JP6916425B2 - Manufacturing method of ultra-small cellulose - Google Patents

Manufacturing method of ultra-small cellulose Download PDF

Info

Publication number
JP6916425B2
JP6916425B2 JP2015237570A JP2015237570A JP6916425B2 JP 6916425 B2 JP6916425 B2 JP 6916425B2 JP 2015237570 A JP2015237570 A JP 2015237570A JP 2015237570 A JP2015237570 A JP 2015237570A JP 6916425 B2 JP6916425 B2 JP 6916425B2
Authority
JP
Japan
Prior art keywords
treatment
enzyme
pulp
particle size
beating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015237570A
Other languages
Japanese (ja)
Other versions
JP2017099364A (en
Inventor
浩美 内村
浩美 内村
晃大 秀野
晃大 秀野
淳也 大川
淳也 大川
一絋 松末
一絋 松末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daio Paper Corp
Ehime University NUC
Original Assignee
Daio Paper Corp
Ehime University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daio Paper Corp, Ehime University NUC filed Critical Daio Paper Corp
Priority to JP2015237570A priority Critical patent/JP6916425B2/en
Publication of JP2017099364A publication Critical patent/JP2017099364A/en
Application granted granted Critical
Publication of JP6916425B2 publication Critical patent/JP6916425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、極小セルロースの製造方法に関する。 The present invention relates to a method for producing ultra-small cellulose.

近年、物質をナノメートルレベルまで微細化し、物質が持つ従来の性状とは異なる新たな物性を得ることを目的としたナノテクノロジーが注目されている。化学処理、粉砕処理等のナノテクノロジーによりセルロース系原料から製造される極小セルロースは、強度、弾性、熱安定性等に優れているため、ろ過材、ろ過助剤、イオン交換体の基材、クロマトグラフィー分析機器の充填材、樹脂およびゴムの配合用充填剤等としての工業上の用途や、口紅、粉末化粧料、乳化化粧料等の化粧品の配合剤の用途に用いられている。また、極小セルロースは、水系分散性に優れているため、食品、化粧品、塗料等の粘度の保持剤、食品原料生地の強化剤、水分保持剤、食品安定化剤、低カロリー添加物、乳化安定化助剤などの多くの用途における利用が期待されている。 In recent years, nanotechnology has been attracting attention for the purpose of refining substances to the nanometer level and obtaining new physical properties different from the conventional properties of substances. Ultra-small cellulose produced from cellulosic raw materials by nanotechnology such as chemical treatment and crushing treatment has excellent strength, elasticity, thermal stability, etc., so it is a filter medium, filter aid, base material of ion exchanger, chromatograph. It is used in industrial applications such as fillers for chromatographic analysis equipment and fillers for blending resins and rubbers, and as blends for cosmetics such as lipsticks, powdered cosmetics, and emulsified cosmetics. In addition, since ultra-small cellulose has excellent water-based dispersibility, it is a viscosity-retaining agent for foods, cosmetics, paints, etc., a toughening agent for food raw material fabrics, a water-retaining agent, a food stabilizer, a low-calorie additive, and an emulsion stabilization agent. It is expected to be used in many applications such as chemical aids.

極小セルロースの製造方法として、特許文献1には、セルロース繊維を気相中でオゾン処理した後、水に分散し、得られたセルロース繊維の水懸濁液を粉砕処理する方法が提案されており、このようなオゾン処理を施すことで、酸化反応と共に繊維を膨潤させることができ、その後の粉砕処理で効率的に微細化を行うことができるとされている。 As a method for producing ultra-small cellulose, Patent Document 1 proposes a method in which cellulose fibers are ozone-treated in a gas phase, dispersed in water, and the obtained aqueous suspension of cellulose fibers is pulverized. It is said that by applying such ozone treatment, the fibers can be swelled together with the oxidation reaction, and the fibers can be efficiently refined by the subsequent pulverization treatment.

特開2010−254726号公報JP-A-2010-254726

しかし、特許文献1に記載の方法は、極小セルロースを得るために何度も機械的微細化処理をしなければならず、機械的微細化処理の負担が大きいものである。 However, the method described in Patent Document 1 requires mechanical miniaturization treatment many times in order to obtain extremely small cellulose, which imposes a heavy burden on the mechanical miniaturization treatment.

本発明の課題は、気相反応で漂白されたパルプを用いて極小セルロースを製造する方法であって、機械的微細化処理の負担が少ない製造方法を提供することである。 An object of the present invention is to provide a method for producing ultra-small cellulose using pulp bleached by a vapor phase reaction, which reduces the burden of mechanical miniaturization treatment.

この課題解決のため、機械的微細化処理の前処理を試みたところ、意外なことに、所定範囲のパルプ濃度で酵素処理をした後に叩解処理をすると、叩解処理後に好適なミクロフィブリルセルロース繊維が得られ、このミクロフィブリルセルロース繊維を用いて機械的微細化処理すると、少ない負担で極小セルロースが製造できることがわかった。 In order to solve this problem, a pretreatment for mechanical micronization treatment was attempted. Surprisingly, when the beating treatment was performed after the enzyme treatment at a pulp concentration within a predetermined range, suitable microfibril cellulose fibers were obtained after the beating treatment. It was found that when the microfibrillose fibers were used for mechanical micronization treatment, extremely small cellulose could be produced with a small burden.

本発明は、気相反応で漂白されたパルプをパルプ濃度8〜17質量%で酵素処理する工程、酵素処理されたパルプを叩解処理する工程、および叩解処理により得られたミクロフィブリルセルロース繊維を機械的に微細化処理する工程を含む、極小セルロースの製造方法に関する。 The present invention mechanically uses a step of enzymatically treating pulp bleached by a vapor phase reaction at a pulp concentration of 8 to 17% by mass, a step of beating the enzyme-treated pulp, and a microfibril cellulose fiber obtained by the beating treatment. The present invention relates to a method for producing ultra-small cellulose, which comprises a step of finely reducing the size of the cellulose.

本発明によれば、気相反応で漂白されたパルプを用いて極小セルロースを製造する方法であって、機械的微細化処理の負担が少ない製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing ultra-small cellulose using pulp bleached by a vapor phase reaction, which reduces the burden of mechanical miniaturization treatment.

実施例1における酵素処理後のパルプの写真である。It is a photograph of the pulp after the enzyme treatment in Example 1. 実施例1における叩解処理後のミクロフィブリルセルロース繊維の写真である。It is a photograph of the microfibrillose fiber after the beating treatment in Example 1. 実施例4における機械的微細化処理後の極小セルロースの写真である。It is a photograph of the extremely small cellulose after the mechanical miniaturization treatment in Example 4. ミクロフィブリルセルロース繊維の疑似粒度分布曲線体積平均粒子径を示すグラフである。It is a graph which shows the pseudo particle size distribution curve volume average particle diameter of the microfibril cellulose fiber.

本実施形態の製造方法は、酵素処理する工程、叩解処理する工程、および微細化処理する工程を含む(以下、「酵素処理工程」、「叩解処理工程」、「微細化処理工程」ともいう)。 The production method of the present embodiment includes a step of enzyme treatment, a step of beating, and a step of miniaturization (hereinafter, also referred to as "enzyme treatment step", "beating treatment", and "miniaturization treatment step"). ..

酵素処理工程は、気相反応で漂白されたパルプを酵素処理する工程である。 The enzyme treatment step is a step of enzymatically treating pulp bleached by a gas phase reaction.

気相反応で漂白(脱リグニン処理)されたパルプとしては、オゾンを用いたオゾン漂白により処理されたパルプが好適な手段として例示される。オゾンの水への溶解度は酸素に比べ数倍から10倍大きいと言われているものの、従来漂白に用いられていた塩素を比べると約1/10であり水に対して難溶性と言える。従ってオゾン漂白は、パルプ濃度が低濃度の場合、セルロースを覆う水の層が厚く、オゾンの水への溶解度が低いためオゾンの反応速度が遅くなる問題を有し、更に反応性の低いリグニンに対し強い酸化力を付与する手段として、原料パルプ濃度が25質量%以上の高濃度で、所謂気相反応でオゾンを原料パルプに対して反応させる気相反応で処理させることが好ましい。オゾン処理に置き換えて、酸素を用いた気相反応での漂白処理も好適に採用される。 As the pulp bleached (delignin treatment) by the vapor phase reaction, the pulp treated by ozone bleaching using ozone is exemplified as a preferable means. Although it is said that the solubility of ozone in water is several to 10 times higher than that of oxygen, it is about 1/10 of that of chlorine conventionally used for bleaching, and it can be said that it is sparingly soluble in water. Therefore, ozone bleaching has a problem that when the pulp concentration is low, the layer of water covering the cellulose is thick and the solubility of ozone in water is low, so that the reaction rate of ozone is slowed down. On the other hand, as a means for imparting strong oxidizing power, it is preferable to treat the raw material pulp at a high concentration of 25% by mass or more by a gas phase reaction in which ozone is reacted with the raw material pulp by a so-called gas phase reaction. Instead of ozone treatment, bleaching treatment by gas phase reaction using oxygen is also preferably adopted.

原料パルプは、植物由来の各種クラフトパルプや機械パルプが好適に用いられるが、脱リグニン処理を行なっても除去しきれないリグニンに対しても強い酸化力を持つオゾン処理が効果的に機能する広葉樹クラフトパルプ(LUKP)や針葉樹クラフトパルプ(NUKP)などのクラフトパルプ、特には、後段の酵素処理する工程、叩解処理する工程、機械的な微細化処理工程での処理性の観点から、広葉樹クラフトパルプ(LUKP)を使用することが好ましい。 As the raw material pulp, various plant-derived kraft pulps and mechanical pulps are preferably used, but broad-leaved trees in which ozone treatment, which has strong oxidizing power, effectively functions even for lignin that cannot be completely removed by delignin treatment. Kraft pulp such as kraft pulp (LUKP) and coniferous kraft pulp (NUKP), especially broadleaf kraft pulp from the viewpoint of processability in the subsequent enzyme treatment process, beating process, and mechanical miniaturization process. (LUKP) is preferably used.

オゾン処理としては特に制限されるものではないが、公知のオゾン発生装置を使用して、オゾン濃度10〜20質量%、オゾン添加率は、絶乾パルプ100質量部当たり好ましくは0.05〜2質量部、より好ましくは0.1〜1質量部、処理温度としても特に制約されるものではなく、0〜50℃の範囲で適宜調整される。オゾンとパルプの反応は早く、オゾン処理時間が一般的に数分間以内で済むため、気相反応でのオゾン処理時間は問題なく、反応温度が主因子となる。オゾン処理されたパルプとしては、広葉樹クラフトパルプ(LUKP)をオゾン処理した広葉樹晒クラフトパルプ(LBKP)が好ましい。 The ozone treatment is not particularly limited, but using a known ozone generator, the ozone concentration is 10 to 20% by mass, and the ozone addition rate is preferably 0.05 to 2 per 100 parts by mass of absolute dry pulp. The mass, more preferably 0.1 to 1 part by mass, and the treatment temperature are not particularly limited, and are appropriately adjusted in the range of 0 to 50 ° C. Since the reaction between ozone and pulp is fast and the ozone treatment time is generally within a few minutes, there is no problem with the ozone treatment time in the gas phase reaction, and the reaction temperature is the main factor. As the ozone-treated pulp, hardwood bleached kraft pulp (LBKP) obtained by ozone-treating hardwood kraft pulp (LUKP) is preferable.

酵素処理は、酵素がセルロースのβ−1,4−グルコシド結合を加水分解によって開裂し、解重合を引き起こす処理であり、その触媒としてはセルラーゼ系酵素、ヘミセルラーゼ系酵素などが挙げられ、セルラーゼ系酵素が好ましい。 Enzyme treatment is a treatment in which an enzyme cleaves the β-1,4-glucoside bond of cellulose by hydrolysis to cause depolymerization, and examples of the catalyst thereof include cellulase-based enzymes and hemicellulase-based enzymes. Enzymes are preferred.

セルラーゼ系酵素としては、トリコデルマ(Trichoderma、糸状菌)属、アクレモニウム(Acremonium、糸状菌)属、アスペルギルス(Aspergillus、糸状菌)属、ファネロケエテ(Phanerochaete、担子菌)属、トラメテス(Trametes、担子菌)属、フーミコラ(Humicola、糸状菌)属、バチルス(Bacillus、細菌)属、スエヒロタケ(Schizophyllum、担子菌)属、ストレプトミセス(Streptomyces、細菌)属、シュードモナス(Pseudomonas、細菌)属などが産生するセルラーゼ系酵素が挙げられ、種類が豊富で、産生性も高いため糸状菌セルラーゼ系酵素が特に好ましい。 Cellulase-based enzymes include the genus Trichoderma, the genus Acremonium, the genus Aspergillus, the genus Phanerochaete, and the genus Trametes. Cellulase system produced by the genus Humicola, Bacillus, Bacillus, Schizophyllum, Streptomyces, Pseudomonas, etc. Trichoderma cellulase-based enzymes are particularly preferable because they include enzymes, are abundant in variety, and have high productivity.

このようなセルラーゼ系酵素は、試薬や市販品として購入可能であり、CX7L(ジェネンコア社製)、FiberCare D(ノボザイム社製)などが挙げられる。 Such cellulase-based enzymes can be purchased as reagents or commercially available products, and examples thereof include CX7L (manufactured by Genecore) and FaberCare D (manufactured by Novozymes).

酵素処理時のパルプ濃度は、後述する叩解処理により得られるミクロフィブリルセルロース繊維の疑似粒度分布曲線体積平均粒子径を小さくする観点から、8〜17質量%であり、8〜14質量%が好ましく、9〜12質量%がより好ましい。 The pulp concentration during the enzyme treatment is 8 to 17% by mass, preferably 8 to 14% by mass, from the viewpoint of reducing the volume average particle size of the pseudo particle size distribution curve of the microfibril cellulose fibers obtained by the beating treatment described later. More preferably, 9 to 12% by mass.

本明細書において、ミクロフィブリルセルロース繊維の疑似粒度分布曲線体積平均粒子径は、ISO−13320(2009)に準拠し、粒度分布測定装置を用いて、レーザー回折法により測定される、ミクロフィブリルセルロース繊維の水分散液における個々の粒子径diおよび粒子体積Viを用いて、下記式(1)によって算出される平均値MVを指す。なお、ミクロフィブリルセルロース繊維は粒子状ではないため、ここでいう粒子径diおよび粒子体積Viとは、当該繊維を、粒子と仮定した測定により得られる値である。
疑似粒度分布曲線体積平均粒子径MV=Σ(di×Vi)/ΣVi (1)
In the present specification, the pseudo particle size distribution curve volume average particle diameter of the microfibril cellulose fiber conforms to ISO-13320 (2009) and is measured by a laser diffraction method using a particle size distribution measuring device. Refers to the average value MV calculated by the following formula (1) using the individual particle size di and particle volume Vi in the aqueous dispersion. Since the microfibril cellulose fiber is not in the form of particles, the particle diameter di and the particle volume Vi referred to here are values obtained by measurement assuming that the fiber is a particle.
Pseudo particle size distribution curve Volume average particle size MV = Σ (di × Vi) / ΣVi (1)

酵素処理時のパルプ濃度が8〜17質量%であると、叩解処理により得られるミクロフィブリルセルロース繊維の疑似粒度分布曲線体積平均粒子径が小さくなる理由は定かではないが、パルプ濃度が8質量%以上であると、水溶液中に遊離する酵素の量がパルプ繊維に吸着する量よりも少なくなるため、酵素による加水分解効果を十分に得ることが可能に成るためと考えられ、パルプ濃度が17質量%以下であると酵素とパルプ繊維の均一な混合を確保できるため、酵素による加水分解を抑制できるためと推定される。 When the pulp concentration at the time of enzyme treatment is 8 to 17% by mass, the reason why the pseudo particle size distribution curve volume average particle size of the microfibril cellulose fibers obtained by the beating treatment becomes small is not clear, but the pulp concentration is 8% by mass. It is considered that the above is because the amount of the enzyme liberated in the aqueous solution is smaller than the amount adsorbed on the pulp fiber, so that the hydrolysis effect by the enzyme can be sufficiently obtained, and the pulp concentration is 17 mass. When it is less than%, it is presumed that the uniform mixing of the enzyme and the pulp fiber can be ensured, and thus the hydrolysis by the enzyme can be suppressed.

酵素処理温度は、30〜60℃が好ましく、酵素の効果的な作用効果を得る観点から、40〜50℃がより好ましい。酵素処理温度は、処理液の温度であり、処理液とは、酵素処理の処理槽内で混合されるものを含む液を指す。即ち、気相反応で漂白されたパルプ、酵素、水などの混合液を指す。 The enzyme treatment temperature is preferably 30 to 60 ° C., and more preferably 40 to 50 ° C. from the viewpoint of obtaining effective action and effect of the enzyme. The enzyme treatment temperature is the temperature of the treatment liquid, and the treatment liquid refers to a liquid including those mixed in the treatment tank for enzyme treatment. That is, it refers to a mixed solution of pulp, enzyme, water, etc. bleached by a gas phase reaction.

酵素処理において気相反応で漂白されたパルプに酵素を作用させる方法は、例えば、気相反応で漂白されたパルプと酵素液(酵素を含む液)とを混合する態様により行われる。この場合において、処理液が、好ましくは酵素量(FPU)0.1〜300U/ml、より好ましくは1〜200U/mlの酵素液を、好ましくは0.01〜15質量%、より好ましくは0.1〜5質量%含むものとなるように混合することが好ましい。また、酵素液中に含まれる酵素のタンパク質濃度は、25〜230mg/mlが好ましく、90〜120mg/mlがより好ましい。本発明は酵素液を使用する当該態様に限定されるものではなく、公知の種々の態様を取り得る。 The method of allowing the enzyme to act on the pulp bleached by the gas phase reaction in the enzyme treatment is carried out, for example, by mixing the pulp bleached by the gas phase reaction with the enzyme solution (liquid containing the enzyme). In this case, the treatment solution is preferably an enzyme solution having an enzyme amount (FPU) of 0.1 to 300 U / ml, more preferably 1 to 200 U / ml, preferably 0.01 to 15% by mass, more preferably 0. It is preferable to mix them so as to contain 1 to 5% by mass. The protein concentration of the enzyme contained in the enzyme solution is preferably 25 to 230 mg / ml, more preferably 90 to 120 mg / ml. The present invention is not limited to the embodiment in which the enzyme solution is used, and various known embodiments can be taken.

酵素量(FPU)とは、1分間に1μmolの基質を変換する酵素量を1Uとする。測定手順としては、試験管にWhatman No.1 filterと0.05Mクエン酸ナトリウムバッファー(pH4.8)を入れ、希釈された酵素液を適量添加し混合する。50℃、1時間反応させた後、DNS試薬を添加して5分間沸騰させる。得られたサンプルを希釈して吸光光度計540nmで評価し、2mgグルコースを得る酵素の希釈率から、FPU/mlを算出する。 The amount of enzyme (FPU) is defined as 1 U of the amount of enzyme that converts 1 μmol of the substrate per minute. As a measurement procedure, Whatman No. 1 Add filter and 0.05 M sodium citrate buffer (pH 4.8), add an appropriate amount of diluted enzyme solution, and mix. After reacting at 50 ° C. for 1 hour, DNS reagent is added and boiled for 5 minutes. The obtained sample is diluted and evaluated with an absorptiometer at 540 nm, and FPU / ml is calculated from the dilution rate of the enzyme that obtains 2 mg glucose.

酵素処理時間は、1〜6時間が好ましく、酵素の活性を効果的に利用する観点と、酵素の加水分解による頭打ちを考慮し、2〜5時間がより好ましく、2〜3時間がさらに好ましい。 The enzyme treatment time is preferably 1 to 6 hours, more preferably 2 to 5 hours, still more preferably 2 to 3 hours, considering the viewpoint of effectively utilizing the activity of the enzyme and the peaking due to the hydrolysis of the enzyme.

好ましい実施態様として、混練処理する工程(以下、「混練処理工程」ともいう)をさらに含むことができる。 As a preferred embodiment, a step of kneading treatment (hereinafter, also referred to as “kneading treatment step”) can be further included.

混練処理工程は、酵素処理の前に、気相反応で漂白されたパルプを混練処理する工程である。混練処理をすることにより、より均一な酵素処理をすることができ、叩解処理により得られるミクロフィブリルセルロース繊維の疑似粒度分布曲線体積平均粒子径を小さくすることができる。 The kneading treatment step is a step of kneading the pulp bleached by the vapor phase reaction before the enzyme treatment. By performing the kneading treatment, a more uniform enzyme treatment can be performed, and the volume average particle diameter of the pseudo-particle size distribution curve of the microfibril cellulose fibers obtained by the beating treatment can be reduced.

混練処理は、特に制限されるものではないが、ニーダーおよびディスパーザーから選ばれる少なくとも1つ以上による混練、解繊手段にて対応することができる。 The kneading process is not particularly limited, but can be handled by kneading and defibration means by at least one selected from a kneader and a disperser.

混練処理時のパルプ濃度は、5〜20質量%が好ましく、充分な混練効果を得る観点から、6〜18質量%がより好ましく、8〜17質量%がさらに好ましい。 The pulp concentration during the kneading treatment is preferably 5 to 20% by mass, more preferably 6 to 18% by mass, and even more preferably 8 to 17% by mass from the viewpoint of obtaining a sufficient kneading effect.

叩解処理工程は、酵素処理されたパルプを叩解処理する工程である。 The beating process is a step of beating the enzyme-treated pulp.

叩解処理は、後述する微細化処理に適したミクロフィブリルセルロース繊維を得ることができるものであれば特に制限されるものではないが、加圧もしくは大気圧リファイニング装置として、シングルディスクリファイナー、コニカルディスクリファイナー、ダブルディスクリファイナー、ツインディスクリファイナー、ナイヤガラビーター、およびPFIミルから選ばれる1つ以上により処理することができる。 The beating treatment is not particularly limited as long as it can obtain microfibril cellulose fibers suitable for the miniaturization treatment described later, but is a single disc refiner or a conical disc refiner as a pressurizing or atmospheric pressure refining device. , Double disc refiner, twin disc refiner, Niagara beater, and one or more selected from PFI mills.

叩解処理時のパルプ濃度は、5〜20質量%が好ましく、充分な所謂フィブリル化を来す叩解効果を得る観点から、6〜18質量%がより好ましく、8〜17質量%がさらに好ましい。 The pulp concentration during the beating treatment is preferably 5 to 20% by mass, more preferably 6 to 18% by mass, still more preferably 8 to 17% by mass, from the viewpoint of obtaining a beating effect that causes sufficient so-called fibrillation.

本明細書において、ミクロフィブリルセルロース繊維は、極小セルロースを得る前段として、JIS P 8121に準拠したパルプのろ水度試験におけるカナダ標準ろ水度で100mL以下のセルロース繊維を指す。 In the present specification, the microfibril cellulosic fiber refers to a cellulose fiber having a Canadian standard freeness of 100 mL or less in a freshness test of pulp according to JIS P 8121 as a pre-stage for obtaining extremely small cellulose.

叩解処理により得られるミクロフィブリルセルロース繊維の疑似粒度分布曲線体積平均粒子径は、特に制限されるものではないが、機械的微細化処理負担を少なくし、高回収率の極小セルロースを確保する観点から、大きくとも95μm以下が好ましく、93μm以下がより好ましく、90μm以下がさらに好ましい。 The pseudo-particle size distribution curve volume average particle size of the microfibrillose fiber obtained by beating treatment is not particularly limited, but from the viewpoint of reducing the burden of mechanical micronization treatment and ensuring a high recovery rate of extremely small cellulose. At most, 95 μm or less is preferable, 93 μm or less is more preferable, and 90 μm or less is further preferable.

叩解処理後に得られるパルプの性状はパルプ粘度で判断され、特定の粘度が好適とされるものではないが、25℃において、1〜10mPa・sが好ましく、2〜5mPa・sがより好ましい。 The properties of the pulp obtained after the beating treatment are judged by the pulp viscosity, and a specific viscosity is not preferable, but at 25 ° C., 1 to 10 mPa · s is preferable, and 2 to 5 mPa · s is more preferable.

本明細書において、粘度は、JIS P 8215により測定されるものである。 As used herein, the viscosity is measured according to JIS P 8215.

ミクロフィブリルセルロース繊維の回収率は、特に制限されるものではないが、95%以上が好ましい。 The recovery rate of the microfibril cellulose fiber is not particularly limited, but is preferably 95% or more.

本明細書において、ミクロフィブリルセルロース繊維の回収率は、下記式(2)により算出される値である。
100×得られたミクロフィブリルセルロース繊維の質量/出発原料質量 (2)
In the present specification, the recovery rate of the microfibril cellulose fiber is a value calculated by the following formula (2).
100 × Mass of obtained microfibril cellulose fiber / Mass of starting material (2)

微細化処理工程は、叩解処理により得られたミクロフィブリルセルロース繊維を機械的微細化処理して極小セルロースを得るための工程である。 The micronization treatment step is a step for mechanically refining the microfibrillose fibers obtained by the beating treatment to obtain extremely small cellulose.

機械的微細化処理は、極小セルロースを得ることができるものであれば特に制限されるものではないが、例えば、高圧ホモジナイザー、石臼型分散機、およびボールミルから選ばれる1つ以上により処理することができる。 The mechanical micronization treatment is not particularly limited as long as it can obtain extremely small cellulose, but can be treated by, for example, one or more selected from a high-pressure homogenizer, a millstone type disperser, and a ball mill. can.

本明細書において、極小セルロースは、疑似粒度分布曲線において単一のピークを有しており、複数のピークを有しないものを指す。このように、疑似粒度分布曲線において単一のピークを有することで、十分に微細化が進行しているものと判断することができる。疑似粒度分布曲線のピーク値は、5μm以上25μm以下が好ましい。 As used herein, microcellulose refers to one that has a single peak in the pseudo-particle size distribution curve and does not have multiple peaks. As described above, by having a single peak in the pseudo particle size distribution curve, it can be judged that the miniaturization is sufficiently progressing. The peak value of the pseudo particle size distribution curve is preferably 5 μm or more and 25 μm or less.

本明細書において、疑似粒度分布曲線は、ISO−13320(2009)に準拠し、粒度分布測定装置を用いて、レーザー回折法により測定される極小セルロースの水分散液における体積基準粒度分布を示す曲線を指し、疑似粒度分布曲線のピーク値は、極小セルロースの最頻径を指す。なお、極小セルロースは粒子状ではないため、ここでいう体積基準粒度分布および最頻径とは、極小セルロースを、粒子と仮定した測定により得られる値である。 In the present specification, the pseudo particle size distribution curve is a curve showing a volume-based particle size distribution in an aqueous dispersion of ultra-small cellulose measured by a laser diffraction method using a particle size distribution measuring device in accordance with ISO-13320 (2009). The peak value of the pseudo particle size distribution curve indicates the most frequent diameter of the smallest cellulose. Since the extremely small cellulose is not in the form of particles, the volume-based particle size distribution and the most frequent diameter referred to here are values obtained by measurement assuming that the extremely small cellulose is particles.

従来の気相反応で漂白されたパルプをそのまま機械的に微細化処理して極小セルロースを得ようとすると、複数回の処理が必要であるなど、機械的微細化処理の負担が大きいものであったが、本実施形態の酵素処理工程、叩解処理工程などを経て機械的微細化処理をすることにより、処理回数が減るなど、その負担を少なくすることができる。より詳しくは、気相反応で漂白処理されたパルプを予め酵素処理を施し、酵素処理されたパルプを所望の大きさで、且つバラツキの小さい状態に叩解処理を施すと、機械的な微細化処理時に、省エネルギーで、極小セルロースを得ることができる。 If the pulp bleached by the conventional vapor phase reaction is mechanically miniaturized as it is to obtain extremely small cellulose, the burden of the mechanical miniaturization treatment is large, for example, multiple treatments are required. However, by performing the mechanical miniaturization treatment through the enzyme treatment step, the beating treatment step, and the like of the present embodiment, the number of treatments can be reduced and the burden can be reduced. More specifically, the pulp bleached by the vapor phase reaction is subjected to an enzyme treatment in advance, and the enzyme-treated pulp is beaten to a desired size and with little variation, and then mechanically refined. At times, it is possible to obtain extremely small cellulose with energy saving.

<ミクロフィブリルセルロース繊維の調製>
実施例1〜3、比較例3〜5(但し、実施例3は参考例)
漂白手段にオゾン処理を用いた市販の広葉樹晒クラフトパルプ(LBKP)を使用し、この漂白されたパルプをパルプ濃度20質量%でニーダー解繊機(山本百馬製作所製、型式SUS−T型)にて1回、混練処理をした。混練処理されたパルプ2,500g(水分80質量%)に18U/mlのセルラーゼ系酵素液(ジェネンコア社製、製品名CX7L)および清水を表1に記載された割合になるように混合し、25℃で撹拌した後、水温50℃にしたウォーターバス中で5時間、酵素処理をした(例えば、実施例1における添加量は、セルラーゼ系酵素液50g、清水2,450gであった)。酵素処理されたパルプをパルプ濃度10質量%に調整し、この調整されたパルプ300gをPFIミル(熊谷理機工業社製)にて9600回転で1回、叩解処理をし、ミクロフィブリルセルロース繊維を得た。代表例として実施例1における酵素処理後のパルプの写真を図1に、叩解処理後のミクロフィブリルセルロース繊維の写真を図2に示す。
<Preparation of microfibril cellulose fibers>
Examples 1 to 3 and Comparative Examples 3 to 5 (However, Example 3 is a reference example)
Commercially available hardwood bleached kraft pulp (LBKP) using ozone treatment is used as the bleaching means, and this bleached pulp is used in a kneader defibrator (manufactured by Yamamoto Hyakuma Seisakusho, model SUS-T type) at a pulp concentration of 20% by mass. The kneading process was performed once. 18 U / ml of cellulase-based enzyme solution (manufactured by Genecore, product name CX7L) and fresh water were mixed with 2,500 g (80% by mass of water) of the kneaded pulp in the proportions shown in Table 1, and 25 After stirring at ° C., the enzyme was treated with an enzyme in a water bath at a water temperature of 50 ° C. for 5 hours (for example, the amount added in Example 1 was 50 g of a cellulase-based enzyme solution and 2,450 g of fresh water). The enzyme-treated pulp was adjusted to a pulp concentration of 10% by mass, and 300 g of the adjusted pulp was beaten once at 9600 rpm with a PFI mill (manufactured by Kumagai Riki Kogyo Co., Ltd.) to obtain microfibril cellulose fibers. Obtained. As a representative example, a photograph of the pulp after the enzyme treatment in Example 1 is shown in FIG. 1, and a photograph of the microfibril cellulose fiber after the beating treatment is shown in FIG.

実施例4(但し、実施例4は参考例)
混練処理を行わなかった以外は実施例1と同様に調製した。
Example 4 (However, Example 4 is a reference example)
It was prepared in the same manner as in Example 1 except that the kneading treatment was not performed.

比較例1
混練処理および酵素処理を行わなかった以外は実施例1と同様に調製した。
Comparative Example 1
It was prepared in the same manner as in Example 1 except that the kneading treatment and the enzyme treatment were not performed.

比較例2
叩解処理を行わなかった以外は実施例1と同様に調製した。
Comparative Example 2
It was prepared in the same manner as in Example 1 except that the beating treatment was not performed.

<極小セルロースの調製>
実施例4、比較例4
前記調製により得られたミクロフィブリルセルロース繊維を石臼型分散機(増幸産業社製「スーパーマスコロイダー」)を用いて微細化処理をして、極小セルロース繊維を得た。実施例4における機械的微細化処理後の極小セルロースの写真を図3に示す。
<Preparation of extremely small cellulose>
Example 4, Comparative Example 4
The microfibrillose fibers obtained by the above preparation were miniaturized using a stone mill type disperser (“Super Mascoroider” manufactured by Masuyuki Sangyo Co., Ltd.) to obtain extremely small cellulose fibers. A photograph of the extremely small cellulose after the mechanical miniaturization treatment in Example 4 is shown in FIG.

<疑似粒度分布曲線体積平均粒子径>
ISO−13320(2009)に準拠し、粒度分布測定装置(セイシン企業社製「レーザー回折・散乱式粒度分布測定器」)を用いて、レーザー回折法により各実施例、比較例の叩解処理後のミクロフィブリルセルロース繊維の水分散液における個々の粒子径diおよび粒子体積Viを測定し、前記式(1)により疑似粒度分布曲線体積平均粒子径を算出した。結果を表1に示す。また、図4に、実施例1〜3、比較例3〜5における、酵素処理時のパルプ濃度と、その後に叩解処理をして得られるミクロフィブリルセルロース繊維の疑似粒度分布曲線体積平均粒子径のグラフを示す。
<Pseudo particle size distribution curve Volume average particle size>
After beating of each example and comparative example by laser diffraction method using a particle size distribution measuring device (“Laser diffraction / scattering type particle size distribution measuring device” manufactured by Seishin Enterprise Co., Ltd.) in accordance with ISO-13320 (2009). The individual particle size di and particle volume Vi in the aqueous dispersion of microfibril cellulose fibers were measured, and the pseudo particle size distribution curve volume average particle size was calculated by the above formula (1). The results are shown in Table 1. Further, FIG. 4 shows the pulp concentration at the time of enzyme treatment in Examples 1 to 3 and Comparative Examples 3 to 5, and the volume average particle diameter of the pseudo particle size distribution curve of the microfibril cellulose fibers obtained by the subsequent beating treatment. The graph is shown.

<パルプ粘度>
各実施例、比較例のミクロフィブリルセルロース繊維のパルプ粘度について、JIS P 8215に準拠して測定した。結果を表1に示す。
<Pulp viscosity>
The pulp viscosities of the microfibril cellulose fibers of each example and comparative example were measured according to JIS P 8215. The results are shown in Table 1.

<回収率>
各実施例、比較例のミクロフィブリルセルロース繊維について、ミクロフィブリルセルロース繊維の回収率を前記式(2)により算出した。結果を表1に示す。
<Recovery rate>
For the microfibril cellulose fibers of each Example and Comparative Example, the recovery rate of the microfibril cellulose fibers was calculated by the above formula (2). The results are shown in Table 1.

<疑似粒度分布曲線のピーク>
ISO−13320(2009)に準拠し、粒度分布測定装置(セイシン企業社製「レーザー回折・散乱式粒度分布測定器」)を用いて、レーザー回折法により実施例4、比較例4の微細化処理後の極小セルロース繊維の水分散液における体積基準粒度分布を測定し、疑似粒度分布曲線のピークの数およびピーク値を調べた。ここでピーク値は、上述した疑似粒度分布曲線の最頻径に該当するものである。結果を表2に示す。
<Peak of pseudo particle size distribution curve>
Miniaturization processing of Example 4 and Comparative Example 4 by laser diffraction method using a particle size distribution measuring device (“Laser diffraction / scattering type particle size distribution measuring device” manufactured by Seishin Enterprise Co., Ltd.) in accordance with ISO-13320 (2009). After that, the volume-based particle size distribution in the aqueous dispersion of the extremely small cellulose fibers was measured, and the number of peaks and the peak value of the pseudo particle size distribution curve were examined. Here, the peak value corresponds to the mode of the pseudo particle size distribution curve described above. The results are shown in Table 2.

Figure 0006916425
Figure 0006916425

Figure 0006916425
Figure 0006916425

実施例4と比較例4との対比から、ミクロフィブリルセルロース繊維の疑似粒度分布曲線体積平均粒子径が小さいほうが、微細化処理の処理回数を少なくすることができるなど、微細化処理の負担が少ないことがわかる。比較例4においては、処理回数が1回の場合、疑似粒度分布曲線のピーク数が単一でないなど、所望の極小セルロースとなっていないことがわかる。 From the comparison between Example 4 and Comparative Example 4, the smaller the volume average particle diameter of the pseudo-particle size distribution curve of the microfibril cellulose fiber, the smaller the number of times of the miniaturization treatment, and the less the burden of the miniaturization treatment. You can see that. In Comparative Example 4, it can be seen that when the number of treatments is one, the number of peaks in the pseudo-particle size distribution curve is not single, and the desired minimum cellulose is not obtained.

実施例4と比較例1との対比から、酵素処理をするとミクロフィブリルセルロース繊維の疑似粒度分布曲線体積平均粒子径が小さくなることがわかる。また、実施例1〜3と比較例3、4、5との対比から、酵素処理時のパルプ濃度が8〜17質量%だとミクロフィブリルセルロース繊維の疑似粒度分布曲線体積平均粒子径が小さくなることがわかる。 From the comparison between Example 4 and Comparative Example 1, it can be seen that the pseudo-particle size distribution curve volume average particle diameter of the microfibrillose cellulose fibers becomes smaller when the enzyme treatment is performed. Further, from the comparison between Examples 1 to 3 and Comparative Examples 3, 4, and 5, when the pulp concentration at the time of enzyme treatment is 8 to 17% by mass, the volume average particle diameter of the pseudo particle size distribution curve of the microfibril cellulose fiber becomes small. You can see that.

実施例1と比較例2との対比から、叩解処理をするとミクロフィブリルセルロース繊維の疑似粒度分布曲線体積平均粒子径が小さくなることがわかる。 From the comparison between Example 1 and Comparative Example 2, it can be seen that the volume average particle diameter of the pseudo-particle size distribution curve of the microfibril cellulose fibers becomes smaller when the beating treatment is performed.

本発明は、上記の実施態様および実施例によりなんら限定されるものではない。本発明の要旨を逸脱しない範囲において種々の実施態様を取り得る。 The present invention is not limited to the above embodiments and examples. Various embodiments can be taken without departing from the gist of the present invention.

本発明の方法により得られる極小セルロースは、ろ過材、ろ過助剤、イオン交換体の基材、クロマトグラフィー分析機器の充填材、樹脂およびゴムの配合用充填剤等としての工業上の用途や、口紅、粉末化粧料、乳化化粧料等の化粧品の配合剤の用途などに有用である。 The ultra-small cellulose obtained by the method of the present invention can be used for industrial purposes such as a filter medium, a filter aid, a base material for an ion exchanger, a filler for a chromatography analysis instrument, a filler for blending resin and rubber, and the like. It is useful as a compounding agent for cosmetics such as lipsticks, powdered cosmetics, and emulsified cosmetics.

Claims (6)

気相反応で漂白されたパルプをパルプ濃度9〜15質量%で酵素処理する工程、酵素処理されたパルプを叩解処理する工程、および叩解処理により得られたミクロフィブリルセルロース繊維を機械的に微細化処理する工程を含む、極小セルロースの製造方法であって、前記酵素処理の前に、気相反応で漂白されたパルプを混練処理する工程をさらに含む、極小セルロースの製造方法A step of enzymatically treating pulp bleached by a vapor phase reaction at a pulp concentration of 9 to 15% by mass, a step of beating the enzyme-treated pulp, and mechanically refining the microfibril cellulose fibers obtained by the beating treatment. A method for producing ultra-small cellulose, which comprises a step of kneading the pulp bleached by a vapor phase reaction before the enzyme treatment . 前記酵素処理は、処理液の温度30〜60℃で、該処理液が酵素量(FPU)0.1〜300U/mlのセルラーゼ系酵素液を0.01〜15質量%含む条件下での処理である、請求項1記載の製造方法。 The enzyme treatment is carried out under the condition that the temperature of the treatment liquid is 30 to 60 ° C. and the treatment liquid contains 0.01 to 15% by mass of a cellulase-based enzyme solution having an enzyme amount (FPU) of 0.1 to 300 U / ml. The manufacturing method according to claim 1. 前記叩解処理は、シングルディスクリファイナー、コニカルディスクリファイナー、ダブルディスクリファイナー、ツインディスクリファイナー、ナイヤガラビーター、およびPFIミルから選ばれる1つ以上による処理である、請求項1または2記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the beating process is a process by one or more selected from a single disc refiner, a conical disc refiner, a double disc refiner, a twin disc refiner, a Niagara beater, and a PFI mill. 前記微細化処理は、高圧ホモジナイザー、石臼型分散機、およびボールミルから選ばれる1つ以上による処理である、請求項1〜3いずれか記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the miniaturization treatment is a treatment by one or more selected from a high-pressure homogenizer, a stone mill type disperser, and a ball mill. 前記混練処理は、ニーダーおよびディスパーザーから選ばれる少なくとも1つ以上による混練、解繊処理である、請求項1〜4いずれか記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the kneading treatment is a kneading and defibration treatment by at least one selected from a kneader and a disperser. 前記ミクロフィブリルセルロース繊維の疑似粒度分布曲線体積平均粒子径は、20〜95μmである、請求項1〜いずれか記載の製造方法。
The production method according to any one of claims 1 to 5 , wherein the pseudo-particle size distribution curve volume average particle diameter of the microfibril cellulose fiber is 20 to 95 μm.
JP2015237570A 2015-12-04 2015-12-04 Manufacturing method of ultra-small cellulose Active JP6916425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015237570A JP6916425B2 (en) 2015-12-04 2015-12-04 Manufacturing method of ultra-small cellulose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015237570A JP6916425B2 (en) 2015-12-04 2015-12-04 Manufacturing method of ultra-small cellulose

Publications (2)

Publication Number Publication Date
JP2017099364A JP2017099364A (en) 2017-06-08
JP6916425B2 true JP6916425B2 (en) 2021-08-11

Family

ID=59014933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015237570A Active JP6916425B2 (en) 2015-12-04 2015-12-04 Manufacturing method of ultra-small cellulose

Country Status (1)

Country Link
JP (1) JP6916425B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109081938A (en) * 2017-06-13 2018-12-25 范佳晨 A kind of preparation method and applications of cellulose aerogels
JP6845510B2 (en) * 2018-12-27 2021-03-17 株式会社佐野商会 Cosmetics
JP7253206B2 (en) * 2021-02-10 2023-04-06 株式会社佐野商会 cosmetics

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610288A (en) * 1992-06-24 1994-01-18 New Oji Paper Co Ltd Production of fine fibrous cellulose
JP5339250B2 (en) * 2008-07-28 2013-11-13 独立行政法人産業技術総合研究所 Method for producing enzyme solution and method for producing sugar
JP5544747B2 (en) * 2009-04-21 2014-07-09 王子ホールディングス株式会社 Method for producing fine fibrous cellulose
GB0908401D0 (en) * 2009-05-15 2009-06-24 Imerys Minerals Ltd Paper filler composition
WO2012111408A1 (en) * 2011-02-15 2012-08-23 日産化学工業株式会社 Fibrous resin reinforcing agent and method for producing same, and resin composition using same
US9139662B2 (en) * 2011-03-30 2015-09-22 Nippon Paper Industries Co., Ltd. Method for producing cellulose nanofibers
JP5862345B2 (en) * 2012-02-13 2016-02-16 王子ホールディングス株式会社 Method for producing fine fibrous cellulose
JP6327149B2 (en) * 2012-05-21 2018-05-23 王子ホールディングス株式会社 Method for producing fine fiber, method for producing nonwoven fabric, and fine fibrous cellulose
BR112015000927B1 (en) * 2012-07-19 2021-01-12 Asahi Kasei Fibers Corporation multilayer structure, energy recovery ventilation sheet, method for producing the multilayer structure, energy recovery ventilation element, and energy recovery fan
CN107630385B (en) * 2012-08-10 2020-12-11 王子控股株式会社 Microfibrous cellulose aggregate, process for producing same, and process for remanufacturing microfibrous cellulose dispersion
FI127716B (en) * 2014-03-31 2018-12-31 Upm Kymmene Corp A method for producing fibrillated cellulose

Also Published As

Publication number Publication date
JP2017099364A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
JP6404415B1 (en) Cellulose fine fiber-containing material, method for producing the same, and cellulose fine fiber dispersion
CN106460326B (en) The method for producing fibrillating fibre element
JP6345666B2 (en) Processes and intermediates for the production of highly micronized or microfibrillated cellulose
CN104704169B (en) The reproducing method of microfibre shape fiber cellulose aggregate, the manufacture method of microfibre shape fiber cellulose aggregate and microfibre shape cellulose dispersion liquid
AU2007212781B2 (en) Method for the manufacturing of microfibrillated cellulose
EP3591117A1 (en) Cellulose microfiber and method for manufacturing same
US10087477B2 (en) Process for producing fibrillated cellulose material
JP6916425B2 (en) Manufacturing method of ultra-small cellulose
JP5887857B2 (en) Method for producing fine fibrous cellulose
JP2018009134A (en) Cellulose nanofiber-containing dried body, method for producing the same, and method for producing cellulose nanofiber-containing dried body-dispersed liquid
JP6783078B2 (en) Cellulose nanofiber manufacturing method and cellulose nanofiber manufacturing equipment
JP2018199891A5 (en)
Cebreiros et al. Enhancing cellulose nanofibrillation of eucalyptus Kraft pulp by combining enzymatic and mechanical pretreatments
JP2013185284A (en) Method for producing cellulose nanofiber
JP6626641B2 (en) Dried body containing cellulose nanofiber, method for producing the same, and method for producing cellulose nanofiber dispersion
JP6619576B2 (en) Method for producing cellulose nanofiber
WO2017057710A1 (en) Cellulose nanofiber dispersion liquid and method for producing same
JP6670059B2 (en) Method for producing cellulose nanofiber
Zhao et al. A feruloyl esterase/cellulase integrated biological system for high-efficiency and toxic-chemical free isolation of tobacco based cellulose nanofibers
JP6384498B2 (en) Fibrous cellulose, resin composition and cellulose suspension
JP6920260B2 (en) Cellulose fine fiber-containing material and its manufacturing method
Amornnopparattanakul et al. Structure features of sugarcane bagasse under ultrasonic with xylanase and laccase treatment
JP6797320B2 (en) Manufacturing method of cellulose nanofibers
JP2019023296A5 (en)
JP6857289B1 (en) Method for Producing Chemically Modified Microfibril Cellulose Fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200608

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200608

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20200616

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200827

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200828

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201023

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20201027

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210319

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210422

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210527

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210607

R150 Certificate of patent or registration of utility model

Ref document number: 6916425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150