JP6916471B2 - Electronic components and manufacturing methods for electronic components - Google Patents

Electronic components and manufacturing methods for electronic components Download PDF

Info

Publication number
JP6916471B2
JP6916471B2 JP2018562470A JP2018562470A JP6916471B2 JP 6916471 B2 JP6916471 B2 JP 6916471B2 JP 2018562470 A JP2018562470 A JP 2018562470A JP 2018562470 A JP2018562470 A JP 2018562470A JP 6916471 B2 JP6916471 B2 JP 6916471B2
Authority
JP
Japan
Prior art keywords
substrate
joining member
main surface
electronic component
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018562470A
Other languages
Japanese (ja)
Other versions
JPWO2018135650A1 (en
Inventor
慎介 河森
慎介 河森
蒲生 昌夫
昌夫 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2018135650A1 publication Critical patent/JPWO2018135650A1/en
Application granted granted Critical
Publication of JP6916471B2 publication Critical patent/JP6916471B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/21Crystal tuning forks
    • H03H9/215Crystal tuning forks consisting of quartz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1014Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
    • H03H9/1021Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device the BAW device being of the cantilever type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/177Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator of the energy-trap type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • H10N30/073Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies by fusion of metals or by adhesives
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/026Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the tuning fork type

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、電子部品及び電子部品の製造方法に関する。 The present invention relates to an electronic component and a method for manufacturing the electronic component.

発振装置や帯域フィルタなどに用いられる基準信号の信号源に、例えば人工水晶からなる水晶振動子が広く用いられている。特許文献1には、セラミック基板のメタライズ層上に枠状低温金属ろう材(Au/Sn合金)を載せて溶融被着させて接合層を形成し、接合層を挟んでセラミック基板に蓋体をろう付けする水晶振動子の製造方法が開示されている。また、特許文献2には、金属カバーの封止材(溶融樹脂)を介してセラミック基板に接合する開口端面が傾斜面を備えたフランジとなっている水晶振動子が開示されている。 A crystal oscillator made of artificial quartz, for example, is widely used as a signal source for a reference signal used in an oscillator, a band filter, or the like. In Patent Document 1, a frame-shaped low-temperature metal brazing material (Au / Sn alloy) is placed on a metallized layer of a ceramic substrate and melt-adhered to form a bonding layer, and a lid is placed on the ceramic substrate with the bonding layer sandwiched between them. A method for manufacturing a brazing crystal transducer is disclosed. Further, Patent Document 2 discloses a crystal oscillator in which an open end surface to be joined to a ceramic substrate via a sealing material (molten resin) of a metal cover is a flange having an inclined surface.

特開2004−186995号公報Japanese Unexamined Patent Publication No. 2004-186995 特開2011−142609号公報Japanese Unexamined Patent Publication No. 2011-142609

携帯用通信機器等には、電子部品の一種として水晶振動子が搭載されている。近年、小型化、高性能化する携帯用通信機器等への利用を目的として、水晶振動子は、小型化、軽量化、及び耐久性向上が求められている。しかし、セラミック基板のメタライズ層上にろう材を設ける構成では、セラミック基板の反り形状などの形状変化の影響により、ろう材の形状が不安定になる問題が発生する。また、溶融樹脂を介してセラミック基板に金属カバーを接合する構成では、セラミック基板および金属カバーの形状変化の影響により、溶融樹脂の形状が不安定になり、あるいは溶融状態によっても溶融樹脂の形状が不安定になる問題が発生していた。 A crystal oscillator is mounted on a portable communication device or the like as a kind of electronic component. In recent years, crystal oscillators are required to be smaller, lighter, and more durable for the purpose of being used in portable communication devices and the like, which are becoming smaller and higher in performance. However, in the configuration in which the brazing material is provided on the metallized layer of the ceramic substrate, there arises a problem that the shape of the brazing material becomes unstable due to the influence of shape changes such as the warped shape of the ceramic substrate. Further, in the configuration in which the metal cover is joined to the ceramic substrate via the molten resin, the shape of the molten resin becomes unstable due to the influence of the shape change of the ceramic substrate and the metal cover, or the shape of the molten resin changes depending on the molten state. There was a problem of instability.

本発明はこのような事情に鑑みてなされたものであり、接合部材の形状の安定を図ることができる電子部品及び電子部品の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an electronic component and a method for manufacturing the electronic component, which can stabilize the shape of the joint member.

本発明の一側面に係る電子部品の製造方法は、下地部材を第1基板の第1主面に設ける第1工程と、第1基板の第1主面と転写基板の転写主面とによって、下地部材及び接合部材ペーストを挟む第2工程と、接合部材ペーストを第1基板と転写基板とに挟まれた状態のまま、下地部材に接合された接合部材を形成する第3工程と、下地部材に接合された接合部材から転写基板を剥離する第4工程と、を備えることを特徴とする。 The method for manufacturing an electronic component according to one aspect of the present invention comprises a first step of providing a base member on a first main surface of a first substrate, a first main surface of the first substrate, and a transfer main surface of a transfer substrate. The second step of sandwiching the base member and the joining member paste, the third step of forming the joining member joined to the base member while the joining member paste is sandwiched between the first substrate and the transfer substrate, and the base member. It is characterized by comprising a fourth step of peeling the transfer substrate from the joining member joined to the above.

本発明の他の一側面に係る電子部品の製造方法は、下地部材を第1基板の第1主面に設ける第1工程と、第1基板の第1主面と転写基板の転写主面とによって、下地部材及び接合部材ペーストを挟む第2工程と、接合部材ペーストを第1基板と転写基板とに挟まれた状態のまま加熱および冷却することによって、接合部材ペーストを軟化および固化させて接合部材を形成する第3工程と、下地部材に接合された接合部材から転写基板を剥離する第4工程と、を備えることを特徴とする。 The method for manufacturing an electronic component according to another aspect of the present invention includes a first step of providing a base member on a first main surface of a first substrate, a first main surface of the first substrate, and a transfer main surface of a transfer substrate. By heating and cooling the joining member paste while being sandwiched between the first substrate and the transfer substrate in the second step of sandwiching the base member and the joining member paste, the joining member paste is softened and solidified and joined. It is characterized by including a third step of forming the member and a fourth step of peeling the transfer substrate from the joining member joined to the base member.

本発明の他の一側面に係る電子部品は、反り形状の第1主面を有する第1基板と、第1基板の第1主面側に設けられ、第2基板と接合されることとなる頂上部を有する接合部材と、を備え、接合部材の頂上部は平面内に設けられている。 The electronic component according to the other aspect of the present invention is provided on the first main surface side having the first main surface having a warped shape and the first main surface side of the first substrate, and is joined to the second substrate. A joining member having a top is provided, and the top of the joining member is provided in a plane.

本発明の他の一側面に係る電子部品は、第1主面を有する第1基板と、第1基板の第1主面側に設けられ、頂上部を有する接合部材と、を備え、接合部材の頂上部は、露出されており且つ平面形状である。 An electronic component according to another aspect of the present invention includes a first substrate having a first main surface and a joining member provided on the first main surface side of the first substrate and having a top portion, and is a joining member. The top of the is exposed and has a planar shape.

本発明の他の一側面に係る電子部品は、第1主面を有する第1基板と、第1基板の第1主面側に設けられ、少なくとも3つの頂上部を有する複数の接合部材と、を備え、少なくとも3つの頂上部の平面度は、第1基板の第1主面の平面度の40%以下である。 Electronic components according to another aspect of the present invention include a first substrate having a first main surface, a plurality of joining members provided on the first main surface side of the first substrate and having at least three tops. The flatness of at least three tops is 40% or less of the flatness of the first main surface of the first substrate.

本発明の他の一側面に係る電子部品は、第1主面を有する第1基板と、第1基板の第1主面側に設けられ、少なくとも3つの頂上部を有する複数の接合部材と、を備え、少なくとも3つの頂上部の平面度は、9.0μm以下である。 Electronic components according to another aspect of the present invention include a first substrate having a first main surface, a plurality of joining members provided on the first main surface side of the first substrate and having at least three tops. The flatness of at least three tops is 9.0 μm or less.

本発明の他の一側面に係る電子部品は、第1主面を有する第1基板と、第1基板の第1主面側に設けられ、少なくとも3つの頂上部を有する複数の接合部材と、を備え、少なくとも3つの頂上部は、露出されており且つ平面形状である。 Electronic components according to another aspect of the present invention include a first substrate having a first main surface, a plurality of joining members provided on the first main surface side of the first substrate and having at least three tops. At least three tops are exposed and planar.

本発明によれば、接合部材の形状の安定を図ることができる電子部品及び電子部品の製造方法を提供することが可能となる。 According to the present invention, it is possible to provide an electronic component and a method for manufacturing the electronic component, which can stabilize the shape of the joint member.

図1は、本発明の第1実施形態に係る電子部品に相当する水晶振動子の一例を示す分解斜視図である。FIG. 1 is an exploded perspective view showing an example of a crystal oscillator corresponding to an electronic component according to the first embodiment of the present invention. 図2は、図1に示した水晶振動子のII−II線に沿った断面図である。FIG. 2 is a cross-sectional view taken along the line II-II of the crystal unit shown in FIG. 図3は、本発明の第1実施形態に係る電子部品の製造方法における転写工程を示すフローチャートである。FIG. 3 is a flowchart showing a transfer process in the method for manufacturing an electronic component according to the first embodiment of the present invention. 図4は、本発明の第1実施形態に係る電子部品の製造方法における組立工程を示すフローチャートである。FIG. 4 is a flowchart showing an assembly process in the method for manufacturing an electronic component according to the first embodiment of the present invention. 図5は、第1基板の第1主面に設けられた密着層ペーストの構成を概略的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing the structure of the adhesion layer paste provided on the first main surface of the first substrate. 図6は、下地部材を設ける工程を概略的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing a process of providing a base member. 図7は、転写工程に供される第1基板の構成を概略的に示す斜視図である。FIG. 7 is a perspective view schematically showing the configuration of the first substrate used in the transfer step. 図8は、接合部材を設ける工程を概略的に示す斜視図である。FIG. 8 is a perspective view schematically showing a process of providing the joining member. 図9は、転写基板の転写主面に設けられた接合部材ペーストを概略的に示す斜視図である。FIG. 9 is a perspective view schematically showing a joining member paste provided on the transfer main surface of the transfer substrate. 図10は、図9に示した接合部材ペーストの構成を概略的に示す平面図である。FIG. 10 is a plan view schematically showing the structure of the joining member paste shown in FIG. 図11は、接合部材を下地部材に接合する工程を概略的に示す斜視図である。FIG. 11 is a perspective view schematically showing a process of joining the joining member to the base member. 図12は、下地部材及び接合部材を挟んだ第1基板及び転写基板の構成を概略的に示す断面図である。FIG. 12 is a cross-sectional view schematically showing the configuration of the first substrate and the transfer substrate sandwiching the base member and the joining member. 図13は、第1基板と転写基板とによって挟まれた状態のまま固化した接合部材の構成を概略的に示す断面図である。FIG. 13 is a cross-sectional view schematically showing the configuration of a joining member solidified while being sandwiched between the first substrate and the transfer substrate. 図14は、転写基板から接合部材を剥離する工程を概略的に示す斜視図である。FIG. 14 is a perspective view schematically showing a step of peeling the joining member from the transfer substrate. 図15は、接合部材を介して第1基板に第2基板を接合する工程を概略的に示す断面図である。FIG. 15 is a cross-sectional view schematically showing a step of joining a second substrate to a first substrate via a joining member. 図16は、第1変形例に係る水晶振動子の構成を概略的に示す断面図である。FIG. 16 is a cross-sectional view schematically showing the configuration of the crystal oscillator according to the first modification. 図17は、第2変形例に係る水晶振動素子の構成を概略的に示す斜視図である。FIG. 17 is a perspective view schematically showing the configuration of the crystal vibrating element according to the second modification. 図18は、第2実施形態に係る電子部品の構成を概略的に示す平面図である。FIG. 18 is a plan view schematically showing the configuration of the electronic component according to the second embodiment. 図19は、図18に示した電子部品のXIX−XIX線に沿った断面の構成を概略的に示す面図である。Figure 19 is a cross-sectional view schematically showing a cross-sectional structure taken along line XIX-XIX of the electronic component shown in FIG. 18. 図20は、接合部材ペーストの過剰による接合部材の形状不良の発生率を示すグラフである。FIG. 20 is a graph showing the occurrence rate of shape defects of the joining member due to the excess of the joining member paste. 図21は、接合部材ペーストの不足による接合部材の形状不良の発生率を示すグラフである。FIG. 21 is a graph showing the occurrence rate of shape defects of the joining member due to the shortage of the joining member paste. 図22は、図18に示した電子部品のA−B線及びA´−B´線に沿った表面形状を示す図である。FIG. 22 is a diagram showing the surface shapes of the electronic components shown in FIG. 18 along the lines AB and A'-B'. 図23は、比較例として下地部材の上に接合部材ペーストを塗工乾燥させた構成における、A−B線及びA´−B´線に相当する位置での表面形状を示す図である。FIG. 23 is a diagram showing the surface shapes at positions corresponding to the AB line and the A'-B'line in a configuration in which the joining member paste is applied and dried on the base member as a comparative example. 図24は、図18に示した電子部品における接合部材の拡大断面図である。FIG. 24 is an enlarged cross-sectional view of the joining member in the electronic component shown in FIG. 図25は、第2実施形態に係る電子部品における接合部材の断面を撮影した写真である。FIG. 25 is a photograph of a cross section of a joining member in the electronic component according to the second embodiment. 図26は、比較例として下地部材の上に接合部材ペーストを塗工乾燥させた構成における接合部材の断面を撮影した写真である。FIG. 26 is a photograph of a cross section of the joining member in a configuration in which the joining member paste is applied and dried on the base member as a comparative example. 図27は、第2実施形態に係る電子部品において、接合部材によって封止した場合のリーク不良の発生率を示すグラフである。FIG. 27 is a graph showing the occurrence rate of leak defects when sealed by a joining member in the electronic component according to the second embodiment. 図28は、第3実施形態に係る電子部品の構成を概略的に示す平面図である。FIG. 28 is a plan view schematically showing the configuration of the electronic component according to the third embodiment. 図29は、図28に示したXXIX−XXIX線に沿った断面の構成を概略的に示す断面図である。FIG. 29 is a cross-sectional view schematically showing the configuration of a cross section along the XXIX-XXIX line shown in FIG. 28.

以下に本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の構成要素は同一又は類似の符号で表している。図面は例示であり、各部の寸法や形状は模式的なものであり、本願発明の技術的範囲を当該実施形態に限定して解するべきではない。 An embodiment of the present invention will be described below. In the description of the drawings below, the same or similar components are represented by the same or similar reference numerals. The drawings are examples, and the dimensions and shapes of the respective parts are schematic, and the technical scope of the present invention should not be limited to the embodiment.

また、以下の説明において、圧電振動子(Piezoelctric Resonator)の一例として、水晶振動素子(Quartz Crystal Resonator)を備えた水晶振動子(Quartz Crystal Resonator Unit)を例に挙げて説明する。水晶振動素子は、印加電圧に応じて振動する圧電体として水晶片(Quartz Crystal Blank)を利用するものである。ただし、本発明の実施形態に係る圧電振動子は水晶振動子に限定されるものではなく、セラミック等の他の圧電体を利用するものであってもよい。 Further, in the following description, as an example of the piezoelectric vibrator, a quartz crystal oscillator equipped with a quartz crystal oscillator will be described as an example. The crystal vibrating element uses a crystal piece (Quartz Crystal Blank) as a piezoelectric material that vibrates in response to an applied voltage. However, the piezoelectric vibrator according to the embodiment of the present invention is not limited to the crystal oscillator, and other piezoelectric materials such as ceramics may be used.

<第1実施形態>
図1及び図2を参照しつつ、本発明の実施形態によって製造される水晶振動子の一例について説明する。ここで、図1は、本発明の第1実施形態に係る電子部品に相当する水晶振動子の一例を示す分解斜視図である。図2は、図1に示した水晶振動子のII−II線に沿った断面図である。
<First Embodiment>
An example of the crystal unit manufactured by the embodiment of the present invention will be described with reference to FIGS. 1 and 2. Here, FIG. 1 is an exploded perspective view showing an example of a crystal oscillator corresponding to an electronic component according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view taken along the line II-II of the crystal unit shown in FIG.

図1に示すように、第1実施形態に係る水晶振動子1は、水晶振動素子10と、第2基板20と、第1基板30と、を備える。第1基板30及び第2基板20は、水晶振動素子10を収容するための保持器である。ここで図示した例では、第2基板20は凹状、具体的には開口部を有する箱状、をなしており、第1基板30は平板状をなしている。第2基板20及び第1基板30の形状は、上記に限定されるものではなく、凹状の第1基板及び平板状の第2基板であってもよく、共に凹状の第1基板及び第2基板であってもよい。水晶振動子1は電子部品に相当し、水晶振動素子10は電子素子に相当する。電子素子は、電気信号や電力などが入出力されるものであれば、水晶振動素子などの圧電素子に限定されるものではない。電子素子は、例えば、能動素子、受動素子、集積回路、撮像素子、表示素子、などであってもよい。 As shown in FIG. 1, the crystal oscillator 1 according to the first embodiment includes a crystal vibrating element 10, a second substrate 20, and a first substrate 30. The first substrate 30 and the second substrate 20 are cages for accommodating the crystal vibrating element 10. In the example shown here, the second substrate 20 has a concave shape, specifically, a box shape having an opening, and the first substrate 30 has a flat plate shape. The shapes of the second substrate 20 and the first substrate 30 are not limited to the above, and may be a concave first substrate and a flat plate-shaped second substrate, both of which are concave first substrate and second substrate. It may be. The crystal oscillator 1 corresponds to an electronic component, and the crystal vibrating element 10 corresponds to an electronic element. The electronic element is not limited to a piezoelectric element such as a crystal vibration element as long as an electric signal, electric power, or the like is input / output. The electronic element may be, for example, an active element, a passive element, an integrated circuit, an image pickup element, a display element, or the like.

本発明の実施形態に係る電子部品は、接合部材を介して第1基板と第2基板とが接合されたものであれば、水晶振動子に限定されるものではない。ここでは、接合部材を封止枠として機能させる電子部品について説明するが、電子部品は、接合部材を端子電極として機能させるものであってもよい。電子部品は、第2基板と接合される前の、接合部材が形成された第1基板であってもよい。以下の説明において、接合部材を介して第1基板と第2基板とが接合された部品を第1の電子部品と呼称する。また、第1の電子部品を構成する部品のうち、接合部材を備えた第1基板側の部品であって第2基板に接合されることとなる部品を第2の電子部品と呼称する。 The electronic component according to the embodiment of the present invention is not limited to a crystal oscillator as long as the first substrate and the second substrate are bonded via a bonding member. Here, an electronic component that causes the joining member to function as a sealing frame will be described, but the electronic component may be one that causes the joining member to function as a terminal electrode. The electronic component may be the first substrate on which the joining member is formed before being joined to the second substrate. In the following description, a component in which a first substrate and a second substrate are joined via a joining member is referred to as a first electronic component. Further, among the parts constituting the first electronic component, the component on the first substrate side provided with the joining member and to be joined to the second substrate is referred to as a second electronic component.

水晶振動素子10は、薄片状の水晶片11を有する。水晶片11は、互いに対向する第1主面12a及び第2主面12bを有する。水晶片11は、例えば、ATカット型の水晶片(Quartz Crystal Blank)である。ATカット型の水晶片は、人工水晶をX軸及びZ´軸によって特定される面と平行な面(以下、「XZ´面」と呼ぶ。他の軸によって特定される面についても同様である。)を主面として切り出されたものである。なお、X軸、Y軸、Z軸は、人工水晶の結晶軸であり、Y´軸及びZ´軸は、それぞれ、Y軸及びZ軸をX軸の周りにY軸からZ軸の方向に35度15分±1分30秒回転させた軸である。つまり、ATカット型の水晶片11において、第1主面12a及び第2主面12bは、それぞれXZ´面に相当する。なお、水晶片のカット角度は、ATカット以外の異なるカット(例えばBTカットなど)を適用してもよい。 The crystal vibrating element 10 has a flaky crystal piece 11. The crystal piece 11 has a first main surface 12a and a second main surface 12b facing each other. The crystal piece 11 is, for example, an AT-cut type crystal piece (Quartz Crystal Blank). In the AT-cut type quartz piece, the artificial crystal is a plane parallel to the plane specified by the X-axis and the Z'axis (hereinafter, referred to as "XZ'plane". The same applies to the plane specified by other axes. .) Was cut out as the main surface. The X-axis, Y-axis, and Z-axis are crystal axes of the artificial crystal, and the Y'axis and Z'axis are the Y-axis and the Z-axis around the X-axis in the direction from the Y-axis to the Z-axis, respectively. It is an axis rotated at 35 degrees 15 minutes ± 1 minute 30 seconds. That is, in the AT-cut type crystal piece 11, the first main surface 12a and the second main surface 12b correspond to the XZ'plane, respectively. A different cut (for example, BT cut) other than the AT cut may be applied to the cut angle of the crystal piece.

ATカット型の水晶片11は、X軸方向に平行な長辺が延在する長辺方向と、Z´軸方向に平行な短辺が延在する短辺方向と、Y´軸方向に平行な厚さが延在する厚さ方向を有する。水晶片11は、第1主面12aの法線方向から平面視したときに略矩形形状をなしており、中央に位置し励振に寄与する励振部17と、X軸の負方向側で励振部17と隣り合う周縁部18と、X軸の正方向側で励振部17と隣り合う周縁部19と、を有している。励振部17と周縁部19との間には段差13が設けられている。水晶片11は、励振部17が周縁部18,19よりも厚いメサ型構造である。但し、水晶片11の形状はこれに限定されるものではなく、例えば、第1主面12aの法線方向から平面視したときに、一対の平行な両腕部と、両腕部を連結する連結部と、を有する櫛歯型であってもよい。また、水晶片11は、X軸方向及びZ´軸方向の厚みが略均一な平板構造であってもよく、励振部17が周縁部18,19よりも薄い逆メサ型構造であってもよい。また、励振部17と周縁部18,19との厚みの変化が連続的に変化するコンベックス形状又はベル形状であってもよい。
The AT-cut type crystal piece 11 is parallel to the long side direction in which the long side parallel to the X-axis direction extends, the short side direction in which the short side parallel to the Z'axis direction extends, and the Y'axis direction. Has a thickness direction in which the thickness extends. The crystal piece 11 has a substantially rectangular shape when viewed in a plan view from the normal direction of the first main surface 12a, and has an excitation portion 17 located in the center and contributing to excitation, and an excitation portion on the negative direction side of the X axis. It has a peripheral edge portion 18 adjacent to the 17 and a peripheral edge portion 19 adjacent to the exciting portion 17 on the positive direction side of the X-axis. A step 13 is provided between the exciting portion 17 and the peripheral portion 19. The crystal piece 11 has a mesa-shaped structure in which the excitation portion 17 is thicker than the peripheral portions 18 and 19. However, the shape of the crystal piece 11 is not limited to this, and for example, when viewed in a plan view from the normal direction of the first main surface 12a, the pair of parallel arms and both arms are connected. It may be a comb-tooth type having a connecting portion. Further, the crystal piece 11 may have a flat plate structure having substantially uniform thicknesses in the X-axis direction and the Z'axis direction, and the excitation portion 17 may have an inverted mesa-type structure thinner than the peripheral portions 18 and 19. .. Further, it may be a convex shape or a base bell shape change in thickness between the excitation portion 17 and the peripheral portions 18 and 19 is continuously changed.

ATカット水晶片を用いた水晶振動素子は、広い温度範囲で高い周波数安定性を有し、また、経時変化特性にも優れている上、低コストで製造することが可能である。また、ATカット水晶振動素子は、厚みすべり振動モード(Thickness Shear Vibratoin Mode)を主振動として用いられる。 A crystal vibrating element using an AT-cut quartz piece has high frequency stability in a wide temperature range, is excellent in aging characteristics, and can be manufactured at low cost. Further, the AT-cut crystal vibrating element uses a thick sliding vibration mode (Sickness Shear Vibratoin Mode) as the main vibration.

水晶振動素子10は、一対の電極を構成する第1励振電極14a及び第2励振電極14bを有する。第1励振電極14aは、励振部17の第1主面12aに設けられている。また、第2励振電極14bは、励振部17の第2主面12bに設けられている。第1励振電極14aと第2励振電極14bは、水晶片11を挟んで互いに対向して設けられている。第1励振電極14aと第2励振電極14bとは、XZ´面において略全体が重なり合うように配置されている。 The crystal vibration element 10 has a first excitation electrode 14a and a second excitation electrode 14b that form a pair of electrodes. The first excitation electrode 14a is provided on the first main surface 12a of the excitation portion 17. Further, the second excitation electrode 14b is provided on the second main surface 12b of the excitation portion 17. The first excitation electrode 14a and the second excitation electrode 14b are provided so as to face each other with the crystal piece 11 interposed therebetween. The first excitation electrode 14a and the second excitation electrode 14b are arranged so that substantially the entire surface overlaps on the XZ'plane.

第1励振電極14a及び第2励振電極14bは、それぞれ、X軸方向に平行な長辺と、Z´軸方向に平行な短辺と、Y´軸方向に平行な厚さとを有している。図1に示す例では、XZ´面において、第1励振電極14a及び第2励振電極14bの長辺は水晶片11の長辺と平行であり、第1励振電極14a及び第2励振電極14bの短辺は水晶片11の短辺と平行である。また、第1励振電極14a及び第2励振電極14bの長辺は水晶片11の長辺から離れており、第1励振電極14a及び第2励振電極14bの短辺は水晶片11の短辺から離れている。 The first excitation electrode 14a and the second excitation electrode 14b each have a long side parallel to the X-axis direction, a short side parallel to the Z'axis direction, and a thickness parallel to the Y'axis direction. .. In the example shown in FIG. 1, the long sides of the first excitation electrode 14a and the second excitation electrode 14b are parallel to the long side of the crystal piece 11 on the XZ'plane, and the first excitation electrode 14a and the second excitation electrode 14b The short side is parallel to the short side of the crystal piece 11. Further, the long sides of the first excitation electrode 14a and the second excitation electrode 14b are separated from the long side of the crystal piece 11, and the short sides of the first excitation electrode 14a and the second excitation electrode 14b are from the short side of the crystal piece 11. is seperated.

水晶振動素子10は、一対の引出電極15a,15bと、一対の接続電極16a,16bと、を有する。接続電極16aは、引出電極15aを介して第1励振電極14aと電気的に接続されている。また、接続電極16bは、引出電極15bを介して第2励振電極14bと電気的に接続されている。接続電極16a及び16bは、それぞれ、第1励振電極14a及び第2励振電極14bを第1基板30に電気的に接続するための端子である。水晶振動素子10は、第1基板30に保持されている。第1主面12aは、第1基板30と対向する側とは反対側に位置し、第2主面12bは、第1基板30と対向する側に位置している。 The crystal vibrating element 10 has a pair of extraction electrodes 15a and 15b and a pair of connection electrodes 16a and 16b. The connection electrode 16a is electrically connected to the first excitation electrode 14a via the extraction electrode 15a. Further, the connection electrode 16b is electrically connected to the second excitation electrode 14b via the extraction electrode 15b. The connection electrodes 16a and 16b are terminals for electrically connecting the first excitation electrode 14a and the second excitation electrode 14b to the first substrate 30, respectively. The crystal vibrating element 10 is held on the first substrate 30. The first main surface 12a is located on the side opposite to the side facing the first substrate 30, and the second main surface 12b is located on the side facing the first substrate 30.

引出電極15aは第1主面12aに設けられ、引出電極15bは第2主面12bに設けられている。接続電極16aは、周縁部18の第1主面12aから第2主面12bに亘って設けられ、接続電極16bは、周縁部18の第2主面12bから第1主面12aに亘って設けられている。第1励振電極14a、引出電極15a、及び接続電極16aは、連続しており、第2励振電極14b、引出電極15b、及び接続電極16bは、連続している。図1に示した構成例は、接続電極16a及び接続電極16bが水晶片11の短辺方向(Z´軸方向)に沿って並んでおり、水晶振動素子10が一方の短辺で保持される、いわゆる片持ち構造である。水晶振動素子10は両方の短辺で保持される、いわゆる両持ち構造であってもよく、このとき接続電極16a及び接続電極16bの一方が周縁部18に設けられ、他方が周縁部19に設けられる。 The extraction electrode 15a is provided on the first main surface 12a, and the extraction electrode 15b is provided on the second main surface 12b. The connection electrode 16a is provided from the first main surface 12a to the second main surface 12b of the peripheral edge portion 18, and the connection electrode 16b is provided from the second main surface 12b to the first main surface 12a of the peripheral edge portion 18. Has been done. The first excitation electrode 14a, the extraction electrode 15a, and the connection electrode 16a are continuous, and the second excitation electrode 14b, the extraction electrode 15b, and the connection electrode 16b are continuous. In the configuration example shown in FIG. 1, the connection electrode 16a and the connection electrode 16b are arranged along the short side direction (Z'axis direction) of the crystal piece 11, and the crystal vibrating element 10 is held by one short side. , So-called cantilever structure. The crystal vibrating element 10 may have a so-called double-sided structure in which it is held by both short sides. At this time, one of the connection electrode 16a and the connection electrode 16b is provided on the peripheral edge portion 18, and the other is provided on the peripheral edge portion 19. Be done.

第1励振電極14a及び第2励振電極14bの材料は、特に限定されるものではないが、例えば、下地層として水晶片11に接する側にクロム(Cr)層を有し、表層として下地層よりも水晶片11から遠い側に金(Au)層を有している。下地層に酸素との反応性が高い金属層を設けることで水晶片と励振電極との密着力が向上し、表層に酸素との反応性が低い金属層を設けることで励振電極の劣化が抑制され電気的信頼性が向上する。 The materials of the first excitation electrode 14a and the second excitation electrode 14b are not particularly limited, but for example, the base layer has a chromium (Cr) layer on the side in contact with the crystal piece 11, and the surface layer is more than the base layer. Also has a gold (Au) layer on the side far from the crystal piece 11. By providing a metal layer with high reactivity with oxygen in the base layer, the adhesion between the crystal piece and the excitation electrode is improved, and by providing a metal layer with low reactivity with oxygen in the surface layer, deterioration of the excitation electrode is suppressed. And the electrical reliability is improved.

第2基板20は、第1基板30の第1主面32aに向かって開口した凹状をなしている。第2基板20は、第1基板30に接合され、これによって水晶振動素子10を内部空間26に収容する。第2基板20は、水晶振動素子10を収容することができればその形状は限定されるものではなく、例えば、天面部21の主面の法線方向から平面視したときに矩形状をなしている。第2基板20は、例えば、X軸方向に平行な長辺が延在する長辺方向と、Z´軸方向に平行な短辺が延在する短辺方向と、Y´軸方向に平行な高さ方向とを有する。 The second substrate 20 has a concave shape that opens toward the first main surface 32a of the first substrate 30. The second substrate 20 is joined to the first substrate 30, whereby the crystal vibrating element 10 is accommodated in the internal space 26. The shape of the second substrate 20 is not limited as long as it can accommodate the crystal vibrating element 10. For example, the second substrate 20 has a rectangular shape when viewed in a plan view from the normal direction of the main surface of the top surface portion 21. .. The second substrate 20 is, for example, parallel to the long side direction in which the long side parallel to the X-axis direction extends, the short side direction in which the short side parallel to the Z'axis direction extends, and the Y'axis direction. Has a height direction.

図2に示すように、第2基板20は、内面24及び外面25を有している。内面24は、内部空間26側の面であり、外面25は、内面24とは反対側の面である。第2基板20は、第1基板30の第1主面32aに対向する天面部21と、天面部21の外縁に接続されており且つ天面部21の主面に対して交差する方向に延在する側壁部22と、を有する。また、第2基板20は、凹状の開口端部(側壁部22の第1基板30に近い側の端部)において第1基板30の第1主面32aに対向する対向面23を有する。つまり、対向面23は、開口端部に含まれている。この対向面23は、水晶振動素子10の周囲を囲むように枠状に延在している。 As shown in FIG. 2, the second substrate 20 has an inner surface 24 and an outer surface 25. The inner surface 24 is a surface on the inner space 26 side, and the outer surface 25 is a surface on the opposite side to the inner surface 24. The second substrate 20 is connected to the outer edge of the top surface portion 21 facing the first main surface 32a of the first substrate 30, and extends in a direction intersecting the main surface of the top surface portion 21. It has a side wall portion 22 and a side wall portion 22. Further, the second substrate 20 has a facing surface 23 facing the first main surface 32a of the first substrate 30 at the concave opening end portion (the end portion of the side wall portion 22 on the side closer to the first substrate 30). That is, the facing surface 23 is included in the open end. The facing surface 23 extends in a frame shape so as to surround the crystal vibrating element 10.

第2基板20の材質は特に限定されるものではないが、例えば金属などの導電材料で構成される。これによれば、第2基板20を接地電位に電気的に接続させることによりシールド機能を付加することができる。例えば、第2基板20は、鉄(Fe)及びニッケル(Ni)を含む合金(例えば42アロイ)からなる。また、第2基板20の最表面に酸化防止等を目的とした金(Au)層などが設けられてもよい。あるいは、第2基板20は、絶縁材料で構成されてもよく、導電材料と絶縁材料との複合構造であってもよい。 The material of the second substrate 20 is not particularly limited, but is composed of a conductive material such as metal. According to this, the shield function can be added by electrically connecting the second substrate 20 to the ground potential. For example, the second substrate 20 is made of an alloy containing iron (Fe) and nickel (Ni) (for example, 42 alloy). Further, a gold (Au) layer or the like for the purpose of preventing oxidation may be provided on the outermost surface of the second substrate 20. Alternatively, the second substrate 20 may be made of an insulating material, or may have a composite structure of a conductive material and an insulating material.

第1基板30は水晶振動素子10を励振可能に保持するものである。第1基板30は平板状をなしている。第1基板30は、X軸方向に平行な長辺が延在する長辺方向と、Z´軸方向に平行な短辺が延在する短辺方向と、Y´軸方向に平行な厚さが延在する厚さ方向とを有する。 The first substrate 30 holds the crystal vibrating element 10 in an excitable manner. The first substrate 30 has a flat plate shape. The thickness of the first substrate 30 is parallel to the long side direction in which the long side parallel to the X-axis direction extends, the short side direction in which the short side parallel to the Z'axis direction extends, and the thickness parallel to the Y'axis direction. Has an extending thickness direction.

第1基板30は、基体31を有し、互いに対向する第1主面32a及び第2主面32bを有する。基体31は、例えば絶縁性セラミック(アルミナ)などの焼結材である。この場合、複数の絶縁性セラミックシートを積層して焼結してもよい。あるいは、基体31は、無機ガラス材料(例えばケイ酸塩ガラス、又はケイ酸塩以外を主成分とする材料であって、昇温によりガラス転移現象を有する材料)、水晶材料(例えばATカット水晶)、耐熱性を有するエンジニアリングプラスチック(例えばポリイミドや液晶ポリマー)、又は有機無機ハイブリッド材料(例えばガラスエポキシ樹脂などの繊維強化プラスチック)などで形成してもよい。基体31は耐熱性材料から構成されることが好ましい。基体31は、単層であっても複数層であってもよく、複数層である場合、第1主面32aの最表層に形成された絶縁層を含む。 The first substrate 30 has a substrate 31 and has a first main surface 32a and a second main surface 32b facing each other. The substrate 31 is a sintered material such as an insulating ceramic (alumina). In this case, a plurality of insulating ceramic sheets may be laminated and sintered. Alternatively, the substrate 31 is an inorganic glass material (for example, silicate glass or a material containing a main component other than silicate and having a glass transition phenomenon due to temperature rise), a crystal material (for example, AT-cut crystal). , It may be formed of heat-resistant engineering plastic (for example, polyimide or liquid crystal polymer), or organic-inorganic hybrid material (for example, fiber-reinforced plastic such as glass epoxy resin). The substrate 31 is preferably made of a heat resistant material. The substrate 31 may be a single layer or a plurality of layers, and in the case of a plurality of layers, the substrate 31 includes an insulating layer formed on the outermost layer of the first main surface 32a.

第1基板30は、第1主面32aに設けられた電極パッド33a,33bと、第2主面32bに設けられた外部電極35a,35b,35c,35dと、を有する。電極パッド33a,33bは、第1基板30と水晶振動素子10とを電気的に接続するための端子である。また、外部電極35a,35b,35c,35dは、図示しない回路基板と水晶振動子1とを電気的に接続するための端子である。電極パッド33aは、Y´軸方向に延在するビア電極34aを介して外部電極35aに電気的に接続され、電極パッド33bは、Y´軸方向に延在するビア電極34bを介して外部電極35bに電気的に接続されている。ビア電極34a,34bは基体31をY´軸方向に貫通するビアホール内に形成される。 The first substrate 30 has electrode pads 33a and 33b provided on the first main surface 32a and external electrodes 35a, 35b, 35c and 35d provided on the second main surface 32b. The electrode pads 33a and 33b are terminals for electrically connecting the first substrate 30 and the crystal vibrating element 10. Further, the external electrodes 35a, 35b, 35c, 35d are terminals for electrically connecting a circuit board (not shown) and the crystal oscillator 1. The electrode pad 33a is electrically connected to the external electrode 35a via a via electrode 34a extending in the Y'axis direction, and the electrode pad 33b is an external electrode via a via electrode 34b extending in the Y'axis direction. It is electrically connected to 35b. The via electrodes 34a and 34b are formed in the via holes penetrating the substrate 31 in the Y'axis direction.

導電性保持部材36a,36bは、第1基板30の一対の電極パッド33a,33bに、水晶振動素子10の一対の接続電極16a及び16bをそれぞれ電気的に接続している。また、導電性保持部材36a,36bは、第1基板30の第1主面32aに水晶振動素子10を励振可能に保持している。導電性保持部材36a,36bは、例えば、熱硬化樹脂や紫外線硬化樹脂等を含む導電性接着剤によって形成されており、第1基板と水晶振動素子との間隔を保つためのフィラーや、導電性保持部材に導電性を与えるための導電性粒子、等を含んでいる。 The conductive holding members 36a and 36b electrically connect the pair of connection electrodes 16a and 16b of the crystal vibrating element 10 to the pair of electrode pads 33a and 33b of the first substrate 30, respectively. Further, the conductive holding members 36a and 36b hold the crystal vibrating element 10 on the first main surface 32a of the first substrate 30 so as to be excited. The conductive holding members 36a and 36b are formed of, for example, a conductive adhesive containing a thermosetting resin, an ultraviolet curable resin, or the like, and are a filler for maintaining a distance between the first substrate and the crystal vibrating element and conductive. It contains conductive particles, etc. for imparting conductivity to the holding member.

図1に示した構成例において、第1基板30の電極パッド33a,33bは、第1主面32a上において第1基板30のX軸負方向側の短辺付近に設けられ、当該短辺方向に沿って配列されている。電極パッド33aは、導電性保持部材36aを介して水晶振動素子10の接続電極16aに接続され、他方、電極パッド33bは、導電性保持部材36bを介して水晶振動素子10の接続電極16bに接続される。 In the configuration example shown in FIG. 1, the electrode pads 33a and 33b of the first substrate 30 are provided on the first main surface 32a near the short side of the first substrate 30 on the negative direction side of the X axis, and the short side direction thereof. It is arranged along. The electrode pad 33a is connected to the connection electrode 16a of the crystal vibrating element 10 via the conductive holding member 36a, while the electrode pad 33b is connected to the connecting electrode 16b of the crystal vibrating element 10 via the conductive holding member 36b. Will be done.

複数の外部電極35a,35b,35c,35dは、第2主面32bのそれぞれの角付近に設けられている。図1に示す例では、外部電極35a,35bが、それぞれ、電極パッド33a,33bの直下に配置されている。これによってY´軸方向に延在するビア電極34a,34bによって、外部電極35a,35bを電極パッド33a,33bに電気的に接続することができる。図1に示す例では、4つの外部電極35a〜35dのうち、第1基板30のX軸負方向側の短辺付近に配置された外部電極35a,35bは、水晶振動素子10の入出力信号が供給される入出力電極である。また、第1基板30のX軸正方向側の短辺付近に配置された外部電極35c,35dは、水晶振動素子10の入出力信号が供給されないダミー電極となっている。このようなダミー電極には、水晶振動子1が実装される図示しない回路基板上の他の電子素子の入出力信号も供給されない。あるいは、外部電極35c,35dは、接地電位が供給される接地用電極であってもよい。第2基板20が導電材料からなる場合、第2基板20を接地用電極である外部電極35c,35dに接続することによって、第2基板20により遮蔽性能の高い電磁シールド機能を付加することができる。 The plurality of external electrodes 35a, 35b, 35c, 35d are provided near the respective corners of the second main surface 32b. In the example shown in FIG. 1, the external electrodes 35a and 35b are arranged directly below the electrode pads 33a and 33b, respectively. As a result, the external electrodes 35a and 35b can be electrically connected to the electrode pads 33a and 33b by the via electrodes 34a and 34b extending in the Y'axis direction. In the example shown in FIG. 1, of the four external electrodes 35a to 35d, the external electrodes 35a and 35b arranged near the short side of the first substrate 30 on the negative direction side of the X axis are input / output signals of the crystal vibration element 10. Is the input / output electrode to which is supplied. Further, the external electrodes 35c and 35d arranged near the short side of the first substrate 30 on the positive direction side of the X axis are dummy electrodes to which the input / output signals of the crystal vibration element 10 are not supplied. Input / output signals of other electronic elements on a circuit board (not shown) on which the crystal oscillator 1 is mounted are not supplied to such a dummy electrode. Alternatively, the external electrodes 35c and 35d may be grounding electrodes to which a grounding potential is supplied. When the second substrate 20 is made of a conductive material, the second substrate 20 can add an electromagnetic shielding function having high shielding performance by connecting the second substrate 20 to the external electrodes 35c and 35d which are grounding electrodes. ..

第1基板30の第1主面32aには、下地部材37が設けられている。図1に示す例では、下地部材37は、第1主面32aの法線方向から平面視したときに矩形の枠状をなしている。第1主面32aの法線方向から平面視したときに、電極パッド33a,33bは、下地部材37の内側に配置されており、下地部材37は水晶振動素子10を囲むように設けられている。下地部材37は、導電材料により構成されている。例えば、下地部材37を電極パッド33a,33bと同じ材料で構成することで、電極パッド33a,33bを設ける工程で同時に下地部材37を設けることができる。下地部材37上には後述する接合部材40が設けられ、これによって、第2基板20が接合部材40及び下地部材37を挟んで第1基板30に接合される。 A base member 37 is provided on the first main surface 32a of the first substrate 30. In the example shown in FIG. 1, the base member 37 has a rectangular frame shape when viewed in a plan view from the normal direction of the first main surface 32a. When viewed in a plan view from the normal direction of the first main surface 32a, the electrode pads 33a and 33b are arranged inside the base member 37, and the base member 37 is provided so as to surround the crystal vibration element 10. .. The base member 37 is made of a conductive material. For example, by forming the base member 37 with the same material as the electrode pads 33a and 33b, the base member 37 can be provided at the same time in the step of providing the electrode pads 33a and 33b. A joining member 40, which will be described later, is provided on the base member 37, whereby the second substrate 20 is joined to the first substrate 30 with the joining member 40 and the base member 37 interposed therebetween.

本構成例において、第1基板30の電極パッド33a,33b、外部電極35a〜d及び下地部材37はいずれも金属膜から構成されている。例えば、電極パッド33a,33b、外部電極35a〜d及び下地部材37は、基体31に近接する側(下層)から離間する側(上層)にかけて、モリブデン(Mo)層、ニッケル(Ni)層及び金(Au)層がこの順に積層されて構成されている。下地部材37において、Mo層は後述する密着層に相当し、Ni層及びAu層は、後述する下地層に相当する。また、ビア電極34a,34bは、基体31のビアホールにモリブデン(Mo)などの高融点金属粉とフラックスなどの添加材料からなるペースト状の複合材料である導電性ペーストを充填して形成することができる。 In this configuration example, the electrode pads 33a and 33b of the first substrate 30, the external electrodes 35a to d, and the base member 37 are all made of a metal film. For example, the electrode pads 33a and 33b, the external electrodes 35a to d, and the base member 37 are formed of a molybdenum (Mo) layer, a nickel (Ni) layer, and gold from the side (lower layer) closer to the base 31 to the side (upper layer) away from the base member 31. (Au) layers are laminated in this order. In the base member 37, the Mo layer corresponds to the adhesion layer described later, and the Ni layer and the Au layer correspond to the base layer described later. Further, the via electrodes 34a and 34b may be formed by filling the via holes of the substrate 31 with a conductive paste which is a paste-like composite material composed of a refractory metal powder such as molybdenum (Mo) and an additive material such as flux. can.

なお、電極パッド33a,33bや外部電極35a〜35dの配置関係は上記例に限定されるものではない。例えば、電極パッド33aが第1基板30の一方の短辺付近に配置され、電極パッド33bが第1基板30の他方の短辺付近に配置されてもよい。このような構成においては、水晶振動素子10が、水晶片11の長手方向の両端部において第1基板30に保持されることになる。 The arrangement of the electrode pads 33a and 33b and the external electrodes 35a to 35d is not limited to the above example. For example, the electrode pad 33a may be arranged near one short side of the first substrate 30, and the electrode pad 33b may be arranged near the other short side of the first substrate 30. In such a configuration, the crystal vibrating element 10 is held by the first substrate 30 at both ends in the longitudinal direction of the crystal piece 11.

また、外部電極の配置は上記例に限るものではなく、例えば、入出力電極である2つが第2主面32bの対角上に設けられていてもよい。あるいは、4つの外部電極は、第2主面32bの角ではなく各辺の中央付近に配置されていてもよい。また、外部電極の個数は4つに限るものではなく、例えば入出力電極である2つのみであってもよい。また、接続電極と外部電極との電気的な接続の態様はビア電極によるものに限らず、第1主面32a又は第2主面32b上に引出電極を引き出すことによってそれらの電気的な導通を達成してもよい。あるいは、第1基板30の基体31を複数層で形成し、ビア電極を中間層に至るまで延在させ、中間層において引出電極を引き出すことによって接続電極と外部電極との電気的な接続を図ってもよい。 Further, the arrangement of the external electrodes is not limited to the above example, and for example, two input / output electrodes may be provided diagonally on the second main surface 32b. Alternatively, the four external electrodes may be arranged near the center of each side instead of the corner of the second main surface 32b. Further, the number of external electrodes is not limited to four, and may be, for example, only two which are input / output electrodes. Further, the mode of electrical connection between the connection electrode and the external electrode is not limited to the via electrode, and the electrical conduction thereof is made by pulling out the extraction electrode on the first main surface 32a or the second main surface 32b. May be achieved. Alternatively, the substrate 31 of the first substrate 30 is formed of a plurality of layers, the via electrode is extended to the intermediate layer, and the extraction electrode is pulled out in the intermediate layer to electrically connect the connection electrode and the external electrode. You may.

第2基板20及び第1基板30の両者が下地部材37及び接合部材40を挟んで接合されることによって、水晶振動素子10が、第2基板20と第1基板30とによって囲まれた内部空間(キャビティ)26に封止される。この場合、内部空間26の圧力は大気圧力よりも低圧な真空状態であることが好ましく、これにより第1励振電極14a,第2励振電極14bの酸化による水晶振動子1の周波数特性の経時変化などが低減できるため好ましい。 When both the second substrate 20 and the first substrate 30 are joined with the base member 37 and the joining member 40 sandwiched between them, the crystal vibrating element 10 is surrounded by the second substrate 20 and the first substrate 30. It is sealed in (cavity) 26. In this case, the pressure in the internal space 26 is preferably in a vacuum state lower than the atmospheric pressure, whereby the frequency characteristics of the crystal oscillator 1 due to oxidation of the first excitation electrode 14a and the second excitation electrode 14b change with time. Is preferable because it can reduce.

接合部材40は、第2基板20及び第1基板30の各全周に亘って設けられている。具体的には、接合部材40は下地部材37上に設けられ、閉じた枠状に形成されている。下地部材37及び接合部材40が、第2基板20の側壁部22の対向面23と、第1基板30の第1主面32aと、の間に介在することによって、水晶振動素子10が第2基板20及び第1基板30によって封止される。 The joining member 40 is provided over the entire circumference of each of the second substrate 20 and the first substrate 30. Specifically, the joining member 40 is provided on the base member 37 and is formed in a closed frame shape. The base member 37 and the joining member 40 are interposed between the facing surface 23 of the side wall portion 22 of the second substrate 20 and the first main surface 32a of the first substrate 30, so that the crystal vibrating element 10 is second. It is sealed by the substrate 20 and the first substrate 30.

接合部材40は、金属粉とフラックスなどの添加材料からなるペースト状の複合材料である接合部材ペースト中の金属材料が凝集したろう部材である。具体的には、接合部材40は、金(Au)‐錫(Sn)共晶合金からなる。こうして、第2基板20と第1基板30とを金属接合とする。金属接合によれば封止性を向上させることができる。なお、接合部材40は、導電材料に限らず、例えば低融点ガラス(例えば鉛ホウ酸系や錫リン酸系等)などのガラス接着材料などの絶縁性材料であってもよい。これによれば、金属接合に比べて低コストであり、また加熱温度を抑えることができ、製造プロセスの簡易化を図ることができる。 The joining member 40 is a brazing member in which the metal material in the joining member paste, which is a paste-like composite material composed of metal powder and an additive material such as flux, is aggregated. Specifically, the joining member 40 is made of a gold (Au) -tin (Sn) eutectic alloy. In this way, the second substrate 20 and the first substrate 30 are metal-bonded. The metal bonding can improve the sealing property. The joining member 40 is not limited to the conductive material, and may be an insulating material such as a glass adhesive material such as low melting point glass (for example, lead boric acid type, tin phosphoric acid type, etc.). According to this, the cost is lower than that of metal joining, the heating temperature can be suppressed, and the manufacturing process can be simplified.

本実施形態に係る水晶振動素子10は、水晶片11の長辺方向の一方端(導電性保持部材36a,36bが配置される側の端部)が固定端であり、その他方端が自由端となっている。また、水晶振動素子10、第2基板20、及び第1基板30は、XZ´面において、それぞれ矩形状をなしており、互いに長辺方向及び短辺方向が同一である。 In the crystal vibrating element 10 according to the present embodiment, one end (the end on the side where the conductive holding members 36a and 36b are arranged) in the long side direction of the crystal piece 11 is a fixed end, and the other end is a free end. It has become. Further, the crystal vibrating element 10, the second substrate 20, and the first substrate 30 each have a rectangular shape on the XZ'plane, and the long side direction and the short side direction are the same as each other.

但し、水晶振動素子10の固定端の位置は特に限定されるものではなく、水晶振動素子10は、水晶片11の長辺方向の両端において第1基板30に固定されていてもよい。この場合、水晶振動素子10を水晶片11の長辺方向の両端において固定する態様で、水晶振動素子10及び第1基板30の各電極を形成すればよい。 However, the position of the fixed end of the crystal vibrating element 10 is not particularly limited, and the crystal vibrating element 10 may be fixed to the first substrate 30 at both ends in the long side direction of the crystal piece 11. In this case, the electrodes of the crystal vibrating element 10 and the first substrate 30 may be formed by fixing the crystal vibrating element 10 at both ends of the crystal piece 11 in the long side direction.

本実施形態に係る水晶振動子1においては、第1基板30の外部電極35a,35bを介して、水晶振動素子10を構成する第1励振電極14a及び第2励振電極14bの間に交番電界を印加する。これにより、厚みすべり振動モードなどの所定の振動モードによって水晶片11が振動し、該振動に伴う共振特性が得られる。 In the crystal oscillator 1 according to the present embodiment, an alternating electric field is applied between the first excitation electrode 14a and the second excitation electrode 14b constituting the crystal vibrating element 10 via the external electrodes 35a and 35b of the first substrate 30. Apply. As a result, the crystal piece 11 vibrates in a predetermined vibration mode such as the thickness slip vibration mode, and the resonance characteristic associated with the vibration is obtained.

次に、図3〜図15を参照しつつ、本実施形態に係る電子部品の製造方法について説明する。以下の説明では、上記と共通の事柄についての記述を省略する。特に、同様の構成による同様の作用効果については逐次言及しない。なお、基体131及び転写基板151の例としてアルミナからなるセラミック基板を挙げて説明する。セラミック基板である転写基板の転写主面を研削することにより、表面粗さが小さく、かつセラミック焼成などのよる反り形状を低減させた平面度の値が小さな転写主面を有する転写基板を準備する。なお、基体131及び転写基板151は、他の材料によって構成されていてもよい。 Next, a method of manufacturing an electronic component according to the present embodiment will be described with reference to FIGS. 3 to 15. In the following description, the description of matters common to the above will be omitted. In particular, the same effects of the same configuration will not be mentioned sequentially. A ceramic substrate made of alumina will be described as an example of the substrate 131 and the transfer substrate 151. By grinding the transfer main surface of the transfer substrate, which is a ceramic substrate, a transfer substrate having a transfer main surface having a small surface roughness and a small flatness value with reduced warpage due to ceramic firing or the like is prepared. .. The substrate 131 and the transfer substrate 151 may be made of other materials.

図3は、本発明の第1実施形態に係る電子部品の製造方法における転写工程を示すフローチャートである。図4は、本発明の第1実施形態に係る電子部品の製造方法における組立工程を示すフローチャートである。図5は、第1基板の第1主面に設けられた密着層ペーストの構成を概略的に示す断面図である。図6は、下地部材を設ける工程を概略的に示す断面図である。図7は、転写工程に供される第1基板の構成を概略的に示す斜視図である。図8は、接合部材を設ける工程を概略的に示す斜視図である。図9は、転写基板の転写主面に設けられた接合部材ペーストを概略的に示す斜視図である。図10は、図9に示した接合部材ペーストの構成を概略的に示す平面図である。図11は、接合部材を下地部材に接合する工程を概略的に示す斜視図である。図12は、下地部材及び接合部材を挟んだ第1基板及び転写基板の構成を概略的に示す断面図である。図13は、第1基板と転写基板とによって挟まれた状態のまま固化した接合部材の構成を概略的に示す断面図である。図14は、転写基板から接合部材を剥離する工程を概略的に示す斜視図である。図15は、接合部材を介して第1基板に第2基板を接合する工程を概略的に示す断面図である。 FIG. 3 is a flowchart showing a transfer process in the method for manufacturing an electronic component according to the first embodiment of the present invention. FIG. 4 is a flowchart showing an assembly process in the method for manufacturing an electronic component according to the first embodiment of the present invention. FIG. 5 is a cross-sectional view schematically showing the structure of the adhesion layer paste provided on the first main surface of the first substrate. FIG. 6 is a cross-sectional view schematically showing a process of providing a base member. FIG. 7 is a perspective view schematically showing the configuration of the first substrate used in the transfer step. FIG. 8 is a perspective view schematically showing a process of providing the joining member. FIG. 9 is a perspective view schematically showing a joining member paste provided on the transfer main surface of the transfer substrate. FIG. 10 is a plan view schematically showing the structure of the joining member paste shown in FIG. FIG. 11 is a perspective view schematically showing a process of joining the joining member to the base member. FIG. 12 is a cross-sectional view schematically showing the configuration of the first substrate and the transfer substrate sandwiching the base member and the joining member. FIG. 13 is a cross-sectional view schematically showing the configuration of a joining member solidified while being sandwiched between the first substrate and the transfer substrate. FIG. 14 is a perspective view schematically showing a step of peeling the joining member from the transfer substrate. FIG. 15 is a cross-sectional view schematically showing a step of joining a second substrate to a first substrate via a joining member.

まず転写工程について説明する。転写工程を開始したら、図7に示すように、第1基板130の第1主面132aに下地部材137を設ける(S11)。 First, the transfer process will be described. After starting the transfer step, as shown in FIG. 7, the base member 137 is provided on the first main surface 132a of the first substrate 130 (S11).

本工程においては、まず、図5に示すように、アルミナを主原料とするセラミック粉末を用いてグリーンシート131Pを成形する。次に、基体131に、図示を省略したビアホール及びビア電極を設ける。次に、グリーンシート131Pの第1主面132aに密着層ペースト137APを設ける。密着層ペースト137APは、金属成分(Mo)とバインダ成分とを含む液状であり、印刷工法によって設けられる。次に、グリーンシート131P及び密着層ペースト137APを水素雰囲気において約1600℃で共に焼成する。これにより、グリーンシート131Pから、焼結体により構成されたセラミック基板である基体131が得られる。このとき、基体131は、焼成によって例えば約20%収縮する。この焼成時の収縮が、焼結体であるセラミック基板において、反りを発生させる要因となる。また、密着層ペースト137APから、焼成によってえられた焼結金属(Mo)でありセラミック基板に接合している密着層137Aが得られる。これによれば、焼結体の基体131に物理蒸着(PVD)や化学蒸着(CVD)によって密着層137Aを設ける場合と比較して、セラミック焼結体にある空孔の内部に密着層ペースト137AP中の金属成分が入り込んで焼結される要因により、基体131と密着層137Aとを強固に密着させることができる。したがって密着層137Aと基体131の形成面との接合強度を高くできる。
In this step, first, as shown in FIG. 5, a green sheet 131P is molded using a ceramic powder containing alumina as a main raw material. Next, the substrate 131 is provided with via holes and via electrodes (not shown). Next, the adhesion layer paste 137AP is provided on the first main surface 132a of the green sheet 131P. The adhesive layer paste 137AP is a liquid containing a metal component (Mo) and a binder component, and is provided by a printing method. Then, a green sheet 131P and the adhesion layer paste 137AP baking together at about 1600 ° C. under a hydrogen atmosphere. As a result, the substrate 131, which is a ceramic substrate composed of the sintered body, can be obtained from the green sheet 131P. At this time, the substrate 131 shrinks by, for example, about 20% by firing. This shrinkage during firing causes warpage in the ceramic substrate which is a sintered body. Further, from the adhesion layer paste 137AP, an adhesion layer 137A which is a sintered metal (Mo) obtained by firing and is bonded to the ceramic substrate can be obtained. According to this, as compared with the case where the adhesion layer 137A is provided on the substrate 131 of the sintered body by physical vapor deposition (PVD) or chemical vapor deposition (CVD), the adhesion layer paste 137AP is provided inside the pores of the ceramic sintered body. The substrate 131 and the adhesion layer 137A can be firmly adhered to each other due to the factor that the metal component inside is inserted and sintered. Therefore, the bonding strength between the adhesion layer 137A and the forming surface of the substrate 131 can be increased.

次に、めっき工法によって、密着層137Aの上に、下地層137Bの第1層137C及び第2層137Dを順次形成する。第1層137CはNi層であり、第2層137DはAu層である。このようにして、図6に示すように、基体131の第1主面132a上に、密着層137A及び下地層137Bを含む下地部材137が設けられる。図7に示すように、下地部材137は、第1主面132aの法線方向から平面視したとき、電極パッド133a,133bを囲むように閉じた枠状に設けられている。つまり、下地部材137は、矩形環状に連続するように形成されている。なお、気密封止の効果が不要な場合、例えば回路基板と第1基板とが接合部材を介して電気的に接続し実装される場合、下地部材137の形状が開いた枠状、すなわち不連続に形成されていてもよい。 Next, the first layer 137C and the second layer 137D of the base layer 137B are sequentially formed on the adhesion layer 137A by the plating method. The first layer 137C is a Ni layer, and the second layer 137D is an Au layer. In this way, as shown in FIG. 6, the base member 137 including the adhesion layer 137A and the base layer 137B is provided on the first main surface 132a of the base 131. As shown in FIG. 7, the base member 137 is provided in a closed frame shape so as to surround the electrode pads 133a and 133b when viewed in a plan view from the normal direction of the first main surface 132a. That is, the base member 137 is formed so as to be continuous in a rectangular annular shape. When the effect of airtight sealing is not required, for example, when the circuit board and the first board are electrically connected and mounted via a joining member, the shape of the base member 137 is an open frame, that is, discontinuous. It may be formed in.

次に、転写基板151の転写主面152aに接合部材ペースト140Pを塗工する(S12)。図8に示すように、セラミック(アルミナ)によって形成された板状の転写基板151を準備し、その転写主面152aにメタルマスク160を重ねる。そして、メタルマスク160の上からスキージ(へら)165を用いて、はんだ用のろう部材である接合部材ペースト140Pを塗布する。接合部材ペースト140Pは、金(Au)−錫(Sn)共晶合金とフラックスを含む液状である。メタルマスク160は、下地部材137に重なるような形状の開口部161を有する。接合部材ペースト140Pは、開口部161を通して転写基板151の転写主面152aの上に塗布される。なお、転写基板151は、転写主面152aが平面である板状の転写板を一例として挙げたが、これに限定されず、転写主面152aが屈面や曲面を有してもよい。
Next, the bonding member paste 140P is applied to the transfer main surface 152a of the transfer substrate 151 (S12). As shown in FIG. 8, a plate-shaped transfer substrate 151 made of ceramic (alumina) is prepared, and a metal mask 160 is superposed on the transfer main surface 152a. Then, the joining member paste 140P, which is a brazing member for soldering, is applied from above the metal mask 160 using a squeegee (spatula) 165. The joining member paste 140P is a liquid containing a gold (Au) -tin (Sn) eutectic alloy and a flux. The metal mask 160 has an opening 161 shaped so as to overlap the base member 137. The joining member paste 140P is applied onto the transfer main surface 152a of the transfer substrate 151 through the opening 161. The transfer substrate 151 is transferred principal surface 152a is given as an example a plate-like transfer plate is a plane, without being limited thereto, the transfer main surface 152a may have a bending tracks or curved surfaces.

接合部材140が金属材料を含む場合、特に接合部材140が金属材料のみである場合、転写基板151の転写主面152aは、非金属材料によって構成されることが望ましい。これによれば、金属接合が発生しないため、接合部材140と転写主面152aとの密着力を抑制できる。後の剥離工程において接合部材140から転写基板151を剥離する際に、接合強度低減効果により、転写基板151側に接合部材140が残留することを抑制することができる。つまり、接合部材140の損傷を抑制することができる。なお、転写基板151は、透明なガラスにより構成されてもよい。これによれば、カメラを用いて撮影することで、転写基板151越しに接合部材ペースト140Pの形状などの状態を容易に確認することができる。このため、ガラス製の転写基板151を用いることにより、接合部材140の頂上部140aの実際の状態と所望の形状及び大きさとの差異とを容易に確認でき、接合部材140の形成が容易となる。また、転写基板のたわみなどの変形を低減するため、転写基板の厚みが、第1基板の厚みに比べて10倍以上であることが好ましく、100倍以上であることがさらに好ましい。
When the joining member 140 contains a metal material, particularly when the joining member 140 is only a metal material, it is desirable that the transfer main surface 152a of the transfer substrate 151 is made of a non-metal material. According to this, since metal bonding does not occur, the adhesion between the bonding member 140 and the transfer main surface 152a can be suppressed. Upon the release of the transfer substrate 151 from the junction member 140 in the peeling step after, the effect of reducing the bonding strength, it is possible to prevent the bonding member 140 remaining on the transfer substrate 151 side. That is, damage to the joining member 140 can be suppressed. The transfer substrate 151 may be made of transparent glass. According to this, the state such as the shape of the bonding member paste 140P can be easily confirmed through the transfer substrate 151 by taking a picture with a camera. Therefore, by using the glass transfer substrate 151, it is possible to easily confirm the difference between the actual state of the top 140a of the joining member 140 and the desired shape and size, and the joining member 140 can be easily formed. .. Further, in order to reduce deformation such as bending of the transfer substrate, the thickness of the transfer substrate is preferably 10 times or more, more preferably 100 times or more, as compared with the thickness of the first substrate.

開口部161は、下地部材137の一対の長辺にそれぞれ対応する第1スリット161a及び第3スリット161c、並びに、下地部材137の一対の短辺にそれぞれ対応する第2スリット161b及び第4スリット161dを有する。開口部161は、下地部材137と異なり開いた枠状であり、開口部161に囲まれた領域のメタルマスクが脱落しないように、ブリッジ部163a,163b,163c,163dを有する。ブリッジ部163a〜163dは、メタルマスク160の主面の法線方向から平面視したときに、開口部161の内側と外側とを繋いでいる。ブリッジ部163a〜163dは、それぞれ開口部161の角に位置している。第1スリット161a及び第2スリット161bはブリッジ部163aによって隔てられ、第2スリット161b及び第3スリット161cはブリッジ部163bによって隔てられ、第3スリット161c及び第4スリット161dはブリッジ部163cによって隔てられ、第4スリット161d及び第1スリット161aはブリッジ部163dによって隔てられている。なお、ブリッジ部の位置は上記に限定されるものではなく、例えば、開口部161の角から離れ、第1スリット161a及び第3スリット161cのそれぞれが複数の不連続なスリットとなるように配置されてもよい。 The opening 161 has a first slit 161a and a third slit 161c corresponding to a pair of long sides of the base member 137, and a second slit 161b and a fourth slit 161d corresponding to a pair of short sides of the base member 137, respectively. Has. The opening 161 has an open frame shape unlike the base member 137, and has bridge portions 163a, 163b, 163c, and 163d so that the metal mask in the region surrounded by the opening 161 does not fall off. The bridge portions 163a to 163d connect the inside and the outside of the opening 161 when viewed in a plan view from the normal direction of the main surface of the metal mask 160. The bridge portions 163a to 163d are respectively located at the corners of the opening 161. The first slit 161a and the second slit 161b are separated by a bridge portion 163a, the second slit 161b and the third slit 161c are separated by a bridge portion 163b, and the third slit 161c and the fourth slit 161d are separated by a bridge portion 163c. , The fourth slit 161d and the first slit 161a are separated by a bridge portion 163d. The position of the bridge portion is not limited to the above, and is arranged so as to be separated from the corner of the opening 161 and each of the first slit 161a and the third slit 161c becomes a plurality of discontinuous slits. You may.

図9に示すように、接合部材ペースト140Pは、開口部161に対応した形状で、転写主面152a上に設けられる。すなわち、接合部材ペースト140Pは、下地部材137に積み重なるような形状であるが、転写基板151の転写主面152aの法線方向から平面視したとき、矩形環状の角部を空けて形成される。具体的には、接合部材ペースト140Pは、下地部材137の一対の長辺に対応する第1部分141a及び第3部分141c、並びに、下地部材137の一対の短辺に対応する第2部分141b及び第4部分141d、を有している。また、接合部材ペースト140Pは、角部143a,143b,143c,143dを空けて設けられており、第1部分141a〜第4部分141dは、それぞれ互いに離れている。なお、第1部分141a〜第4部分141dは、それぞれ第1スリット161a〜第4スリット161dに対応し、角部143a〜143dは、それぞれブリッジ部163a〜163dに対応している。接合部材ペースト140Pが集まりやすい角部を避けて接合部材ペースト140Pを塗布することによって、接合部材ペースト140P中にある加熱溶融され液相となった金属成分が濡れ広がり下地部材137の角部に集まることで発生する液溜りの発生を抑制することができる。つまり、接合部材の外形不良の発生を抑制することができる。 As shown in FIG. 9, the joining member paste 140P is provided on the transfer main surface 152a in a shape corresponding to the opening 161. That is, the joining member paste 140P is shaped so as to be stacked on the base member 137, but is formed with a rectangular annular corner open when viewed in a plan view from the normal direction of the transfer main surface 152a of the transfer substrate 151. Specifically, the joining member paste 140P includes the first portion 141a and the third portion 141c corresponding to the pair of long sides of the base member 137, and the second portion 141b and the second portion 141b corresponding to the pair of short sides of the base member 137. It has a fourth portion 141d. Further, the joining member paste 140P is provided with the corner portions 143a, 143b, 143c, and 143d open, and the first portion 141a to the fourth portion 141d are separated from each other. The first portion 141a to the fourth portion 141d correspond to the first slit 161a to the fourth slit 161d, respectively, and the corner portions 143a to 143d correspond to the bridge portions 163a to 163d, respectively. By applying the joining member paste 140P while avoiding the corners where the joining member paste 140P tends to collect, the metal components in the joining member paste 140P that have become a liquid phase are wetted and spread and gather at the corners of the base member 137. As a result, it is possible to suppress the generation of liquid pools. That is, it is possible to suppress the occurrence of external defects of the joining member.

工程S12として上記に説明したのは、いわゆるスクリーン印刷であるが、接合部材140の形成方法はこれに限定されるものではなく、例えばニードル吐出工法などの公知な形成工程によって設けられてもよい。 The above-described step S12 is so-called screen printing, but the method for forming the joining member 140 is not limited to this, and may be provided by a known forming step such as a needle ejection method.

図10を参照しつつ、工程S12によって形成された接合部材ペースト140Pの寸法の一例を説明する。接合部材ペースト140Pは、短手方向の幅が一様にAであり、転写主面152aの法線方向に沿った厚みが一様にTであるとする。第1部分141a及び第3部分141cの長手方向の長さをL1、それに角部を含めた長さをL2とする。第2部分141b及び第4部分141dの長手方向の長さをW1とし、それに角部を含めた長さをW2とする。このとき、接合部材ペースト140Pの体積V1は、下記の式(1)で表すことができる。
V1=2×T×A×(L1+W1) …(1)
また、もし接合部材が角部143a〜143dにも形成されていた場合の体積、すなわち閉じた枠状に形成された場合の接合部材ペースト140Pの体積V2は、下記の式(2)で表すことができる。
V2=2×T×A×(W2−2×A)+2×T×A×L2
=2×T×A×(W2+L2−2×A) …(2)
後の工程で接合部材ペースト140Pが軟化して閉じた枠状に変化するためには、体積V1が、例えば、体積V2の80%以上であることが望ましい。また、後の工程で接合部材ペースト140Pが軟化する際に角部143a〜143dに液溜り形成されないようにするためには、体積V1が体積V2の95%以下であることが望ましい。つまり、
0.80≦V1/V2≦0.95
を満たすことが望ましい。なお、上記の不等式は、式(1)及び式(2)を代入して整理すると、下記の不等式で表すことができる。
0.80≦(L1+W1)/(W+L−2×A)≦0.95
さらに、接合力確保と、液溜まり低減のため、下記の範囲であることがより好ましい。 0.86≦(L1+W1)/(W+L−2×A)≦0.92
An example of the dimensions of the joining member paste 140P formed in step S12 will be described with reference to FIG. It is assumed that the width of the joining member paste 140P in the lateral direction is uniformly A, and the thickness of the transfer main surface 152a along the normal direction is uniformly T. The length of the first portion 141a and the third portion 141c in the longitudinal direction is L1, and the length including the corner portion is L2. The length of the second portion 141b and the fourth portion 141d in the longitudinal direction is W1, and the length including the corner portion is W2. At this time, the volume V1 of the joining member paste 140P can be expressed by the following formula (1).
V1 = 2 × T × A × (L1 + W1)… (1)
Further, the volume when the joining member is also formed at the corners 143a to 143d, that is, the volume V2 of the joining member paste 140P when formed in a closed frame shape is expressed by the following formula (2). Can be done.
V2 = 2 x T x A x (W2-2 x A) + 2 x T x A x L2
= 2 × T × A × (W2 + L2-2 × A)… (2)
In order for the joining member paste 140P to soften and change into a closed frame shape in a later step, it is desirable that the volume V1 is, for example, 80% or more of the volume V2. Further, in order to prevent liquid pools from being formed at the corners 143a to 143d when the joining member paste 140P is softened in a later step, it is desirable that the volume V1 is 95% or less of the volume V2. in short,
0.80 ≤ V1 / V2 ≤ 0.95
It is desirable to meet. The above inequality can be expressed by the following inequality by substituting equations (1) and (2) and rearranging them.
0.80 ≦ (L1 + W1) / (W 2 + L 2 -2 × A) ≦ 0.95
Further, in order to secure the bonding force and reduce the liquid accumulation, it is more preferable to be in the following range. 0.86 ≦ (L1 + W1) / (W 2 + L 2 -2 × A) ≦ 0.92

次に、下地部材137及び接合部材140を第1基板130と転写基板151とで挟む(S13)。図11及び図12に示すように、第1基板130の第1主面132aと転写基板151の転写主面152aとによって、下地部材137及び接合部材ペースト140Pを挟む。第1基板130と転写基板151とを重ねた状態において、第1基板130の第1主面132aを平面視して、第1基板130の第1主面132a上に接合部材ペースト140Pを下地部材137の配置パターンに重なるように設ける。下地部材137及び接合部材ペースト140Pは重ねられる。接合部材ペースト140Pが適度な粘性を有しているため、接合部材ペースト140Pによって転写基板151と第1基板130とが貼り合わされる。そして、転写基板151の上に第1基板130が載った状態で、昇温された炉の中で加熱され、接合部材ペースト140Pが軟化する。なお、下地部材137及び接合部材140の接合に際しては、接合部材ペースト140Pの粘度が、炉内の熱風170の風圧、あるいは製造設備の振動などの外乱によって第1基板130が転写基板151から脱落しないように定められることが好ましい。 Next, the base member 137 and the joining member 140 are sandwiched between the first substrate 130 and the transfer substrate 151 (S13). As shown in FIGS. 11 and 12, the base member 137 and the joining member paste 140P are sandwiched between the first main surface 132a of the first substrate 130 and the transfer main surface 152a of the transfer substrate 151. In a state where the first substrate 130 and the transfer substrate 151 are overlapped with each other, the first main surface 132a of the first substrate 130 is viewed in a plan view, and the joining member paste 140P is placed on the first main surface 132a of the first substrate 130 as a base member. It is provided so as to overlap the arrangement pattern of 137. The base member 137 and the joining member paste 140P are overlapped. Since the joining member paste 140P has an appropriate viscosity, the transfer substrate 151 and the first substrate 130 are bonded together by the joining member paste 140P. Then, with the first substrate 130 resting on the transfer substrate 151, the bonding member paste 140P is softened by heating in a heated furnace. When joining the base member 137 and the joining member 140, the viscosity of the joining member paste 140P does not cause the first substrate 130 to fall off from the transfer substrate 151 due to disturbances such as the wind pressure of the hot air 170 in the furnace or the vibration of the manufacturing equipment. It is preferable that it is determined as follows.

接合部材ペースト140Pの下地部材137に対する濡れ性βは、接合部材ペースト140Pの第1基板130の第1主面132aに対する濡れ性αよりも大きい。これによれば、接合部材ペースト140Pは、第1基板130側において、下地部材137に沿って濡れ広がり、形状が閉じた枠状(矩形環状)に変化する。また、接合部材ペースト140Pは、第1主面132a上での濡れ広がりを抑制することができ、接合部材140の形状不良の発生を抑制することができる。接合部材ペースト140Pの下地部材137に対する濡れ性βは、接合部材ペースト140Pの転写基板151の転写主面152aに対する濡れ性γより大きい。これによれば、接合部材ペースト140Pは、転写基板151側における濡れ広がりを抑制することができ、接合部材140の形状不良の発生を抑制することができる。
The wettability β of the joining member paste 140P with respect to the base member 137 is larger than the wetting property α of the joining member paste 140P with respect to the first main surface 132a of the first substrate 130. According to this, the joining member paste 140P wets and spreads along the base member 137 on the first substrate 130 side, and changes into a closed frame shape (rectangular annular shape). Further, the joining member paste 140P can suppress the spread of wetting on the first main surface 132a, and can suppress the occurrence of shape defects of the joining member 140. The wettability β of the joining member paste 140P with respect to the base member 137 is larger than the wetting property γ of the joining member paste 140P with respect to the transfer main surface 152a of the transfer substrate 151. According to this, the joining member paste 140P can suppress the wet spread on the transfer substrate 151 side, and can suppress the occurrence of the shape defect of the joining member 140.

次に、接合部材140を下地部材137に接合する(S14)。接合部材ペースト140Pを第1基板130と転写基板151とに挟まれた状態のまま固化させて、下地部材137に接合された接合部材140を形成する。接合部材ペースト140Pは、加熱されて軟化した後、冷却されて固化する。このとき、図13に示すように、フラックス140Fは、接合部材140を覆う。第1基板130と転写基板151とで挟まれた接合部材ペースト140Pの軟化及び固化工程において、フラックス140Fが接合部材ペースト140P中の溶融した金属の外側に位置することで、フラックス140Fが流れ止めの役割となって、接合部材ペースト140Pの転写基板151への不必要な濡れ広がりを抑止し、接合部材140の形状を安定化させることができる。また、フラックス140Fは、第1基板130側と転写基板151側とを繋ぐように固化することで、第1基板130と転写基板151との接合を補助する。 Next, the joining member 140 is joined to the base member 137 (S14). The joining member paste 140P is solidified while being sandwiched between the first substrate 130 and the transfer substrate 151 to form the joining member 140 bonded to the base member 137. The joining member paste 140P is heated to soften, and then cooled to solidify. At this time, as shown in FIG. 13, the flux 140F covers the joining member 140. In the process of softening and solidifying the bonding member paste 140P sandwiched between the first substrate 130 and the transfer substrate 151, the flux 140F is located outside the molten metal in the bonding member paste 140P, so that the flux 140F is prevented from flowing. It plays a role in suppressing unnecessary wetting and spreading of the joining member paste 140P to the transfer substrate 151, and can stabilize the shape of the joining member 140. Further, the flux 140F assists the joining between the first substrate 130 and the transfer substrate 151 by solidifying so as to connect the first substrate 130 side and the transfer substrate 151 side.

接合部材140は、接合部材ペースト140Pの金属成分によって構成されている。接合部材140が形成される過程において、下地部材137と接合部材140とが金属接合を形成する。すなわち、下地部材137と接合部材140との境界において、合金が形成される。これによれば、下地部材137と接合部材140との接合強度を向上させることができる。 The joining member 140 is composed of the metal component of the joining member paste 140P. In the process of forming the joining member 140, the base member 137 and the joining member 140 form a metal joint. That is, an alloy is formed at the boundary between the base member 137 and the joining member 140. According to this, the joining strength between the base member 137 and the joining member 140 can be improved.

接合部材140に対する転写基板151の接合強度F6は、第1基板130と転写基板151との間の接合強度の中で最も小さい。すなわち、接合強度F6は、密着層137Aと第1基板130との接合強度F1よりも小さく、下地層137Bの第1層137Cと密着層137Aとの接合強度F2よりも小さく、下地層137Bの第1層137Cと第2層137Dとの接合強度F3よりも小さく、下地層137Bの第2層137Dと接合部材140との接合強度F4よりも小さく、接合部材140と第1基板130との接合強度F5よりも小さい。これによれば、後の転写基板151を接合部材140から剥離する工程において、接合部材140の損傷の発生を抑制することができる。 The bonding strength F6 of the transfer substrate 151 with respect to the bonding member 140 is the smallest among the bonding strengths between the first substrate 130 and the transfer substrate 151. That is, the bonding strength F6 is smaller than the bonding strength F1 between the adhesion layer 137A and the first substrate 130, and smaller than the bonding strength F2 between the first layer 137C of the base layer 137B and the adhesion layer 137A, and the first layer 137B of the base layer 137B. The bonding strength between the first layer 137C and the second layer 137D is smaller than the bonding strength F3, the bonding strength between the second layer 137D of the base layer 137B and the bonding member 140 is smaller than the bonding strength F4, and the bonding strength between the bonding member 140 and the first substrate 130. It is smaller than F5. According to this, in the step of peeling the transfer substrate 151 from the joining member 140 later, it is possible to suppress the occurrence of damage to the joining member 140.

次に、転写基板151を接合部材140から剥離する(S15)。図14に示すように、下地部材137に接合された接合部材140を転写基板151から剥離し、第1基板130から転写基板151を引き離す。これにより、第1基板130と接合部材140とを備える第2の電子部品102が出来上がる。このとき、接合部材140の頂上部140aには、転写基板151の転写主面152aの形状が転写されている。図15に示すように、頂上部140aは平面形状となっている。次に、固化したフラックス140Fを除去することができる溶剤で接合部材140が形成された第1基板130を洗浄することで、フラックス140Fを除去する。フラックス140Fを除去することで、揮発したフラックス140Fによる他の部材の汚染、損傷、化学反応による変質を抑制することができる。なお、フラックス140Fを除去した後、又は除去しながら、転写基板を接合部材140から剥離してもよい。これによれば、フラックス140Fの接合力あるいは密着力が無くなり、剥離工程が容易になる効果がある。 Next, the transfer substrate 151 is peeled off from the joining member 140 (S15). As shown in FIG. 14, the joining member 140 joined to the base member 137 is peeled off from the transfer substrate 151, and the transfer substrate 151 is separated from the first substrate 130. As a result, the second electronic component 102 including the first substrate 130 and the joining member 140 is completed. At this time, the shape of the transfer main surface 152a of the transfer substrate 151 is transferred to the top 140a of the joining member 140. As shown in FIG. 15, the top 140a has a planar shape. Next, the flux 140F is removed by cleaning the first substrate 130 on which the bonding member 140 is formed with a solvent capable of removing the solidified flux 140F. By removing the flux 140F, it is possible to suppress contamination, damage, and alteration of other members due to the volatilized flux 140F due to a chemical reaction. The transfer substrate may be peeled from the joining member 140 after or while removing the flux 140F. According to this, there is an effect that the bonding force or the adhesive force of the flux 140F is lost and the peeling step is facilitated.

転写基板151の転写主面152aは、第1基板130の第1主面132aよりも表面粗さが小さいことが望ましい。これによれば、接合部材140と転写基板151との接合強度を低減することができるため、工程S15において転写基板151側への接合部材140の残渣の発生を抑制することができる。 It is desirable that the transfer main surface 152a of the transfer substrate 151 has a smaller surface roughness than the first main surface 132a of the first substrate 130. According to this, since the bonding strength between the bonding member 140 and the transfer substrate 151 can be reduced, it is possible to suppress the generation of the residue of the bonding member 140 on the transfer substrate 151 side in step S15.

転写基板151は、第1基板130よりも厚く、剛性が高い。すなわち、転写基板151は第1基板130よりも反り等の変形が小さい。接合部材140の頂上部140aの形状には、第1基板130の第1主面132aの平面度の影響は小さく、転写基板151の転写主面152aの平面度の影響が大きい。このため、転写基板151の転写主面152aは、第1基板130の第1主面132aよりも平面度が小さい。少なくとも、工程S12において、転写基板151の転写主面152aにおける、接合部材ペースト140Pを介して第1基板130の第1主面132aと向かい合う領域は、第1基板130の第1主面132aよりも平面度が小さいことが望ましい。これによれば、接合部材140の頂上部140aを平面状に形成することができる。したがって、後の工程において接合部材140を第2基板120の平面状の部分に接合するとき、接合部材140の頂上部140aは、接合強度を向上させることができる。特に、第1基板130が薄肉化、あるいは多層化の影響などにより反り等の変形が大きくなったとしても、平面度の高い頂上部140aを形成することができる。このため、接合部材140は、第1基板130と第2基板120との接合強度の低下を抑制することができる。従来技術においては、セラミック基板と蓋体との密着性を向上させる為にろう材を厚く形成しようとすると、加熱によって軟化したろう部材が自重で濡れ広がる不必要な領域まで可能性がある。このとき、例えば小型化した水晶振動子ではセラミック基板の配線層と接合層とが近いため、配線層及び接合層がショートして不良品となる問題が発生する。また、第1基板130が薄肉化にともない第1基板130の強度が低下しても、接合部材140が溶融した液相状態で転写主面152aの形状にならい、接合部材140がその形状を保ったまま冷却されて固相状態となって固化されるため、第1基板130に作用する加工応力を低減できる。なお、本発明の平面度は、JIS B 0021(1984)の平面度公差の定義による。
The transfer substrate 151 is thicker and more rigid than the first substrate 130. That is, the transfer substrate 151 has less deformation such as warpage than the first substrate 130. The flatness of the first main surface 132a of the first substrate 130 has a small effect on the shape of the top 140a of the joining member 140, and the flatness of the transfer main surface 152a of the transfer board 151 has a large effect. Therefore, the transfer main surface 152a of the transfer substrate 151 has a smaller flatness than the first main surface 132a of the first substrate 130. At least, in step S12, the region of the transfer main surface 152a of the transfer substrate 151 facing the first main surface 132a of the first substrate 130 via the joining member paste 140P is larger than the first main surface 132a of the first substrate 130. It is desirable that the flatness is small. According to this, the top portion 140a of the joining member 140 can be formed in a flat shape. Therefore, when the joining member 140 is joined to the planar portion of the second substrate 120 in a later step, the top portion 140a of the joining member 140 can improve the joining strength. In particular, even if the first substrate 130 is greatly deformed such as warped due to the influence of thinning or multi-layering, it is possible to form a top 140a having a high flatness. Therefore, the joining member 140 can suppress a decrease in the joining strength between the first substrate 130 and the second substrate 120. In the prior art, if an attempt is made to form a thick brazing material in order to improve the adhesion between the ceramic substrate and the lid, there is a possibility that the brazing member softened by heating will wet and spread under its own weight to an unnecessary region. At this time, for example, in a miniaturized crystal oscillator, since the wiring layer and the bonding layer of the ceramic substrate are close to each other, there arises a problem that the wiring layer and the bonding layer are short-circuited and become a defective product. Further, even when the first substrate 130 is reduced, the strength of the first substrate 130 with the thin, the bonding member 140 follows the shape of the transfer main surface 152a in the liquid phase in the molten state, the bonding member 140 is its shape Since it is cooled while being maintained and solidified in a solid phase state, the machining stress acting on the first substrate 130 can be reduced. The flatness of the present invention is based on the definition of flatness tolerance of JIS B 0021 (1984).

次に、第1基板130に水晶振動素子110を搭載する(S17)。水晶振動素子110は、第1基板130の第1主面132aを平面視したときに略矩形形状を有する水晶振動素子である。水晶振動素子110は、第1基板130の第1主面132aを平面視したとき、接合部材140に囲まれた領域に搭載される。水晶振動素子110は、導電性保持部材136aを通して、電極パッド133aに電気的に接続される。なお、導電性保持部材136aは、導電性接着剤によって設けられるが、接合部材140と同じ材料によって設けられてもよい。このとき、電極パッド133aは下地部材137と共に設けられ、導電性保持部材136aは接合部材140と共に設けられる。つまり、封止枠と、封止枠から離れている接続端子とが、接合部材140によって同時に設けられてもよい。 Next, the crystal vibrating element 110 is mounted on the first substrate 130 (S17). The crystal vibrating element 110 is a crystal vibrating element having a substantially rectangular shape when the first main surface 132a of the first substrate 130 is viewed in a plan view. The crystal vibrating element 110 is mounted in a region surrounded by the joining member 140 when the first main surface 132a of the first substrate 130 is viewed in a plan view. The crystal vibrating element 110 is electrically connected to the electrode pad 133a through the conductive holding member 136a. Although the conductive holding member 136a is provided by the conductive adhesive, it may be provided by the same material as the joining member 140. At this time, the electrode pad 133a is provided together with the base member 137, and the conductive holding member 136a is provided together with the joining member 140. That is, the sealing frame and the connection terminal separated from the sealing frame may be provided at the same time by the joining member 140.

次に、振動数を調整する(S18)。水晶振動素子110の励振周波数が所望の値となるように、水晶振動素子110をエッチングして厚みを減らす。これによって、水晶振動素子110の個体間での特性変動を低減し、歩留りを改善させることができる。 Next, the frequency is adjusted (S18). The thickness of the crystal vibrating element 110 is reduced by etching the crystal vibrating element 110 so that the excitation frequency of the crystal vibrating element 110 becomes a desired value. As a result, it is possible to reduce the characteristic variation between individuals of the crystal vibrating element 110 and improve the yield.

次に、第1基板130に第2基板120を接合する(S19)。これにより、第2の電子部品102と第2基板120とを備える第1の電子部品101が出来上がる。図15に示すように、下地部材137及び接合部材140を介して、第1基板130を第2基板120に接合する。まず、第2基板120をステージに静置する。次に、第2基板120の対向面123に接合部材140の頂上部140aが接触するように、第1基板130を第2基板120に向かって押圧ピンで押し付けつつ加熱する。このとき、第1基板130と第2基板120との間に下地部材137及び接合部材140によって囲まれた内部空間126を形成する。内部空間126は、第1基板130の第1主面132aと第2基板120の内面124に囲まれ、水晶振動素子110が気密封止される。なお、気密封止空間は大気に対して減圧雰囲気であることが好ましく、さらに真空雰囲気であることが好ましい。 Next, the second substrate 120 is joined to the first substrate 130 (S19). As a result, the first electronic component 101 including the second electronic component 102 and the second substrate 120 is completed. As shown in FIG. 15, the first substrate 130 is joined to the second substrate 120 via the base member 137 and the joining member 140. First, the second substrate 120 is allowed to stand on the stage. Next, the first substrate 130 is heated while being pressed toward the second substrate 120 with a pressing pin so that the top portion 140a of the joining member 140 comes into contact with the facing surface 123 of the second substrate 120. At this time, an internal space 126 surrounded by the base member 137 and the joining member 140 is formed between the first substrate 130 and the second substrate 120. The internal space 126 is surrounded by the first main surface 132a of the first substrate 130 and the inner surface 124 of the second substrate 120, and the crystal vibrating element 110 is hermetically sealed. The airtight sealing space preferably has a reduced pressure atmosphere with respect to the atmosphere, and more preferably a vacuum atmosphere.

次に、第1実施形態の変形例について説明する。なお、以下の説明において、上記したのと共通の事柄については記述を省略する。また、以下の第1及び第2変形例においても、上記したのと同様の効果を得ることができる。 Next, a modified example of the first embodiment will be described. In the following description, the description of matters common to the above will be omitted. Further, in the following first and second modifications, the same effect as described above can be obtained.

<第1変形例>
図16を参照して、第1実施形態の第1変形例に係る水晶振動子301の構成について説明する。このとき、図16は、第1変形例に係る水晶振動子の構成を概略的に示す断面図である。第1変形例は、第2基板320が平板状をなしており第1基板330が凹状をなしている点で、図2に示した構成例と相違している。また、第1基板330と第2基板320とが、下地部材337及び接合部材340を介して接合され、水晶振動素子310を収容する内部空間326を形成する点は、図2に示した構成例と同様である。
<First modification>
The configuration of the crystal oscillator 301 according to the first modification of the first embodiment will be described with reference to FIG. At this time, FIG. 16 is a cross-sectional view schematically showing the configuration of the crystal oscillator according to the first modification. The first modification is different from the configuration example shown in FIG. 2 in that the second substrate 320 has a flat plate shape and the first substrate 330 has a concave shape. Further, the configuration example shown in FIG. 2 is that the first substrate 330 and the second substrate 320 are joined via the base member 337 and the joining member 340 to form an internal space 326 for accommodating the crystal vibrating element 310. Is similar to.

第1変形例において、基体331は、第1主面332aに段差339を有する。基体331は、第1主面332aの法線方向から平面視したときに中央部が凹状をなし、中央部の外側の周縁部が第2基板320へ突出している。水晶振動素子310は、第1主面332aの法線方向から平面視したとき、段差339に囲まれている。第2基板320は平板状であり、側壁部が省略され、天面部321の第1基板330と対向する側に対向面323が設けられている。 In the first modification, the substrate 331 has a step 339 on the first main surface 332a. The central portion of the substrate 331 is concave when viewed in a plan view from the normal direction of the first main surface 332a, and the outer peripheral edge portion of the central portion projects to the second substrate 320. The crystal vibrating element 310 is surrounded by a step 339 when viewed in a plan view from the normal direction of the first main surface 332a. The second substrate 320 has a flat plate shape, the side wall portion is omitted, and the facing surface 323 is provided on the side of the top surface portion 321 facing the first substrate 330.

<第2変形例>
図17を参照しつつ、本実施形態の第2変形例に係る水晶振動素子910の構成について説明する。このとき、図17は、第2変形例に係る水晶振動素子の構成を概略的に示す斜視図である。
<Second modification>
The configuration of the crystal vibration element 910 according to the second modification of the present embodiment will be described with reference to FIG. At this time, FIG. 17 is a perspective view schematically showing the configuration of the crystal vibrating element according to the second modification.

第2変形例における水晶振動素子910は、水晶片911が音叉形状である点で、図1に示した水晶振動素子10と相違している。つまり、第2変形例に係る水晶振動子は、音叉型の水晶振動子である。水晶片911は、具体的には、平行に配置された2つの振動腕部919a,919bを有する。振動腕部919a,919bは、X軸方向に延在し、Z´軸方向に並び、端面912c側の基部919cで互いに連結されている。言い換えると、基部919cから複数の振動腕部919a,919bが延出している。振動腕部919aでは、XZ´面に平行であり互いに対向する一対の主面にそれぞれ励振電極914が設けられ、当該一対の主面と交差し互いに対向する一対の側端面にそれぞれ励振電極914が設けられている。振動腕部919bでは、一対の主面にそれぞれ励振電極914が設けられ、一対の側端面にそれぞれ励振電極914が設けられている。
The crystal vibrating element 910 in the second modification is different from the crystal vibrating element 10 shown in FIG. 1 in that the crystal piece 911 has a tuning fork shape. That is, the crystal unit according to the second modification is a tuning fork type crystal unit. Specifically, the crystal piece 911 has two vibrating arms 919a and 919b arranged in parallel. The vibrating arm portions 919a and 919b extend in the X-axis direction, are aligned in the Z'axis direction, and are connected to each other by the base portion 919c on the end surface 912c side. In other words, a plurality of vibrating arm portions 919a and 919b extend from the base portion 919c. In the vibrating arm portion 919a, excitation electrodes 914 b are provided on a pair of main surfaces parallel to the XZ'plane and facing each other, and excitation electrodes 914 are provided on a pair of side end surfaces intersecting the pair of main surfaces and facing each other. a is provided. The vibrating arms 919b, respectively excitation electrodes 914 a are provided on the pair of main surfaces, are respectively provided excitation electrode 914 b to the pair of side end surfaces.

以上のとおり、第2変形例によれば、圧電振動素子910は、複数の振動腕部919a,919bを有する音叉型水晶振動素子である。なお、圧電振動素子910の構成は特に限定されるものではなく、振動腕部の形状や本数、励振電極の配置などが異なっていてもよい。 As described above, according to the second modification, the piezoelectric vibrating element 910 is a tuning fork type crystal vibrating element having a plurality of vibrating arm portions 919a and 919b. The configuration of the piezoelectric vibrating element 910 is not particularly limited, and the shape and number of vibrating arms, the arrangement of the exciting electrodes, and the like may be different.

<第2実施形態>
図18及び図19を参照しつつ、第2実施形態に係る電子部品502の構成について説明する。図18は、第2実施形態に係る電子部品の構成を概略的に示す平面図である。図19は、図18に示した電子部品のXIX−XIX線に沿った断面の構成を概略的に示す面図である。なお、電子部品502は、第1実施形態の工程S19において接合する前の第1基板130側の部品に相当する。電子部品502は、第1実施形態において説明した製造方法によって形成されている。したがって、上記したのと同様の構成要素には同様の符号を付し、上記したのと共通の構成要素については記述を省略する。上記したのと同様の効果についても、記述を省略する。
<Second Embodiment>
The configuration of the electronic component 502 according to the second embodiment will be described with reference to FIGS. 18 and 19. FIG. 18 is a plan view schematically showing the configuration of the electronic component according to the second embodiment. Figure 19 is a cross-sectional view schematically showing a cross-sectional structure taken along line XIX-XIX of the electronic component shown in FIG. 18. The electronic component 502 corresponds to a component on the first substrate 130 side before joining in step S19 of the first embodiment. The electronic component 502 is formed by the manufacturing method described in the first embodiment. Therefore, the same components as those described above are designated by the same reference numerals, and the description of the components common to those described above is omitted. The description of the same effect as described above will be omitted.

電子部品502は、第1基板530、水晶振動素子510、下地部材537、及び接合部材540を備えている。 The electronic component 502 includes a first substrate 530, a crystal vibrating element 510, a base member 537, and a joining member 540.

第1基板530は、互いに対向する第1主面532a及び第2主面532bを有する基体531を備えている。第1基板530は、焼結体により構成されたセラミック基板である。基体531は、第1主面532aの中心部が凹形状となるような、断面が第1主面と反対側に凸となる反り形状を有している。 The first substrate 530 includes a substrate 531 having a first main surface 532a and a second main surface 532b facing each other. The first substrate 530 is a ceramic substrate composed of a sintered body. The substrate 531 has a warped shape in which the cross section is convex on the side opposite to the first main surface so that the central portion of the first main surface 532a is concave.

水晶振動素子510は、第1基板530の第1主面532a側に設けられている。水晶振動素子510は、電極パッド533a及び導電性保持部材536aによって、第1基板530に搭載され、第1基板530と電気的に接続されている。 The crystal vibrating element 510 is provided on the first main surface 532a side of the first substrate 530. The crystal vibrating element 510 is mounted on the first substrate 530 by the electrode pad 533a and the conductive holding member 536a, and is electrically connected to the first substrate 530.

下地部材537は、第1基板530の第1主面532aと接合部材540との間に設けられている。下地部材537は、密着層537A及び下地層537Bを備えている。密着層537Aは、第1基板530の第1主面532aに接合されている。密着層537Aは、セラミック基板である基体531と接触している。密着層537Aは、焼結金属であり、焼結体である基体531と共に焼成されている。下地層537Bは、密着層537Aに接合された第1層537Cと、第1層537Cに接合された第2層537Dとを備えている。 The base member 537 is provided between the first main surface 532a of the first substrate 530 and the joining member 540. The base member 537 includes an adhesion layer 537A and a base layer 537B. The adhesion layer 537A is joined to the first main surface 532a of the first substrate 530. The adhesion layer 537A is in contact with the substrate 531 which is a ceramic substrate. The adhesion layer 537A is a sintered metal and is fired together with the sintered substrate 531. The base layer 537B includes a first layer 537C bonded to the adhesion layer 537A and a second layer 537D bonded to the first layer 537C.

接合部材540は、下地部材537を覆っている。接合部材540の材料は金属のみであり、接合部材540は下地部材537と合金を形成している。接合部材540の下地部材537に対する接合強度は、接合部材540の第1基板530に対する接合強度よりも大きい。接合部材540は、第1基板530の第1主面532aを平面視したとき、水晶振動素子510を囲む枠状に設けられている。 The joining member 540 covers the base member 537. The material of the joining member 540 is only metal, and the joining member 540 forms an alloy with the base member 537. The bonding strength of the bonding member 540 to the base member 537 is greater than the bonding strength of the bonding member 540 to the first substrate 530. The joining member 540 is provided in a frame shape surrounding the crystal vibrating element 510 when the first main surface 532a of the first substrate 530 is viewed in a plan view.

接合部材540は、第2基板と接合されることとなる頂上部540aを有する。接合部材540の頂上部540aは、平面内に設けられている。これによれば、第2基板の接合面の形状が第1基板530の第1主面532aの形状と異なる平面形状などである場合でも、接合部材540は、第1基板530を第2基板に対して強固に接合することができる。接合部材540の頂上部540aは、露出されており、且つ平面形状である。これによれば、接合部材540は、第1基板530を第2基板に対して強固に接合することができる。 The joining member 540 has a top portion 540a to be joined to the second substrate. The top portion 540a of the joining member 540 is provided in a plane. According to this, even when the shape of the joint surface of the second substrate is a plane shape different from the shape of the first main surface 532a of the first substrate 530, the bonding member 540 uses the first substrate 530 as the second substrate. On the other hand, it can be firmly joined. The top portion 540a of the joining member 540 is exposed and has a planar shape. According to this, the joining member 540 can firmly join the first substrate 530 to the second substrate.

次に、接合部材540の性能評価について説明する。実施例は、第1実施形態の電子部品の製造方法を利用した構成である。比較例は、下地部材の上に接合部材ペーストを塗工し、そのまま接合部材ペーストを固化させた構成である。実施例及び比較例の、その他の製造条件は同様である。 Next, the performance evaluation of the joining member 540 will be described. An embodiment is a configuration using the method for manufacturing an electronic component of the first embodiment. In the comparative example, the joining member paste is applied on the base member, and the joining member paste is solidified as it is. Other manufacturing conditions of Examples and Comparative Examples are the same.

(平面形状評価)
図20及び図21を参照しつつ、封止枠としての接合部材540の平面形状に関する評価結果について説明する。図20は、接合部材ペーストの過剰による接合部材の形状不良の発生率を示すグラフである。図21は、接合部材ペーストの不足による接合部材の形状不良の発生率を示すグラフである。図20及び図21において、各々のグラフの横軸は、2400個の接合部材540の質量(以下、「形成量」と呼称する。)を示す。これは、集合基板に2400個の接合部材540を設けたときの質量変化によって算出した。図20及び図21において、各々のグラフの縦軸は、2400個の接合部材540のうち、形状不良と判定されたものの発生率を示す。図20の縦軸は、接合部材540が角部に集まる形状不良の発生率を示すものであり、形状不良率(半田溜りモード)と呼称する。図21の縦軸は、接合部材540が辺部で細くなる又は途切れる形状不良の発生率を示すものであり、形状不良率(枠切れモード)と呼称する。黒丸プロットは比較例のデータを示し、黒三角プロットは実施例のデータを示す。
(Plane shape evaluation)
The evaluation result regarding the planar shape of the joining member 540 as the sealing frame will be described with reference to FIGS. 20 and 21. FIG. 20 is a graph showing the occurrence rate of shape defects of the joining member due to the excess of the joining member paste. FIG. 21 is a graph showing the occurrence rate of shape defects of the joining member due to the shortage of the joining member paste. In FIGS. 20 and 21, the horizontal axis of each graph indicates the mass of 2400 joining members 540 (hereinafter, referred to as “formation amount”). This was calculated by the mass change when 2400 joining members 540 were provided on the assembly substrate. In FIGS. 20 and 21, the vertical axis of each graph shows the occurrence rate of 2400 joining members 540 that are determined to be poorly shaped. The vertical axis of FIG. 20 shows the occurrence rate of shape defects in which the joining member 540 gathers at the corners, and is referred to as the shape defect rate (solder accumulation mode). The vertical axis of FIG. 21 indicates the occurrence rate of shape defects in which the joining member 540 becomes thin or interrupted at the side portion, and is referred to as a shape defect rate (frame cut mode). The black circle plot shows the data of the comparative example, and the black triangle plot shows the data of the example.

第1基板530の個片化前の集合基板に、平面視した形状が、幅100μmの略矩形の環状の下地部材537を2400個設けた。それぞれの下地部材537は、長辺方向の長さが1.5mm、短辺方向の長さが1.1mm、面積0.5mmとした。図18に示すように電子部品502を平面視して、カメラで撮影した画像データを二値化して接合部材540部分の撮影輪郭画像を求めた。次に、接合部材540部分の撮影輪郭画を4つの角部と4つの辺部の8区画に分割して比較した。各区画のいずれか1つの区画において、幾何学な接合部材540の基準輪郭画像と一致する基準輪郭画像の面積が元の基準輪郭画像の面積の60%以下のとき不良と判定して、形状不良率を算出した。On the collective substrate of the first substrate 530 before being separated into pieces, 2400 annular base members 537 having a substantially rectangular shape having a width of 100 μm in a plan view were provided. Each base member 537 has a length of 1.5 mm in the long side direction, a length of 1.1 mm in the short side direction, and an area of 0.5 mm 2 . As shown in FIG. 18, the electronic component 502 was viewed in a plane, and the image data captured by the camera was binarized to obtain a captured contour image of the 540 portion of the joining member. Next, the photographed outline image of the 540 parts of the joining member was divided into eight sections of four corners and four sides for comparison. In any one of the sections, when the area of the reference contour image that matches the reference contour image of the geometric joint member 540 is 60% or less of the area of the original reference contour image, it is determined to be defective and the shape is defective. The rate was calculated.

図20に示すように、接合部材540の形成量が280mgのとき、実施例の形状不良率(半田溜りモード)が0.1%程度であったのに対し、比較例では4.0%程度であった。さらに、接合部材540の形成量が300mgのとき、実施例の形状不良率(半田溜りモード)が1.0%程度であったのに対し、比較例では15%程度と発生率となり、いずれの条件でも、比較例の不良率が、実施例の不良率の10倍以上になった。図21に示すように、接合部材540の形成量が260mgのとき、実施例の形状不良率(枠切れモード)が1.0%程度であったのに対し、比較例では9.0%程度であった。 As shown in FIG. 20, when the amount of the joining member 540 formed was 280 mg, the shape defect rate (solder accumulation mode) of the example was about 0.1%, whereas that of the comparative example was about 4.0%. Met. Further, when the amount of the joining member 540 formed was 300 mg, the shape defect rate (solder accumulation mode) in the example was about 1.0%, whereas in the comparative example, the occurrence rate was about 15%. Even under the conditions, the defective rate of the comparative example was 10 times or more the defective rate of the example. As shown in FIG. 21, when the amount of the joining member 540 formed was 260 mg, the shape defect rate (frame cutting mode) of the example was about 1.0%, whereas that of the comparative example was about 9.0%. Met.

この結果から、本発明の実施形態を適応することで、固化時の軟化の影響を低減して、形状変化が小さな接合部材540を得られることが確認できた。なお、実施例において、形状不良率(半田溜りモード)10%以下且つ形状不良率(枠切れモード)1.0%以下となるように接合部材540を製造するためには、接合部材540の形成量が、260mgよりも多く、360mgよりも少なくなるように調整する必要がある。対して、比較例において、形状不良率(半田溜りモード)10%以下且つ形状不良率(枠切れモード)1.0%以下となるように接合部材540を製造するためには、接合部材540の形成量が、略290mgとなるように調整する必要がある。このように、本発明の実施形態によれば、接合部材の形状が安定するため、接合部材の形成量に関する製造条件の変動の許容範囲を広くすることができる。 From this result, it was confirmed that by applying the embodiment of the present invention, the influence of softening at the time of solidification can be reduced and the joint member 540 with a small shape change can be obtained. In the embodiment, in order to manufacture the joining member 540 so that the shape defect rate (solder accumulation mode) is 10% or less and the shape defect rate (frame cutting mode) is 1.0% or less, the joining member 540 is formed. The amount needs to be adjusted to be greater than 260 mg and less than 360 mg. On the other hand, in the comparative example, in order to manufacture the joining member 540 so that the shape defect rate (solder accumulation mode) is 10% or less and the shape defect rate (frame cutting mode) is 1.0% or less, the joining member 540 is used. It is necessary to adjust the formation amount to be approximately 290 mg. As described above, according to the embodiment of the present invention, since the shape of the joint member is stable, it is possible to widen the permissible range of fluctuations in the manufacturing conditions regarding the amount of the joint member formed.

(表面形状評価)
図22及び図23を参照しつつ、封止枠としての接合部材540の平面形状に関する評価結果について説明する。図22は、図18に示した電子部品のA−B線及びA´−B´線に沿った表面形状を示す図である。図23は、下地部材の上に接合部材ペーストを塗工乾燥させた構成における、A−B線及びA´−B´線に相当する位置での表面形状を示す図である。図20及び図21において、各々のグラフの横軸は、測定位置を示す。図2及び図2において、各々のグラフの縦軸は、高さの相対値を示す。破線は比較例のデータを示し、実線は実施例のデータを示す。
(Surface shape evaluation)
The evaluation result regarding the planar shape of the joining member 540 as the sealing frame will be described with reference to FIGS. 22 and 23. FIG. 22 is a diagram showing the surface shapes of the electronic components shown in FIG. 18 along the lines AB and A'-B'. 23, in the configuration coating dried bonding member paste on the lower ground member is a diagram showing a surface shape at a position corresponding to line A-B and A'-B'line. In FIGS. 20 and 21, the horizontal axis of each graph indicates the measurement position. 2 2 and 2 3, the vertical axis of each graph shows the relative value of the height. The broken line shows the data of the comparative example, and the solid line shows the data of the example.

図22に示すように、実施例においては、第1基板530の第1主面532aの表面形状は、中央部で低く両端部で高い下に凸の形状であった。接合部材540の頂上部540aの形状は、基礎となる第1基板530の第1主面532aの形状変化の形状が小さく、平面度が小さくなっていた。下記の表1に、試料1〜5における、基板の平面度(A´−B´線に沿った表面の平面度)、接合部材の平面度(A−B線に沿った表面の平面度)、及び比率を示す。なお比率とは、第1基板530の第1主面532aの平面度に対する接合部材540の頂上部540aの平面度の比率(接合部材の平面度/基板の平面度)である。 As shown in FIG. 22, in the embodiment, the surface shape of the first main surface 532a of the first substrate 530 was a downwardly convex shape that was low at the central portion and high at both ends. As for the shape of the top portion 540a of the joining member 540, the shape of the shape change of the first main surface 532a of the first substrate 530 which is the base was small, and the flatness was small. Table 1 below shows the flatness of the substrate (flatness of the surface along the A'-B'line) and the flatness of the joining member (flatness of the surface along the line AB) in Samples 1 to 5. , And the ratio. The ratio is the ratio of the flatness of the top portion 540a of the joining member 540 to the flatness of the first main surface 532a of the first substrate 530 (flatness of the joining member / flatness of the substrate).

Figure 0006916471
Figure 0006916471

図22に示すように、実施例においては、第1基板530の第1主面532aに相当するA´−B´線に沿った表面の形状は、中央部で低く両端部で高い下に凸の形状であった。接合部材540の頂上部540aの形状も基礎となる第1基板530の第1主面532aの形状変化に追従するため、同様に下に凸の形状であった。下記の表2に、比較例の場合のデータを示す。 As shown in FIG. 22, in the embodiment, the shape of the surface along the A'-B'line corresponding to the first main surface 532a of the first substrate 530 is low at the center and high at both ends, and is convex downward. It was the shape of. The shape of the top portion 540a of the joining member 540 was also a downwardly convex shape in order to follow the shape change of the first main surface 532a of the first substrate 530 which is the base. Table 2 below shows the data for the comparative example.

Figure 0006916471
Figure 0006916471

実施例では、面度の比率は、平均値:26.4%、最小値:13.4%、最大値37.2%となった。比較例では、平面度の比率は、平均値:62.9%、最小値:49.5%、最大値:75.4%となった。実施例において、基板の平面度は12.5μmであり、接合部材の平面度の平均値は3.3μmであった。比較例において、基板の平面度は18.7μmであり、接合部材の平面度の平均値は11.7μmであった。このように、頂上部540aの平面度は、第1基板530の第1主面532aの平面度の40%以下であることが望ましい。また、頂上部540aの平面度は、望ましくは9.0μm以下であり、さらに望ましくは5.0μm以下である。このとき、第1基板530の第1主面532aの平面度は、10μm以上である。つまり、第1主面532aの平面度が10μm以上である場合であっても、実施例によれば、接合部材540の形状を安定化させ、接合強度を向上させることができる。

In an embodiment, the ratio of the flat Mending the average value: 26.4%, the minimum value: 13.4%, was the maximum 37.2%. In the comparative example, the ratio of flatness was an average value of 62.9%, a minimum value of 49.5%, and a maximum value of 75.4%. In the examples, the flatness of the substrate was 12.5 μm, and the average flatness of the joining members was 3.3 μm. In the comparative example, the flatness of the substrate was 18.7 μm, and the average flatness of the joining members was 11.7 μm. As described above, it is desirable that the flatness of the top portion 540a is 40% or less of the flatness of the first main surface 532a of the first substrate 530. The flatness of the top 540a is preferably 9.0 μm or less, and more preferably 5.0 μm or less. At this time, the flatness of the first main surface 532a of the first substrate 530 is 10 μm or more. That is, even when the flatness of the first main surface 532a is 10 μm or more, according to the embodiment, the shape of the joining member 540 can be stabilized and the joining strength can be improved.

(断面形状評価)
図24から図26を参照しつつ、接合部材540の断面形状に関する評価結果について説明する。図24は、図18に示した電子部品における接合部材の拡大断面図である。図25は、第2実施形態に係る電子部品における接合部材の断面を撮影した写真である。図26は、比較例として下地部材の上に接合部材ペーストを塗工乾燥させた構成における接合部材の断面を撮影した写真である。図25及び図26は、図24に相当する断面の写真である。
(Cross-sectional shape evaluation)
The evaluation results regarding the cross-sectional shape of the joining member 540 will be described with reference to FIGS. 24 to 26. FIG. 24 is an enlarged cross-sectional view of the joining member in the electronic component shown in FIG. FIG. 25 is a photograph of a cross section of a joining member in the electronic component according to the second embodiment. FIG. 26 is a photograph of a cross section of the joining member in a configuration in which the joining member paste is applied and dried on the base member as a comparative example. 25 and 26 are photographs of a cross section corresponding to FIG. 24.

下記の表3に、実施例における、接合部材540の第1基板530側の底面の幅W51、頂上部540aの幅W52、及び幅W51に対する幅W52の比率(W52/W51)を示す。なお、比較例においては、図26に示すように頂上部の幅が略ゼロであるため、記載を省略する。 Table 3 below shows the width W51 of the bottom surface of the joining member 540 on the first substrate 530 side, the width W52 of the top 540a, and the ratio of the width W52 to the width W51 (W52 / W51). In the comparative example, as shown in FIG. 26, the width of the top portion is substantially zero, so the description thereof will be omitted.

Figure 0006916471
Figure 0006916471

幅の比率W52/W51は、平均値:34%、最小値:42%、最大値:35%となった。このように、接合部材540の第1基板530側の底面の幅W51に対して、頂上部540aの幅W52は30%以上であることが望ましい。 The width ratios W52 / W51 had an average value of 34%, a minimum value of 42%, and a maximum value of 35%. As described above, it is desirable that the width W52 of the top portion 540a is 30% or more of the width W51 of the bottom surface of the joining member 540 on the first substrate 530 side.

(密着性評価)
図27を参照しつつ、接合部材540による第1基板530と第2基板との密着性に関する評価結果について説明する。図27は、第2実施形態に係る電子部品において、接合部材によって封止した場合のリーク不良の発生率を示すグラフである。リーク不良の判断は、公知なリーク不良の測定方法を用いて、水晶振動子に周波数特性の変動値を測定して判断した。図27に示すグラフの横軸は、接合部材540の形成量を示す。図27に示すグラフの縦軸は、接合部材540を封止枠として利用した場合において発生したリーク不良率を示す。黒丸プロットは比較例のデータを示し、黒三角プロットは実施例のデータを示す。
(Adhesion evaluation)
The evaluation result regarding the adhesion between the first substrate 530 and the second substrate by the joining member 540 will be described with reference to FIG. 27. FIG. 27 is a graph showing the occurrence rate of leak defects when sealed by a joining member in the electronic component according to the second embodiment. The leak defect was determined by measuring the fluctuation value of the frequency characteristic of the crystal unit using a known leak defect measuring method. The horizontal axis of the graph shown in FIG. 27 indicates the amount of the joining member 540 formed. The vertical axis of the graph shown in FIG. 27 shows the leak defect rate that occurred when the joining member 540 was used as a sealing frame. The black circle plot shows the data of the comparative example, and the black triangle plot shows the data of the example.

図27に示すように、実施例のリーク不良率は、比較例のリーク不良率よりも低い。特に、接合部材540の成形量が小さい条件である265mg近傍では、比較例のリーク不良率が1.0%程度であるのに対して、実施例のリーク不良率は0.2%程度に低減していることが分かる。すなわち、実施例では、比較例に比べて、リーク不良の発生が低減できたと考えられる。 As shown in FIG. 27, the leak defect rate of the example is lower than the leak defect rate of the comparative example. In particular, in the vicinity of 265 mg, which is a condition where the molding amount of the joining member 540 is small, the leak defect rate of the comparative example is about 1.0%, whereas the leak defect rate of the example is reduced to about 0.2%. You can see that it is doing. That is, it is considered that in the examples, the occurrence of leak defects could be reduced as compared with the comparative examples.

以上の評価結果から、次のことが言える。すなわち、比較例において接合部材540の形成量が300mgより大きくなると、比較例の形状不良率(半田溜りモード)が10%以上になる問題が発生する。さらに、接合部材540の形成量が大きくなると、接合部材540の高さも大きくなり、電子部品502の低背化の制約要因となる。実施例の形状不良率(半田溜りモード)の近似曲線によれば、接合部材540の形成量が360mgより大きいときに形状不良率(半田溜りモード)が10%以上となる。このため、リーク不良を低減させるために、形状不良を発生させない範囲で、接合部材540の形成量を比較例に比べて大きくすることができる。別の視点では、実施例では、接合部材540の形成量が小さいときでもリーク不良を低減できる。このため、実施例では、比較例に比べて、低背にでき、材料の消費量を低減することができる。なお、比較例において接合部材540の成形量が280mg以上となる条件では、形状不良率(半田溜りモード)が10%より大きくなる場合がある。リーク試験は、形状評価の結果が良品である電子部品502選別して実施するため、適切な良品率を確保できない条件である、比較例において接合部材540の成形量が280mg以上の範囲では、リーク試験を実施していない。 From the above evaluation results, the following can be said. That is, when the amount of the joining member 540 formed in the comparative example is larger than 300 mg, there arises a problem that the shape defect rate (solder accumulation mode) of the comparative example becomes 10% or more. Further, as the amount of the joining member 540 formed increases, the height of the joining member 540 also increases, which is a limiting factor for lowering the height of the electronic component 502. According to the approximate curve of the shape defect rate (solder accumulation mode) of the embodiment, the shape defect rate (solder accumulation mode) is 10% or more when the formation amount of the joining member 540 is larger than 360 mg. Therefore, in order to reduce leak defects, the amount of the joint member 540 formed can be increased as compared with the comparative example within a range in which shape defects do not occur. From another point of view, in the embodiment, leakage defects can be reduced even when the amount of the joining member 540 formed is small. Therefore, in the examples, the height can be made lower than that in the comparative examples, and the consumption of the material can be reduced. In the comparative example, under the condition that the molding amount of the joining member 540 is 280 mg or more, the shape defect rate (solder accumulation mode) may be larger than 10%. Since the leak test is carried out by selecting electronic components 502 whose shape evaluation result is non-defective, it is a condition that an appropriate non-defective rate cannot be secured. Not tested.

<第3実施形態>
図28及び図29を参照しつつ、第3実施形態に係る電子部品の製造方法について説明する。図28は、第3実施形態に係る電子部品の構成を概略的に示す平面図である。図29は、図28に示したXXIX−XXIX線に沿った断面の構成を概略的に示す断面図である。
<Third Embodiment>
A method of manufacturing an electronic component according to a third embodiment will be described with reference to FIGS. 28 and 29. FIG. 28 is a plan view schematically showing the configuration of the electronic component according to the third embodiment. FIG. 29 is a cross-sectional view schematically showing the configuration of a cross section along the XXIX-XXIX line shown in FIG. 28.

電子部品601は、第1基板630、複数の第1接合部材645、及び複数の第2接合部材646を含む電子部品602に、第2基板620を接合することによって製造される。第1基板630は、再配線層681、集積回路682、モールド層683を備えている。再配線層681は、第1基板630の第1主面632a側に設けられている。集積回路682は、電気素子に相当する。集積回路682は、再配線層681の第2主面632b側に設けられている。モールド層683は、集積回路682を覆っている。 The electronic component 601 is manufactured by joining the second substrate 620 to the electronic component 602 including the first substrate 630, the plurality of first joining members 645, and the plurality of second joining members 646. The first substrate 630 includes a rewiring layer 681, an integrated circuit 682, and a mold layer 683. The rewiring layer 681 is provided on the first main surface 632a side of the first substrate 630. The integrated circuit 682 corresponds to an electric element. The integrated circuit 682 is provided on the second main surface 632b side of the rewiring layer 681. The mold layer 683 covers the integrated circuit 682.

複数の第1接合部材645は、それぞれ、第1頂上部645aを備えている。複数の第2接合部材646は、それぞれ、第2頂上部646aを備えている。第1基板630の第1主面632aを平面視したとき、第1接合部材645及び第2接合部材646は、互いに形状又は大きさが異なっている。第1頂上部645a及び第2頂上部645cは、互いに形状又は大きさが異なっている。なお、複数の第1接合部材645及び複数の第2接合部材646は、それぞれ、複数の下地部材637に重なるようにもうけられている。具体的には、電子部品の電極パッドの一部として機能する3つ以上の下地部材637が、再配線層681を通して、集積回路682と、複数の第1接合部材645及び複数の第2接合部材646と、を電気的に接続している。 Each of the plurality of first joining members 645 includes a first top portion 645a. Each of the plurality of second joining members 646 includes a second top portion 646a. When the first main surface 632a of the first substrate 630 is viewed in a plan view, the first joining member 645 and the second joining member 646 are different in shape or size from each other. The first top 645a and the second top 645c are different in shape or size from each other. The plurality of first joining members 645 and the plurality of second joining members 646 are provided so as to overlap the plurality of base members 637, respectively. Specifically, three or more base members 637 that function as part of the electrode pads of electronic components pass through the rewiring layer 681 to the integrated circuit 682, a plurality of first joining members 645, and a plurality of second joining members. 646 and is electrically connected.

複数の頂上部645a及び複数の頂上部646aは、第2実施形態に係る接合部材540の頂上部530aと同様の構成であることが望ましい。すなわち、複数の頂上部645a及び複数の頂上部646aは、露出されており且つ平面形状である。このとき、複数の接合部材645,646の第1基板630側の底面の幅に対して、複数の頂上部645a及び複数の頂上部646aの幅は、30%以上であることが望ましい。また、複数の頂上部645a及び複数の頂上部646aは、仮想的な平面内に設けられている。複数の頂上部645a及び複数の頂上部646aの平面度は、第1基板630の第1主面632aの平面度の40%以下である。また、複数の頂上部645a及び複数の頂上部646aの平面度は、9.0μm以下であり、5.0μm以下であることが望ましい。 It is desirable that the plurality of tops 645a and the plurality of tops 646a have the same configuration as the tops 530a of the joining member 540 according to the second embodiment. That is, the plurality of tops 645a and the plurality of tops 646a are exposed and have a planar shape. At this time, it is desirable that the widths of the plurality of tops 645a and the plurality of tops 646a are 30% or more with respect to the widths of the bottom surfaces of the plurality of joining members 645 and 646 on the first substrate 630 side. Further, the plurality of tops 645a and the plurality of tops 646a are provided in a virtual plane. The flatness of the plurality of tops 645a and the plurality of tops 646a is 40% or less of the flatness of the first main surface 632a of the first substrate 630. Further, the flatness of the plurality of tops 645a and the plurality of tops 646a is 9.0 μm or less, and preferably 5.0 μm or less.

<付記>
以下に、本発明の実施形態の一部又は全部を付記として記載する。なお、本発明は以下の付記に限定されるものではない。
<Additional notes>
Hereinafter, a part or all of the embodiments of the present invention will be described as appendices. The present invention is not limited to the following appendices.

下地部材を第1基板の第1主面に設ける第1工程と、
前記第1基板の前記第1主面と転写基板の転写主面とによって、前記下地部材及び接合部材ペーストを挟む第2工程と、
前記接合部材ペーストを前記第1基板と前記転写基板とに挟まれた状態のまま、前記下地部材に接合された接合部材を形成する第3工程と、
前記下地部材に接合された前記接合部材から前記転写基板を剥離する第4工程と、
を備えることを特徴とする、電子部品の製造方法。
The first step of providing the base member on the first main surface of the first substrate, and
A second step of sandwiching the base member and the joining member paste between the first main surface of the first substrate and the transfer main surface of the transfer substrate.
A third step of forming a joining member joined to the base member while the joining member paste is sandwiched between the first substrate and the transfer substrate.
A fourth step of peeling the transfer substrate from the joining member joined to the base member, and
A method for manufacturing an electronic component, which comprises.

前記第3工程は、
前記接合部材ペーストを加熱する工程と、
前記加熱する工程の後に、前記接合部材を冷却する工程と、
を備える、電子部品の製造方法。
The third step is
The step of heating the joining member paste and
After the heating step, a step of cooling the joining member and
A method of manufacturing electronic components.

下地部材を第1基板の第1主面に設ける第1工程と、
前記第1基板の前記第1主面と転写基板の転写主面とによって、前記下地部材及び前記下地部材上に設けられた接合部材ペーストを挟む第2工程と、
前記接合部材ペーストを前記第1基板と前記転写基板とに挟まれた状態のまま加熱および冷却することによって、前記接合部材ペーストを軟化および固化させて接合部材を形成する第3工程と、
前記下地部材に接合された前記接合部材から前記転写基板を剥離する第4工程と、
を備えることを特徴とする、電子部品の製造方法。
The first step of providing the base member on the first main surface of the first substrate, and
A second step of sandwiching the base member and the joining member paste provided on the base member between the first main surface of the first substrate and the transfer main surface of the transfer substrate.
A third step of forming a joining member by softening and solidifying the joining member paste by heating and cooling the joining member paste while being sandwiched between the first substrate and the transfer substrate.
A fourth step of peeling the transfer substrate from the joining member joined to the base member, and
A method for manufacturing an electronic component, which comprises.

前記第2工程は、前記接合部材ペーストを前記転写基板の前記転写主面に設ける工程を備える、電子部品の製造方法。 The second step is a method for manufacturing an electronic component, comprising a step of providing the joining member paste on the transfer main surface of the transfer substrate.

前記第4工程において、前記接合部材に対する前記転写基板の接合強度は、前記接合部材に対する前記下地部材の接合強度よりも小さい、電子部品の製造方法。 A method for manufacturing an electronic component, wherein in the fourth step, the bonding strength of the transfer substrate to the bonding member is smaller than the bonding strength of the base member to the bonding member.

前記第4工程において、前記接合部材に対する前記転写基板の接合強度は、前記下地部材に対する前記第1基板の接合強度よりも小さい、電子部品の製造方法。 A method for manufacturing an electronic component, wherein in the fourth step, the bonding strength of the transfer substrate to the bonding member is smaller than the bonding strength of the first substrate to the base member.

前記第4工程において、前記接合部材に対する前記転写基板の接合強度は、前記第1基板と前記転写基板との間の接合強度の中で最も小さい、電子部品の製造方法。 A method for manufacturing an electronic component, wherein in the fourth step, the bonding strength of the transfer substrate to the bonding member is the smallest among the bonding strengths between the first substrate and the transfer substrate.

前記接合部材ペーストは、金属とフラックスを含む、電子部品の製造方法。 The joining member paste is a method for manufacturing an electronic component, which comprises a metal and a flux.

前記接合部材は、金属により構成される、電子部品の製造方法。 A method for manufacturing an electronic component, wherein the joining member is made of metal.

前記第3工程において、前記下地部材と前記接合部材とが金属接合を形成する、電子部品の製造方法。 A method for manufacturing an electronic component, wherein in the third step, the base member and the joining member form a metal joint.

前記第3工程において、前記接合部材ペーストに含まれていたフラックスが、前記接合部材を覆う、電子部品の製造方法。 A method for manufacturing an electronic component, in which the flux contained in the joining member paste covers the joining member in the third step.

前記フラックスを除去する工程をさらに備える、電子部品の製造方法。 A method for manufacturing an electronic component, further comprising a step of removing the flux.

前記転写基板の前記転写主面は、非金属材料により構成される、電子部品の製造方法。 A method for manufacturing an electronic component, wherein the transfer main surface of the transfer substrate is made of a non-metal material.

前記転写基板は、セラミックにより構成される、電子部品の製造方法。 The transfer substrate is a method for manufacturing an electronic component, which is made of ceramic.

前記転写基板は、ガラスにより構成される、電子部品の製造方法。 The transfer substrate is a method for manufacturing an electronic component, which is made of glass.

前記転写基板の前記転写主面は、前記第1基板の前記第1主面よりも表面粗さが小さい、電子部品の製造方法。 A method for manufacturing an electronic component, wherein the transfer main surface of the transfer substrate has a surface roughness smaller than that of the first main surface of the first substrate.

前記転写基板の前記転写主面は、前記第1基板の前記第1主面よりも平面度が小さい、電子部品の製造方法。 A method for manufacturing an electronic component, wherein the transfer main surface of the transfer substrate has a flatness smaller than that of the first main surface of the first substrate.

前記第2工程において、前記転写基板の前記転写主面における、前記接合部材ペーストを介して前記第1基板の前記第1主面と向かい合う領域は、前記第1基板の前記第1主面よりも平面度が小さい、電子部品の製造方法。 In the second step, the region of the transfer main surface of the transfer substrate facing the first main surface of the first substrate via the joining member paste is larger than that of the first main surface of the first substrate. A method for manufacturing electronic components with low flatness.

前記第1工程において、複数の前記下地部材を設け、
前記第3工程において、前記複数の下地部材のそれぞれに接触するように、複数の前記接合部材を形成する、電子部品の製造方法。
In the first step, a plurality of the base members are provided,
A method for manufacturing an electronic component, in which a plurality of the joining members are formed so as to come into contact with each of the plurality of base members in the third step.

前記複数の接合部材は、第1接合部材と、前記第1基板の前記第1主面を平面視したときに前記第1接合部材とは形状又は大きさが異なる第2接合部材と、を含む、電子部品の製造方法。 The plurality of joining members include a first joining member and a second joining member whose shape or size is different from that of the first joining member when the first main surface of the first substrate is viewed in a plan view. , Manufacturing method of electronic parts.

前記第2工程において、前記第1基板の前記第1主面を平面視したとき、前記接合部材ペーストは、前記下地部材の形状と重なるように設けられる、電子部品の製造方法。 A method for manufacturing an electronic component, wherein in the second step, when the first main surface of the first substrate is viewed in a plan view, the joining member paste is provided so as to overlap the shape of the base member.

前記接合部材ペーストの前記下地部材に対する濡れ性は、前記接合部材ペーストの前記転写基板の前記転写主面に対する濡れ性より大きい、電子部品の製造方法。 A method for manufacturing an electronic component, wherein the wettability of the joining member paste to the base member is greater than the wetting property of the joining member paste to the transfer main surface of the transfer substrate.

前記接合部材ペーストの前記下地部材に対する濡れ性は、前記接合部材ペーストの前記第1基板の前記第1主面に対する濡れ性より大きい、電子部品の製造方法。 A method for manufacturing an electronic component, wherein the wettability of the joining member paste to the base member is greater than the wetting property of the joining member paste to the first main surface of the first substrate.

前記第4工程において、前記接合部材の頂上部には、前記転写基板の前記転写主面の形状が転写されている、電子部品の製造方法。 A method for manufacturing an electronic component, wherein in the fourth step, the shape of the transfer main surface of the transfer substrate is transferred to the top of the joining member.

前記第1工程において、前記下地部材は、前記第1基板の前記第1主面を平面視したときに環状に設けられる、電子部品の製造方法。 A method for manufacturing an electronic component, wherein in the first step, the base member is provided in an annular shape when the first main surface of the first substrate is viewed in a plan view.

前記第1工程において、前記下地部材は、前記第1基板の前記第1主面を平面視したときに矩形環状に設けられ、
前記第2工程において、前記接合部材ペーストは、前記第1基板の前記第1主面を平面視したときに、前記下地部材の前記矩形環状の角部を避けて設けられる、電子部品の製造方法。
In the first step, the base member is provided in a rectangular ring shape when the first main surface of the first substrate is viewed in a plan view.
In the second step, the joining member paste is provided so as to avoid the rectangular annular corner portion of the base member when the first main surface of the first substrate is viewed in a plan view. ..

前記下地部材及び前記接合部材を介して、前記第1基板を第2基板に接合する第5工程をさらに備える、電子部品の製造方法。 A method for manufacturing an electronic component, further comprising a fifth step of joining the first substrate to a second substrate via the base member and the joining member.

前記第5工程において、前記第1基板と前記第2基板との間に前記下地部材及び前記接合部材によって囲まれた内部空間を形成する、電子部品の製造方法。 A method for manufacturing an electronic component, wherein in the fifth step, an internal space surrounded by the base member and the joining member is formed between the first substrate and the second substrate.

前記第1基板に電子素子を設ける工程をさらに備える、電子部品の製造方法。 A method for manufacturing an electronic component, further comprising a step of providing an electronic element on the first substrate.

前記電子素子は、封止された前記内部空間に配置されている、電子部品の製造方法。 A method for manufacturing an electronic component, wherein the electronic element is arranged in the sealed internal space.

前記電子素子は、前記第1基板の前記第1主面を平面視したときに略矩形形状を有する圧電振動素子である、電子部品の製造方法。 A method for manufacturing an electronic component, wherein the electronic element is a piezoelectric vibration element having a substantially rectangular shape when the first main surface of the first substrate is viewed in a plan view.

前記電子素子は、複数の振動腕部を有する音叉型水晶振動素子である、電子部品の製造方法。 A method for manufacturing an electronic component, wherein the electronic element is a tuning fork type crystal vibrating element having a plurality of vibrating arms.

前記下地部材は、前記第1基板に接触する密着層と、前記密着層と前記接合部材との間に位置する下地層と、を含む、電子部品の製造方法。 A method for manufacturing an electronic component, wherein the base member includes an adhesion layer in contact with the first substrate and a base layer located between the adhesion layer and the bonding member.

前記第1工程は、
セラミックのグリーンシートを設ける工程と、
前記グリーンシートの第1主面に密着層ペーストを設ける工程と、
前記グリーンシート及び前記密着層ペーストを焼成して、前記グリーンシートから前記第1基板を形成し且つ前記密着層ペーストから前記密着層を形成する工程と、
前記密着層に下地層をめっき形成する工程と、
を含む、電子部品の製造方法。
The first step is
The process of installing a ceramic green sheet and
The step of providing the adhesion layer paste on the first main surface of the green sheet and
A step of firing the green sheet and the adhesion layer paste to form the first substrate from the green sheet and forming the adhesion layer from the adhesion layer paste.
The step of plating and forming the base layer on the adhesion layer,
Manufacturing methods for electronic components, including.

反り形状の第1主面を有する第1基板と、
前記第1基板の前記第1主面側に設けられ、第2基板と接合されることとなる頂上部を有する接合部材と、
を備え、
前記接合部材の頂上部は平面内に設けられている、電子部品。
A first substrate having a warped first main surface and
A joining member provided on the first main surface side of the first substrate and having a top portion to be joined to the second substrate.
With
An electronic component in which the top of the joining member is provided in a plane.

第1主面を有する第1基板と、
前記第1基板の前記第1主面側に設けられ、頂上部を有する接合部材と、
を備え、
前記接合部材の前記頂上部は、露出されており且つ平面形状である、電子部品。
A first substrate having a first main surface and
A joining member provided on the first main surface side of the first substrate and having a top portion,
With
An electronic component in which the top of the joining member is exposed and has a planar shape.

前記頂上部の平面度は、前記第1基板の前記第1主面の平面度の40%以下である、電子部品。 An electronic component whose top flatness is 40% or less of the flatness of the first main surface of the first substrate.

前記頂上部の平面度は、9.0μm以下である、電子部品。 An electronic component having a top flatness of 9.0 μm or less.

前記頂上部の平面度は、5.0μm以下である、電子部品。 An electronic component having a top flatness of 5.0 μm or less.

前記接合部材の前記第1基板側の底面の幅に対して、前記頂上部の幅は30%以上である、電子部品。 An electronic component in which the width of the top portion is 30% or more with respect to the width of the bottom surface of the joining member on the first substrate side.

前記第1基板は、焼結体により構成されたセラミック基板であり、
前記第1基板の前記第1主面と前記接合部材との間には、密着層を含む下地部材が設けられている、電子部品。
The first substrate is a ceramic substrate composed of a sintered body.
An electronic component in which a base member including an adhesion layer is provided between the first main surface of the first substrate and the joining member.

前記密着層は、焼結金属であり、前記セラミック基板と接触している、の電子部品。 An electronic component in which the adhesion layer is a sintered metal and is in contact with the ceramic substrate.

前記第1基板の前記第1主面は、反り形状を有している、電子部品。 The first main surface of the first substrate is an electronic component having a warped shape.

前記第1基板の前記第1主面の平面度は、10μm以上である、電子部品。 An electronic component having a flatness of 10 μm or more on the first main surface of the first substrate.

前記接合部材は、前記第1基板の前記第1主面を平面視したときに環状に設けられている、電子部品。 The joining member is an electronic component that is provided in an annular shape when the first main surface of the first substrate is viewed in a plan view.

前記接合部材は、前記第1基板の前記第1主面を平面視したときに矩形環状に設けられている、電子部品。 The joining member is an electronic component provided in a rectangular ring shape when the first main surface of the first substrate is viewed in a plan view.

前記第1基板の前記第1主面を平面視したとき、形状又は大きさが異なる複数の前記接合部材を備えている、電子部品。 An electronic component comprising a plurality of the joining members having different shapes or sizes when the first main surface of the first substrate is viewed in a plan view.

第1主面を有する第1基板と、
前記第1基板の前記第1主面側に設けられ、少なくとも3つの頂上部を有する複数の接合部材と、
を備え、
前記少なくとも3つの頂上部の平面度は、前記第1基板の前記第1主面の平面度の40%以下である、電子部品。
A first substrate having a first main surface and
A plurality of joining members provided on the first main surface side of the first substrate and having at least three tops, and a plurality of joining members.
With
An electronic component in which the flatness of at least three tops is 40% or less of the flatness of the first main surface of the first substrate.

第1主面を有する第1基板と、
前記第1基板の前記第1主面側に設けられ、少なくとも3つの頂上部を有する複数の接合部材と、
を備え、
前記少なくとも3つの頂上部の平面度は、9.0μm以下である、電子部品。
A first substrate having a first main surface and
A plurality of joining members provided on the first main surface side of the first substrate and having at least three tops, and a plurality of joining members.
With
An electronic component having a flatness of at least three tops of 9.0 μm or less.

前記少なくとも3つの頂上部の平面度は、5.0μm以下である、電子部品。 An electronic component having a flatness of at least three tops of 5.0 μm or less.

第1主面を有する第1基板と、
前記第1基板の前記第1主面側に設けられ、少なくとも3つの頂上部を有する複数の接合部材と、
を備え、
前記少なくとも3つの頂上部は、露出されており且つ平面形状である、電子部品。
A first substrate having a first main surface and
A plurality of joining members provided on the first main surface side of the first substrate and having at least three tops, and a plurality of joining members.
With
An electronic component whose at least three tops are exposed and planar.

前記複数の接合部材の前記第1基板側の底面の幅に対して、前記少なくとも3つの頂上部の幅は、30%以上である、電子部品。 An electronic component in which the width of at least three tops is 30% or more with respect to the width of the bottom surface of the plurality of joining members on the first substrate side.

前記第1基板と前記接合部材との間に設けられた下地部材をさらに備え、
前記接合部材の前記下地部材に対する接合強度は、前記接合部材の前記第1基板に対する接合強度よりも大きい、電子部品。
A base member provided between the first substrate and the joining member is further provided.
An electronic component in which the joining strength of the joining member with respect to the base member is greater than the joining strength of the joining member with respect to the first substrate.

前記接合部材は、前記下地部材と合金を形成している、電子部品。 The joining member is an electronic component forming an alloy with the base member.

前記接合部材の材料は、金属のみである、電子部品。 An electronic component in which the material of the joining member is only metal.

前記第1基板は、前記第1主面に設けられた電極パッドを備え、
前記接合部材は、前記電極パッド上に配置されている、電子部品。
The first substrate includes an electrode pad provided on the first main surface.
The joining member is an electronic component arranged on the electrode pad.

前記第1基板に電子素子が設けられている、電子部品。 An electronic component in which an electronic element is provided on the first substrate.

前記電子素子は、圧電振動素子である、電子部品。 The electronic element is an electronic component that is a piezoelectric vibration element.

前記電子素子は、前記第1基板の前記第1主面側に設けられ、
前記接合部材のすくなくとも1つは、前記第1基板の前記第1主面を平面視したとき、前記電子素子を囲む枠状に設けられている、電子部品。
The electronic element is provided on the first main surface side of the first substrate.
At least one of the joining members is an electronic component provided in a frame shape surrounding the electronic element when the first main surface of the first substrate is viewed in a plan view.

以上説明したように、本発明によれば、接合部材の形状の安定を図ることができる電子部品の製造方法を提供することが可能となる。 As described above, according to the present invention, it is possible to provide a method for manufacturing an electronic component capable of stabilizing the shape of a joining member.

なお、以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るととともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、各実施形態が備える各要素及びその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、各実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。 It should be noted that the embodiments described above are for facilitating the understanding of the present invention, and are not for limiting and interpreting the present invention. The present invention can be modified / improved without departing from the spirit of the present invention, and the present invention also includes an equivalent thereof. That is, those skilled in the art with appropriate design changes to each embodiment are also included in the scope of the present invention as long as they have the features of the present invention. For example, each element included in each embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those exemplified, and can be changed as appropriate. In addition, the elements included in each embodiment can be combined as much as technically possible, and the combination thereof is also included in the scope of the present invention as long as the features of the present invention are included.

1…水晶振動子 10…水晶振動素子
20…第2基板 21…天面部 22…側壁部 23…対向面
30,130…第1基板 31,131…基体
32a,132a…第1主面 32b,132b…第2主面
33a,33b,133a,133b…電極パッド
37,137…下地部材 151…転写基板 152a…転写主面
160…メタルマスク 161…開口部 161a…第1スリット
161b…第2スリット 161c…第3スリット 161d…第4スリット
163a,163b,163c,163d…ブリッジ部 165…スキージ
40,140…接合部材 141a…第1部分 141b…第2部分
141c…第3部分 141d…第4部分
143a,143b,143c,143d…角部
1 ... Crystal oscillator 10 ... Crystal vibrating element 20 ... Second substrate 21 ... Top surface 22 ... Side wall 23 ... Facing surfaces 30, 130 ... First substrate 31,131 ... Bases 32a, 132a ... First main surfaces 32b, 132b ... Second main surface 33a, 33b, 133a, 133b ... Electrode pad 37, 137 ... Base member 151 ... Transfer substrate 152a ... Transfer main surface 160 ... Metal mask 161 ... Opening 161a ... First slit 161b ... Second slit 161c ... 3rd slit 161d ... 4th slit 163a, 163b, 163c, 163d ... Bridge part 165 ... Squeegee 40, 140 ... Joining member 141a ... 1st part 141b ... 2nd part 141c ... 3rd part 141d ... 4th part 143a, 143b , 143c, 143d ... Corner

Claims (22)

下地部材を第1基板の第1主面に設ける第1工程と、
前記第1基板の前記第1主面と転写基板の転写主面とによって、前記下地部材及び接合部材ペーストを挟む第2工程と、
前記接合部材ペーストが前記第1基板と前記転写基板とに挟まれた状態のまま、前記下地部材に接合された閉じた枠状を有する接合部材を形成する第3工程であって、前記接合部材は封止性を有する金属材料または絶縁性材料からなる第3工程と、
前記下地部材に接合された前記接合部材から前記転写基板を剥離する第4工程と、
を備え、
前記第3工程は、
前記接合部材ペーストを加熱溶融して、前記接合部材ペースト中の金属成分を液相状態にする工程と、
前記接合部材ペースト中の金属成分を液相状態から固相状態にして前記接合部材を形成する工程と、
を有することを特徴とする、電子部品の製造方法。
The first step of providing the base member on the first main surface of the first substrate, and
A second step of sandwiching the base member and the joining member paste between the first main surface of the first substrate and the transfer main surface of the transfer substrate.
This is a third step of forming a joint member having a closed frame shape joined to the base member while the joining member paste is sandwiched between the first substrate and the transfer substrate. Is a third step consisting of a sealing metal material or an insulating material,
A fourth step of peeling the transfer substrate from the joining member joined to the base member, and
With
The third step is
A step of heating and melting the joining member paste to bring the metal component in the joining member paste into a liquid phase state,
The step of forming the joining member by changing the metal component in the joining member paste from the liquid phase state to the solid phase state.
A method for manufacturing an electronic component, which comprises.
前記第3工程は、前記接合部材ペースト中のフラックスを前記金属成分の外側に位置させる、
請求項1に記載の電子部品の製造方法。
In the third step, the flux in the joining member paste is positioned outside the metal component.
The method for manufacturing an electronic component according to claim 1.
前記第3工程は、前記接合部材ペーストを加熱溶融した後に、前記接合部材ペーストを冷却する工程を備える、
請求項1又は2に記載の電子部品の製造方法。
The third step includes a step of cooling the joining member paste after heating and melting the joining member paste.
The method for manufacturing an electronic component according to claim 1 or 2.
前記第4工程において、前記接合部材に対する前記転写基板の接合強度は、前記接合部材に対する前記下地部材の接合強度よりも小さい、
請求項1から3のいずれか1項に記載の電子部品の製造方法。
In the fourth step, the bonding strength of the transfer substrate to the bonding member is smaller than the bonding strength of the base member to the bonding member.
The method for manufacturing an electronic component according to any one of claims 1 to 3.
前記第4工程において、前記接合部材に対する前記転写基板の接合強度は、前記下地部材に対する前記第1基板の接合強度よりも小さい、
請求項1から4のいずれか1項に記載の電子部品の製造方法。
In the fourth step, the bonding strength of the transfer substrate to the bonding member is smaller than the bonding strength of the first substrate to the base member.
The method for manufacturing an electronic component according to any one of claims 1 to 4.
前記第4工程において、前記接合部材に対する前記転写基板の接合強度は、前記第1基板と前記転写基板との間の接合強度の中で最も小さい、
請求項1から5のいずれか1項に記載の電子部品の製造方法。
In the fourth step, the bonding strength of the transfer substrate to the bonding member is the smallest among the bonding strengths between the first substrate and the transfer substrate.
The method for manufacturing an electronic component according to any one of claims 1 to 5.
前記転写基板の前記転写主面は、前記第1基板の前記第1主面よりも表面粗さが小さい、
請求項1から6のいずれか1項に記載の電子部品の製造方法。
The surface roughness of the transfer main surface of the transfer substrate is smaller than that of the first main surface of the first substrate.
The method for manufacturing an electronic component according to any one of claims 1 to 6.
前記転写基板の前記転写主面は、前記第1基板の前記第1主面よりも平面度が小さい、
請求項1から7のいずれか1項に記載の電子部品の製造方法。
The transfer main surface of the transfer substrate has a smaller flatness than the first main surface of the first substrate.
The method for manufacturing an electronic component according to any one of claims 1 to 7.
前記第2工程において、前記転写基板の前記転写主面における、前記接合部材ペーストを介して前記第1基板の前記第1主面と向かい合う領域は、前記第1基板の前記第1主面よりも平面度が小さい、
請求項1から8のいずれか1項に記載の電子部品の製造方法。
In the second step, the region of the transfer main surface of the transfer substrate facing the first main surface of the first substrate via the joining member paste is larger than that of the first main surface of the first substrate. Small flatness,
The method for manufacturing an electronic component according to any one of claims 1 to 8.
前記第1工程において、複数の前記下地部材を設け、
前記第3工程において、前記複数の下地部材のそれぞれに接触するように、複数の前記接合部材を形成する、
請求項1から9のいずれか1項に記載の電子部品の製造方法。
In the first step, a plurality of the base members are provided,
In the third step, the plurality of joint members are formed so as to come into contact with each of the plurality of base members.
The method for manufacturing an electronic component according to any one of claims 1 to 9.
前記複数の接合部材は、第1接合部材と、前記第1基板の前記第1主面を平面視したときに前記第1接合部材とは形状又は大きさが異なる第2接合部材と、を含む、
請求項10に記載の電子部品の製造方法。
The plurality of joining members include a first joining member and a second joining member whose shape or size is different from that of the first joining member when the first main surface of the first substrate is viewed in a plan view. ,
The method for manufacturing an electronic component according to claim 10.
前記第2工程において、前記第1基板の前記第1主面を平面視したとき、前記接合部材ペーストは、前記下地部材の形状と重なるように設けられる、
請求項1から11のいずれか1項に記載の電子部品の製造方法。
In the second step, when the first main surface of the first substrate is viewed in a plan view, the joining member paste is provided so as to overlap the shape of the base member.
The method for manufacturing an electronic component according to any one of claims 1 to 11.
前記接合部材ペーストの前記下地部材に対する濡れ性は、前記接合部材ペーストの前記転写基板の前記転写主面に対する濡れ性より大きい、
請求項1から12のいずれか1項に記載の電子部品の製造方法。
The wettability of the joining member paste to the base member is greater than the wetting property of the joining member paste to the transfer main surface of the transfer substrate.
The method for manufacturing an electronic component according to any one of claims 1 to 12.
前記接合部材ペーストの前記下地部材に対する濡れ性は、前記接合部材ペーストの前記第1基板の前記第1主面に対する濡れ性より大きい、
請求項1から13のいずれか1項に記載の電子部品の製造方法。
The wettability of the joining member paste to the base member is greater than the wetting property of the joining member paste to the first main surface of the first substrate.
The method for manufacturing an electronic component according to any one of claims 1 to 13.
前記第4工程において、前記接合部材の頂上部には、前記転写基板の前記転写主面の形状が転写されている、
請求項1から14のいずれか1項に記載の電子部品の製造方法。
In the fourth step, the shape of the transfer main surface of the transfer substrate is transferred to the top of the joining member.
The method for manufacturing an electronic component according to any one of claims 1 to 14.
前記第1工程において、前記下地部材は、前記第1基板の前記第1主面を平面視したときに環状に設けられる、
請求項1から15のいずれか1項に記載の電子部品の製造方法。
In the first step, the base member is provided in an annular shape when the first main surface of the first substrate is viewed in a plan view.
The method for manufacturing an electronic component according to any one of claims 1 to 15.
前記第1工程において、前記下地部材は、前記第1基板の前記第1主面を平面視したと
きに矩形環状に設けられ、
前記第2工程において、前記接合部材ペーストは、前記第1基板の前記第1主面を平面
視したときに、前記下地部材の前記矩形環状の角部を避けて設けられる、
請求項1から16のいずれか1項に記載の電子部品の製造方法。
In the first step, the base member is provided in a rectangular ring shape when the first main surface of the first substrate is viewed in a plan view.
In the second step, the joining member paste is provided so as to avoid the rectangular annular corner portion of the base member when the first main surface of the first substrate is viewed in a plan view.
The method for manufacturing an electronic component according to any one of claims 1 to 16.
前記接合部材ペーストの体積をV1、前記下地部材の前記矩形環状の角部にも設けたと仮定した場合の前記接合部材ペーストの体積をV2としたとき、
0.80≦V1/V2≦0.95
を満たす、請求項17に記載の電子部品の製造方法。
When it is assumed that the volume of the joining member paste is V1 and the volume of the joining member paste is V2 when it is assumed that the joining member paste is also provided at the rectangular annular corner portion of the base member.
0.80 ≤ V1 / V2 ≤ 0.95
The method for manufacturing an electronic component according to claim 17, which satisfies the above conditions.
前記第2工程において、前記接合部材ペーストは、互いに離れた第1部分、第2部分、第3部分及び第4部分を有し、
前記第1部分及び前記第3部分は前記下地部材の一対の長辺に対応し、
前記第2部分及び前記第4部分は前記下地部材の一対の短辺に対応し、
前記接合部材ペーストの厚みをT、短手方向の幅をA、前記第1部分及び前記第3部分の長手方向の長さをL1、それに角部を含めた長さをL2、前記第2部分及び前記第4部分の長手方向の長さをW1、それに角部を含めた長さをW2としたとき、
0.80≦(L1+W1)/(W2+L2−2×A)≦0.95
を満たす、請求項17に記載の電子部品の製造方法。
In the second step, the joining member paste has a first portion, a second portion, a third portion and a fourth portion separated from each other.
The first portion and the third portion correspond to a pair of long sides of the base member.
The second part and the fourth part correspond to a pair of short sides of the base member, and correspond to the pair of short sides.
The thickness of the joining member paste is T, the width in the lateral direction is A, the length of the first portion and the third portion in the longitudinal direction is L1, the length including the corners is L2, and the second portion. And when the length of the fourth part in the longitudinal direction is W1 and the length including the corners is W2,
0.80 ≦ (L1 + W1) / (W2 + L2-2 × A) ≦ 0.95
The method for manufacturing an electronic component according to claim 17, which satisfies the above conditions.
0.86≦(L1+W1)/(W2+L2−2×A)≦0.92
を満たす、請求項19に記載の電子部品の製造方法。
0.86 ≦ (L1 + W1) / (W2 + L2-2 × A) ≦ 0.92
The method for manufacturing an electronic component according to claim 19.
前記下地部材は、前記第1基板に接触する密着層と、前記密着層と前記接合部材との間に位置する下地層と、を含む、
請求項1から20のいずれか1項に記載の電子部品の製造方法。
The base member includes an adhesion layer in contact with the first substrate and a base layer located between the adhesion layer and the bonding member.
The method for manufacturing an electronic component according to any one of claims 1 to 20.
前記第1工程は、
セラミックのグリーンシートを設ける工程と、
前記グリーンシートの第1主面に密着層ペーストを設ける工程と、
前記グリーンシート及び前記密着層ペーストを焼成して、前記グリーンシートから前記第1基板を形成し且つ前記密着層ペーストから前記密着層を形成する工程と、
前記密着層に下地層をめっき形成する工程と、
を含む、
請求項21に記載の電子部品の製造方法。
The first step is
The process of installing a ceramic green sheet and
The step of providing the adhesion layer paste on the first main surface of the green sheet and
A step of firing the green sheet and the adhesion layer paste to form the first substrate from the green sheet and forming the adhesion layer from the adhesion layer paste.
The step of plating and forming the base layer on the adhesion layer,
including,
The method for manufacturing an electronic component according to claim 21.
JP2018562470A 2017-01-19 2018-01-19 Electronic components and manufacturing methods for electronic components Active JP6916471B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017007734 2017-01-19
JP2017007734 2017-01-19
PCT/JP2018/001689 WO2018135650A1 (en) 2017-01-19 2018-01-19 Electronic component and method for producing electronic component

Publications (2)

Publication Number Publication Date
JPWO2018135650A1 JPWO2018135650A1 (en) 2019-12-12
JP6916471B2 true JP6916471B2 (en) 2021-08-11

Family

ID=62908959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018562470A Active JP6916471B2 (en) 2017-01-19 2018-01-19 Electronic components and manufacturing methods for electronic components

Country Status (3)

Country Link
US (2) US11722112B2 (en)
JP (1) JP6916471B2 (en)
WO (1) WO2018135650A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10512167B2 (en) * 2017-09-19 2019-12-17 Schlage Lock Company Llc Removing unwanted flux from an integrated circuit package
CN111362715A (en) * 2020-03-16 2020-07-03 研创科技(惠州)有限公司 Packaging method based on nano metal

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3051598B2 (en) * 1993-05-13 2000-06-12 京セラ株式会社 Ag brazed seal ring and its manufacturing method
JPH07147348A (en) * 1993-11-26 1995-06-06 Shinko Electric Ind Co Ltd Package for semiconductor device and its manufacture
JP3435034B2 (en) * 1997-09-26 2003-08-11 京セラ株式会社 Circuit board
JP3938024B2 (en) * 2002-11-27 2007-06-27 セイコーエプソン株式会社 Semiconductor chip mounting method, electronic device and electronic apparatus
JP2004186995A (en) 2002-12-03 2004-07-02 Citizen Watch Co Ltd Manufacturing method of package for electronic device
JP2004207534A (en) * 2002-12-25 2004-07-22 Kyocera Corp Wiring board and electronic device using it
JP2005259866A (en) * 2004-03-10 2005-09-22 Seiko Epson Corp Method for manufacturing substrate joined body, electronic element transferring substrate, optoelectronic device and electronic apparatus
JP2005259886A (en) 2004-03-10 2005-09-22 Matsushita Electric Ind Co Ltd Solid-state image pickup device and its manufacturing method
JP2006286847A (en) * 2005-03-31 2006-10-19 Eastern Co Ltd Method of manufacturing substrate of semiconductor apparatus
JP5116268B2 (en) * 2005-08-31 2013-01-09 キヤノン株式会社 Multilayer semiconductor device and manufacturing method thereof
JP4719009B2 (en) * 2006-01-13 2011-07-06 ルネサスエレクトロニクス株式会社 Substrate and semiconductor device
JP5155890B2 (en) * 2008-06-12 2013-03-06 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
JP5002696B2 (en) 2009-12-09 2012-08-15 日本電波工業株式会社 Surface-mount crystal unit and method for manufacturing the same
US10381162B2 (en) * 2010-05-26 2019-08-13 Kemet Electronics Corporation Leadless stack comprising multiple components
JP2012164965A (en) 2011-01-21 2012-08-30 Ngk Spark Plug Co Ltd Wiring board and manufacturing method of the same
WO2013047807A1 (en) * 2011-09-30 2013-04-04 株式会社大真空 Electronic component package, sealing member for electronic component package, and method for manufacturing sealing member for electronic component package
JP5893351B2 (en) * 2011-11-10 2016-03-23 キヤノン株式会社 Printed circuit board
JP6008088B2 (en) * 2012-03-30 2016-10-19 セイコーエプソン株式会社 Electronic device, method for manufacturing electronic device, and electronic apparatus
JP6124521B2 (en) * 2012-07-03 2017-05-10 Ngkエレクトロデバイス株式会社 Power module substrate manufacturing method
JP2014027113A (en) * 2012-07-26 2014-02-06 Murata Mfg Co Ltd Manufacturing method of electronic component
KR101907907B1 (en) 2014-01-27 2018-10-15 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 Package formation method and mems package
JP6388274B2 (en) * 2014-02-12 2018-09-12 セイコーインスツル株式会社 Manufacturing method of electronic component device and electronic component device
JP6230520B2 (en) * 2014-10-29 2017-11-15 キヤノン株式会社 Printed circuit board and electronic device
JP2017011045A (en) * 2015-06-19 2017-01-12 日本特殊陶業株式会社 Ceramic package, method of manufacturing the same, and method of manufacturing electronic component device
JP6780994B2 (en) * 2016-09-22 2020-11-04 日本電波工業株式会社 Solder materials and electronic components

Also Published As

Publication number Publication date
US11722112B2 (en) 2023-08-08
US20190341900A1 (en) 2019-11-07
US20190341908A1 (en) 2019-11-07
WO2018135650A1 (en) 2018-07-26
JPWO2018135650A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
TWI445223B (en) Surface mount crystal oscillator and manufacturing method of the same
JP6974787B2 (en) Piezoelectric oscillators, module parts and their manufacturing methods
JP6916471B2 (en) Electronic components and manufacturing methods for electronic components
US8499443B2 (en) Method of manufacturing a piezoelectric vibrator
JP2016158147A (en) Crystal element and crystal device
JP2016116054A (en) Crystal oscillator
JP6457217B2 (en) Piezoelectric device
JP2014086842A (en) Piezoelectric vibration device
JP2017130827A (en) Piezoelectric device and method of manufacturing the same
JP2010166626A (en) Piezoelectric device
WO2018070336A1 (en) Piezoelectric vibrator, piezoelectric oscillation device, and production methods therefor
JP6574647B2 (en) Crystal device
JP2014216753A (en) Bonded-type crystal oscillator
JP5805471B2 (en) Piezoelectric device
JP2018006810A (en) Crystal element and manufacturing method thereof
JP5075448B2 (en) Method for manufacturing piezoelectric oscillator
JP6687465B2 (en) Crystal device manufacturing method
JP6076219B2 (en) Crystal device
JP2014236301A (en) Quartz device
JP2015142218A (en) crystal device
JP2016103747A (en) Crystal oscillator
JP6652423B2 (en) Piezoelectric device and manufacturing method thereof
JP2016072650A (en) Piezoelectric device
JP6334101B2 (en) Crystal device
JP5995352B2 (en) Crystal device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210629

R150 Certificate of patent or registration of utility model

Ref document number: 6916471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150