JP6917296B2 - Product bottom surface inspection device - Google Patents

Product bottom surface inspection device Download PDF

Info

Publication number
JP6917296B2
JP6917296B2 JP2017250329A JP2017250329A JP6917296B2 JP 6917296 B2 JP6917296 B2 JP 6917296B2 JP 2017250329 A JP2017250329 A JP 2017250329A JP 2017250329 A JP2017250329 A JP 2017250329A JP 6917296 B2 JP6917296 B2 JP 6917296B2
Authority
JP
Japan
Prior art keywords
inspection
camera
image
coordinates
cameras
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017250329A
Other languages
Japanese (ja)
Other versions
JP2019117082A (en
Inventor
高史 笹部
高史 笹部
輝宜 久保
輝宜 久保
和弘 吉留
和弘 吉留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2017250329A priority Critical patent/JP6917296B2/en
Publication of JP2019117082A publication Critical patent/JP2019117082A/en
Application granted granted Critical
Publication of JP6917296B2 publication Critical patent/JP6917296B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、製品下面検査装置に関し、製造ライン上において製品の異常を検出する技術に係るものである。 The present invention relates to a product bottom surface inspection device and relates to a technique for detecting an abnormality in a product on a production line.

従来、生産ラインにおいて、製品の下面を検査する技術がある。たとえば、農業機械等を多品種混合で生産する生産ラインにおいて、機体下面全域での油漏れ検査をインラインで実施する検査技術である。 Conventionally, there is a technique for inspecting the lower surface of a product on a production line. For example, in a production line that produces a mixture of various types of agricultural machinery, etc., this is an inspection technology that carries out in-line oil leak inspection over the entire underside of the machine body.

従来例1
検査員が、機体下に潜り込み、紫外線探傷灯を検査部位に照射して、目視検査を行っている。この検査は、機体下面に紫外線探傷灯(ブラックライト)から365nmを中心とする長波長紫外線(UV−A)を照射し、この長波長紫外線を受けて蛍光物質が発光する現象を視認するものであり、たとえば農業機械のミッションオイル等が青色に蛍光する。
Conventional example 1
An inspector sneaks under the aircraft and irradiates the inspection site with an ultraviolet flaw detector to perform a visual inspection. In this inspection, the underside of the machine is irradiated with long-wavelength ultraviolet rays (UV-A) centered on 365 nm from an ultraviolet flaw detection lamp (black light), and the phenomenon that the fluorescent substance emits light in response to the long-wavelength ultraviolet rays is visually observed. Yes, for example, mission oil of agricultural machinery fluoresces blue.

従来例2
農業機械を検査台に載せて、下方向から農業機械の検査対象面に、たとえばミッションケースに複数の紫外線探傷灯を照射し、長波長紫外線に照らされた検査対象面をカメラで撮影して検査画像を取得し、取得した検査画像における検査領域を判定する。
Conventional example 2
Agricultural machinery is placed on the inspection table, and the inspection target surface of the agricultural machine is irradiated from below with multiple ultraviolet flaw detection lights, for example, the mission case, and the inspection target surface illuminated by long-wavelength ultraviolet rays is photographed and inspected. An image is acquired, and the inspection area in the acquired inspection image is determined.

検査台上の農業機械の停止位置には、ばらつきがある。このため、予めミッションケースにマーカ部を塗布し、農業機械が検査台の基準とする停止位置に正確に停止した状態において、検査画像に映るマーカ部の平面座標系の座標を基準座標として取得する。 There are variations in the stop positions of agricultural machinery on the inspection table. For this reason, the marker portion is applied to the mission case in advance, and the coordinates of the plane coordinate system of the marker portion reflected in the inspection image are acquired as the reference coordinates in the state where the agricultural machine is accurately stopped at the reference stop position of the inspection table. ..

そして、検査時に、検査画像においてマーカ部を検出し、マーカ部の平面座標系の座標を実座標として算出する。 Then, at the time of inspection, the marker portion is detected in the inspection image, and the coordinates of the plane coordinate system of the marker portion are calculated as actual coordinates.

次に、基準座標と実座標の差分をずれ量として算出し、カメラで撮影した検査画像において検査領域の座標を、算出したずれ量で補正する。そして、座標を補正した検査領域において、蛍光により画像の明るさが閾値を超える画像領域を漏れた油を映した候補画像として判定する。 Next, the difference between the reference coordinates and the actual coordinates is calculated as the deviation amount, and the coordinates of the inspection area in the inspection image taken by the camera are corrected by the calculated deviation amount. Then, in the inspection region where the coordinates are corrected, the image region where the brightness of the image exceeds the threshold value due to fluorescence is determined as a candidate image reflecting the leaked oil.

また、特許文献1には、自動車の底部検査装置が記載されている。これは、地表から底部に至るまでの距離が異なる多種の自動車の底部を検査するものである。ここでは、自動車の底部を撮影するカメラがカメラ固定台に固定されている。カメラ固定台には軸部材の一端が固定されており、この軸部材を所望の回転位置で固定用ネジで固定する。 Further, Patent Document 1 describes an automobile bottom inspection device. It inspects the bottoms of various vehicles with different distances from the surface to the bottom. Here, a camera that photographs the bottom of the automobile is fixed to a camera fixing base. One end of a shaft member is fixed to the camera fixing base, and this shaft member is fixed at a desired rotation position with a fixing screw.

また、特許文献2には、底部面検査装置が記載されている。これは、車両の底部下の地面上を進退する台車と、その台車上部に装着された広角レンズ付テレビカメラと、前記台車の後方部の一部に軸支された折り畳み可能な支柱と、該支柱先端部に手押し用取っ手部と、前記テレビカメラで撮影された画像の画像表示装置と、テレビカメラの撮影画像を録画・再生できる録画・再生装置と、画像信号を送受信可能な無線電話装置を備えている。 Further, Patent Document 2 describes a bottom surface inspection device. This includes a trolley that moves back and forth on the ground below the bottom of the vehicle, a TV camera with a wide-angle lens mounted on the top of the trolley, and a foldable strut that is pivotally supported by a part of the rear part of the trolley. At the tip of the support, there is a handle for pushing, an image display device for images taken by the TV camera, a recording / playback device that can record / play back the images taken by the TV camera, and a wireless telephone device that can send and receive image signals. I have.

特開2001−221713JP 2001-221713 特開2005−91048JP-A-2005-91048

従来例1のように、検査員が機体下へ潜り込む作業は肉体的な負担が大きく、車高の低い型式の農業機械では、機体下に潜り込むことができない。 As in the conventional example 1, the work of the inspector sneaking under the machine body is a heavy physical burden, and it is not possible to sneak under the machine body with a low-height type agricultural machine.

従来例2のように、機体下面の全域に紫外線を照射し、機体下面の全域を検査するためには、数十個の紫外線探傷灯と数多くのカメラが必要である。 As in Conventional Example 2, in order to irradiate the entire lower surface of the airframe with ultraviolet rays and inspect the entire lower surface of the airframe, dozens of ultraviolet flaw detection lights and a large number of cameras are required.

また、機体下面に配置された部品形状や、配線・配管の配置位置によっては、それらに照明光やカメラの視角が遮られて死角が生じ、光が当たらない部位やカメラに写らない部位が未検査領域となった。照明の照射角度と撮影の撮影角度が異なるために、照明側、撮影側のそれぞれにおいて死角が発生する条件が異なる。 In addition, depending on the shape of the parts placed on the underside of the machine and the placement position of the wiring and piping, the illumination light and the viewing angle of the camera are blocked by them, creating blind spots, and there are no parts that are not exposed to light or that are not captured by the camera. It became an inspection area. Since the irradiation angle of the illumination and the shooting angle of the shooting are different, the conditions under which the blind spot is generated are different on the lighting side and the shooting side.

機体停止位置のばらつきを補正するためには、事前に機体の下面にマーカを塗布する必要があり、その分の工数が発生する。 In order to correct the variation in the machine stop position, it is necessary to apply a marker to the lower surface of the machine in advance, which requires man-hours.

本発明は上記した課題を解決するものであり、検査員の負担を軽減し、少数のカメラで検査対象面の全域を検査することができ、かつ死角を回避した撮影を行うことができ、さらに事前のマーカの塗布が不要で、ロバスト性が高い機体位置ずれ検出を行うことができる撮影ユニットおよび製品下面検査装置を提供することを目的とする。 The present invention solves the above-mentioned problems, reduces the burden on the inspector, allows the entire area to be inspected to be inspected with a small number of cameras, and can perform imaging while avoiding blind spots. It is an object of the present invention to provide an imaging unit and a product bottom surface inspection device capable of detecting an airframe misalignment with high robustness without the need to apply a marker in advance.

上記課題を解決するために、本発明の製品下面検査装置は、検査ステージ上で検査対象物を昇降駆動するリフタと、検査対象物の下面を検査対象面として配置する撮影ユニットと、撮影ユニットを昇降移動させて検査対象面に対して撮影ユニットを接近離間させ、かつ撮影ユニットを検査対象面の下方領域の任意の位置に移動させる撮影ユニット駆動装置と、検査結果を表示する表示装置と、リフタと撮影ユニットと撮影ユニット駆動装置を制御する処理部を有する操作盤とを備え、撮影ユニットは、視野角を検査対象物の検査対象面に向けて並列に配置する一対の第1カメラと、一対の第1カメラを相互に離間させて配置するベース部と、ベース部上で一対の第1カメラを保持し、各第1カメラの撮影角度を可変させて各第1カメラの視野角に検査領域を捉える第1カメラ保持装置とを備えることを特徴とする。
本発明の製品下面検査装置において、操作盤は、停止位置ずれ検出機能部と、検査領域の座標補正機能部を有し、停止位置ずれ検出機能部は、検査対象物が検査ステージの基準停止位置に停止する状態で検査対象面を第1カメラで撮影した登録画像において、検査対象物の検査対象面にある特徴部位が平面座標系に占める座標を基準座標とし、検査時に検査対象物が検査ステージに停止する状態で、検査対象面を第1カメラで撮影した検査画像において、前記特徴部位が平面座標系に占める座標を実座標とし、基準座標と実座標の差分を位置ずれ補正値として算出し、検査領域の座標補正機能部は、各カメラが撮影した検査画像上に検査領域を設定し、停止位置ずれ検出機能が算出した位置ずれ補正値で、検査領域の座標を補正することを特徴とする。
本発明の製品下面検査装置において、停止位置ずれ検出機能部は、特徴部位を撮影した画像をマスタ画像とし、検査対象面を第1カメラで撮影した検査画像において、マスタ画像に対応する画像領域を特定部位の実画像として抽出し、平面座標系における前記実画像の座標を特徴部位の実座標として算出することを特徴とする。
In order to solve the above problems, the product bottom surface inspection device of the present invention includes a lifter that moves the inspection target up and down on the inspection stage, an imaging unit that arranges the bottom surface of the inspection object as the inspection target surface, and an imaging unit. An imaging unit drive device that moves up and down to move the imaging unit closer to and away from the inspection target surface, and moves the imaging unit to an arbitrary position in the lower region of the inspection target surface, a display device that displays inspection results, and a lifter. The imaging unit is provided with a pair of first cameras and a pair of first cameras in which the viewing angle is arranged in parallel toward the inspection target surface of the inspection target. A base portion in which the first cameras of the above are arranged apart from each other and a pair of first cameras are held on the base portion, and the shooting angle of each first camera is changed to cover the viewing angle of each first camera. It is characterized by being provided with a first camera holding device for capturing.
In the product bottom surface inspection device of the present invention, the operation panel has a stop position deviation detection function unit and a coordinate correction function unit of the inspection area, and in the stop position deviation detection function unit, the inspection object is the reference stop position of the inspection stage. In the registered image of the inspection target surface taken with the first camera while stopped at, the coordinates occupied by the featured part on the inspection target surface of the inspection target in the plane coordinate system are used as the reference coordinates, and the inspection target is inspected at the inspection stage. In the inspection image of the surface to be inspected taken by the first camera while stopped at, the coordinates occupied by the feature portion in the plane coordinate system are used as the actual coordinates, and the difference between the reference coordinates and the actual coordinates is calculated as the position shift correction value. The coordinate correction function unit of the inspection area is characterized by setting the inspection area on the inspection image taken by each camera and correcting the coordinates of the inspection area with the position deviation correction value calculated by the stop position deviation detection function. do.
In the product bottom surface inspection device of the present invention, the stop position deviation detection function unit uses an image obtained by photographing a feature portion as a master image, and in an inspection image obtained by photographing an inspection target surface with a first camera, an image area corresponding to the master image is set. It is characterized in that it is extracted as a real image of a specific part and the coordinates of the real image in the plane coordinate system are calculated as the real coordinates of the feature part.

本発明の製品下面検査装置において、第1カメラ保持装置は、各第1カメラの視野角がそれぞれ異なる検査領域に向く撮影角度と、各第1カメラの視野角が同じ検査領域に向く撮影角度とにわたって撮影角度を可変させることを特徴とする。 In the product bottom surface inspection device of the present invention, the first camera holding device has a shooting angle toward an inspection area in which the viewing angles of the first cameras are different, and a shooting angle in which the viewing angles of the first cameras face the same inspection area. It is characterized in that the shooting angle is variable over.

本発明の製品下面検査装置において、第1カメラ保持装置は、各第1カメラを保持する第1カメラ台座と、各第1カメラ台座を回転自在に支持する平行な一対の第1回転支軸と、各第1カメラ台座を第1回転支軸の軸心廻りに回転駆動し、各第1カメラの撮影角度を可変させる第1撮影角度調整部を有することを特徴とする。 In the product bottom surface inspection device of the present invention, the first camera holding device includes a first camera pedestal that holds each first camera and a pair of parallel first rotating support shafts that rotatably support each first camera pedestal. Each first camera pedestal is rotationally driven around the axis of the first rotation support shaft, and has a first shooting angle adjusting unit that changes the shooting angle of each first camera.

本発明の製品下面検査装置において、第1撮影角度調整部は、1つの駆動部で一対の第1カメラの撮影角度を同時に可変させることを特徴とする。 In the product bottom surface inspection device of the present invention, the first shooting angle adjusting unit is characterized in that one driving unit simultaneously changes the shooting angles of a pair of first cameras.

本発明の製品下面検査装置において、視野角を検査対象物の検査対象面に向けてベース部上に配置する第2カメラと、第2カメラの撮影角度を可変させて第2カメラの視野角に第1カメラの検査領域外の検査領域を捉える第2カメラ保持装置を有することを特徴とする。 In the product bottom surface inspection device of the present invention, the viewing angles of the second camera, which arranges the viewing angle toward the inspection target surface of the inspection target on the base portion, and the viewing angles of the second camera are changed to the viewing angles of the second camera. It is characterized by having a second camera holding device that captures an inspection area outside the inspection area of the first camera.

本発明の製品下面検査装置において、第2カメラ保持装置は、一対の第1回転支軸と平行をなす第2回転支軸の軸心廻りに第2カメラを回転駆動し、第2カメラの撮影角度を可変させることを特徴とする。 In the product bottom surface inspection device of the present invention, the second camera holding device rotationally drives the second camera around the axis of the second rotation support shaft parallel to the pair of first rotation support shafts, and takes a picture of the second camera. It is characterized by varying the angle.

本発明の製品下面検査装置において、各第1カメラおよび第2カメラを囲んでリング型照明装置を配置し、各カメラの光軸とリング型照明装置の光軸とを一致させたことを特徴とする。 The product bottom surface inspection device of the present invention is characterized in that a ring-shaped lighting device is arranged so as to surround each of the first camera and the second camera, and the optical axis of each camera and the optical axis of the ring-shaped lighting device are aligned with each other. do.

上記した構成により、一対の各第1カメラが異なる撮影角度から同じ検査領域を撮影し、互いに視角を補完し合うことで、撮影において死角が発生しない。また、一対の第1カメラおよび第2カメラがそれぞれ撮影角度を変えて各カメラの視野角に検査領域を捉えるので、少数のカメラで広い範囲の撮影を行うことができる。検査対象物の停止位置のずれに起因して検査画像上において生じる検査領域の位置ずれを、検査対象面にある特徴部位を基準にして補正することができ、事前にマーカを塗布する等の工数の増加を伴うことなく、検査対象物の停止位置のずれによる影響を排除できる。 With the above configuration, the pair of first cameras capture the same inspection area from different imaging angles and complement each other's viewing angles, so that no blind spot is generated in the imaging. Further, since the pair of the first camera and the second camera change the shooting angle and capture the inspection area in the viewing angle of each camera, it is possible to shoot a wide range with a small number of cameras. The misalignment of the inspection area that occurs on the inspection image due to the misalignment of the stop position of the inspection target can be corrected based on the featured part on the inspection target surface, and the man-hours such as applying a marker in advance. It is possible to eliminate the influence of the deviation of the stop position of the inspection object without increasing the number of.

本発明の実施の形態にかかる撮影ユニットの斜視図Perspective view of the photographing unit according to the embodiment of the present invention. 同実施の形態における製品下面検査装置の斜視図Perspective view of the product bottom surface inspection device in the same embodiment 同実施の形態における製品下面検査装置において撮影ユニットが上昇した斜視図A perspective view in which the photographing unit is raised in the product bottom surface inspection device according to the same embodiment. 同実施の形態における製品下面に撮影ユニットを配置した状態を示す斜視図A perspective view showing a state in which the photographing unit is arranged on the lower surface of the product in the same embodiment. 同実施の形態における製品下面を第1カメラで撮影する状態を示す斜視図A perspective view showing a state in which the lower surface of the product in the same embodiment is photographed by the first camera. 同実施の形態における製品下面を第2カメラで撮影する状態を示す斜視図A perspective view showing a state in which the lower surface of the product in the same embodiment is photographed by the second camera. 同実施の形態における製品下面を第1カメラで撮影した検査画像を示す図The figure which shows the inspection image which image | photographed the lower surface of the product by the 1st camera in the same embodiment. 同実施の形態における製品下面を第2カメラで撮影した検査画像を示す図The figure which shows the inspection image which image | photographed the lower surface of the product by the 2nd camera in the same embodiment. 同実施の形態における双方の第1カメラを真上に向けて配置した状態を示す図The figure which shows the state which both 1st cameras in the same embodiment are arranged facing straight up. 同実施の形態における双方の第1カメラをそれぞれ異なる検査領域に向けて配置した状態を示す図The figure which shows the state which both 1st cameras in the same embodiment are arranged toward different inspection areas. 同実施の形態における双方の第1カメラを同じ検査領域に向けて配置した状態を示す図The figure which shows the state which both 1st cameras in the same embodiment are arranged toward the same inspection area. 同実施の形態における位置ずれ量を検出する方法を示す模式図Schematic diagram showing a method of detecting the amount of misalignment in the same embodiment. 同実施の形態における検査領域を補正する方法を示す模式図Schematic diagram showing a method of correcting an inspection area in the same embodiment.

以下、本発明の実施の形態を図面に基づいて説明する。図1および図4に示すように、本実施の形態では、検査対象物1の製品は農業機械等であり、この農業機械の下面が検査対象面2である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIGS. 1 and 4, in the present embodiment, the product of the inspection target 1 is an agricultural machine or the like, and the lower surface of the agricultural machine is the inspection target surface 2.

検査対象物1の下方に配置する撮影ユニット3は、ベース部4の上に一対の第1カメラ5、6と、第2カメラ7を有している。一対の第1カメラ5、6は、視野角を検査対象物1の検査対象面2に向けて並列に、かつ相互に離間させて配置されている。 The photographing unit 3 arranged below the inspection object 1 has a pair of first cameras 5 and 6 and a second camera 7 on the base portion 4. The pair of first cameras 5 and 6 are arranged in parallel with the viewing angle toward the inspection target surface 2 of the inspection target 1 and separated from each other.

各ベース部4には複数のリング型照明装置8を配置している。ここでは、各カメラ5、6、7を囲んでリング型照明装置8を配置し、各第1カメラ5、6および第2カメラ7の各光軸とリング型照明装置8の光軸とを一致させている。また、一対のリング型照明装置8をカメラ5、6、7から独立して配置している。リング型照明装置8は紫外線探傷灯である。本実施の形態では、紫外線で蛍光する油を検出するが、蛍光物質であれば、油に限らず検出できる。 A plurality of ring-type lighting devices 8 are arranged on each base portion 4. Here, the ring-shaped lighting device 8 is arranged so as to surround the cameras 5, 6 and 7, and the optical axes of the first cameras 5, 6 and the second camera 7 coincide with the optical axes of the ring-shaped lighting device 8. I'm letting you. Further, a pair of ring-shaped lighting devices 8 are arranged independently of the cameras 5, 6 and 7. The ring-type lighting device 8 is an ultraviolet flaw detection lamp. In the present embodiment, oil that fluoresces with ultraviolet rays is detected, but if it is a fluorescent substance, it can be detected not only with oil.

第1カメラ5、6と第2カメラ7は、後述するように撮影角度を変えられるように構成される。しかも、光軸を一致させたリング型照明装置8でそのカメラの狙った位置に照明を当てることができる。ただし、農業機械の下面は複雑な表面形状となっているので、これらの照明だけでは影の部分が生じてしまう場合がある。このため、第1カメラ5、6と第2カメラ7から独立したリング型照明装置8で補助的に検査範囲に照明を当てることで、検査範囲全体が照明光で照らされるように構成している。 The first cameras 5 and 6 and the second camera 7 are configured so that the shooting angle can be changed as described later. Moreover, the ring-shaped lighting device 8 having the same optical axis can illuminate the target position of the camera. However, since the lower surface of the agricultural machine has a complicated surface shape, a shadow portion may be generated only by these lightings. Therefore, the ring-shaped lighting device 8 independent of the first cameras 5 and 6 and the second camera 7 supplementarily illuminates the inspection range so that the entire inspection range is illuminated by the illumination light. ..

そして、ベース部4の上で第1カメラ保持装置9が一対の第1カメラ5、6を保持しており、第1カメラ保持装置9によって各第1カメラ5、6の撮影角度を可変させて各第1カメラ5、6の視野角に後述する検査領域を捉える。第1カメラ5、6は三次元座標系のX軸方向に配列されており、視野角を検査対象面2に向けて並列に配置されている。 Then, the first camera holding device 9 holds a pair of the first cameras 5 and 6 on the base portion 4, and the shooting angles of the first cameras 5 and 6 are changed by the first camera holding device 9. The inspection area described later is captured in the viewing angles of the first cameras 5 and 6, respectively. The first cameras 5 and 6 are arranged in the X-axis direction of the three-dimensional coordinate system, and the viewing angles are arranged in parallel toward the inspection target surface 2.

また、ベース部4の上で第2カメラ保持装置10が第2カメラ7を保持しており、第2カメラ保持装置10によって第2カメラ7の撮影角度を可変させて第2カメラ7の視野角に検査領域を捉える。 Further, the second camera holding device 10 holds the second camera 7 on the base portion 4, and the second camera holding device 10 changes the shooting angle of the second camera 7 to change the viewing angle of the second camera 7. Capture the inspection area.

図9から図11に示すように、第1カメラ保持装置9は、リンク機構からなる第1撮影角度調整部21を有し、第1撮影角度調整部21は、ベース部4に立設した一対の支持リンク11と、各第1回転支軸12を介して支持リンク11に支持され、第1回転支軸12の軸心廻りに回転自在に設けられた一対の揺動リンク13と、各揺動リンク13に連結された一対の駆動リンク14と、各駆動リンク14を駆動するシリンダ装置15からなる。ここでは、第1回転支軸12が三次元座標系のY軸と平行に配置される。 As shown in FIGS. 9 to 11, the first camera holding device 9 has a first shooting angle adjusting unit 21 composed of a link mechanism, and the first shooting angle adjusting unit 21 is a pair of standing on the base unit 4. Support link 11 and a pair of swing links 13 supported by the support link 11 via each of the first rotary support shafts 12 and rotatably provided around the axis of the first rotary support shaft 12, and each swing. It is composed of a pair of drive links 14 connected to the dynamic links 13 and a cylinder device 15 for driving each drive link 14. Here, the first rotation support shaft 12 is arranged parallel to the Y axis of the three-dimensional coordinate system.

各駆動リンク14はそれぞれ途中の中間支軸16によって各支持リンク11に揺動自在に支持されており、駆動リンク14は、それぞれ一端に設けた第1長穴17が各揺動リンク13に設けた第1ピン18に係合し、他端に設けた第2長穴19がシリンダ装置15に設けた第2ピン20に係合している。 Each drive link 14 is swingably supported by each support link 11 by an intermediate support shaft 16 in the middle, and the drive link 14 is provided with a first elongated hole 17 provided at one end of each swing link 13. The second elongated hole 19 provided at the other end is engaged with the second pin 20 provided in the cylinder device 15.

第1カメラ保持装置9は、各揺動リンク13に、それぞれ第1カメラ5、6を保持する第1カメラ台座22を有しており、第1カメラ5、6、第1カメラ台座22、揺動リンク13が一体的に各第1回転支軸12の軸心廻りに揺動する。 The first camera holding device 9 has a first camera pedestal 22 for holding the first cameras 5 and 6, respectively, on each swing link 13, and the first cameras 5, 6 and the first camera pedestal 22 swing. The dynamic link 13 integrally swings around the axis of each first rotation support shaft 12.

第1撮影角度調整部21は、各第1カメラ5、6の視野角がそれぞれ異なる検査領域に向く撮影角度と、各第1カメラ5、6の視野角が同じ検査領域に向く撮影角度とにわたって撮影角度を可変させる。 The first shooting angle adjusting unit 21 covers a shooting angle in which the viewing angles of the first cameras 5 and 6 face different inspection areas and a shooting angle in which the viewing angles of the first cameras 5 and 6 face the same inspection area. Change the shooting angle.

すなわち、図9に示すように、中立状態では、第1回転支軸12を介して支持リンク11に支持される揺動リンク13は鉛直方向に垂下しており、各第1カメラ台座21に搭載した各第1カメラ5、6は視角が真上に向いた撮影角度に保持されている。 That is, as shown in FIG. 9, in the neutral state, the swing link 13 supported by the support link 11 via the first rotation support shaft 12 hangs down in the vertical direction and is mounted on each first camera pedestal 21. Each of the first cameras 5 and 6 is held at a shooting angle with the viewing angle facing straight up.

図10に示すように、外側を撮影する場合には、シリンダ装置15を伸張させて、各第2ピン20でそれぞれ駆動リンク14の他端を相互に離間する方向に押す。各駆動リンク14は第2長穴19で第2ピン20に係合し、第2ピン20が外側へ移動するのに伴って、中間支軸16の軸心廻りに揺動し、各駆動リンク14の他端側が外側へ揺動し、一端側が内側へ揺動する。各揺動リンク14の一端側が内側へ揺動するのに伴って、第1長穴17に係合する第1ピン18が内側へ移動し、各揺動リンク13が第1回転支軸12の軸心廻りに内側へ揺動する。各揺動リンク13が内側へ揺動すると、各カメラ台座21に搭載した各第1カメラ5、6は視角が外側の斜め上方に向けてそれぞれ異なる検査領域に向く撮影角度に保持される。 As shown in FIG. 10, when photographing the outside, the cylinder device 15 is extended and each second pin 20 pushes the other end of the drive link 14 in a direction away from each other. Each drive link 14 engages with the second pin 20 at the second slot 19 and swings around the axis of the intermediate support shaft 16 as the second pin 20 moves outward, and each drive link 14 The other end side of 14 swings outward, and one end side swings inward. As one end side of each swing link 14 swings inward, the first pin 18 that engages with the first slot 17 moves inward, and each swing link 13 of the first rotary support shaft 12 It swings inward around the axis. When each swing link 13 swings inward, the first cameras 5 and 6 mounted on the camera pedestals 21 are held at shooting angles whose viewing angles are directed diagonally upward to the outside and facing different inspection areas.

図11に示すように、内側を撮影する場合には、シリンダ装置15を収縮させて、各第2ピン20でそれぞれ駆動リンク14の他端を相互に接近する方向に引き戻す。各駆動リンク14は第2長穴19で第2ピン20に係合し、第2ピン20が内側へ移動するのに伴って、中間支軸16の軸心廻りに揺動し、各駆動リンク14の他端側が内側へ揺動し、一端側が外側へ揺動する。各揺動リンク14の一端側が外側へ揺動するのに伴って、第1長穴17に係合する第1ピン18が外側へ移動し、各揺動リンク13が第1回転支軸12の軸心廻りに外側へ揺動する。各揺動リンク13が外側へ揺動すると、各カメラ台座21に搭載した各第1カメラ5、6は視角が内側の斜め上方に向けて同じ検査領域に向く撮影角度に保持される。 As shown in FIG. 11, when photographing the inside, the cylinder device 15 is contracted, and the other ends of the drive links 14 are pulled back in the directions of approaching each other at each of the second pins 20. Each drive link 14 engages with the second pin 20 at the second slot 19 and swings around the axis of the intermediate support shaft 16 as the second pin 20 moves inward, and each drive link 14 The other end side of 14 swings inward, and one end side swings outward. As one end side of each swing link 14 swings outward, the first pin 18 that engages with the first slot 17 moves outward, and each swing link 13 of the first rotary support shaft 12 It swings outward around the axis. When each swing link 13 swings outward, the first cameras 5 and 6 mounted on the camera pedestals 21 are held at an imaging angle such that the viewing angle is directed diagonally upward inward and faces the same inspection area.

上記実施の形態では1つのシリンダ装置15で各第1カメラ5、6の撮影角度を同時に可変させる構成としたが、各第1カメラ5、6に対して個別の駆動装置で撮影角度を可変させる構成としてもよい。 In the above embodiment, one cylinder device 15 is configured to change the shooting angles of the first cameras 5 and 6 at the same time, but the shooting angles are changed by individual drive devices for each of the first cameras 5 and 6. It may be configured.

第2カメラ保持装置10は、第1回転支軸12と同様に、Y軸方向と平行をなす第2回転支軸(図示省略)の軸心廻りに第2カメラ7を回転駆動し、第2カメラ7の撮影角度を可変させて第2カメラ7の視野角に検査領域を捉える。 Similar to the first rotation support shaft 12, the second camera holding device 10 rotationally drives the second camera 7 around the axis of the second rotation support shaft (not shown) parallel to the Y-axis direction, and second The inspection area is captured in the viewing angle of the second camera 7 by varying the shooting angle of the camera 7.

製品下面検査装置50は、図2および図3に示すように、検査ステージ51の床面上で検査対象物1の農業機械等を昇降駆動するリフタ52を有しており、リフタ52は三次元座標系のZ軸方向に昇降する。 As shown in FIGS. 2 and 3, the product bottom surface inspection device 50 has a lifter 52 for raising and lowering an agricultural machine or the like of the inspection object 1 on the floor surface of the inspection stage 51, and the lifter 52 is three-dimensional. It goes up and down in the Z-axis direction of the coordinate system.

検査ステージ51の床面下には、撮影ユニット3を駆動する撮影ユニット駆動装置60が配置されており、撮影ユニット駆動装置60は、Y軸方向、つまり検査対象物1の奥行き方向にY可動部61が移動するYスライダ62と、Y可動部61の上に搭載されてZ可動部63がZ軸方向、つまり高さ方向に移動するZスライダ64とからなり、Zスライダ64の頂部に撮影ユニット3を装着している。本実施の形態では、単軸スライダを組み合わせて撮影ユニット駆動装置60を構成しているが、撮影ユニット駆動装置60には多関節ロボットを採用することも可能である。 An imaging unit driving device 60 for driving the photographing unit 3 is arranged below the floor surface of the inspection stage 51, and the photographing unit driving device 60 is a Y movable portion in the Y-axis direction, that is, in the depth direction of the inspection object 1. The Y slider 62 to which the 61 moves and the Z slider 64 mounted on the Y movable portion 61 and the Z movable portion 63 moves in the Z-axis direction, that is, the height direction, and the photographing unit is located on the top of the Z slider 64. 3 is attached. In the present embodiment, the imaging unit drive device 60 is configured by combining a single-axis slider, but an articulated robot can also be adopted for the imaging unit drive device 60.

検査ステージ51の上には、検査結果を表示する表示装置53と、操作盤57を配置しており、操作盤57は、リフタ52と撮影ユニット3と撮影ユニット駆動装置60を制御する処理部54と、停止位置ずれ検出機能部55と、検査領域の座標補正機能部56を有しており、その詳細は後述する。 A display device 53 for displaying inspection results and an operation panel 57 are arranged on the inspection stage 51, and the operation panel 57 is a processing unit 54 that controls a lifter 52, an imaging unit 3, and an imaging unit driving device 60. It also has a stop position shift detection function unit 55 and a coordinate correction function unit 56 in the inspection area, the details of which will be described later.

以下、上記構成の作用を説明する。図4に示すように、検査対象物1の農業機械等を検査ステージ51のリフタ52の上に搬入し、リフタ52を上昇させて検査対象物1を必要高さに持ち上げる。 The operation of the above configuration will be described below. As shown in FIG. 4, the agricultural machine or the like of the inspection object 1 is carried on the lifter 52 of the inspection stage 51, and the lifter 52 is raised to lift the inspection object 1 to the required height.

次に、Yスライダ62を駆動してY可動部61をY軸方向に移動させ、Zスライダ64のZ可動部63の頂部に設けた撮影ユニット3を検査対象物1の下方領域に配置する。また、Zスライダ64を駆動してZ可動部63をZ軸方向に移動させて、撮影ユニット3を検査対象面2に対して適切な高さ位置に保持する。
(検査対象面の撮影)
検査対象面2のX軸方向の検査範囲は第1カメラ5、6で撮影し、第1カメラ5、6の検査範囲外のZ軸方向の検査範囲は第2カメラ7で撮影する。
Next, the Y slider 62 is driven to move the Y movable portion 61 in the Y-axis direction, and the photographing unit 3 provided at the top of the Z movable portion 63 of the Z slider 64 is arranged in the lower region of the inspection object 1. Further, the Z slider 64 is driven to move the Z movable portion 63 in the Z-axis direction to hold the photographing unit 3 at an appropriate height position with respect to the inspection target surface 2.
(Shooting of the surface to be inspected)
The inspection range in the X-axis direction of the inspection target surface 2 is photographed by the first cameras 5 and 6, and the inspection range in the Z-axis direction outside the inspection range of the first cameras 5 and 6 is photographed by the second camera 7.

図12に示すように、検査対象面2のX軸方向の検査範囲は、複数の区分領域に分割し、ここでは最大で20分割(X:2分割、Y:10分割)し、撮影ユニット3をY軸方向に移動させながら、各区分領域を第1カメラ5、6で撮影して各区分領域の検査画像を取得する。この検査画像内に検査の対象となる部品等を写した検査領域が存在する。 As shown in FIG. 12, the inspection range of the inspection target surface 2 in the X-axis direction is divided into a plurality of division regions, and here, a maximum of 20 divisions (X: 2 divisions, Y: 10 divisions) are performed, and the imaging unit 3 is divided. Is moved in the Y-axis direction, each division area is photographed by the first cameras 5 and 6, and an inspection image of each division area is acquired. In this inspection image, there is an inspection area in which a part or the like to be inspected is copied.

基本的に、第1カメラ5、6はそれぞれが独立して異なる区分領域を撮影する。このため、各カメラ台座21に搭載した各第1カメラ5、6は視角が外側の斜め上方に向けてそれぞれ異なる検査領域に向く撮影角度に保持される。
(障害物がある場合の撮影方法)
図5に示すように、検査対象面2の手前にシャフト等の障害物65がある場合には、第1カメラ5、6の双方の視角を内側の斜め上方に向けて同じ検査領域を撮影する
図7は、他方の第1カメラ6で撮影した撮影画像を示している。この撮影画像には、一方の第1カメラ5で撮影した撮影画像においては障害物65に阻害されて写らない死角領域66が写っている。
Basically, the first cameras 5 and 6 independently capture different divided regions. For this reason, the first cameras 5 and 6 mounted on the camera pedestals 21 are held at shooting angles such that the viewing angles are directed diagonally upward on the outside and facing different inspection areas.
(Shooting method when there is an obstacle)
As shown in FIG. 5, when there is an obstacle 65 such as a shaft in front of the inspection target surface 2, the same inspection area is photographed with the viewing angles of both the first cameras 5 and 6 facing diagonally upward inside. FIG. 7 shows a photographed image taken by the other first camera 6. In this captured image, a blind spot region 66 that is obstructed by an obstacle 65 and is not captured in the captured image captured by one of the first cameras 5 is captured.

よって、一方の第1カメラ5の撮影画像において死角となる領域は、他方の第1カメラ6の撮影画像として撮影し、他方の第2カメラ6の撮影画像において死角となる領域は、一方の第1カメラ5の撮影画像として撮影することで、障害物65に阻害されることなく、検査対象面2の全領域を検査画像として取得することができる。すなわち、真下からの撮影角度では、死角となる検査部位であっても、撮影するカメラの選択、撮影位置、撮影角度の組み合わせにより、死角を回避した撮影ができる。 Therefore, the region that becomes a blind spot in the image captured by one first camera 5 is photographed as the image captured by the other first camera 6, and the region that becomes a blind spot in the image captured by the other second camera 6 is the one first. By taking an image as an image taken by one camera 5, the entire area of the inspection target surface 2 can be acquired as an inspection image without being hindered by the obstacle 65. That is, at the shooting angle from directly below, even if the inspection site is a blind spot, it is possible to shoot while avoiding the blind spot by selecting the camera to shoot, the shooting position, and the combination of the shooting angles.

図6に示すように、検査対象面2のZ軸方向の検査範囲は、Y軸方向と平行をなす第2回転支軸(図示省略)の軸心廻りに第2カメラ7を回転駆動し、第2カメラ7の撮影角度を可変させつつ、第2カメラ7の視野角に検査領域を捉えて撮影する。 As shown in FIG. 6, the inspection range of the inspection target surface 2 in the Z-axis direction is such that the second camera 7 is rotationally driven around the axis of the second rotation support shaft (not shown) parallel to the Y-axis direction. While changing the shooting angle of the second camera 7, the inspection area is captured in the viewing angle of the second camera 7 and shot.

この撮影により、図8に示すように、検査対象物1の農業機械の前輪ギヤケース等を撮影する。 By this photographing, as shown in FIG. 8, the front wheel gear case and the like of the agricultural machine of the inspection object 1 are photographed.

このように、リフタ52による検査対象物1の昇降と、Yスライダ62およびZスライダ64による撮影ユニット3の位置制御を行うことで、農業機械の車高や全長、全幅が異なる複数の型式に対して機体下面の全域の撮影が行える。 In this way, by raising and lowering the inspection object 1 by the lifter 52 and controlling the position of the photographing unit 3 by the Y slider 62 and the Z slider 64, the height, the total length, and the total width of the agricultural machine are different for a plurality of models. You can shoot the entire underside of the aircraft.

次に、検査対象物1の位置ずれ検出について説明する。操作盤57の停止位置ずれ検出機能部55は、図12に示すように、検査対象物1が検査ステージ51の基準停止位置に停止する状態で検査対象面2を第1カメラ5、6で撮影した登録画像71において、検査対象物1の検査対象面2にある二つの特徴部位72の画像をマスタ画像73として予め登録するととに、各特徴部位72に設定する基準点A1、B1が平面座標系X−Yに占める位置を基準座標として登録する。ここでは基準点A1の基準座標(Xa1,Ya1)、基準点B1の基準座標(Xb1,Yb1)とする。 Next, the misalignment detection of the inspection object 1 will be described. As shown in FIG. 12, the stop position deviation detection function unit 55 of the operation panel 57 photographs the inspection target surface 2 with the first cameras 5 and 6 in a state where the inspection target 1 is stopped at the reference stop position of the inspection stage 51. In the registered image 71, the images of the two feature portions 72 on the inspection target surface 2 of the inspection target 1 are registered in advance as the master image 73, and the reference points A1 and B1 set in each feature portion 72 are the plane coordinates. The position occupied in the system XY is registered as the reference coordinate. Here, the reference coordinates of the reference point A1 (Xa1, Ya1) and the reference coordinates of the reference point B1 (Xb1, Yb1) are used.

検査時に検査対象物1が検査ステージ51に停止する状態で、検査対象面2を第1カメラ5、6で撮影した検査画像74において、マスタ画像73に対応する画像領域を特定部位の実画像75として抽出する。 In the inspection image 74 in which the inspection target surface 2 is photographed by the first cameras 5 and 6 with the inspection target 1 stopped at the inspection stage 51 during the inspection, the image area corresponding to the master image 73 is the actual image 75 of the specific part. Extract as.

そして、実画像75に映る基準点A2、B2の平面座標系X−Yにおける座標を特徴部位の実座標として算出する。ここでは、基準点A2の実座標(Xa2,Ya2)、基準点B2の実座標(Xb2,Yb2)とする。 Then, the coordinates of the reference points A2 and B2 reflected in the real image 75 in the plane coordinate system XY are calculated as the real coordinates of the feature portion. Here, the actual coordinates of the reference point A2 (Xa2, Ya2) and the actual coordinates of the reference point B2 (Xb2, Yb2) are used.

基準の検査画像71における基準点A1、B1を通る線分に対して、実際の検査画像74における基準点A2、B2を通る線分が傾斜する角度を検査画像の回転角度θ、すなわち補正値として検出する。 The angle at which the line segment passing through the reference points A2 and B2 in the actual inspection image 74 is inclined with respect to the line segment passing through the reference points A1 and B1 in the reference inspection image 71 is used as the rotation angle θ of the inspection image, that is, the correction value. To detect.

マスタ画像73の各基準点A1、B1の基準座標(Xa1,Ya1)、(Xb1,Yb1)と、実画像75の各基準点A2、B2の基準座標(Xa2,Ya2)、(Xb2,Yb2)との差分から位置ずれ補正値を算出する。たとえば、線分A1B1の中心点と、線分A2B2の中心点との位置ずれ量を補正値として算出する。 The reference coordinates (Xa1, Ya1) and (Xb1, Yb1) of the reference points A1 and B1 of the master image 73 and the reference coordinates (Xa2, Ya2) and (Xb2, Yb2) of the reference points A2 and B2 of the actual image 75. The misalignment correction value is calculated from the difference between. For example, the amount of misalignment between the center point of the line segment A1B1 and the center point of the line segment A2B2 is calculated as a correction value.

補正値の位置ずれ量が所定の値以上である場合には、検査対象物1の再搬入を表示装置53に指示する。 When the amount of misalignment of the correction value is equal to or greater than a predetermined value, the display device 53 is instructed to carry in the inspection object 1 again.

補正値の位置ずれ量が所定の値以下である場合に、検査領域の座標補正機能部56は、図13に示すように、各第1カメラ5、6で撮影した各検査画像74の上に検査領域76を設定し、停止位置ずれ検出機能55が算出した位置ずれ補正値、すなわちX軸方向のずれ、Y軸方向のずれ、回転角度θで、検査領域76の座標を補正する。この検査領域76の補正は、各検査画像74ごとに行う。 When the amount of misalignment of the correction value is equal to or less than a predetermined value, the coordinate correction function unit 56 of the inspection area is placed on each inspection image 74 captured by the first cameras 5 and 6 as shown in FIG. The inspection area 76 is set, and the coordinates of the inspection area 76 are corrected by the position deviation correction values calculated by the stop position deviation detection function 55, that is, the deviation in the X-axis direction, the deviation in the Y-axis direction, and the rotation angle θ. The correction of the inspection area 76 is performed for each inspection image 74.

このように、本実施の形態にかかる製品下面検査装置50によれば、検査対象物1の農業機械等が検査ステージ51において停止する停止位置のばらつきの影響を受けることなく、常に検査領域76に対象部品等を捉えることができる。また、特徴部位72の個体ばらつきや、周囲照明の変動による見え方の違いに、影響を受けにくい。 As described above, according to the product bottom surface inspection device 50 according to the present embodiment, the agricultural machine or the like of the inspection object 1 is always in the inspection area 76 without being affected by the variation in the stop position at the inspection stage 51. It is possible to capture the target parts, etc. In addition, it is not easily affected by individual variations of the characteristic portion 72 and differences in appearance due to fluctuations in ambient lighting.

1 検査対象物
2 検査対象面
3 撮影ユニット
4 ベース部
5、6 第1カメラ
7 第2カメラ
8 リング型照明装置
9 第1カメラ保持装置
10 第2カメラ保持装置
11 支持リンク
12 第1回転支軸
13 揺動リンク
14 駆動リンク
15 シリンダ装置
16 中間支軸
17 第1長穴
18 第1ピン
19 第2長穴
20 第2ピン
21 第1撮影角度調整部
22 第1カメラ台座
50 製品下面検査装置
51 検査ステージ
52 リフタ
53 表示装置
54 処理部
55 停止位置ずれ検出機能部
56 座標補正機能部
57 操作盤
60 撮影ユニット駆動装置
61 Y可動部
62 Yスライダ
63 Z可動部
64 Zスライダ
65 障害物
66 死角領域
71 登録画像
72 特徴部位
73 マスタ画像
74 検査画像
75 実画像
76 検査領域
1 Object to be inspected 2 Surface to be inspected 3 Imaging unit 4 Base 5 and 6 1st camera 7 2nd camera 8 Ring type lighting device 9 1st camera holding device 10 2nd camera holding device 11 Support link 12 1st rotation support shaft 13 Swing link 14 Drive link 15 Cylinder device 16 Intermediate support shaft 17 1st slot 18 1st pin 19 2nd slot 20 2nd pin 21 1st shooting angle adjustment unit 22 1st camera pedestal 50 Product bottom surface inspection device 51 Inspection stage 52 Lifter 53 Display device 54 Processing unit 55 Stop position deviation detection function unit 56 Coordinate correction function unit 57 Operation panel 60 Imaging unit drive unit 61 Y movable part 62 Y slider 63 Z movable part 64 Z slider 65 Obstacle 66 Blind spot area 71 Registered image 72 Feature site 73 Master image 74 Inspection image 75 Actual image 76 Inspection area

Claims (9)

検査ステージ上で検査対象物を昇降駆動するリフタと、検査対象物の下面を検査対象面として配置する撮影ユニットと、撮影ユニットを昇降移動させて検査対象面に対して撮影ユニットを接近離間させ、かつ撮影ユニットを検査対象面の下方領域の任意の位置に移動させる撮影ユニット駆動装置と、検査結果を表示する表示装置と、リフタと撮影ユニットと撮影ユニット駆動装置を制御する処理部を有する操作盤とを備え、
撮影ユニットは、視野角を検査対象物の検査対象面に向けて並列に配置する一対の第1カメラと、一対の第1カメラを相互に離間させて配置するベース部と、ベース部上で一対の第1カメラを保持し、各第1カメラの撮影角度を可変させて各第1カメラの視野角に検査領域を捉える第1カメラ保持装置とを備えることを特徴とする製品下面検査装置
A lifter that moves the inspection object up and down on the inspection stage, an imaging unit that arranges the lower surface of the inspection object as the inspection object surface, and an imaging unit that is moved up and down to move the imaging unit closer to and away from the inspection object surface. An operation panel having an imaging unit drive device that moves the imaging unit to an arbitrary position in the lower region of the inspection target surface, a display device that displays the inspection results, and a processing unit that controls the lifter, the imaging unit, and the imaging unit drive device. With and
The photographing unit consists of a pair of first cameras in which the viewing angles are arranged in parallel toward the inspection target surface of the inspection object, a base portion in which the pair of first cameras are arranged so as to be separated from each other, and a pair on the base portion. The product bottom surface inspection device is provided with a first camera holding device that holds the first camera of the above and changes the shooting angle of each first camera to capture the inspection area at the viewing angle of each first camera.
操作盤は、停止位置ずれ検出機能部と、検査領域の座標補正機能部を有し、The operation panel has a stop position deviation detection function unit and a coordinate correction function unit in the inspection area.
停止位置ずれ検出機能部は、検査対象物が検査ステージの基準停止位置に停止する状態で検査対象面を第1カメラで撮影した登録画像において、検査対象物の検査対象面にある特徴部位が平面座標系に占める座標を基準座標とし、 In the stop position deviation detection function unit, in the registered image of the inspection target surface taken by the first camera with the inspection target stopped at the reference stop position of the inspection stage, the feature portion on the inspection target surface of the inspection target is flat. The coordinates that occupy the coordinate system are used as the reference coordinates.
検査時に検査対象物が検査ステージに停止する状態で、検査対象面を第1カメラで撮影した検査画像において、前記特徴部位が平面座標系に占める座標を実座標とし、基準座標と実座標の差分を位置ずれ補正値として算出し、 In the inspection image of the inspection target surface taken by the first camera with the inspection target stopped at the inspection stage at the time of inspection, the coordinates occupied by the feature portion in the plane coordinate system are set as actual coordinates, and the difference between the reference coordinates and the actual coordinates. Is calculated as the misalignment correction value,
検査領域の座標補正機能部は、各カメラが撮影した検査画像上に検査領域を設定し、停止位置ずれ検出機能が算出した位置ずれ補正値で、検査領域の座標を補正することを特徴とする請求項1に記載の製品下面検査装置。 The coordinate correction function unit of the inspection area is characterized in that the inspection area is set on the inspection image taken by each camera and the coordinates of the inspection area are corrected by the position deviation correction value calculated by the stop position deviation detection function. The product bottom surface inspection device according to claim 1.
停止位置ずれ検出機能部は、特徴部位を撮影した画像をマスタ画像とし、検査対象面を第1カメラで撮影した検査画像において、マスタ画像に対応する画像領域を特定部位の実画像として抽出し、平面座標系における前記実画像の座標を特徴部位の実座標として算出することを特徴とする請求項2に記載の製品下面検査装置。The stop position shift detection function unit uses the image of the featured part as the master image, extracts the image area corresponding to the master image as the actual image of the specific part in the inspection image of the inspection target surface taken by the first camera, and then extracts the image area corresponding to the master image as the actual image of the specific part. The product bottom surface inspection apparatus according to claim 2, wherein the coordinates of the actual image in the plane coordinate system are calculated as the actual coordinates of the feature portion. 第1カメラ保持装置は、各第1カメラの視野角がそれぞれ異なる検査領域に向く撮影角度と、各第1カメラの視野角が同じ検査領域に向く撮影角度とにわたって撮影角度を可変させることを特徴とする請求項1から3の何れか1項に記載の製品下面検査装置。 The first camera holding device is characterized in that the shooting angle is varied over a shooting angle in which the viewing angles of the first cameras face different inspection areas and a shooting angle in which the viewing angles of the first cameras face the same inspection area. The product bottom surface inspection device according to any one of claims 1 to 3. 第1カメラ保持装置は、各第1カメラを保持する第1カメラ台座と、各第1カメラ台座を回転自在に支持する平行な一対の第1回転支軸と、各第1カメラ台座を第1回転支軸の軸心廻りに回転駆動し、各第1カメラの撮影角度を可変させる第1撮影角度調整部を有することを特徴とする請求項4に記載の製品下面検査装置。 The first camera holding device includes a first camera pedestal that holds each first camera, a pair of parallel first rotating support shafts that rotatably support each first camera pedestal, and each first camera pedestal. The product bottom surface inspection device according to claim 4, further comprising a first shooting angle adjusting unit that is rotationally driven around the axis of a rotary support shaft to change the shooting angle of each first camera. 第1撮影角度調整部は、1つの駆動部で一対の第1カメラの撮影角度を同時に可変させることを特徴とする5項に記載の製品下面検査装置。 The product bottom surface inspection device according to Item 5, wherein the first shooting angle adjusting unit is characterized in that the shooting angles of a pair of first cameras are simultaneously changed by one drive unit. 視野角を検査対象物の検査対象面に向けてベース部上に配置する第2カメラと、第2カメラの撮影角度を可変させて第2カメラの視野角に第1カメラの検査領域外の検査領域を捉える第2カメラ保持装置を有することを特徴とする請求項1から7の何れか1項に記載の製品下面検査装置。 Inspection outside the inspection area of the first camera by changing the viewing angle of the second camera and the second camera, which arrange the viewing angle toward the inspection target surface of the inspection target, and the viewing angle of the second camera. The product bottom surface inspection device according to any one of claims 1 to 7, further comprising a second camera holding device that captures an area. 第2カメラ保持装置は、一対の第1回転支軸と平行をなす第2回転支軸の軸心廻りに第2カメラを回転駆動し、第2カメラの撮影角度を可変させることを特徴とする請求項7に記載の製品下面検査装置。 The second camera holding device is characterized in that the second camera is rotationally driven around the axis of the second rotation support shaft parallel to the pair of first rotation support shafts to change the shooting angle of the second camera. The product bottom surface inspection device according to claim 7. 各第1カメラおよび第2カメラを囲んでリング型照明装置を配置し、各カメラの光軸とリング型照明装置の光軸とを一致させたことを特徴とする請求項7または8に記載の製品下面検査装置。 7. Product bottom surface inspection device.
JP2017250329A 2017-12-27 2017-12-27 Product bottom surface inspection device Active JP6917296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017250329A JP6917296B2 (en) 2017-12-27 2017-12-27 Product bottom surface inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017250329A JP6917296B2 (en) 2017-12-27 2017-12-27 Product bottom surface inspection device

Publications (2)

Publication Number Publication Date
JP2019117082A JP2019117082A (en) 2019-07-18
JP6917296B2 true JP6917296B2 (en) 2021-08-11

Family

ID=67305232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017250329A Active JP6917296B2 (en) 2017-12-27 2017-12-27 Product bottom surface inspection device

Country Status (1)

Country Link
JP (1) JP6917296B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0816650B2 (en) * 1990-01-17 1996-02-21 東京都 Driving inspection device
JPH08278116A (en) * 1995-04-07 1996-10-22 Central Japan Railway Co Inspection method for bolt looseness and inspection device therefor
JP2001221713A (en) * 2000-02-07 2001-08-17 Sfc:Kk Inspection apparatus for bottom of automobile
JP2005091048A (en) * 2003-09-12 2005-04-07 Purosupaa Kogyo Kk Apparatus for inspecting bottom surface of vehicle
JP2008064656A (en) * 2006-09-08 2008-03-21 Nikon Corp Peripheral edge inspecting apparatus
KR100758705B1 (en) * 2007-02-01 2007-09-21 위성동 Construction of aautomatic measurement system for road pavement surface condition
JP2015189216A (en) * 2014-03-28 2015-11-02 大日本印刷株式会社 Inspection apparatus and inspection method
JP6364921B2 (en) * 2014-04-23 2018-08-01 横浜ゴム株式会社 Tire shape analyzing apparatus and tire shape analyzing method
JP6678383B2 (en) * 2014-09-30 2020-04-08 安全自動車株式会社 Vehicle inspection device
KR20170019596A (en) * 2015-08-12 2017-02-22 현대자동차주식회사 Apparatus and method for vehicle substructure inspection
JP2017218207A (en) * 2016-06-08 2017-12-14 大日本印刷株式会社 Seal inspection device, bag-making device and seal inspection method

Also Published As

Publication number Publication date
JP2019117082A (en) 2019-07-18

Similar Documents

Publication Publication Date Title
CN103884650B (en) A kind of multiple light courcess linear array imaging system and method
JP4514007B2 (en) Method and apparatus for inspecting appearance of subject
CN106796179B (en) Inspection apparatus and inspection method
CN110530885A (en) A kind of Systems for optical inspection suitable for industrial production line
KR101949257B1 (en) Apparatus for Testing Display device module and Method for Testing the same
US9292925B2 (en) Imaging system and control method thereof
US20170132784A1 (en) Shape measuring device, structured object manufacturing system, shape measuring method, structured object manufacturing method, shape measuring program, and recording medium
CN116879308A (en) Industrial machine vision system image processing method
KR101284528B1 (en) A measurement equipment and method for the crack inspect of gear rim
CN103185728A (en) Image processing device and image processing method
CN110231346A (en) Image testing device, image checking method and image inspection program
CN106767423A (en) Automatic Visual Inspection instrument
JP6859627B2 (en) Visual inspection equipment
JP6859628B2 (en) Visual inspection method and visual inspection equipment
CN105372259A (en) Measuring device, circuit board testing apparatus and control method therefor
KR101630596B1 (en) Photographing apparatus for bottom of car and operating method thereof
CN108627512A (en) Three-dimensional detection device and method for three dimensional detection
CN108093618A (en) Inspecting mounting contents by comparing 3D height profile with reference height profile
CN109564173A (en) Image testing device, production system, image checking method, program and storage medium
JP6917296B2 (en) Product bottom surface inspection device
JP6908373B2 (en) A method for inspecting the surface irregularities of an object to be inspected and its surface inspection device
CN105264329A (en) Inspection apparatus and inspection method
JP2011516860A (en) Method and apparatus for acquiring and processing multiplexed images
JP3211681B2 (en) Painting defect inspection equipment
JP2012127930A (en) Method for measuring vehicular headlight and device thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210719

R150 Certificate of patent or registration of utility model

Ref document number: 6917296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150