度を0.1以下にする構成としてある。 The second invention has a compressor, an outdoor heat exchanger, a squeezing device, and an indoor heat exchanger, and in a refrigeration cycle in which a refrigerant is circulated, gas-liquid separation is performed between the squeezing device and the war memorial indoor heat exchanger. A device is provided to include a flow rate adjusting valve for adjusting the flow rate of the gaseous refrigerant separated by the gas-liquid separator, and a second throttle device between the gas-liquid separator and the indoor heat exchanger. An injection circuit for supplying the gaseous refrigerant to the compressor is provided, and the indoor heat exchanger is a plate laminated heat exchanger formed by laminating plate fins, and the plate fins of the plate fins. Two header flow paths at the ends, a plurality of heat transfer flow paths connecting the two header flow paths, and at least the header on the inlet side of the header flow paths when the indoor heat exchanger is used as an evaporator. The gas-liquid separator has an annular groove larger than the diameter of the header flow path around the flow path, and the gas-liquid separator sets the dryness of the refrigerant on the inlet side of the plate fin laminated heat exchanger to 0.1. The configuration is as follows.

これにより、第二絞り装置で室内熱交換器の入口側に供給される液体状態の冷媒の流量や流速を調整でき、絞り装置及びインジェクション回路に設ける流量調整弁で気液分離を行うことができる。また、絞り装置と、第二絞りで気液分離器内の圧力を圧縮機の吸入圧力よりも高く設定することになり気液分離器と室内熱交換器間のヘッド差が生じても冷媒を搬送できる、即ち、気液分離器を室内熱交換器よりも低い位置に設けることができる。 As a result, the flow rate and flow velocity of the liquid refrigerant supplied to the inlet side of the indoor heat exchanger can be adjusted by the second throttle device, and the flow rate adjusting valve provided in the throttle device and the injection circuit can perform gas-liquid separation. .. In addition, the pressure inside the gas-liquid separator is set higher than the suction pressure of the compressor with the throttle device and the second throttle, so even if there is a head difference between the gas-liquid separator and the indoor heat exchanger, the refrigerant can be used. It can be transported, that is, the gas-liquid separator can be provided at a lower position than the indoor heat exchanger.

第3の発明は、第2の発明において、前記気液分離器と前記第2絞り装置との間を流れる冷媒と、前記室内熱交換器と前記圧縮機との間を流れる冷媒との熱交換を行う内部熱交換器を備える構成としてある。 In the second invention, the third invention is heat exchange between the refrigerant flowing between the gas-liquid separator and the second drawing device and the refrigerant flowing between the indoor heat exchanger and the compressor. It is configured to include an internal heat exchanger to perform the above.

これにより、気液分離器で気液分離された液体成分の多い冷媒の乾き度を内部熱交換器で、より小さく、あるいは過冷却させることができる。室内熱交換器の入口側の冷媒の乾き度をさらに小さくできるため、伝熱流路での熱交換バラつきが抑制され、高い熱交換効率を発揮できる。また、気液分離器の設置位置を室内熱交換器となるプレートフィン積層型熱交換器よりも低い位置に設置することが可能となるなど、設置自由度を高めることができる。 As a result, the dryness of the refrigerant having a large amount of liquid components separated by the gas-liquid separator can be made smaller or supercooled by the internal heat exchanger. Since the dryness of the refrigerant on the inlet side of the indoor heat exchanger can be further reduced, variations in heat exchange in the heat transfer flow path can be suppressed, and high heat exchange efficiency can be exhibited. In addition, the gas-liquid separator can be installed at a position lower than that of the plate fin laminated heat exchanger, which is an indoor heat exchanger, and the degree of freedom of installation can be increased.

第4の発明は、圧縮機と室外熱交換器と絞り装置と室内熱交換器とを有し、冷媒を循環する冷凍サイクルにおいて、前記室内熱交換器はプレートフィンを積層して形成するプレート積層型熱交換器であって、前記プレートフィンは前記プレートフィンの端部に2つのヘッダ流路と、2つの前記ヘッダ流路を接続する複数の伝熱流路と、少なくとも前記ヘッダ流路のうち前記室内熱交換器を蒸発器として利用する場合の入口側のヘッダ流路の周囲に前記ヘッダの直径よりも大きな環状溝と、を有し、前記室外熱交換器と前記絞り装置との間を流れる冷媒と、前記室内熱交換器と前記圧縮機との間を流れる冷媒との熱交換を行う内部熱交換器を備え、前記内部熱交換器は、前記プレートフィン積層型熱交換器の入口側の前記冷媒の乾き度を0.1以下とした構成としてある。これにより、簡易な形態でプレートフィン積層型熱交換器の入口側の冷媒の乾き度を小さくできる。そのため、乾き度を0.1以下にして伝熱流路での熱交換バラつきを抑制し、高い熱交換効率を発揮させることができる。 A fourth invention has a compressor, an outdoor heat exchanger, a drawing device, and an indoor heat exchanger, and in a refrigeration cycle in which a refrigerant is circulated, the indoor heat exchanger is formed by laminating plate fins. In a type heat exchanger, the plate fins include two header flow paths at the ends of the plate fins, a plurality of heat transfer flow paths connecting the two header flow paths, and at least the header flow paths of the header flow paths. When the indoor heat exchanger is used as an evaporator, it has an annular groove larger than the diameter of the header around the header flow path on the inlet side, and flows between the outdoor heat exchanger and the throttle device. An internal heat exchanger that exchanges heat between the refrigerant and the refrigerant flowing between the indoor heat exchanger and the compressor is provided, and the internal heat exchanger is located on the inlet side of the plate fin laminated heat exchanger. The structure is such that the dryness of the refrigerant is 0.1 or less. As a result, the dryness of the refrigerant on the inlet side of the plate fin laminated heat exchanger can be reduced in a simple form. Therefore, the degree of dryness can be set to 0.1 or less, heat exchange variation in the heat transfer flow path can be suppressed, and high heat exchange efficiency can be exhibited.

以下、本発明の実施の形態について、添付の図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

なお、本開示の空気調和機は、以下の実施形態に記載した空気調和機の構成に限定されるものではなく、以下の実施形態において説明する技術的思想と同等の熱交換器の構成を含むものである。 The air conditioner of the present disclosure is not limited to the configuration of the air conditioner described in the following embodiment, and includes a heat exchanger configuration equivalent to the technical idea described in the following embodiment. It is a waste.

また、本実施例では、冷房運転時を例に説明するが、冷房運転のみに限定しない。例えば、四方弁をさらに備え冷房運転と暖房運転を切り換えることができる冷凍サイクルでもよい。 Further, in this embodiment, the case of the cooling operation will be described as an example, but the description is not limited to the cooling operation. For example, a refrigeration cycle may be used in which a four-way valve is further provided and the cooling operation and the heating operation can be switched.

(実施の形態1)
図1は本発明の実施の形態1における空気調和機の冷凍サイクルを示す図である。図2は本発明における室内熱交換器の入口側の冷媒の乾き度と熱交換器能力との関係を示す図である。
(Embodiment 1)
FIG. 1 is a diagram showing a refrigeration cycle of an air conditioner according to the first embodiment of the present invention. FIG. 2 is a diagram showing the relationship between the dryness of the refrigerant on the inlet side of the indoor heat exchanger and the heat exchanger capacity in the present invention.

図1において、この空気調和機は、圧縮機1、室外熱交換器2、絞り装置3、及び室内熱交換器5を配管で順に接続して冷媒回路6を構成している。さらに、気液分離器を絞り装置3と室外熱交換器2との間に設ける。気相冷媒管8は、気液分離器4の気体状態の冷媒を流出する部分と、室内熱交換器5と圧縮機1との間とを接続する。気相冷媒管8には、流通する冷媒の流量を調整する流量調整弁9が設けられる。気液分離器4で分離した液体状態の冷媒は液冷媒管7を流れ室内熱交換器5に流入する。気液分離器4で分離した気体状態の冷媒は気相冷媒管8を流れ圧縮機1に流入する。 In FIG. 1, this air conditioner constitutes a refrigerant circuit 6 by sequentially connecting a compressor 1, an outdoor heat exchanger 2, a throttle device 3, and an indoor heat exchanger 5 with pipes. Further, a gas-liquid separator is provided between the throttle device 3 and the outdoor heat exchanger 2. The gas-phase refrigerant pipe 8 connects a portion of the gas-liquid separator 4 where the gaseous refrigerant flows out and between the indoor heat exchanger 5 and the compressor 1. The gas phase refrigerant pipe 8 is provided with a flow rate adjusting valve 9 for adjusting the flow rate of the flowing refrigerant. The liquid refrigerant separated by the gas-liquid separator 4 flows through the liquid-refrigerant pipe 7 and flows into the indoor heat exchanger 5. The gaseous refrigerant separated by the gas-liquid separator 4 flows through the gas-phase refrigerant pipe 8 and flows into the compressor 1.

室内熱交換器5は、一対のヘッダ流路の間を多数の伝熱流路で接続して構成した多パス型熱交換器で構成してある。そして、本実施の形態では、冷媒が流れる伝熱流路を有するプレートフィンを積層して構成したプレートフィン積層型熱交換器を用いるものを開示する。 The indoor heat exchanger 5 is composed of a multi-pass heat exchanger configured by connecting a pair of header flow paths with a large number of heat transfer flow paths. Further, in the present embodiment, the one using a plate fin laminated heat exchanger configured by laminating plate fins having a heat transfer flow path through which a refrigerant flows is disclosed.

以下、室内熱交換器5の構成を図3〜図10を用いて説明する。 Hereinafter, the configuration of the indoor heat exchanger 5 will be described with reference to FIGS. 3 to 10.

図3は室内熱交換器5の外観を示す斜視図、図4は室内熱交換器5を分離した状態で示す分解斜視図である。図5は室内熱交換器5を構成するプレートフィンの平面図、図6は室内熱交換器5を構成するプレートフィンのヘッダ領域周辺の拡大平面図である。図7は室内熱交換器5を構成するプレートフィン22aの構成の一部を拡大して示す分解図、図8は室内熱交換器5におけるヘッダ流路A28、ヘッダ流路B30を切断して示す斜視図、図9は室内熱交換器5におけるヘッダ流路A28の断面図、図10は室内熱交換器5におけるヘッダ流路A28での冷媒流れを説明する説明図である。 FIG. 3 is a perspective view showing the appearance of the indoor heat exchanger 5, and FIG. 4 is an exploded perspective view showing the indoor heat exchanger 5 in a separated state. FIG. 5 is a plan view of the plate fins constituting the indoor heat exchanger 5, and FIG. 6 is an enlarged plan view of the periphery of the header region of the plate fins constituting the indoor heat exchanger 5. FIG. 7 is an enlarged exploded view showing a part of the configuration of the plate fins 22a constituting the indoor heat exchanger 5, and FIG. 8 shows the header flow path A28 and the header flow path B30 in the indoor heat exchanger 5 cut out. A perspective view, FIG. 9 is a cross-sectional view of the header flow path A28 in the indoor heat exchanger 5, and FIG. 10 is an explanatory view illustrating a refrigerant flow in the header flow path A28 in the indoor heat exchanger 5.

図3に示すように、室内熱交換器5は、長方形の板状である複数のプレートフィン22aで構成される。エンドプレート23aとエンドプレート23bとで、複数のプレートフィン22aは、プレートフィン22aの積層方向に挟まれる。エンドプレート23aとエンドプレート23bとはボルト等の締結手段21で連結固定され、複数のプレートフィン22aを挟む。エンドプレート23aの一端には、後述するプレートフィンが積層されて形成されるヘッダ流路Aとヘッダ流路Bとにそれぞれ繋がる孔24aと孔25aとがもうけられている。
図4で示されるように、孔24aには管A24bが接続され、孔25aには管B25bが接続される。室内熱交換器5を蒸発器として用いる場合には管A24bが入口となり、管B25bが出口となる。
また、図4に示すように、プレートフィン22aは積層され、プレートフィン積層体22を形成する。プレートフィン22aの端側に、ヘッダ流路A28を構成する穴とヘッダ流路B30を構成する穴とが設けられている。ヘッダ流路A28を構成する穴とヘッダ流路B30を構成する穴とは冷媒流路31により繋がっている。冷媒流路31について図5〜図8を用いてより詳細に述べる。
As shown in FIG. 3, the indoor heat exchanger 5 is composed of a plurality of plate fins 22a having a rectangular plate shape. A plurality of plate fins 22a are sandwiched between the end plate 23a and the end plate 23b in the stacking direction of the plate fins 22a. The end plate 23a and the end plate 23b are connected and fixed by fastening means 21 such as bolts, and sandwich the plurality of plate fins 22a. At one end of the end plate 23a, holes 24a and holes 25a are provided which are connected to the header flow path A and the header flow path B, which are formed by stacking plate fins described later, respectively.
As shown in FIG. 4, the pipe A24b is connected to the hole 24a, and the pipe B25b is connected to the hole 25a. When the indoor heat exchanger 5 is used as an evaporator, the pipe A24b serves as an inlet and the pipe B25b serves as an outlet.
Further, as shown in FIG. 4, the plate fins 22a are laminated to form the plate fin laminated body 22. A hole forming the header flow path A28 and a hole forming the header flow path B30 are provided on the end side of the plate fin 22a. The hole forming the header flow path A28 and the hole forming the header flow path B30 are connected by a refrigerant flow path 31. The refrigerant flow path 31 will be described in more detail with reference to FIGS. 5 to 8.

図5は1枚のプレートフィン22aの平面図である。プレートフィン22aの一端側はヘッダ流路の集まるヘッダ領域Hであり、ヘッダ領域Hからヘッダ領域Hと反対側の端部までの領域は細い冷媒の流路の集まる伝熱領域Pである。伝熱領域Pには、複数の並行した複数の冷媒流路31がある。冷媒流路31はヘッダ領域Hにあるヘッダ流路A28とヘッダ流路B30と繋がっている。冷媒流路31はヘッダ領域Hとは反対側の端部の周辺で折り返している。この折り返し部分とヘッダ領域Hとの間で、複数の冷媒流路31が並行に並んでいる。複数の冷媒流路31は、ヘッダ流路A28に接続されるヘッダ流路A側冷媒流路31aと、ヘッダ流路B30と接続されるヘッダ流路B側冷媒流路31bとに分けられる。ヘッダ流路A側冷媒流路31aの冷媒流路31の本数は、ヘッダ流路B側冷媒流路31bの冷媒流路31より少ない。そして、プレートフィン22aにはスリット溝35がヘッダ領域Hから折り返しまで設けられている。スリット溝35は、ヘッダ流路A28及びヘッダ流路A側冷媒流路31aの領域と、ヘッダ流路B30及びヘッダ流路B側冷媒流路31bの領域との間に伝熱隙間を設ける。ここで、冷媒の流れは、室内熱交換器5を蒸発器として用いる場合には、ヘッダ流路A28が入口となり、室内熱交換器5を凝縮器として用いる場合には、ヘッダ流路A28が出口となる。なお、室内熱交換器5を蒸発器として用いる場合には、ヘッダ流路B30が出口となり、室内熱交換器5を凝縮器として用いる場合には、ヘッダ流路B30が入口となる。 FIG. 5 is a plan view of one plate fin 22a. One end side of the plate fin 22a is a header region H where header flow paths gather, and a region from the header region H to the end opposite to the header region H is a heat transfer region P where thin refrigerant flow paths gather. In the heat transfer region P, there are a plurality of parallel refrigerant flow paths 31. The refrigerant flow path 31 is connected to the header flow path A28 and the header flow path B30 in the header region H. The refrigerant flow path 31 is folded around the end on the side opposite to the header region H. A plurality of refrigerant flow paths 31 are lined up in parallel between the folded portion and the header region H. The plurality of refrigerant flow paths 31 are divided into a header flow path A-side refrigerant flow path 31a connected to the header flow path A28 and a header flow path B-side refrigerant flow path 31b connected to the header flow path B30. The number of refrigerant flow paths 31 in the header flow path A side refrigerant flow path 31a is smaller than that in the header flow path B side refrigerant flow path 31b. The plate fin 22a is provided with a slit groove 35 from the header region H to the folded back. The slit groove 35 provides a heat transfer gap between the regions of the header flow path A28 and the header flow path A side refrigerant flow path 31a and the regions of the header flow path B30 and the header flow path B side refrigerant flow path 31b. Here, the flow of the refrigerant is such that the header flow path A28 serves as an inlet when the indoor heat exchanger 5 is used as an evaporator, and the header flow path A28 serves as an outlet when the indoor heat exchanger 5 is used as a condenser. It becomes. When the indoor heat exchanger 5 is used as an evaporator, the header flow path B30 serves as an outlet, and when the indoor heat exchanger 5 is used as a condenser, the header flow path B30 serves as an inlet.

なお、スリット溝35は、ヘッダ流路A28とヘッダ流路B30との間で起こる熱交換を軽減し、熱交換効率を高めるために設ける。したがって、スリット溝35がなくともよい。 The slit groove 35 is provided in order to reduce the heat exchange that occurs between the header flow path A28 and the header flow path B30 and to improve the heat exchange efficiency. Therefore, the slit groove 35 may not be provided.

図6は、プレートフィン22aのヘッダ領域Hを拡大表示した平面図である。図6に示す通り、ヘッダ流路A28の外周に、ヘッダ流路A28の直径よりも広い外周を有する環状溝28bを備える。環状溝28bはヘッダ流路A側冷媒流路31aと繋がる連絡流路28cを備える。同様にヘッダ流路B30の外周に、環状溝30bを備える。環状溝30bはヘッダ流路B側冷媒流路31bと繋がる連絡流路30cを備える。 FIG. 6 is an enlarged plan view of the header region H of the plate fins 22a. As shown in FIG. 6, an annular groove 28b having an outer circumference wider than the diameter of the header flow path A28 is provided on the outer circumference of the header flow path A28. The annular groove 28b includes a connecting flow path 28c connected to the header flow path A side refrigerant flow path 31a. Similarly, an annular groove 30b is provided on the outer periphery of the header flow path B30. The annular groove 30b includes a connecting flow path 30c connected to the header flow path B side refrigerant flow path 31b.

図7はプレートフィン22aの分解斜視図である。図7に示すように、プレートフィン22aは第1板状部材26aと第2板状部材26bが向い合せにロウ付け接合され構成される。ヘッダ流路A28の周囲には、接合面に対して外向きに隆起する環状隆起部28aを備える。同様に、ヘッダ流路B30の周囲にも、接合面に対して外向きに隆起する環状隆起部30aを備える。 FIG. 7 is an exploded perspective view of the plate fin 22a. As shown in FIG. 7, the plate fin 22a is configured by brazing and joining the first plate-shaped member 26a and the second plate-shaped member 26b so as to face each other. Around the header flow path A28, an annular ridge 28a that bulges outward with respect to the joint surface is provided. Similarly, an annular ridge portion 30a that bulges outward with respect to the joint surface is also provided around the header flow path B30.

図7のように第1板状部材26aと第2板状部材26bとが重ね合わさり、ろう付けされることで、第1板状部材26aと第2板状部材26bとの間に冷媒流路31が形成される。すなわち、ヘッダ流路A28の周囲では、第1板状部材26aの環状隆起部28aと第2板状部材26bの環状隆起部28aとの間に環状溝28bができる。また、第1板状部材26aと第2板状部材26bとが重なり合うことで、ヘッダ流路A側冷媒流路31aが形成される。ヘッダ流路B側についても同様である。 As shown in FIG. 7, the first plate-shaped member 26a and the second plate-shaped member 26b are overlapped and brazed to form a refrigerant flow path between the first plate-shaped member 26a and the second plate-shaped member 26b. 31 is formed. That is, around the header flow path A28, an annular groove 28b is formed between the annular ridge 28a of the first plate-shaped member 26a and the annular ridge 28a of the second plate-shaped member 26b. Further, the first plate-shaped member 26a and the second plate-shaped member 26b overlap each other to form the header flow path A side refrigerant flow path 31a. The same applies to the header flow path B side.

図8に示すように、図7に示した第1板状部材26aと第2板状部材26bとを重ね合わせたプレートフィン22aが、多数積層され熱交換器の主体をなすプレートフィン積層体22を構成する。プレートフィン22a同士の間にはプレートフィン22aの長辺両端部及び冷媒流路31間に適宜設けた複数の突起32によって第2流体である空気が流れる隙間を形成している。 As shown in FIG. 8, a large number of plate fins 22a obtained by superimposing the first plate-shaped member 26a and the second plate-shaped member 26b shown in FIG. 7 are laminated to form the main body of the heat exchanger. To configure. Between the plate fins 22a, a gap through which air, which is a second fluid, flows is formed by a plurality of protrusions 32 appropriately provided between both ends of the long sides of the plate fins 22a and the refrigerant flow path 31.

なお、冷媒流路31は第1板状部材26a、第2板状部材26bに凹状溝によって形成され、容易に細径化できるようになっている。 The refrigerant flow path 31 is formed in the first plate-shaped member 26a and the second plate-shaped member 26b by a concave groove so that the diameter can be easily reduced.

また、冷媒流路31のうちヘッダ流路A28に繋がるヘッダ流路A側冷媒流路31aとヘッダ流路B30に繋がるヘッダ流路B側冷媒流路31bとの間にはこれら両者間の熱移動を防止すべくスリット溝35が形成してある。 Further, among the refrigerant flow paths 31, heat transfer between the header flow path A side refrigerant flow path 31a connected to the header flow path A28 and the header flow path B side refrigerant flow path 31b connected to the header flow path B30. A slit groove 35 is formed in order to prevent the above.

さらにこの例では、ヘッダ流路B側冷媒流路31bは冷媒流路の本数をヘッダ流路A側冷媒流の31aより多くし図6に示すようにヘッダ流路B30の連絡流路30cと対向する部分は冷媒流路のない無孔部36として凝縮条件で使用している時に下流ヘッダ流路であるヘッダ流路B30からヘッダ流路B側冷媒流路31bへと流れる冷媒が無孔部36の壁部に衝突してヘッダ流路B側冷媒流路31bへ均等に流れるように構成してある。 Further, in this example, the header flow path B side refrigerant flow path 31b has a larger number of refrigerant flow paths than the header flow path A side refrigerant flow 31a and faces the communication flow path 30c of the header flow path B30 as shown in FIG. The portion to be used is a non-perforated portion 36 having no refrigerant flow path, and the refrigerant flowing from the header flow path B30, which is the downstream header flow path, to the refrigerant flow path 31b on the header flow path B side when used under condensation conditions is the non-perforated portion 36. It is configured so that it collides with the wall portion of the head and flows evenly to the refrigerant flow path 31b on the header flow path B side.

なお、室内熱交換器5はこの形態に限定しない。ヘッダ流路A28から液体状態の多い冷媒が流入し、ヘッダ流路B30では気体状態の冷媒が流出する。そのため、密度に合わせ、ヘッダ流路B側で冷媒流路31の流路断面積が大きくなることが好ましい。ただし、室内熱交換器5の形状に応じて、変更してもよい。 The indoor heat exchanger 5 is not limited to this form. A refrigerant having a large liquid state flows in from the header flow path A28, and a gaseous refrigerant flows out from the header flow path B30. Therefore, it is preferable that the flow path cross-sectional area of the refrigerant flow path 31 increases on the header flow path B side according to the density. However, it may be changed according to the shape of the indoor heat exchanger 5.

また、無孔部36はなくともよい。冷媒の分流をよくするために無孔部36を設けることが好ましいため本実施例では設ける。 Further, the non-perforated portion 36 may not be provided. Since it is preferable to provide the non-perforated portion 36 in order to improve the diversion of the refrigerant, it is provided in this embodiment.

上記構成からなる本実施形態のプレートフィン積層型熱交換器は、冷媒がプレートフィン積層体22のプレートフィン22aの内部の冷媒流路31群を長手方向に並行に流れUターンして折り返しヘッダ流路A28或いはヘッダ流路B30から管B25bあるいは管A24bを通して排出される。 In the plate fin laminated heat exchanger of the present embodiment having the above configuration, the refrigerant flows in parallel in the longitudinal direction through the refrigerant flow path 31 group inside the plate fin 22a of the plate fin laminated body 22, makes a U-turn, and is a folded header flow. It is discharged from the path A28 or the header flow path B30 through the pipe B25b or the pipe A24b.

一方、第2流体である空気は、プレートフィン積層体22を構成するプレートフィン22aの積層間に形成された隙間を通り抜ける。これにより第1流体である冷媒と第2流体である空気との熱交換が行われる。 On the other hand, air, which is the second fluid, passes through the gap formed between the stacks of the plate fins 22a constituting the plate fin laminate 22. As a result, heat exchange between the refrigerant as the first fluid and the air as the second fluid is performed.

以上のように構成した空気調和機について、以下その作用効果を説明する。 The operation and effect of the air conditioner configured as described above will be described below.

冷媒は、室内熱交換器5を蒸発器として使用している場合、図1の矢印で示す順に移動する。圧縮機1によって冷媒は圧縮され、高温高圧状態の冷媒が室外熱交換器2に流れる。そして、高温高圧状態の冷媒は外気と熱交換して放熱し、高圧状態の液体状態の冷媒となり、高圧状態の液体状態の冷媒は絞り装置3に流れる。絞り装置3で高圧状態の液体状態の冷媒は減圧されて低温低圧の二相状態の冷媒となり、室内熱交換器5に流れる。室内熱交換器5で二相状態の冷媒は室内空気と熱交換して吸熱し、蒸発気化して低温の気体状態の冷媒となり、圧縮機1へと戻る。この時、図示しない室内ファンにより、室内熱交換器5の周辺で冷やされた空気が室内に送り込まれ、室内空気は冷却される。 When the indoor heat exchanger 5 is used as an evaporator, the refrigerant moves in the order indicated by the arrows in FIG. The refrigerant is compressed by the compressor 1, and the refrigerant in a high temperature and high pressure state flows to the outdoor heat exchanger 2. Then, the refrigerant in the high temperature and high pressure state exchanges heat with the outside air and dissipates heat to become the refrigerant in the liquid state in the high pressure state, and the refrigerant in the liquid state in the high pressure state flows to the throttle device 3. The liquid refrigerant in the high pressure state in the drawing device 3 is depressurized to become a low temperature and low pressure two-phase state refrigerant, and flows to the indoor heat exchanger 5. The two-phase refrigerant in the indoor heat exchanger 5 exchanges heat with the indoor air, absorbs heat, evaporates and vaporizes to become a low-temperature gaseous refrigerant, and returns to the compressor 1. At this time, an indoor fan (not shown) sends the air cooled around the indoor heat exchanger 5 into the room, and the indoor air is cooled.

ここで、室内熱交換器5に流れる冷媒は気液分離器4で気液分離される。しかし、室内熱交換器5の入り口側のヘッダ流路に流入した際、既述したように波状流または層状流で冷媒が均一な流れではないので冷媒流路に均一に分配されない状態となる。そのため、気液分離が不十分で気体状態の冷媒が混ざった液体状態の冷媒が室内熱交換器5の入り口側のヘッダ流路に流入する。 Here, the refrigerant flowing through the indoor heat exchanger 5 is gas-liquid separated by the gas-liquid separator 4. However, when the refrigerant flows into the header flow path on the inlet side of the indoor heat exchanger 5, the refrigerant is not a uniform flow due to the wavy flow or the layered flow as described above, so that the refrigerant is not uniformly distributed to the refrigerant flow path. Therefore, the liquid refrigerant mixed with the gaseous refrigerant due to insufficient gas-liquid separation flows into the header flow path on the inlet side of the indoor heat exchanger 5.

しかしながら、本実施の形態の冷媒回路では、気液分離器4からの気液二相冷媒が流入する室内熱交換器5のヘッダ流路、この場合はヘッダ流路A28の周りには環状溝28bが形成されている。そのため、図10に示すようにヘッダ流路A28内の下部を流動する液体状態の冷媒aは環状溝28bの部分を毛細管現象によって矢印で示すように略均一に上昇し、気体状態の冷媒と混合して冷媒流路31へと流れていく。特に図8に示す環状溝28bの幅Tを3mm程度以下、溝深さHを1mm程度以上としておけば、ヘッダ流路A28内の下部の液状冷媒が環状溝30bの部分を毛細管現象によって略均一に上昇していき、気体状態の冷媒と混合して冷媒流路31へと流れていく。 However, in the refrigerant circuit of the present embodiment, the header flow path of the indoor heat exchanger 5 into which the gas-liquid two-phase refrigerant from the gas-liquid separator 4 flows, in this case, the annular groove 28b around the header flow path A28. Is formed. Therefore, as shown in FIG. 10, the liquid refrigerant a flowing in the lower part of the header flow path A28 rises substantially uniformly on the annular groove 28b as shown by the arrow due to the capillary phenomenon, and is mixed with the gaseous refrigerant. Then, it flows into the refrigerant flow path 31. In particular, if the width T of the annular groove 28b shown in FIG. 8 is set to about 3 mm or less and the groove depth H is set to about 1 mm or more, the liquid refrigerant in the lower part of the header flow path A28 makes the portion of the annular groove 30b substantially uniform due to the capillary phenomenon. It rises to, mixes with the refrigerant in a gaseous state, and flows into the refrigerant flow path 31.

したがって、ヘッダ流路A28に繋がっている冷媒流路31には十分な蒸発能力を発揮する略均一の乾き度の冷媒が流れるようになり、冷媒流路各部の熱交換量のバラつきを抑制して高い熱交換効率を実現できる。 Therefore, the refrigerant having a substantially uniform dryness, which exhibits sufficient evaporation ability, flows through the refrigerant flow path 31 connected to the header flow path A28, and the variation in the amount of heat exchange in each part of the refrigerant flow path is suppressed. High heat exchange efficiency can be achieved.

なお、効率的な毛細管現象のため、室内熱交換器5が空気調和機に設置された際に、ヘッダ流路A28が冷媒流路31より下側に設けられている方がよい。 For efficient capillary action, it is preferable that the header flow path A28 is provided below the refrigerant flow path 31 when the indoor heat exchanger 5 is installed in the air conditioner.

また、少なくとも液体状態の冷媒が流入するヘッダ流路A28側に環状溝28bを設ければよい。 Further, at least the annular groove 28b may be provided on the header flow path A28 side into which the liquid refrigerant flows.

図2は上記構成の室内熱交換器5における熱交換器入口乾き度と熱交換器能力の関係を示す図である。乾き度が0.1以下であれば100%近い熱交換能力を確保できることが確認できる。 FIG. 2 is a diagram showing the relationship between the dryness of the heat exchanger inlet and the heat exchanger capacity in the indoor heat exchanger 5 having the above configuration. It can be confirmed that if the dryness is 0.1 or less, the heat exchange capacity of nearly 100% can be secured.

つまり、気液分離器4が十分な気液分離を発揮しない場合であっても乾き度が0.1以下の冷媒となる分離効率であれば冷媒流路各部の熱交換量のバラつきを抑制して高い熱交換効率を実現できる。 That is, even when the gas-liquid separator 4 does not exhibit sufficient gas-liquid separation, if the separation efficiency is such that the dryness of the refrigerant is 0.1 or less, the variation in the amount of heat exchange in each part of the refrigerant flow path is suppressed. High heat exchange efficiency can be achieved.

(実施の形態2)
図11は本発明の実施の形態2における空気調和機の冷媒回路図である。
(Embodiment 2)
FIG. 11 is a refrigerant circuit diagram of the air conditioner according to the second embodiment of the present invention.

本実施の形態では気液分離器4で分離した気相冷媒を圧縮機1に供給するインジェクション回路11を設けた構成としてある。なお、インジェクション回路11には流量調整弁12が設けてある。また、気液分離器4の入口には絞り装置3が、気液分離器4からの液冷媒管7には第二絞り装置13が設けてある。 In the present embodiment, the injection circuit 11 for supplying the gas-phase refrigerant separated by the gas-liquid separator 4 to the compressor 1 is provided. The injection circuit 11 is provided with a flow rate adjusting valve 12. Further, a throttle device 3 is provided at the inlet of the gas-liquid separator 4, and a second throttle device 13 is provided at the liquid refrigerant pipe 7 from the gas-liquid separator 4.

その他の構成及び室内熱交換器5の構成は実施の形態1と同様であり、同一部分には同じ番号を付して説明は省略する場合がある。 Other configurations and the configuration of the indoor heat exchanger 5 are the same as those in the first embodiment, and the same parts may be assigned the same number and the description thereof may be omitted.

上記構成によれば、気液分離器4が室内熱交換器5より下方に設置される場合であっても、気液分離器4の気液分離効率の低下を抑制して高い熱交換効率を発揮させることができる。 According to the above configuration, even when the gas-liquid separator 4 is installed below the indoor heat exchanger 5, a decrease in the gas-liquid separation efficiency of the gas-liquid separator 4 is suppressed to achieve high heat exchange efficiency. It can be demonstrated.

即ち、冷媒回路構成上、気液分離器4が室内熱交換器5よりも低い位置に設けられていると、気液分離器4で分離した液体状態の成分が多い冷媒を室内熱交換器5まで持ち上げ供給するためには、気液分離器4で分離された液体状態の成分が多い冷媒が液冷媒管7内を液ヘッドに逆らって室内熱交換器5まで持ち上げる必要がある。 That is, if the gas-liquid separator 4 is provided at a position lower than the indoor heat exchanger 5 in the refrigerant circuit configuration, the refrigerant separated by the gas-liquid separator 4 and having a large amount of liquid components is used in the indoor heat exchanger 5. In order to lift and supply the refrigerant up to, it is necessary for the refrigerant having a large amount of liquid components separated by the gas-liquid separator 4 to lift up to the indoor heat exchanger 5 against the liquid head in the liquid refrigerant pipe 7.

そのためには、インジェクション回路11を設置していない冷媒回路では、液ヘッド同等以上の圧力分を確保するため、気液分離器4で分離された気体成分側側冷媒の流量を絞る必要があり、結果的に略液冷媒側に気相冷媒が混入して気液分離効率が低下してしまう。 For that purpose, in the refrigerant circuit in which the injection circuit 11 is not installed, it is necessary to reduce the flow rate of the gas component side refrigerant separated by the gas-liquid separator 4 in order to secure a pressure equal to or higher than that of the liquid head. As a result, the gas-phase refrigerant is mixed on the substantially liquid refrigerant side, and the gas-liquid separation efficiency is lowered.

しかしながら本実施の形態の構成によれば、気液分離器4内には圧縮機1の中間圧力が印可されるので、液体状態の成分が多い冷媒を液ヘッドに逆らって室内熱交換器5まで持ち上げ供給することができる。 However, according to the configuration of the present embodiment, since the intermediate pressure of the compressor 1 is applied in the gas-liquid separator 4, the refrigerant having a large amount of liquid components is opposed to the liquid head up to the indoor heat exchanger 5. Can be lifted and supplied.

従って、気液分離器4で分離された気体状態の冷媒の流量を絞る必要がなく、気液分離器4の気液分離効率の低下を抑制することができる。 Therefore, it is not necessary to throttle the flow rate of the gas-liquid refrigerant separated by the gas-liquid separator 4, and it is possible to suppress a decrease in the gas-liquid separation efficiency of the gas-liquid separator 4.

よって、気液分離器4が室内熱交換器5となるプレートフィン積層型熱交換器よりも低い位置に設けられていても、プレートフィン積層型熱交換器入口の冷媒の乾き度を0.1以下にして流入できる。これにより、冷媒流路31での熱交換バラつきを抑制し、高い熱交換効率を発揮させることができる。 Therefore, even if the gas-liquid separator 4 is provided at a position lower than the plate fin laminated heat exchanger which is the indoor heat exchanger 5, the dryness of the refrigerant at the inlet of the plate fin laminated heat exchanger is 0.1. It can flow in as follows. As a result, heat exchange variation in the refrigerant flow path 31 can be suppressed, and high heat exchange efficiency can be exhibited.

また、本実施の形態ではインジェクション回路11を設け、また気液分離器4の入口に絞り装置3を、気液分離器4からの液冷媒管7には第二絞り装置13を設けているので、気液分離器4の設置位置に応じて気液分離器4内に印可する中間圧力の大きさを変えることができ、気液分離器の分離効率を低下させることなく気液分離器4の設置位置を自由に選択することができる。 Further, in the present embodiment, the injection circuit 11 is provided, the squeezing device 3 is provided at the inlet of the gas-liquid separator 4, and the second squeezing device 13 is provided at the liquid refrigerant pipe 7 from the gas-liquid separator 4. , The magnitude of the intermediate pressure applied in the gas-liquid separator 4 can be changed according to the installation position of the gas-liquid separator 4, and the gas-liquid separator 4 can be used without lowering the separation efficiency of the gas-liquid separator 4. The installation position can be freely selected.

(実施の形態3)
図12は本発明の実施の形態3における空気調和機の冷媒回路図である。
(Embodiment 3)
FIG. 12 is a refrigerant circuit diagram of the air conditioner according to the third embodiment of the present invention.

本実施の形態では気液分離器の代わりに内部熱交換器14を設けて室内熱交換器5に流入する液体成分の多い冷媒の乾き度を0.1以下に抑えるようにしたものである。 In the present embodiment, an internal heat exchanger 14 is provided instead of the gas-liquid separator so that the dryness of the refrigerant having a large amount of liquid components flowing into the indoor heat exchanger 5 is suppressed to 0.1 or less.

すなわち、図12において、この冷媒回路では、室外熱交換器2と絞り装置3の間の高圧側回路を流れる冷媒と室内熱交換器5と圧縮機1の間の低圧側回路を流れる冷媒とが熱交換を行うように内部熱交換器14を設ける。 That is, in FIG. 12, in this refrigerant circuit, the refrigerant flowing through the high-pressure side circuit between the outdoor heat exchanger 2 and the throttle device 3 and the refrigerant flowing through the low-pressure side circuit between the indoor heat exchanger 5 and the compressor 1 are present. An internal heat exchanger 14 is provided so as to perform heat exchange.

その他の構成及び室内熱交換器5の構成は実施の形態1と同様であり、同一部分には同じ番号を付して説明は省略する場合がある。 Other configurations and the configuration of the indoor heat exchanger 5 are the same as those in the first embodiment, and the same parts may be assigned the same number and the description thereof may be omitted.

以上のように構成した空気調和機について、以下その作用効果を説明する。 The operation and effect of the air conditioner configured as described above will be described below.

室外熱交換器2を通った高圧冷媒は内部熱交換器14に達し、さらに絞り装置3で低温低圧の二相冷媒に断熱膨張し、内部熱交換器14を通って室内熱交換器5に流れる。室内熱交換器5で冷媒は室内空気と熱交換して吸熱し、蒸発気化して低温の気体状態の冷媒となり、圧縮機1へと戻り、室内空気は冷却されて室内を冷房する。 The high-pressure refrigerant that has passed through the outdoor heat exchanger 2 reaches the internal heat exchanger 14, is further adiabatically expanded into a low-temperature low-pressure two-phase refrigerant by the drawing device 3, and flows through the internal heat exchanger 14 to the indoor heat exchanger 5. .. In the indoor heat exchanger 5, the refrigerant exchanges heat with the indoor air to absorb heat, evaporates and vaporizes to become a low-temperature gaseous refrigerant, returns to the compressor 1, and the indoor air is cooled to cool the room.

この時、内部熱交換器では高圧側冷媒と低圧側冷媒とがの熱交換し、高圧側の液体状態の冷媒は吸熱されることで冷媒温度が低下し過冷却度が大きくなる。過冷却度が大きくなった液冷媒が絞り装置3で断熱膨張することで内部熱交換器14を設置しない時の乾き度より小さな二相冷媒となり室内熱交換器5に流れることになる。 At this time, in the internal heat exchanger, the high-pressure side refrigerant and the low-pressure side refrigerant exchange heat, and the high-pressure side liquid refrigerant absorbs heat, so that the refrigerant temperature decreases and the degree of supercooling increases. The liquid refrigerant having a large degree of supercooling expands adiabatically in the throttle device 3 to become a two-phase refrigerant having a degree of dryness smaller than that when the internal heat exchanger 14 is not installed, and flows to the indoor heat exchanger 5.

従って、上記構成によれば、絞り装置3入口室の液冷媒の過冷却度が大きくなるため、室内熱交換器5となるプレートフィン積層型熱交換器入口の冷媒の乾き度を小さくできる。つまり、乾き度を0.1以下にすることができ、これによって冷媒流路での熱交換バラつきを抑制し、高い熱交換効率を発揮させることができる。 Therefore, according to the above configuration, the degree of supercooling of the liquid refrigerant in the inlet chamber of the throttle device 3 becomes large, so that the degree of dryness of the refrigerant at the inlet of the plate fin laminated heat exchanger serving as the indoor heat exchanger 5 can be reduced. That is, the degree of dryness can be set to 0.1 or less, whereby the heat exchange variation in the refrigerant flow path can be suppressed, and high heat exchange efficiency can be exhibited.

(実施の形態4)
図13は実施の形態4における空気調和機の冷媒回路図である。
(Embodiment 4)
FIG. 13 is a refrigerant circuit diagram of the air conditioner according to the fourth embodiment.

本実施の形態は、実施の形態2と実施の形態3の回路構成を組み合わせたものである。 This embodiment is a combination of the circuit configurations of the second embodiment and the third embodiment.

すなわち、図13において、この冷媒回路では、気液分離器4で分離した気体状態の冷媒を圧縮機1に供給するインジェクション回路11を設け、更に、室外熱交換器2と第二絞り装置13の間の高圧側回路を流れる冷媒と室内熱交換器5と圧縮機1の間の低圧側回路を流れる冷媒とが熱交換を行うように内部熱交換器14を設ける。なお、インジェクション回路11には流量調整弁12が設けてある。 That is, in FIG. 13, in this refrigerant circuit, an injection circuit 11 for supplying the gaseous refrigerant separated by the gas-liquid separator 4 to the compressor 1 is provided, and further, the outdoor heat exchanger 2 and the second drawing device 13 are provided. An internal heat exchanger 14 is provided so that the refrigerant flowing in the high-pressure side circuit between them and the refrigerant flowing in the low-pressure side circuit between the indoor heat exchanger 5 and the compressor 1 exchange heat. The injection circuit 11 is provided with a flow rate adjusting valve 12.

その他の構成及び室内熱交換器5の構成は実施の形態1と同様であり、同一部分には同じ番号を付して説明は省略する場合がある。 Other configurations and the configuration of the indoor heat exchanger 5 are the same as those in the first embodiment, and the same parts may be assigned the same number and the description thereof may be omitted.

上記構成によれば、インジェクション回路11を設けることによる効果と内部熱交換器14を設けることによる効果が合わさり、気液分離器4で気液分離された液体成分の多い冷媒の乾き度をさらに小さくすることができる。 According to the above configuration, the effect of providing the injection circuit 11 and the effect of providing the internal heat exchanger 14 are combined, and the dryness of the refrigerant having a large amount of liquid components separated by the gas-liquid separator 4 is further reduced. can do.

よって、室内熱交換器5の入口の冷媒の乾き度をさらに小さくして冷媒流路での室内熱交換器5でのバラつきを抑制し、高い熱交換効率を発揮させることができる。 Therefore, the dryness of the refrigerant at the inlet of the indoor heat exchanger 5 can be further reduced to suppress the variation in the indoor heat exchanger 5 in the refrigerant flow path, and high heat exchange efficiency can be exhibited.

また、気液分離器4の設置位置を室内熱交換器5となるプレートフィン積層型熱交換器よりも更に低い位置に設置することが可能となるなど、設置自由度を高めることができる。
(他の実施の形態)
以上のように、本出願において開示する技術の例示として、実施の形態1および2を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態1および2で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
Further, the gas-liquid separator 4 can be installed at a position lower than that of the plate fin laminated heat exchanger which is the indoor heat exchanger 5, and the degree of freedom of installation can be increased.
(Other embodiments)
As described above, Embodiments 1 and 2 have been described as examples of the techniques disclosed in this application. However, the technique in the present disclosure is not limited to this, and can be applied to embodiments in which changes, replacements, additions, omissions, etc. have been made. It is also possible to combine the components described in the first and second embodiments to form a new embodiment.

図3〜図10ではヘッダ流路A28とヘッダ流路B30とが室内熱交換器5の一端側に集中している形態を示したが、この形態に限定されない。例えば、ヘッダ流路Aをプレートフィンの一端に設け、ヘッダ流路Bを前述の一端と反対側の端部に設けた形態でもよい。この場合、ヘッダ流路Aとヘッダ流路Bとを接続する伝熱流路は折り返しを設けなくともよい。また、この場合、空気調和機に組み込む際、液体状態の成分が多く含まれる冷媒が通過するヘッダ流路Aを、ヘッダ流路Bよりも重力方向に対して下向きに設ける方が好ましい。 3 to 10 show a form in which the header flow path A28 and the header flow path B30 are concentrated on one end side of the indoor heat exchanger 5, but the present invention is not limited to this form. For example, the header flow path A may be provided at one end of the plate fin, and the header flow path B may be provided at the end opposite to the above-mentioned one end. In this case, the heat transfer flow path connecting the header flow path A and the header flow path B does not have to be folded back. Further, in this case, when incorporating the air conditioner, it is preferable that the header flow path A through which the refrigerant containing a large amount of liquid components passes is provided downward with respect to the gravity direction as compared with the header flow path B.

本発明は、ヘッダ流路内の二相状態の冷媒が均一の流れでなくても熱交換バラつきを抑制して高い熱交換効率を持つ空気調和機とすることができる。よって、家庭用及び業務用エアコン等に用いる熱交換器や各種冷凍機器等に幅広く利用でき、その産業的価値は大なるものがある。 INDUSTRIAL APPLICABILITY The present invention can provide an air conditioner having high heat exchange efficiency by suppressing heat exchange variation even if the two-phase state refrigerant in the header flow path is not a uniform flow. Therefore, it can be widely used in heat exchangers and various refrigerating devices used for home and commercial air conditioners, and has great industrial value.

1 圧縮機
2 室外熱交換器
3 絞り装置
4 気液分離器
5 室内熱交換器
6 冷媒回路
7 液冷媒管
8 気相冷媒管
9 流量調整弁
11 インジェクション回路
12 流量調整弁
13 第二絞り装置
14 内部熱交換器
21 締結手段
22 プレートフィン積層体
22a プレートフィン
23a、23b エンドプレート
24a、25a 孔
24b 管A
25b 管B
26a 第1板状部材
26b 第2板状部材
28 ヘッダ流路A
30 ヘッダ流路B
28a、30a 環状隆起部
28b、30b 環状溝
28c、30c 連絡流路
31 冷媒流路
31a ヘッダ流路A側冷媒流路
31b ヘッダ流路B側冷媒流路
32 突起
35 スリット溝
36 無孔部
H ヘッダ領域
P 伝熱領域
1 Compressor 2 Outdoor heat exchanger 3 Squeezing device 4 Gas-liquid separator 5 Indoor heat exchanger 6 Refrigerant circuit 7 Liquid refrigerant pipe 8 Gas phase refrigerant pipe 9 Flow control valve 11 Injection circuit 12 Flow control valve 13 Second throttle device 14 Internal heat exchanger 21 Fastening means 22 Plate fin laminate 22a Plate fins 23a, 23b End plates 24a, 25a Holes 24b Tube A
25b tube B
26a First plate-shaped member 26b Second plate-shaped member 28 Header flow path A
30 Header flow path B
28a, 30a Circular ridge 28b, 30b Circular groove 28c, 30c Communication flow path 31 Refrigerant flow path 31a Header flow path A side Refrigerant flow path 31b Header flow path B side Refrigerant flow path 32 Protrusion 35 Slit groove 36 Non-perforated part H Header Area P Heat transfer area

Claims (4)

圧縮機と室外熱交換器と絞り装置と室内熱交換器とを有し、冷媒を循環する冷凍サイクルにおいて、前記絞り装置と前記室内熱交換器との間に気液分離器と、前記気液分離器で分離された気体状態の冷媒の流量を調整する流量調整弁とを含み、前記気体状態の冷媒が前記室内熱交換器を迂回するバイパス流路を設け、前記室内熱交換器はプレートフィンを積層して形成するプレート積層型熱交換器であって、前記プレートフィンは前記プレートフィンの端部に2つのヘッダ流路と、2つの前記ヘッダ流路を接続する複数の伝熱流路と、少なくとも前記ヘッダ流路のうち前記室内熱交換器を蒸発器として利用する場合の入口側のヘッダ流路の周囲に前記ヘッダ流路の直径よりも大きな環状溝と、を有し、前記環状溝の幅 を3mm以下、溝深さHを1mm以上とし、前記気液分離器は、前記プレートフィン積層型熱交換器の入口側の前記冷媒の乾き度を0.1以下にすることを特徴とする空気調和機。 It has a compressor, an outdoor heat exchanger, a squeezing device, and an indoor heat exchanger, and in a refrigeration cycle in which a refrigerant is circulated, a gas-liquid separator and the gas-liquid are provided between the squeezing device and the indoor heat exchanger. A flow control valve for adjusting the flow rate of the gaseous refrigerant separated by the separator is provided, a bypass flow path for the gaseous refrigerant bypasses the indoor heat exchanger is provided, and the indoor heat exchanger is a plate fin. A plate laminated heat exchanger formed by laminating anda large annular groove than the diameter of said header passages around the inlet side header flow path in the case of using at least the indoor heat exchanger of said header passage as an evaporator, of the annular groove The gas-liquid separator is characterized in that the width is 3 mm or less, the groove depth H is 1 mm or more, and the dryness of the refrigerant on the inlet side of the plate fin laminated heat exchanger is 0.1 or less. Air exchanger. 圧縮機と室外熱交換器と絞り装置と室内熱交換器とを有し、冷媒を循環する冷凍サイクルにおいて、前記絞り装置と前記室内熱交換器との間に気液分離器を設け、前記気液分離器で分離された気体状態の冷媒の流量を調整する流量調整弁と、前記気液分離器と前記室内熱交換器との間に第二絞り装置とを含み、前記気体状態の冷媒を前記圧縮機に供給するインジェクション回路を設け、前記室内熱交換器はプレートフィンを積層して形成するプレート積層型熱交換器であって、前記プレートフィンは前記プレートフィンの端部に2つのヘッダ流路と、2つの前記ヘッダ流路を接続する複数の伝熱流路と、少なくとも前記ヘッダ流路のうち前記室内熱交換器を蒸発器として利用する場合の入口側のヘッダ流路の周囲に前記ヘッダ流路の直径よりも大きな環状溝と、を有し、前記環状溝の幅 を3mm以下、溝深さHを1mm以上とし、前記気液分離器は、前記プレートフィン積層型熱交換器の入口側の前記冷媒の乾き度を0.1以下にすることを特徴とする空気調和機。 Has a compressor and an outdoor heat exchanger and the expansion device and the indoor heat exchanger, in a refrigeration cycle for circulating a refrigerant, provided with gas-liquid separator between said indoor heat exchanger and the throttling device, the gas A flow control valve for adjusting the flow rate of the gaseous refrigerant separated by the liquid separator and a second throttle device between the gas-liquid separator and the indoor heat exchanger are included to provide the gaseous refrigerant. An injection circuit to be supplied to the compressor is provided, and the indoor heat exchanger is a plate laminated heat exchanger formed by laminating plate fins, and the plate fins have two header flows at the ends of the plate fins. The header is around a path, a plurality of heat transfer channels connecting the two header channels, and at least the header channels on the inlet side of the header channels when the indoor heat exchanger is used as an evaporator. It has an annular groove larger than the diameter of the flow path, the width of the annular groove is 3 mm or less, the groove depth H is 1 mm or more, and the gas-liquid separator is the inlet of the plate fin laminated heat exchanger. An air exchanger characterized in that the dryness of the refrigerant on the side is 0.1 or less. 前記気液分離器と前記第二絞り装置との間を流れる冷媒と、前記室内熱交換器と前記圧縮機との間を流れる冷媒との熱交換を行う内部熱交換器を備える請求項2に記載の空気調和機。 The second aspect of claim 2 includes an internal heat exchanger that exchanges heat between the refrigerant flowing between the gas-liquid separator and the second throttle device and the refrigerant flowing between the indoor heat exchanger and the compressor. The described air conditioner. 圧縮機と室外熱交換器と絞り装置と室内熱交換器とを有し、冷媒を循環する冷凍サイクルにおいて、前記室内熱交換器はプレートフィンを積層して形成するプレート積層型熱交換器であって、前記プレートフィンは前記プレートフィンの端部に2つのヘッダ流路と、2
つの前記ヘッダ流路を接続する複数の伝熱流路と、少なくとも前記ヘッダ流路のうち前記室内熱交換器を蒸発器として利用する場合の入口側のヘッダ流路の周囲に前記ヘッダの直径よりも大きな環状溝と、を有し、環状溝の幅 を3mm以下、溝深さHを1mm以上とし、前記室外熱交換器と前記絞り装置との間を流れる冷媒と、前記室内熱交換器と前記圧縮機との間を流れる冷媒との熱交換を行う内部熱交換器を備え、前記内部熱交換器は、前記プレートフィン積層型熱交換器の入口側の前記冷媒の乾き度を0.1以下とすることを特徴とする空気調和機。
In a refrigeration cycle that has a compressor, an outdoor heat exchanger, a throttle device, and an indoor heat exchanger and circulates a refrigerant, the indoor heat exchanger is a plate laminated heat exchanger formed by laminating plate fins. The plate fins have two header channels and two at the ends of the plate fins.
Around the plurality of heat transfer channels connecting the header channels and at least the header channels on the inlet side of the header channels when the indoor heat exchanger is used as an evaporator, the diameter of the header is larger than the diameter of the header. It has a large annular groove, the width of the annular groove is 3 mm or less, the groove depth H is 1 mm or more , the refrigerant flowing between the outdoor heat exchanger and the drawing device, the indoor heat exchanger and the above. It is provided with an internal heat exchanger that exchanges heat with the refrigerant flowing between the compressor and the internal heat exchanger, and the dryness of the refrigerant on the inlet side of the plate fin laminated heat exchanger is 0.1 or less. An air exchanger characterized by the fact that
JP2018211893A 2018-11-12 2018-11-12 Air conditioner Active JP6920592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018211893A JP6920592B2 (en) 2018-11-12 2018-11-12 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018211893A JP6920592B2 (en) 2018-11-12 2018-11-12 Air conditioner

Publications (2)

Publication Number Publication Date
JP2020079651A JP2020079651A (en) 2020-05-28
JP6920592B2 true JP6920592B2 (en) 2021-08-18

Family

ID=70801622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018211893A Active JP6920592B2 (en) 2018-11-12 2018-11-12 Air conditioner

Country Status (1)

Country Link
JP (1) JP6920592B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0554970U (en) * 1991-12-27 1993-07-23 三菱電機株式会社 Heat exchanger
JPH07332806A (en) * 1994-04-12 1995-12-22 Nippondenso Co Ltd Refrigerator
JP2007178042A (en) * 2005-12-27 2007-07-12 Mitsubishi Electric Corp Supercritical vapor compression type refrigerating cycle and cooling and heating air conditioning facility and heat pump hot-water supply machine using it
JP2016095094A (en) * 2014-11-14 2016-05-26 東芝キヤリア株式会社 Heat exchanger and refrigeration cycle device
JP6644143B2 (en) * 2016-06-27 2020-02-12 三菱電機株式会社 refrigerator
CN106642787A (en) * 2016-09-10 2017-05-10 赵向辉 Refrigerating or heating pump system with adjustable refrigerant circulation quantity
JP6767620B2 (en) * 2016-10-21 2020-10-14 パナソニックIpマネジメント株式会社 Heat exchanger and freezing system using it
JP6778851B2 (en) * 2016-12-15 2020-11-04 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration system using it
JP2018136107A (en) * 2017-02-23 2018-08-30 株式会社デンソー Refrigeration cycle apparatus

Also Published As

Publication number Publication date
JP2020079651A (en) 2020-05-28

Similar Documents

Publication Publication Date Title
JP6767620B2 (en) Heat exchanger and freezing system using it
CN109564070B (en) Heat exchanger and refrigeration system using the same
WO2018074345A1 (en) Heat exchanger and refrigeration device using same
CN111801538A (en) Heat exchanger unit and air conditioner using the same
US20230341161A1 (en) A refrigeration system and a method for controlling such a refrigeration system
US20230037668A1 (en) A plate heat exchanger
JP2019100564A (en) Heat exchanger and refrigeration system using the same
JP7278430B2 (en) Heat exchanger and refrigeration cycle equipment
JP6169199B2 (en) Heat exchanger and refrigeration cycle apparatus
JP6920592B2 (en) Air conditioner
JP6987227B2 (en) Heat exchanger and refrigeration cycle equipment
CN114216166B (en) Air conditioner
US20230030270A1 (en) A refrigeration system and method
JP6785408B2 (en) Heat exchanger and refrigeration system using it
WO2022264348A1 (en) Heat exchanger and refrigeration cycle device
US20230036818A1 (en) A heat exchanger and refrigeration system and method
CN110285603B (en) Heat exchanger and refrigeration system using same
JP6934609B2 (en) Heat exchanger and freezing system using it
JP2000241094A (en) Plate type heat exchanger and refrigerating system
JP6928793B2 (en) Plate fin laminated heat exchanger and freezing system using it
JP2019100565A (en) Heat exchanger and refrigeration system using the same
JP6872694B2 (en) Plate fin laminated heat exchanger and refrigeration system using it
JP6827179B2 (en) Heat exchanger and refrigeration system using it
JP6934608B2 (en) Plate fin laminated heat exchanger and freezing system using it
JP2020173045A (en) Air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210621

R151 Written notification of patent or utility model registration

Ref document number: 6920592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151