JP6920056B2 - Sludge dewatering system and sludge dewatering method - Google Patents

Sludge dewatering system and sludge dewatering method Download PDF

Info

Publication number
JP6920056B2
JP6920056B2 JP2016248539A JP2016248539A JP6920056B2 JP 6920056 B2 JP6920056 B2 JP 6920056B2 JP 2016248539 A JP2016248539 A JP 2016248539A JP 2016248539 A JP2016248539 A JP 2016248539A JP 6920056 B2 JP6920056 B2 JP 6920056B2
Authority
JP
Japan
Prior art keywords
sludge
dehydrated
dehydration
zone
filtrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016248539A
Other languages
Japanese (ja)
Other versions
JP2018099658A (en
Inventor
星野 正明
正明 星野
健 石田
健 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2016248539A priority Critical patent/JP6920056B2/en
Publication of JP2018099658A publication Critical patent/JP2018099658A/en
Application granted granted Critical
Publication of JP6920056B2 publication Critical patent/JP6920056B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)

Description

本発明は汚泥脱水システムおよび汚泥脱水方法に関し、固形物回収率の向上に貢献する技術に係るものである。 The present invention relates to a sludge dewatering system and a sludge dewatering method, and relates to a technique that contributes to an improvement in a solid matter recovery rate.

従来、公共下水、し尿、浄化槽汚泥、工場廃水等々の有機性廃水処理過程では有機性汚泥が生成し、この有機性汚泥を脱水する脱水装置の一つとしてスクリュープレス脱水機がある。スクリュープレス脱水機はベルトプレス脱水機や遠心脱水機に比べて低動力である利点を有する。しかし、スクリュープレス脱水機は、水処理工程への返流水負荷がベルトプレス脱水機や遠心脱水機に比べて高くなる。スクリュープレス脱水機が備える金属スクリーンの目開き(穴)がベルトプレス脱水機が備えるろ布の目開きに比べて大きいので、排水中に漏れる固形分が多いためである。 Conventionally, organic sludge is generated in the process of organic wastewater treatment such as public sewage, human waste, septic tank sludge, factory wastewater, etc., and there is a screw press dehydrator as one of the dehydrating devices for dehydrating this organic sludge. The screw press dehydrator has the advantage of lower power than the belt press dehydrator and the centrifugal dehydrator. However, the screw press dehydrator has a higher load of returned water to the water treatment process than the belt press dehydrator and the centrifugal dehydrator. This is because the opening (hole) of the metal screen provided in the screw press dehydrator is larger than the opening of the filter cloth provided in the belt press dehydrator, so that a large amount of solid content leaks into the drainage.

このスクリュープレス脱水機を用いた汚泥脱水システムには、例えば特許文献1に記載するものがある。これは、固液分離装置において、筒状体の内部空間を、汚泥の移動方向に沿って上流側の第1ゾーンと、これよりも下流側の第2ゾーンとに分け、第1ゾーンに在る汚泥から分離された水分を受ける第1受皿と、第2ゾーンに在る汚泥から分離された水分を受ける第2受皿とを設けたものであり、第1受け皿のろ液が汚泥槽を経てフロック化装置に送られ、フロック化した汚泥を固液分離装置に戻していた。 A sludge dewatering system using this screw press dewatering machine is described in, for example, Patent Document 1. In the solid-liquid separator, the internal space of the tubular body is divided into a first zone on the upstream side and a second zone on the downstream side along the sludge movement direction, and is located in the first zone. A first saucer that receives the water separated from the sludge and a second saucer that receives the water separated from the sludge in the second zone are provided, and the filtrate of the first saucer passes through the sludge tank. It was sent to the flocking device and the flocked sludge was returned to the solid-liquid separator.

また、特許文献2では、脱水機からの脱水分離液は原汚泥と合わせて処理しており、脱水分離液および原汚泥にポリマーを添加して第1凝集槽で攪拌下凝集処理した後に、第1凝集汚泥を濃縮装置に導入して濃縮処理する。濃縮装置の濃縮汚泥は、ポリマーを添加して第2凝集槽で攪拌下に凝集処理して後に、第2凝集槽の第2凝集汚泥を脱水機で脱水処理していた。 Further, in Patent Document 2, the dehydration separation liquid from the dehydrator is treated together with the raw sludge, and after adding a polymer to the dehydration separation liquid and the raw sludge and performing the coagulation treatment under stirring in the first coagulation tank, the first 1 Coagulated sludge is introduced into a concentrator and concentrated. The concentrated sludge of the concentrator was subjected to a coagulation treatment under stirring in a second coagulation tank after adding a polymer, and then the second coagulation sludge in the second coagulation tank was dehydrated by a dehydrator.

また、特許文献3では、混和工程で有機性汚泥に高分子凝集剤を添加して混和させた後に、混和工程で生成した凝集汚泥を濃縮工程で濃縮処理して分離液と濃縮汚泥を得ている。そして、濃縮工程で得られた濃縮汚泥を脱水工程でスクリュープレス脱水機により脱水処理して脱水ケーキと脱水分離液とを得ており、脱水工程で得られた脱水分離液を固液分離し、得られた汚泥側を混和工程及び/又は濃縮工程へ返送していた。 Further, in Patent Document 3, after adding a polymer flocculant to organic sludge in the mixing step and mixing it, the coagulated sludge produced in the mixing step is concentrated in the concentration step to obtain a separation liquid and concentrated sludge. There is. Then, the concentrated sludge obtained in the concentration step is dehydrated by a screw press dehydrator in the dehydration step to obtain a dehydrated cake and a dehydration separation liquid, and the dehydration separation liquid obtained in the dehydration step is solid-liquid separated. The obtained sludge side was returned to the mixing step and / or the concentrating step.

特開平09−220598Japanese Patent Application Laid-Open No. 09-220598 特開2006−35166JP 2006-35166 特許4966258Patent 4966258

スクリュープレス脱水機は、脱水ろ液のSS濃度(浮遊物質濃度)が他の脱水装置の脱水ろ液のSS濃度よりも高いので、脱水ろ液を処理して清澄な処理水するための負荷が大きくなる課題がある。 In the screw press dehydrator, the SS concentration (suspended solids concentration) of the dehydrated filtrate is higher than the SS concentration of the dehydrated filtrate of other dehydrators, so the load for processing the dehydrated filtrate to make clear treated water is heavy. There is a big challenge.

また、特許文献1のものでは、第1受け皿から流入するろ液中に含まれた微小フロック(凝結)が汚泥槽において原汚泥と混合されるために、微小フロックの電荷中和が崩れる。このため、原汚泥中の固形分(懸濁物質)を凝集させるために必要な量の凝集剤に加えて、第1受け皿から流入するろ液中の固形分(懸濁物質)を再び凝集させるために必要な量の凝集剤を合わせて添加せねばならず、凝集剤の消費総量が多くなる問題がある。 Further, in Patent Document 1, since the fine flocs (condensation) contained in the filtrate flowing from the first saucer are mixed with the raw sludge in the sludge tank, the charge neutralization of the microflocs is disrupted. Therefore, in addition to the amount of coagulant required for agglomerating the solid content (suspended solids) in the raw sludge, the solid content (suspended solids) in the filtrate flowing in from the first saucer is reaggregated. Therefore, it is necessary to add the necessary amount of the coagulant together, and there is a problem that the total amount of the coagulant consumed increases.

特許文献2のものでは、第1凝集槽と第2凝集槽の二つの凝集槽を必要とし、装置構成が複雑となるとともに、凝集剤の消費総量が多くなる問題がある。 Patent Document 2 requires two coagulation tanks, a first coagulation tank and a second coagulation tank, which causes a problem that the apparatus configuration becomes complicated and the total amount of coagulant consumed increases.

特許文献3のものでは、脱水工程で得られた脱水分離液を固液分離し、得られた汚泥を混和工程及び/又は濃縮工程へ返送するので、装置構成が複雑となるとともに、脱水分離液を固液分離する装置を設けるための費用が初期費用に加算され、さらに維持管理や補修のための手間および費用が必要となる。 In Patent Document 3, the dehydration separation liquid obtained in the dehydration step is solid-liquid separated, and the obtained sludge is returned to the mixing step and / or the concentration step, so that the apparatus configuration becomes complicated and the dehydration separation liquid is complicated. The cost of installing a device for solid-liquid separation is added to the initial cost, and labor and cost for maintenance and repair are required.

本発明は上記課題を解決するものであり、添加する凝集剤の消費総量を増加させることなく、かつ簡易な構成において固形分の回収率を高めることができる汚泥脱水システムおよび汚泥脱水方法を提供することを目的とする。 The present invention solves the above problems, and provides a sludge dewatering system and a sludge dewatering method capable of increasing the recovery rate of solid content in a simple configuration without increasing the total consumption of the coagulant to be added. The purpose is.

上記課題を解決するために、本発明の汚泥脱水システムは、汚泥供給系が、脱水対象汚泥に高分子凝集剤を添加して攪拌する凝集装置と、凝集装置に前記脱水対象汚泥を供給する汚泥ポンプを有し、凝集装置で形成した凝集フロックを含む凝集汚泥を脱水する脱水機が、前部の濃縮ゾーンと後部の脱水ゾーンと濃縮ゾーンに対応する前部ろ液受け部と脱水ゾーンに対応する後部ろ液受け部を有し、脱水ゾーンから後部ろ液受け部に流れ出た脱水ろ液を凝集装置に直接的に返送する直結返送系が、前記汚泥ポンプの下流側でかつ凝集装置の上流側の汚泥供給系に前記脱水ろ液を供給することを特徴とする。 In order to solve the above problems, in the sludge dehydration system of the present invention, the sludge supply system adds a polymer flocculant to the sludge to be dehydrated and stirs it, and sludge that supplies the sludge to be dehydrated to the flocculation device. A dehydrator that has a pump and dehydrates aggregated sludge containing aggregated sludge formed by an aggregater corresponds to the front concentration zone, the rear dehydration zone, and the front filtrate receiving part and the dehydration zone corresponding to the concentration zone. The direct return system, which has a rear filtrate receiving portion and directly returns the dehydrated filtrate flowing from the dehydration zone to the rear filtrate receiving portion, is located on the downstream side of the sludge pump and upstream of the sludge pump. It is characterized in that the dehydration filtrate is supplied to the sludge supply system on the side.

本発明の汚泥脱水システムにおいて、脱水機のろ過面は、濃縮ゾーンのろ過面がろ過面全長の1/6〜1/3を占め、残りを脱水ゾーンが占めることを特徴とする。 In the sludge dewatering system of the present invention, the filtration surface of the dehydrator is characterized in that the filtration surface of the concentration zone occupies 1/6 to 1/3 of the total length of the filtration surface, and the dewatering zone occupies the rest.

本発明の汚泥脱水システムにおいて、脱水機がスクリュープレス脱水機であることを特徴とする。 In the sludge dewatering system of the present invention, the dewatering machine is a screw press dewatering machine.

本発明の汚泥脱水システムにおいて、スクリュープレス脱水機は、スクリーンの前方側にウェッジワイヤーからなるろ過面を有し、後方側にパンチングメタルからなるろ過面を有することを特徴とする。 In the sludge dewatering system of the present invention, the screw press dewatering machine is characterized by having a filtration surface made of wedge wire on the front side of the screen and a filtration surface made of punching metal on the rear side.

本発明の汚泥脱水方法は、汚泥供給系の汚泥ポンプにより脱水対象汚泥を凝集装置に供給し、凝集装置において前記脱水対象汚泥に高分子凝集剤を添加して攪拌し、凝集装置で形成した凝集フロックを含む凝集汚泥を前部の濃縮ゾーンと後部の脱水ゾーンを有する脱水機で脱水し、脱水機の後部の脱水ゾーンから脱水ゾーンに対応する後部ろ液受け部に流れ出た脱水ろ液を凝集装置に直接的に返送する直結返送系が、前記汚泥ポンプの下流側でかつ凝集装置の上流側の汚泥供給系に前記脱水ろ液を供給することを特徴とする。 In the sludge dehydration method of the present invention, sludge to be dehydrated is supplied to a coagulation device by a sludge pump of a sludge supply system, a polymer flocculant is added to the sludge to be dehydrated in the coagulation device and stirred, and agglomeration formed by the coagulation device is performed. Aggregated sludge containing flocs is dehydrated by a dehydrator having a front concentration zone and a rear dehydration zone, and the dehydrated filtrate flowing from the rear dehydration zone of the dehydrator to the rear filtrate corresponding to the dehydration zone is aggregated. The direct return system, which is directly returned to the apparatus, supplies the sludge filtrate to the sludge supply system on the downstream side of the sludge pump and on the upstream side of the aggregator .

本発明の汚泥脱水方法において、凝集装置に添加する高分子凝集剤の量は、汚泥供給系から流入する脱水対象汚泥のみを対象としてその凝集処理に必要な量を算出することを特徴とする。 In the sludge dewatering method of the present invention, the amount of the polymer coagulant added to the coagulator is characterized in that the amount required for the coagulation treatment is calculated only for the sludge to be dewatered flowing from the sludge supply system.

以上のように本発明によれば、スクリュープレス脱水機の脱水ゾーンから排出する脱水ろ液を直結返送系によって凝集装置へ直接的に返送するので、脱水ろ液に含まれた微小フロックが壊れることなく、凝集装置へ返送される。 As described above, according to the present invention, the dehydrated filtrate discharged from the dehydration zone of the screw press dehydrator is directly returned to the coagulator by the direct return system, so that the minute flocs contained in the dehydrated filtrate are broken. Is returned to the coagulator.

このため、凝集装置で必要な凝集剤の消費総量は、脱水ろ液の返送に起因する凝集剤の消費量の増加を伴うことなく、系外から新たに供給する脱水対象汚泥の凝集に必要な量に抑制することができ、凝集剤の薬注率を上げずに、固形分の回収率を高めることができる。 Therefore, the total consumption of the coagulant required by the coagulator is necessary for the coagulation of the sludge to be dehydrated newly supplied from outside the system without increasing the consumption of the coagulant due to the return of the dehydrated filtrate. The amount can be suppressed, and the recovery rate of solid content can be increased without increasing the chemical injection rate of the flocculant.

本発明の実施の形態における汚泥脱水装置を示す模式図Schematic diagram showing the sludge dewatering apparatus according to the embodiment of the present invention. 同汚泥脱水装置における条件1の下でのろ液排出量の分布測定の結果を示す図表Chart showing the results of distribution measurement of filtrate discharge under condition 1 in the sludge dehydrator 同汚泥脱水装置における条件2の下でのろ液排出量の分布測定の結果を示す図表Chart showing the results of distribution measurement of filtrate discharge under condition 2 in the sludge dehydrator

以下、本発明の実施の形態に係る汚泥脱水装置を図面に基づいて説明する。図1において、スクリュープレス脱水機10には1軸型、2軸型を問わず種々の形式のものが使用でき、本実施の形態では2軸スクリュープレス脱水機を使用しているが、1軸型のスクリュープレスでも同様の作用効果を実現できる。 Hereinafter, the sludge dewatering apparatus according to the embodiment of the present invention will be described with reference to the drawings. In FIG. 1, various types of screw press dehydrators 10 can be used regardless of whether they are 1-axis type or 2-axis type. In this embodiment, a 2-axis screw press dehydrator is used, but 1-axis type is used. The same effect can be achieved with a mold screw press.

スクリュープレス脱水機10は、外胴スクリーン11の内部に前部の濃縮ゾーン12と後部の脱水ゾーン13を有しており、外胴スクリーン11の軸心方向に沿って配置した2軸スクリュー14を備えている。外胴スクリーン11は、濃縮ゾーン12がウェッジワイヤーからなり、脱水ゾーン13がパンチングメタルからなる。 The screw press dehydrator 10 has a front concentration zone 12 and a rear dehydration zone 13 inside the outer body screen 11, and a biaxial screw 14 arranged along the axial direction of the outer body screen 11 is provided. I have. In the outer body screen 11, the concentration zone 12 is made of wedge wire and the dehydration zone 13 is made of punching metal.

スクリュープレス脱水機10は、脱水ゾーン13の終端の脱水ケーキ排出口15に背圧プレッサ16を有し、背圧プレッサ16を脱水ケーキ排出口15に向けて押圧する押圧装置17を有している。背圧プレッサ16に加える背圧力は押圧装置17の操作により調整し、背圧力の調整により脱水ケーキの含水率を調整する。 The screw press dehydrator 10 has a back pressure presser 16 at the dehydrated cake discharge port 15 at the end of the dehydration zone 13, and has a pressing device 17 that presses the back pressure presser 16 toward the dehydrated cake discharge port 15. .. The back pressure applied to the back pressure presser 16 is adjusted by operating the pressing device 17, and the water content of the dehydrated cake is adjusted by adjusting the back pressure.

スクリュープレス脱水機10は、外胴スクリーン11の外側に、濃縮ゾーン12に対応する前部ろ液受け部18および脱水ゾーン13に対応する後部ろ液受け部19を備えている。濃縮ゾーン12と脱水ゾーン13の領域の割合は、1:1である必要はなく、任意の割合に設定でき、濃縮ゾーン12と脱水ゾーン13の領域の割合に応じて前部ろ液受け部18と後部ろ液受け部19の割合も変更される。 The screw press dehydrator 10 includes a front filtrate receiving portion 18 corresponding to the concentration zone 12 and a rear filtrate receiving portion 19 corresponding to the dehydration zone 13 on the outside of the outer body screen 11. The ratio of the regions of the concentration zone 12 and the dehydration zone 13 does not have to be 1: 1 and can be set to any ratio, and the front filtrate receiving portion 18 depends on the ratio of the regions of the concentration zone 12 and the dehydration zone 13. And the ratio of the rear filtrate receiving portion 19 is also changed.

本実施の形態では、外胴スクリーン11は、前方側にウェッジワイヤーからなるろ過面を有し、後方側にパンチングメタルからなるろ過面を有している。外胴スクリーン11に占める濃縮ゾーン12と脱水ゾーン13の領域の割合は、濃縮ゾーン12がスクリーン全長の1/6〜1/3を占め、残りを脱水ゾーン13が占めている。濃縮ゾーン12と脱水ゾーン13の境界は、ウェッジワイヤーからなるろ過面とパンチングメタルからなるろ過面との境界に必ずしも一致しない。 In the present embodiment, the outer body screen 11 has a filtration surface made of wedge wire on the front side and a filtration surface made of punching metal on the rear side. As for the ratio of the regions of the concentration zone 12 and the dehydration zone 13 to the outer body screen 11, the concentration zone 12 occupies 1/6 to 1/3 of the total length of the screen, and the dehydration zone 13 occupies the rest. The boundary between the concentration zone 12 and the dehydration zone 13 does not necessarily coincide with the boundary between the filtration surface made of wedge wire and the filtration surface made of punching metal.

スクリュープレス脱水機10は、濃縮ゾーン12に汚泥供給系20が接続し、前部ろ液受け部18に清澄排水系30が接続し、後部ろ液受け部19に直結返送系40が接続し、脱水ケーキ排出口15にケーキ排出系50が接続している。 In the screw press dewatering machine 10, the sludge supply system 20 is connected to the concentration zone 12, the clear drainage system 30 is connected to the front filtrate receiving portion 18, and the direct return system 40 is connected to the rear filtrate receiving portion 19. The cake discharge system 50 is connected to the dehydrated cake discharge port 15.

汚泥供給系20は、脱水対象汚泥21に高分子凝集剤22を添加して攪拌する凝集装置23と、脱水対象汚泥21を凝集装置23に供給する汚泥ポンプ24を有している。汚泥ポンプ24は、脱水対象汚泥21を凝集装置23に圧入し、凝集装置23の凝集フロックを含む凝集汚泥をスクリュープレス舵水機10に所定の圧力で押出す。 The sludge supply system 20 includes a coagulation device 23 that adds a polymer flocculant 22 to the sludge 21 to be dehydrated and agitates it, and a sludge pump 24 that supplies the sludge 21 to be dewatered to the coagulation device 23. The sludge pump 24 press-fits the sludge to be dehydrated 21 into the aggregating device 23, and extrudes the agglomerated sludge containing the agglomerating flocs of the aggregating device 23 into the screw press chiller 10 at a predetermined pressure.

凝集装置23には凝集剤供給系25が接続し、凝集剤供給系25は高分子凝集剤22を凝集装置23に供給する凝集剤ポンプ26を有している。高分子凝集剤はカチオン性、カチオン・アニオンの両性が望ましいが、これに限定するものではなく、無機凝集剤を添加してもよく、繊維状脱水助剤を添加することも可能である。 The flocculant supply system 25 is connected to the flocculant 23, and the flocculant supply system 25 has a flocculant pump 26 that supplies the polymer flocculant 22 to the flocculant 23. The polymer flocculant is preferably cationic or cationic / anionic, but the present invention is not limited to this, and an inorganic flocculant may be added, or a fibrous dehydration aid may be added.

清澄排水系30は、前部ろ液受け部18から排出する清澄な排水を系外の水処理施設に返送する。 The clarified drainage system 30 returns the clarified wastewater discharged from the front filtrate receiving portion 18 to a water treatment facility outside the system.

直結返送系40は、スクリュープレス脱水機10の脱水ゾーン12から排出する脱水ろ液を凝集装置23へ直接的に返送するものであり、ここでは返送ポンプ41を有し、凝集装置23の上流側で汚泥供給系20に接続している。直結返送系40には、返送ポンプ41以外にもバルブなどの配管備品を設けることが可能である。 The direct return system 40 directly returns the dehydrated filtrate discharged from the dehydration zone 12 of the screw press dehydrator 10 to the coagulator 23, which has a return pump 41 and is upstream of the coagulator 23. Is connected to the sludge supply system 20. In addition to the return pump 41, the direct connection return system 40 can be provided with piping equipment such as a valve.

脱水ろ液は微小フロックを含む懸濁物質濃度が高い高濃度排水である。ケーキ排出系50は、脱水ケーキ排出口15が押し出される脱水ケーキを系外へ排出する。 The dehydrated filtrate is a high-concentration wastewater with a high concentration of suspended solids containing fine flocs. The cake discharge system 50 discharges the dehydrated cake from which the dehydrated cake discharge port 15 is pushed out.

上記構成の作用を以下に説明する。凝集装置23は、汚泥ポンプ24により供給される脱水対象汚泥21と凝集剤ポンプ26により供給される凝集剤とを撹拌し、凝集フロックを形成する。この凝集装置23に供給する凝集剤の量は、汚泥供給系20から流入する脱水対象汚泥21のみを対象としてその凝集処理に必要な量を算出する。凝集装置23の凝集フロックを含む凝集汚泥は、汚泥ポンプ24の供給圧力を受けてスクリュープレス脱水機10に圧入される。 The operation of the above configuration will be described below. The aggregating device 23 agitates the sludge to be dehydrated 21 supplied by the sludge pump 24 and the aggregating agent supplied by the aggregating agent pump 26 to form an aggregating floc. As for the amount of the coagulant to be supplied to the coagulation device 23, the amount required for the coagulation treatment is calculated only for the sludge 21 to be dehydrated flowing from the sludge supply system 20. The agglomerated sludge containing the agglomerated flocs of the aggregating device 23 is press-fitted into the screw press dehydrator 10 under the supply pressure of the sludge pump 24.

スクリュープレス脱水機10では、凝集汚泥が2軸スクリュー14で脱水ケーキ排出口15に向けて搬送され、脱水ケーキが脱水ケーキ排出口15から機外に排出される。濃縮ゾーン12で脱離した清澄な排水は、前部ろ液受け部18に流れ出て後に、清澄排水系30を通して水処理施設に返送する。脱水ゾーン13から後部ろ液受け部19に流れ出た脱水ろ液は、返送ポンプ41により直結返送系40を通して凝集装置23の上流側の汚泥供給系20に返送され、後部ろ液受け部19から凝集装置23へ直接的に流入する。 In the screw press dewatering machine 10, coagulated sludge is conveyed toward the dewatered cake discharge port 15 by the twin-screw screw 14, and the dewatered cake is discharged to the outside of the machine from the dewatered cake discharge port 15. The clear wastewater desorbed in the concentration zone 12 flows out to the front filtrate receiving portion 18 and then is returned to the water treatment facility through the clear drainage system 30. The dehydrated filtrate that has flowed out from the dehydration zone 13 to the rear filtrate receiving portion 19 is returned to the sludge supply system 20 on the upstream side of the aggregating device 23 through the direct return return system 40 by the return pump 41, and is aggregated from the rear filtrate receiving portion 19. It flows directly into the device 23.

このように、スクリュープレス脱水機10の脱水ゾーン13から排出する脱水ろ液を直結返送系40によって凝集装置23へ直接的に返送するので、脱水ろ液に含まれた微小フロックが電荷中和を保ってフロックが壊れることなく、凝集装置へ返送される。 In this way, the dehydrated filtrate discharged from the dehydration zone 13 of the screw press dehydrator 10 is directly returned to the coagulator 23 by the direct return system 40, so that the minute flocs contained in the dehydrated filtrate neutralize the charges. It is kept and returned to the aggregator without breaking the flocs.

このため、凝集装置23で必要な凝集剤の消費総量は、脱水ろ液の返送に起因する凝集剤の消費量の増加を伴うことなく、系外から新たに供給する脱水対象汚泥21の凝集に必要な量に抑制することができる。よって、凝集剤の薬注率を上げずに、固形分の回収率を高めることができる。しかも、スクリュープレス脱水機10の脱水ゾーン13から排出する脱水ろ液を直結返送系40によって凝集装置23へ直接的に返送するだけの簡便な装置構成において上述の効果を実現できる。 Therefore, the total consumption of the coagulant required by the coagulator 23 does not accompany an increase in the consumption of the coagulant due to the return of the dehydrated filtrate, and the coagulation of the sludge to be dehydrated newly supplied from outside the system. It can be suppressed to the required amount. Therefore, the recovery rate of the solid content can be increased without increasing the chemical injection rate of the flocculant. Moreover, the above-mentioned effect can be realized in a simple device configuration in which the dehydrated filtrate discharged from the dehydration zone 13 of the screw press dehydrator 10 is directly returned to the coagulator 23 by the direct return system 40.

すなわち、濃縮ゾーン12と脱水ゾーン13とを適切な割合に区分し、脱水ゾーン12から排出する固形分を多く含んだ脱水ろ液のみを凝集装置23へ返送すれば良く、固液分離装置等を介する必要がない。濃縮ゾーン12と脱水ゾーン13とを適切な割合に区分すれば、特許文献3に記載するような、固液分離をして汚泥分を返送する構成は不要である。 That is, it is sufficient to divide the concentration zone 12 and the dehydration zone 13 into an appropriate ratio, and return only the dehydration filtrate containing a large amount of solid content discharged from the dehydration zone 12 to the coagulation device 23. No need to go through. If the concentration zone 12 and the dehydration zone 13 are divided into appropriate ratios, the configuration of solid-liquid separation and return of sludge as described in Patent Document 3 is unnecessary.

本実施の形態におけるろ液排出量の分布測定の結果を図2および図3に示す。図2は条件1の下での結果を示し、図3は条件2の下での結果を示している。 The results of the distribution measurement of the filtrate discharge amount in the present embodiment are shown in FIGS. 2 and 3. FIG. 2 shows the result under condition 1, and FIG. 3 shows the result under condition 2.

ここで、区分1を濃縮ゾーン12とし、区分2、3を脱水ゾーン13とすれば、ろ液量の80から88%、すなわち図2でろ液量1.5m/h、図3でろ液量1.6m/hのきれいな脱水ろ液を系外へ排出し、SS濃度の高い12〜20%の脱水ろ液を凝集装置23へ返送する。区分1、2を濃縮ゾーン12とし、区分3を脱水ゾーン13とすれば、凝集装置23へ返送する脱水ろ液はSS濃度がさらに高くなり、微量となる。 Here, if Category 1 is the concentration zone 12 and Category 2 and 3 are the dehydration zones 13, 80 to 88% of the filtrate volume, that is, the filtrate volume 1.5 m 3 / h in FIG. 2, and the filtrate volume in FIG. A clean dehydrated filtrate of 1.6 m 3 / h is discharged to the outside of the system, and a dehydrated filtrate having a high SS concentration of 12 to 20% is returned to the aggregating apparatus 23. If the categories 1 and 2 are set to the concentration zone 12 and the category 3 is set to the dehydration zone 13, the SS concentration of the dehydrated filtrate returned to the coagulator 23 becomes even higher and becomes a trace amount.

また、回収率の高まりにより脱水対象汚泥から分離される固形分が増加し、結果として水処理工程に返送される清澄水の清澄度が高まり、返流水負荷を低減できる。 Further, as the recovery rate increases, the solid content separated from the sludge to be dehydrated increases, and as a result, the clarity of the clarified water returned to the water treatment step increases, and the return water load can be reduced.

また、従来、スクリュープレス脱水機10では、運転圧力、すなわち脱水ケーキ排出口15における背圧を高めると脱水ケーキの含水率が低下するが、背圧の高まりに伴ってスクリュープレス脱水機10から漏れ出る固形分(SS)の漏出量が増加して回収率が低下する。 Further, conventionally, in the screw press dehydrator 10, when the operating pressure, that is, the back pressure at the dehydrated cake discharge port 15 is increased, the water content of the dehydrated cake decreases, but as the back pressure increases, the screw press dehydrator 10 leaks. The amount of solid content (SS) leaked increases and the recovery rate decreases.

しかし、本実施の形態では、スクリュープレス脱水機10から漏れ出る固形分(SS)は凝集剤の増加を伴うことなくスクリュープレス脱水機10に返送し、薬注率を上げずに回収率を高めることができるので、回収率を高く維持しつつ高い背圧の下でスクリュープレス脱水機10を運転することが可能となり、その結果、脱水ケーキの含水率を低減することができる。 However, in the present embodiment, the solid content (SS) leaking from the screw press dewatering machine 10 is returned to the screw press dewatering machine 10 without increasing the coagulant, and the recovery rate is increased without increasing the chemical injection rate. Therefore, it is possible to operate the screw press dehydrator 10 under a high back pressure while maintaining a high recovery rate, and as a result, the water content of the dehydrated cake can be reduced.

10 スクリュープレス脱水機
11 外胴スクリーン
12 濃縮ゾーン
13 脱水ゾーン
14 2軸スクリュー
15 脱水ケーキ排出口
16 背圧プレッサ
17 押圧装置
18 前部ろ液受け部
19 後部ろ液受け部
20 汚泥供給系
21 脱水対象汚泥
22 高分子凝集剤
23 凝集装置
24 汚泥ポンプ
25 凝集剤供給系
26 凝集剤ポンプ
30 清澄排水系
40 直結返送系
41 返送ポンプ
50 ケーキ排出系
10 Screw press dehydrator 11 Outer body screen 12 Concentration zone 13 Dewatering zone 14 2-axis screw 15 Dewatering cake discharge port 16 Back pressure presser 17 Pressing device 18 Front filtrate receiving part 19 Rear filtrate receiving part 20 Sludge supply system 21 Sludge supply system 21 Dewatering Target sludge 22 Polymer coagulant 23 Coagulant device 24 Sludge pump 25 Coagulant supply system 26 Coagulant pump 30 Clarified drainage system 40 Direct connection return system 41 Return pump 50 Cake discharge system

Claims (7)

汚泥供給系が、脱水対象汚泥に高分子凝集剤を添加して攪拌する凝集装置と、凝集装置に前記脱水対象汚泥を供給する汚泥ポンプを有し、
凝集装置で形成した凝集フロックを含む凝集汚泥を脱水する脱水機が、前部の濃縮ゾーンと後部の脱水ゾーンと濃縮ゾーンに対応する前部ろ液受け部と脱水ゾーンに対応する後部ろ液受け部を有し、
脱水ゾーンから後部ろ液受け部に流れ出た脱水ろ液を凝集装置に直接的に返送する直結返送系が、前記汚泥ポンプの下流側でかつ凝集装置の上流側の汚泥供給系に前記脱水ろ液
を供給することを特徴とする汚泥脱水システム。
The sludge supply system has a coagulation device that adds a polymer flocculant to the sludge to be dehydrated and agitates it, and a sludge pump that supplies the sludge to be dehydrated to the coagulation device.
A dehydrator that dehydrates agglomerated sludge containing agglomerated flocs formed by a coagulator is a front filtrate receiver corresponding to the front concentration zone, a rear dehydration zone and a concentration zone, and a rear filtrate receiver corresponding to the dehydration zone. Has a part,
The direct return system that directly returns the dehydrated filtrate that has flowed out from the dehydration zone to the rear filtrate receiving portion to the aggregator is the dehydrated filtrate to the sludge supply system on the downstream side of the sludge pump and upstream of the aggregator.
A sludge dewatering system characterized by supplying.
脱水機のろ過面は、濃縮ゾーンのろ過面がろ過面全長の1/6〜1/3を占め、残りを脱水ゾーンが占めることを特徴とする請求項1に記載の汚泥脱水システム。 The sludge dehydration system according to claim 1, wherein the filtration surface of the dehydrator occupies 1/6 to 1/3 of the total length of the filtration surface in the concentration zone, and the dehydration zone occupies the rest. 脱水機がスクリュープレス脱水機であることを特徴とする請求項1または2に記載の汚泥脱水システム。 The sludge dewatering system according to claim 1 or 2, wherein the dewatering machine is a screw press dewatering machine. スクリュープレス脱水機は、スクリーンの前方側にウェッジワイヤーからなるろ過面を有し、後方側にパンチングメタルからなるろ過面を有することを特徴とする請求項3に記載の汚泥脱水システム。 The sludge dehydration system according to claim 3 , wherein the screw press dehydrator has a filtration surface made of wedge wire on the front side of the screen and a filtration surface made of punching metal on the rear side. スクリュープレス脱水機が二軸型であることを特徴とする請求項3または4に記載の汚泥脱水システム。 The sludge dewatering system according to claim 3 or 4 , wherein the screw press dewatering machine is a biaxial type. 汚泥供給系の汚泥ポンプにより脱水対象汚泥を凝集装置に供給し、凝集装置において前記脱水対象汚泥に高分子凝集剤を添加して攪拌し、凝集装置で形成した凝集フロックを含む凝集汚泥を前部の濃縮ゾーンと後部の脱水ゾーンを有する脱水機で脱水し、脱水機の後部の脱水ゾーンから脱水ゾーンに対応する後部ろ液受け部に流れ出た脱水ろ液を凝集装置に直接的に返送する直結返送系が、前記汚泥ポンプの下流側でかつ凝集装置の上流側の汚泥供給系に前記脱水ろ液を供給することを特徴とする汚泥脱水方法。 The sludge to be dehydrated is supplied to the coagulation device by a sludge supply system sludge pump, a polymer coagulant is added to the sludge to be dehydrated in the coagulation device and stirred, and the coagulated sludge containing the coagulation floc formed by the coagulation device is fronted. A direct connection that dehydrates with a dehydrator having a concentration zone and a rear dehydration zone, and directly returns the dehydrated filtrate that has flowed out from the dehydration zone at the rear of the dehydrator to the rear filter fluid receiving portion corresponding to the dehydration zone. A sludge dehydration method, wherein the return system supplies the sludge filtrate to the sludge supply system on the downstream side of the sludge pump and on the upstream side of the aggregator. 凝集装置に添加する高分子凝集剤の量は、汚泥供給系から流入する脱水対象汚泥のみを対象としてその凝集処理に必要な量を算出することを特徴とする請求項6に記載の汚泥脱水方法。 The sludge dewatering method according to claim 6, wherein the amount of the polymer coagulant added to the coagulator is calculated as the amount required for the coagulation treatment only for the sludge to be dewatered flowing from the sludge supply system. ..
JP2016248539A 2016-12-22 2016-12-22 Sludge dewatering system and sludge dewatering method Active JP6920056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016248539A JP6920056B2 (en) 2016-12-22 2016-12-22 Sludge dewatering system and sludge dewatering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016248539A JP6920056B2 (en) 2016-12-22 2016-12-22 Sludge dewatering system and sludge dewatering method

Publications (2)

Publication Number Publication Date
JP2018099658A JP2018099658A (en) 2018-06-28
JP6920056B2 true JP6920056B2 (en) 2021-08-18

Family

ID=62714824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016248539A Active JP6920056B2 (en) 2016-12-22 2016-12-22 Sludge dewatering system and sludge dewatering method

Country Status (1)

Country Link
JP (1) JP6920056B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11518700B2 (en) * 2018-10-09 2022-12-06 Komline-Sanderson Corporation Feedback loop for sludge filtering
CN114014514A (en) * 2021-11-04 2022-02-08 上海同臣环保有限公司 Screw squeezing dehydrator, screw shaft and solid-liquid separation equipment for breeding industry

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2826990B2 (en) * 1996-02-18 1998-11-18 アムコン株式会社 Solid-liquid separator
JP4966258B2 (en) * 2008-06-19 2012-07-04 水ing株式会社 Method and apparatus for dewatering organic sludge
JP5745897B2 (en) * 2011-03-23 2015-07-08 株式会社クボタ Sludge dewatering method
JP6270328B2 (en) * 2013-03-29 2018-01-31 株式会社クボタ Sludge concentration and dehydration system
JP6188376B2 (en) * 2013-03-29 2017-08-30 株式会社クボタ Sludge dewatering machine

Also Published As

Publication number Publication date
JP2018099658A (en) 2018-06-28

Similar Documents

Publication Publication Date Title
JP2007136347A (en) Method for constant control of raw sludge supply amount of dehydrator and its control apparatus
JP6920056B2 (en) Sludge dewatering system and sludge dewatering method
JP5256261B2 (en) Method and apparatus for dewatering organic sludge
KR20150062411A (en) Membrane filtering system with high efficiency using pressure flotation and its processing method
JP5423256B2 (en) Sludge dewatering method and sludge dewatering device
JP2009165964A (en) Method and system for dehydrating sludge
JP6751174B2 (en) Treatment equipment and treatment method for organic sludge
JP4671780B2 (en) Organic wastewater treatment method and system
JP2010057997A (en) Sludge dewatering apparatus and method
JP6635270B2 (en) Sludge dewatering method
JP6239327B2 (en) Organic wastewater treatment method and apparatus, and chemical fertilizer manufacturing method and apparatus
JP2006035166A (en) Sludge treatment method and sludge treatment apparatus
KR20140036162A (en) Sludge-concentrating method and apparatus
JP6399303B2 (en) Sludge dewatering method and apparatus
JP3862888B2 (en) Continuous sludge aggregation method
JP6664251B2 (en) Sludge dewatering method and sludge dewatering device
JP6425900B2 (en) Sludge dewatering system and dewatering method of sludge
JP6270328B2 (en) Sludge concentration and dehydration system
JP2008049275A (en) Sludge thickener
JP2018001137A (en) Treatment method and treatment device of organic sludge
JP6193716B2 (en) Organic wastewater treatment method and apparatus, and chemical fertilizer manufacturing method and apparatus
JP5745897B2 (en) Sludge dewatering method
JP2011230019A (en) Control system, control device and control method
JP4310863B2 (en) Sludge dewatering equipment
JP5723916B2 (en) Method and apparatus for dewatering organic sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210402

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210402

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210524

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210726

R150 Certificate of patent or registration of utility model

Ref document number: 6920056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150