JP5544747B2 - Method for producing fine fibrous cellulose - Google Patents

Method for producing fine fibrous cellulose Download PDF

Info

Publication number
JP5544747B2
JP5544747B2 JP2009102630A JP2009102630A JP5544747B2 JP 5544747 B2 JP5544747 B2 JP 5544747B2 JP 2009102630 A JP2009102630 A JP 2009102630A JP 2009102630 A JP2009102630 A JP 2009102630A JP 5544747 B2 JP5544747 B2 JP 5544747B2
Authority
JP
Japan
Prior art keywords
cellulose
ozone
fine fibrous
fibrous cellulose
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009102630A
Other languages
Japanese (ja)
Other versions
JP2010254726A (en
Inventor
泰友 野一色
隆 河向
充 角田
良行 浅山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp, Oji Paper Co Ltd filed Critical Oji Holdings Corp
Priority to JP2009102630A priority Critical patent/JP5544747B2/en
Publication of JP2010254726A publication Critical patent/JP2010254726A/en
Application granted granted Critical
Publication of JP5544747B2 publication Critical patent/JP5544747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Paper (AREA)

Description

本発明は、微細繊維状セルロースを効率よく製造する方法であり、最大繊維幅1000nm以下の微細繊維状セルロースを簡便な方法により効率的に製造する方法を提供することを目的とする。   The present invention is a method for efficiently producing fine fibrous cellulose, and an object thereof is to provide a method for efficiently producing fine fibrous cellulose having a maximum fiber width of 1000 nm or less by a simple method.

近年、物質をナノメートルサイズの大きさにすることによりバルクや分子レベルとは異なる物性を得ることを目的としたナノテクノロジーが注目されている。一方で、石油資源の代替および環境意識の高まりから再生産可能な天然繊維の応用にも注目が集まっている。
天然繊維の中でもセルロース繊維、とりわけ木材由来のセルロース繊維(パルプ)は主に紙製品として幅広く使用されている。紙に使用されるセルロース繊維の幅は10〜50μmのものがほとんどである。このようなセルロース繊維から得られる紙(シート)は不透明であり、不透明であるが故に印刷用紙として幅広く利用されている。一方、セルロース繊維をレファイナーやニーダー、サンドグラインダーなどで処理(叩解、粉砕)し、セルロース繊維を微細化(ミクロフィブリル化)すると透明紙(グラシン紙等)が得られる。しかし、この透明紙の透明性は半透明レベルであり、光の透過性は高分子フィルムに比べると低く、曇り度合い(ヘーズ値)も大きい。
In recent years, nanotechnology aimed at obtaining physical properties different from the bulk and molecular levels by making a material a nanometer size has attracted attention. On the other hand, attention is also focused on the application of natural fibers that can be regenerated due to the substitution of petroleum resources and the growing environmental awareness.
Among natural fibers, cellulose fibers, particularly wood-derived cellulose fibers (pulp) are widely used mainly as paper products. Most cellulose fibers used for paper have a width of 10 to 50 μm. Paper (sheet) obtained from such cellulose fibers is opaque and is widely used as printing paper because it is opaque. On the other hand, when the cellulose fiber is treated (beating, pulverizing) with a refiner, kneader, sand grinder or the like, and the cellulose fiber is refined (microfibril), a transparent paper (glassine paper or the like) is obtained. However, the transparency of the transparent paper is at a semi-transparent level, the light transmittance is lower than that of the polymer film, and the haze level (haze value) is large.

また、セルロース繊維は弾性率が高く、熱膨張率の低いセルロース結晶の集合体であり、セルロース繊維を樹脂と複合化することによって耐熱寸法安定性が高まるため、積層板などに利用されている。ただし、通常のセルロース繊維は結晶の集合体であり、筒状の空隙のある繊維のため寸法安定性には限界がある。
さらに、セルロース繊維を機械的に粉砕し、その繊維幅を50nm以下とした微細繊維状セルロースの水分散液は透明である。他方、微細繊維状セルロースシートは空隙を含むため白く乱反射し、不透明性が高くなるが、微細繊維状セルロースシートに樹脂を含浸すると空隙が埋まるため、透明なシートが得られる。微細繊維状セルロースシートの繊維はセルロース結晶の集合体であり、非常に剛直で、また、繊維幅が小さいため、通常のセルロースシート(紙)に比べると同質量において繊維の本数が飛躍的に多くなり、樹脂と複合化すると樹脂中で細い繊維がより均一かつ緻密に分散し、耐熱寸法安定性が飛躍的に高まる。さらに、繊維が細いため透明性も高い。このような特性を有する微細繊維状セルロースの複合体は、有機ELや液晶ディスプレイ用のフレキシブル透明基板(曲げたり折ったりすることのできる透明基板)として非常に大きな期待が寄せられている。
Cellulose fibers are aggregates of cellulose crystals having a high elastic modulus and a low coefficient of thermal expansion, and heat resistant dimensional stability is increased by combining the cellulose fibers with a resin, so that they are used for laminates and the like. However, ordinary cellulose fibers are aggregates of crystals and have a limit in dimensional stability due to fibers having a cylindrical void.
Furthermore, the aqueous dispersion of fine fibrous cellulose having mechanically pulverized cellulose fibers and having a fiber width of 50 nm or less is transparent. On the other hand, since the fine fibrous cellulose sheet contains voids, it is diffusely reflected white and becomes highly opaque. However, when the fine fibrous cellulose sheet is impregnated with a resin, the voids are filled, so that a transparent sheet is obtained. The fibers of the fine fibrous cellulose sheet are aggregates of cellulose crystals, very stiff, and have a small fiber width, so that the number of fibers is dramatically greater at the same mass than ordinary cellulose sheets (paper). Thus, when combined with a resin, fine fibers are more uniformly and densely dispersed in the resin, and the heat-resistant dimensional stability is dramatically increased. Furthermore, since the fibers are thin, the transparency is high. The composite of fine fibrous cellulose having such characteristics is expected to be very large as a flexible transparent substrate (a transparent substrate that can be bent or folded) for organic EL or liquid crystal displays.

ところで、セルロース繊維を機械的に粉砕して微細なセルロース繊維を製造する方法として、回転型ミルやジェットミルのような高速衝撃粉砕法、ロールクラッシャー法などが主に使用されている。しかしながら、セルロースは有機物であり、柔らかいため機械的な粉砕処理のみでは微細なセルロース繊維を得ることが難しく、本発明の最大繊維幅1000nm以下の微細繊維状セルロースを得るためには、化学的処理と機械的粉砕処理とを組合せた方法が一般的に使用されている。   By the way, as a method for mechanically pulverizing cellulose fibers to produce fine cellulose fibers, a high-speed impact pulverization method such as a rotary mill and a jet mill, a roll crusher method, and the like are mainly used. However, since cellulose is an organic substance and is soft, it is difficult to obtain fine cellulose fibers only by mechanical pulverization treatment. In order to obtain fine fibrous cellulose having a maximum fiber width of 1000 nm or less according to the present invention, chemical treatment and A method combined with mechanical grinding is generally used.

具体的に、化学的処理と機械的粉砕処理とを組合せた方法としては、パルプを軽度に加水分解し、濾過水洗後、乾燥、粉砕して一部非晶領域を含むセルロース微粒子の製造方法や精製パルプを塩酸または硫酸で加水分解して結晶領域のみを残して微粉化する技術が開示されているが、微細化のレベルとしては充分ではなく、得られた微細繊維状セルロースの水系懸濁液の透明性も不充分である(非特許文献1)。   Specifically, as a method of combining the chemical treatment and the mechanical pulverization treatment, the pulp is slightly hydrolyzed, washed with filtered water, dried and pulverized, and a method for producing cellulose fine particles partially containing amorphous regions, Although a technology for hydrolyzing a refined pulp with hydrochloric acid or sulfuric acid to make a fine powder leaving only a crystalline region is disclosed, it is not sufficient as a level of fineness, and the obtained aqueous suspension of fine fibrous cellulose Is also insufficient in transparency (Non-patent Document 1).

微小な繊維幅の繊維状セルロースの製造方法として、繊維状セルロースの水懸濁液を少なくとも3000psiの圧力差で小径オリフィスを高速度で通過させる方法、すなわち高圧均質化装置(高圧ホモジナイザー)により繊維状セルロース懸濁液を処理する方法が開示されている(特許文献1、2)が、繊維状セルロース懸濁液に高圧をかけて細いオリフィスを通す必要があるため、処理効率が非常に低いという問題がある。   As a method for producing fibrous cellulose having a small fiber width, a fibrous cellulose aqueous suspension is passed through a small-diameter orifice at a high speed with a pressure difference of at least 3000 psi, that is, fibrous by a high-pressure homogenizer (high-pressure homogenizer). Although a method for treating a cellulose suspension has been disclosed (Patent Documents 1 and 2), it is necessary to apply a high pressure to the fibrous cellulose suspension and pass through a narrow orifice, so that the treatment efficiency is very low. There is.

紙の紙力を増加させたり、透気度を高めることができる微細繊維化セルロースの製造方法として、予め叩解処理したパルプを粒度が16〜120番の砥粒からなる砥粒板を複数枚擦り合わせ配置した砥粒板擦り合わせ装置を用いて微細化する技術が開示されている(特許文献3)が、微細化に供するパルプスラリーの固形分濃度を高くすると急激に処理効率が低下するという問題が依然として残されている。   As a method for producing fine fiberized cellulose that can increase the paper strength of paper or increase the air permeability, a plurality of abrasive plates made of abrasive grains having a particle size of No. 16 to 120 are rubbed in advance. Although the technique which refines | miniaturizes using the abrasive-plate rubbing apparatus arrange | positioned together is disclosed (patent document 3), if the solid content concentration of the pulp slurry used for refinement | miniaturization is made high, the problem that processing efficiency will fall rapidly. Is still left.

N−オキシル化合物によるセルロースの表面酸化反応を利用し、最大繊維径1000nm以下かつ数平均繊維径が2〜150nmであり、セルロースの水酸基の一部がカルボキシル基およびアルデヒド基からなる群から選ばれる少なくとも1つの官能基に酸化されており、且つセルロースI型結晶構造を有する微細セルロースを提供する技術(特許文献4)が開示されているが、工程が複雑で実用性に乏しい。   Utilizing the surface oxidation reaction of cellulose by an N-oxyl compound, the maximum fiber diameter is 1000 nm or less and the number average fiber diameter is 2 to 150 nm, and at least a part of the hydroxyl group of cellulose is selected from the group consisting of a carboxyl group and an aldehyde group A technique (Patent Document 4) that provides fine cellulose that has been oxidized to one functional group and has a cellulose I-type crystal structure is disclosed, but the process is complicated and the practicality is poor.

また、酵素または薬品により前処理した繊維状セルロースを振動ミル粉砕機にて湿式粉砕する技術が開示されている(特許文献5)が、酵素反応や化学反応の効率が依然として低く、生産性の高い微細繊維状セルロースの製造方法とはいえない。   Further, a technique for wet-grinding fibrous cellulose pretreated with an enzyme or a chemical by a vibration mill grinder is disclosed (Patent Document 5), but the efficiency of the enzyme reaction and chemical reaction is still low and the productivity is high. It cannot be said that it is a manufacturing method of a fine fibrous cellulose.

上記のように、繊維状セルロースを微細化する技術が種々開示されているが、工業的なレベルの生産性を確保するまでには至っておらず、繊維状セルロースを微細化する簡便な方法の提供が望まれている。   As described above, various techniques for refining fibrous cellulose have been disclosed, but the industrial level of productivity has not been ensured, and a simple method for refining fibrous cellulose has been provided. Is desired.

山口章「セルロースの微粉化・ミクロフィブリル化」紙パルプ技術タイムス28巻9号5頁以下(1985年)Akira Yamaguchi "Pulverization and Microfibrillation of Cellulose" Paper and Pulp Technology Times Vol. 28, No. 9, pp. 5 (1985)

特公昭60−19921号公報Japanese Patent Publication No. 60-19921 特公昭63−44763号公報Japanese Patent Publication No. 63-44763 特許第3036354号公報Japanese Patent No. 3036354 特開2008−1728号公報JP 2008-1728 A 特開平6−10288号公報JP-A-6-10288

本発明は、微細繊維状セルロースを効率よく製造する方法であり、最大繊維幅1000nm以下の微細繊維状セルロースを簡便な方法により効率的に製造する方法を提供するものである。   The present invention is a method for efficiently producing fine fibrous cellulose, and provides a method for efficiently producing fine fibrous cellulose having a maximum fiber width of 1000 nm or less by a simple method.

本発明は、以下の各発明を包含する。
(1)最大繊維幅1000nm以下の微細繊維状セルロースの製造方法において、セルロース繊維をオゾン処理した後、水に分散し、得られたセルロース繊維の水系懸濁液を粉砕処理する微細繊維状セルロースの製造方法。
The present invention includes the following inventions.
(1) In the method for producing fine fibrous cellulose having a maximum fiber width of 1000 nm or less, after the cellulose fiber is treated with ozone, it is dispersed in water, and the aqueous suspension of the obtained cellulose fiber is pulverized and treated. Production method.

(2)オゾン処理におけるオゾン添加率が絶乾セルロース繊維質量当たり0.1〜30質量%である(1)に記載の微細繊維状セルロースの製造方法。 (2) The manufacturing method of the fine fibrous cellulose as described in (1) whose ozone addition rate in ozone treatment is 0.1-30 mass% per the absolute dry cellulose fiber mass.

(3)粉砕処理が石臼粉砕、高圧ホモジナイザー、ボールミルから選択される少なくとも1種である(1)または(2)に記載の微細繊維状セルロースの製造方法。 (3) The method for producing fine fibrous cellulose according to (1) or (2), wherein the pulverization treatment is at least one selected from stone milling, high-pressure homogenizer, and ball mill.

(4)粉砕処理における水系懸濁液の濃度が0.1〜3質量%である(1)〜(3)のいずれか1項に記載の微細繊維状セルロースの製造方法。 (4) The manufacturing method of the fine fibrous cellulose of any one of (1)-(3) whose density | concentration of the aqueous suspension in a grinding | pulverization process is 0.1-3 mass%.

(5)オゾン処理の後に洗浄処理、粉砕処理を順次行う(1)〜(4)のいずれか1項に記載の微細繊維状セルロースの製造方法。 (5) The method for producing fine fibrous cellulose according to any one of (1) to (4), wherein washing treatment and pulverization treatment are sequentially performed after the ozone treatment.

本発明者らは、セルロース繊維を膨潤させ得る方法を種々検討し、セルロース繊維に前処理としてオゾン処理を施すことによりセルロース繊維を膨潤し、微細なフィブリル間、さらには結晶領域を構成するミクロフィブリル間の結合力を弱め、後続する粉砕処理により原料の繊維状セルロースを効率よく微細化できることを見出した。   The present inventors have studied various methods that can swell cellulose fibers, and by subjecting cellulose fibers to ozone treatment as a pretreatment, cellulose fibers are swollen to form microfibrils between fine fibrils and further to form crystal regions. It was found that the fibrous cellulose as a raw material can be efficiently refined by the subsequent pulverization treatment by weakening the bonding force between them.

従来から、セルロース繊維を膨潤させる方法として、酵素(キシラナーゼ、セルラーゼ)処理や薬品(アルカリ、塩化亜鉛、エチレンジアミン、チオ尿素、ベンゼンスルホン酸)処理が知られているが、本発明ではオゾン処理を採用したことに特徴を有するものである。本発明によって、微細繊維状セルロースを非常に効率よく生産できる製造方法を提供することができる。   Conventionally, enzyme (xylanase, cellulase) treatment and chemical (alkali, zinc chloride, ethylenediamine, thiourea, benzenesulfonic acid) treatment are known as methods for swelling cellulose fibers, but ozone treatment is adopted in the present invention. It has the feature in having done. By this invention, the manufacturing method which can produce a fine fibrous cellulose very efficiently can be provided.

以下、本発明について詳細に説明する。
本発明においては、セルロース繊維を微細化するに当たり、前処理としてオゾン処理を採用するものである。オゾン処理は他の酵素処理や薬品処理と比べて、反応時間が短い、洗浄負荷が低いといった優れた特性がある。但し、オゾン処理を過度に進めるとセルロース繊維の分解・切断が進行し過ぎ、粉砕処理により繊維状セルロースの微細化と同時に微小化も早く進行するため、要求される微細繊維状セルロースの物性ごとに処理条件を適正に調節する必要がある。
Hereinafter, the present invention will be described in detail.
In the present invention, ozone treatment is adopted as a pretreatment for refining cellulose fibers. Ozone treatment has excellent characteristics such as shorter reaction time and lower washing load than other enzyme treatments and chemical treatments. However, if the ozone treatment is advanced excessively, the decomposition and cutting of the cellulose fibers will proceed excessively, and the pulverization process will make the fibrous cellulose finer and at the same time make it finer, so each required physical property of the fine fibrous cellulose. It is necessary to adjust the processing conditions appropriately.

オゾン処理は、セルロース繊維をオゾン分子と接触させて、酸化反応とともにセルロース繊維を膨潤させることを目的とする。該オゾン処理は、セルロース繊維を暴露することによって行われる。暴露方法は、オゾンが存在する雰囲気に所定時間保持する方法、オゾン気流中に所定時間暴露する方法等適宜の方法で行うことができる。   The purpose of the ozone treatment is to bring the cellulose fiber into contact with ozone molecules and swell the cellulose fiber together with the oxidation reaction. The ozone treatment is performed by exposing cellulose fibers. The exposure method can be performed by an appropriate method such as a method of holding in an atmosphere in which ozone exists for a predetermined time, a method of exposing in an ozone stream for a predetermined time.

オゾンは、空気、酸素ガス、または酸素添加空気等の酸素含有気体を公知のオゾン発生装置に供給することによって発生させることができる。得られたオゾン含有気体を、上記材料を保持してある容器、槽等に導入してオゾン処理を行う。オゾン含有気体中のオゾン濃度、セルロース繊維に対するオゾン添加率、処理温度、処理時間等の諸条件は、セルロース繊維を膨潤させるという目的に応じて適宜定めることができる。   Ozone can be generated by supplying an oxygen-containing gas such as air, oxygen gas, or oxygen-added air to a known ozone generator. The obtained ozone-containing gas is introduced into a container, tank, or the like holding the above materials to perform ozone treatment. Various conditions such as the ozone concentration in the ozone-containing gas, the ozone addition rate with respect to the cellulose fiber, the treatment temperature, and the treatment time can be appropriately determined according to the purpose of swelling the cellulose fiber.

ここで、オゾン含有気体中のオゾン濃度としては、50〜1000g/mであることが好ましく、100〜500g/mであることがより好ましい。オゾン濃度が50g/m未満であると酸化反応とともにセルロース繊維を分解・切断する効果に乏しくなるおそれがある。オゾン濃度が1000g/mを超えると後続する粉砕処理においてセルロース繊維の切断が過度に進行してしまう、あるいは過度に分解した低分子物質・酸化物質、ラジカルが発生し、加熱による変色などを引き起こすおそれがある。 Here, the ozone concentration in the ozone-containing gas is preferably 50 to 1000 g / m 3, more preferably 100 to 500 g / m 3. If the ozone concentration is less than 50 g / m 3 , the effect of decomposing / cutting the cellulose fibers may be reduced along with the oxidation reaction. When the ozone concentration exceeds 1000 g / m 3 , the cellulose fibers are excessively cut in the subsequent pulverization process, or excessively decomposed low molecular substances / oxidized substances and radicals are generated, causing discoloration due to heating. There is a fear.

セルロース繊維に対するオゾン添加率としては、0.1〜30質量%であることが好ましく、1〜10質量%であることがより好ましい。オゾン添加率が0.1質量%未満であると酸化反応とともにセルロース繊維を分解・切断する効果に乏しくなるおそれがある。オゾン添加率が30質量%を超えると後続する粉砕処理においてセルロース繊維の切断が過度に進行してしまう、あるいは過度に分解した低分子物質・酸化物質、ラジカルが発生し、加熱による変色などを引き起こすおそれがある。   As an ozone addition rate with respect to a cellulose fiber, it is preferable that it is 0.1-30 mass%, and it is more preferable that it is 1-10 mass%. If the ozone addition rate is less than 0.1% by mass, the effect of decomposing / cutting the cellulose fibers may be reduced along with the oxidation reaction. When the ozone addition rate exceeds 30% by mass, cutting of cellulose fibers proceeds excessively in the subsequent pulverization process, or excessively decomposed low molecular substances / oxidized substances and radicals are generated, causing discoloration due to heating. There is a fear.

処理温度としては、0〜100℃であることが好ましく、20〜50℃であることがより好ましい。処理温度が0℃未満であると試料の取り扱いが難しく、装置も大型化し、コスト的に不利になるおそれがある。処理温度が100℃を超えるとオゾンが容易に分解し、酸化反応とともにセルロース繊維を分解・切断する効果に乏しくなるおそれがある。   As processing temperature, it is preferable that it is 0-100 degreeC, and it is more preferable that it is 20-50 degreeC. When the processing temperature is less than 0 ° C., it is difficult to handle the sample, the apparatus becomes large, and there is a risk that the cost may be disadvantageous. When the treatment temperature exceeds 100 ° C., ozone is easily decomposed, and there is a possibility that the effect of decomposing / cutting cellulose fibers together with the oxidation reaction may be poor.

処理時間としては、1〜60分であることが好ましく、5〜30分であることがより好ましい。処理時間が1分未満であると酸化反応とともにセルロース繊維を分解・切断する効果に乏しくなるおそれがある。処理時間が60分を超えるとオゾンによる酸化反応はレベルオフし、それ以上はほとんど進行しない。   As processing time, it is preferable that it is 1 to 60 minutes, and it is more preferable that it is 5 to 30 minutes. If the treatment time is less than 1 minute, the effect of decomposing / cutting cellulose fibers may be reduced along with the oxidation reaction. When the treatment time exceeds 60 minutes, the oxidation reaction by ozone is leveled off, and the reaction time hardly proceeds beyond that.

本発明はリファイナー、シュレッダーといった繊維破砕・切断のような物理的処理、NaOH水溶液、アンモニア、エチレンジアミンその他のアルカリ系薬品処理といった化学処理を反応前に施したパルプに対して行うと更に効果が高い。   The present invention is more effective when it is applied to pulp that has been subjected to physical treatment such as refiner and shredder such as fiber crushing and cutting, and chemical treatment such as aqueous NaOH solution, ammonia, ethylenediamine, and other alkaline chemicals before the reaction.

本発明においては、オゾン処理の後に水、アルカリ性水溶液(NaOH等)、酸性水溶液(塩酸等)等により洗浄してから粉砕処理を施すことが好ましい実施態様である。   In the present invention, it is a preferred embodiment that the ozone treatment is followed by washing with water, an alkaline aqueous solution (NaOH, etc.), an acidic aqueous solution (hydrochloric acid, etc.) and the like, followed by a pulverization treatment.

上記オゾン処理を施したセルロース繊維は水に分散され、水性懸濁液として粉砕処理に供される。該水性懸濁液の濃度としては0.1〜3質量%であることが好ましく、0.3〜1質量%であることがより好ましい。因みに、濃度が0.1質量%未満であると後工程のセルロース解繊負荷低減効果がほとんどなくなるおそれがある。濃度が3質量%を超えると粉砕処理中に粘度が上昇し過ぎ、取扱いが非常に困難となるおそれがある。   The cellulose fiber that has been subjected to the ozone treatment is dispersed in water and subjected to a pulverization treatment as an aqueous suspension. The concentration of the aqueous suspension is preferably 0.1 to 3% by mass, and more preferably 0.3 to 1% by mass. Incidentally, if the concentration is less than 0.1% by mass, the effect of reducing the cellulose fibrillation load in the subsequent step may be almost lost. If the concentration exceeds 3% by mass, the viscosity may increase excessively during the pulverization process, and handling may become very difficult.

本発明において、繊維状セルロースの粉砕方法には特に制限はないが、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ディスク型リファイナー、コニカルリファイナー、二軸混錬機(二軸押出機)、振動ミル、高速回転下でのホモミキサー、超音波分散機、ビーターなどの機械的作用を利用する湿式粉砕でセルロース系繊維を細くする方法が好ましい。なかでも、石臼粉砕、高圧ホモジナイザー、ボールミル処理が微細な繊維が効率的に得られるため、特に好ましい。微細化するセルロース系繊維としては、植物由来のセルロース、動物由来のセルロース、バクテリア由来のセルロースなどが挙げられる。より具体的には、針葉樹パルプや広葉樹パルプ等の木材系製紙用パルプ、コットンリンターやコットンリントなどの綿系パルプ、麻や麦わら、バガスなどの非木材系パルプ、ホヤや海草などから単離されるセルロースなどが挙げられる。これらの中でも木材系製紙用パルプや非木材系パルプが入手のし易さという点で好ましい。   In the present invention, the method for pulverizing fibrous cellulose is not particularly limited, but a grinder (stone mill type pulverizer), a high-pressure homogenizer or an ultra-high pressure homogenizer, a high-pressure collision type pulverizer, a ball mill, a disk type refiner, a conical refiner, biaxial A method of thinning the cellulosic fibers by wet pulverization utilizing mechanical action such as a kneader (double screw extruder), vibration mill, homomixer under high-speed rotation, ultrasonic disperser, beater, etc. is preferred. Among these, a fine fiber can be efficiently obtained by grinding with a mortar, high-pressure homogenizer, or ball mill, which is particularly preferable. Examples of cellulosic fibers to be refined include plant-derived cellulose, animal-derived cellulose, and bacterial-derived cellulose. More specifically, it is isolated from wood-based paper pulp such as conifer pulp and hardwood pulp, cotton pulp such as cotton linter and cotton lint, non-wood pulp such as hemp, straw and bagasse, sea squirt and seaweed. A cellulose etc. are mentioned. Among these, wood-based paper pulp and non-wood pulp are preferable in terms of easy availability.

本発明により得られる微細繊維状セルロースは通常製紙用途で用いるパルプ繊維よりもはるかに細いセルロース繊維あるいは棒状粒子である。微細繊維状セルロースは結晶状態のセルロース分子の集合体であり、その結晶構造はI型(平行鎖)である。微細繊維状セルロースの幅は電子顕微鏡で観察して1nm〜1000nmが好ましく、より好ましくは2nm〜500nm、さらに好ましくは4nm〜100nmである。繊維の幅が1nm未満であると、セルロース分子として水に溶解しているため、微細繊維としての物性(強度や剛性、寸法安定性)が発現しなくなる。1000nmを超えると微細繊維とは言えず、通常のパルプに含まれる繊維にすぎないため、微細繊維としての物性(強度や剛性、寸法安定性)が得られない。微細繊維状セルロースに透明性が求められる用途であると、微細繊維の幅は50nm以下が好ましい。これらの微細繊維状セルロースから得られる複合材料は密度が高く、緻密な構造体となるために強度が高く、セルロース結晶に由来した高い弾性率が得られることに加え、可視光の散乱が少ないため高い透明性も得られる。   The fine fibrous cellulose obtained according to the present invention is a cellulose fiber or rod-like particles that are much thinner than pulp fibers usually used in papermaking applications. Fine fibrous cellulose is an aggregate of crystalline cellulose molecules, and its crystal structure is type I (parallel chain). The width of the fine fibrous cellulose is preferably 1 nm to 1000 nm as observed with an electron microscope, more preferably 2 nm to 500 nm, and still more preferably 4 nm to 100 nm. When the width of the fiber is less than 1 nm, since the cellulose molecule is dissolved in water, the physical properties (strength, rigidity, dimensional stability) as the fine fiber are not expressed. If it exceeds 1000 nm, it cannot be said that it is a fine fiber, and is merely a fiber contained in ordinary pulp, and physical properties (strength, rigidity, dimensional stability) as a fine fiber cannot be obtained. If the fine fibrous cellulose is used for transparency, the fine fiber width is preferably 50 nm or less. Composite materials obtained from these fine fibrous celluloses have high density and high density because they become dense structures, and in addition to obtaining high elastic modulus derived from cellulose crystals, there is little scattering of visible light High transparency is also obtained.

以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。また、例中の部及び%は特に断らない限り、それぞれ質量部及び質量%を示す。 EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to these Examples. Moreover, unless otherwise indicated, the part and% in an example show a mass part and mass%, respectively.

<実施例1>
容器にLBKP(セニブラ社製:水分50%、フリーネス600mLcsf)40gおよび空気2Lを加えた後、オゾン濃度200g/mのオゾン/酸素混合気体を1L加え、25℃で2分間振とうした後、30分静置した。この時のオゾン添加率はパルプ乾燥質量に対して1質量%である。オゾン処理後のパルプをイオン交換水で十分に洗浄した後に、パルプ濃度が1%になるように水を加えてディスインテグレーターで解繊した。
得られたパルプ懸濁液を0.5%に希釈し、このパルプ懸濁液を石臼型分散機(増幸産業社製「スーパーマスコロイダー」)を用いて4回処理を行った後、高圧衝突型分散機(スギノマシン社製「アルティマイザー」)で10回処理し、最後に20KHzの超音波処理を1分間行い、微細繊維状セルロース水系懸濁液を得た。
得られた微細繊維状セルロース懸濁液について遠心分離機(コクサン社製「H−200NR」)を用いて約5000Gで5分間処理し、上澄濃度を測定したところ、0.34%であった。ここで得られた上澄液を孔径0.45μmのメンブレンフィルター上で吸引ろ過し、シート化したところ歩留りはほぼ100%であった。また、上澄み液中の繊維を電子顕微鏡で観察したところ、繊維径は200nm以下であった。
<Example 1>
After 40 g of LBKP (manufactured by CENIBRA: moisture 50%, freeness 600 mLcsf) and 2 L of air were added to the container, 1 L of an ozone / oxygen mixed gas having an ozone concentration of 200 g / m 3 was added and shaken at 25 ° C. for 2 minutes. Let stand for 30 minutes. The ozone addition rate at this time is 1 mass% with respect to the pulp dry mass. After the ozone-treated pulp was sufficiently washed with ion-exchanged water, water was added so that the pulp concentration was 1%, and defibration was performed with a disintegrator.
The obtained pulp suspension was diluted to 0.5%, and this pulp suspension was treated four times using a stone mill type disperser (“Supermass colloider” manufactured by Masuko Sangyo Co., Ltd.), and then subjected to high-pressure collision. 10 times with a type disperser (“Ultimizer” manufactured by Sugino Machine Co., Ltd.), and finally, ultrasonic treatment at 20 KHz was performed for 1 minute to obtain a fine fibrous cellulose aqueous suspension.
The obtained fine fibrous cellulose suspension was treated at about 5000 G for 5 minutes using a centrifuge (“H-200NR” manufactured by Kokusan Co., Ltd.), and the supernatant concentration was measured and found to be 0.34%. . The supernatant obtained here was suction filtered on a membrane filter having a pore diameter of 0.45 μm and formed into a sheet. The yield was almost 100%. Moreover, when the fiber in a supernatant liquid was observed with the electron microscope, the fiber diameter was 200 nm or less.

<実施例2>
容器にLBKP(セニブラ社製:水分50%、フリーネス600mLcsf)40gおよび空気2Lを加えた後、オゾン濃度200g/mのオゾン/酸素混合気体を3L加え、25℃で2分間振とうした後、30分静置した。この時のオゾン添加率はパルプ乾燥質量に対して3質量%である。処理後のパルプをイオン交換水で十分に洗浄した後に、パルプ濃度が1%になるように水を加えてディスインテグレーターで解繊した。
得られたパルプ懸濁液を0.5%に希釈し、このパルプ懸濁液を石臼型分散機(増幸産業社製「スーパーマスコロイダー」)を用いて4回処理を行った後、高圧衝突型分散機(スギノマシン社製「アルティマイザー」)で10回処理し、最後に20KHzの超音波処理を1分間行い、微細繊維状セルロース水系懸濁液を得た。
微細繊維状セルロース水系懸濁液について遠心分離機(コクサン社製「H−200NR」)を用いて約5000Gで5分間処理し、上澄濃度を測定したところ、0.35%であった。また、上澄み液中の繊維を電子顕微鏡で観察したところ、繊維径は200nm以下であった。
<Example 2>
After 40 g of LBKP (manufactured by CENIBRA: moisture 50%, freeness 600 mLcsf) and 2 L of air were added to the container, 3 L of an ozone / oxygen mixed gas having an ozone concentration of 200 g / m 3 was added and shaken at 25 ° C. for 2 minutes. Let stand for 30 minutes. The ozone addition rate at this time is 3 mass% with respect to the pulp dry mass. After the treated pulp was sufficiently washed with ion-exchanged water, water was added so that the pulp concentration was 1%, and defibration was performed with a disintegrator.
The obtained pulp suspension was diluted to 0.5%, and this pulp suspension was treated four times using a stone mill type disperser (“Supermass colloider” manufactured by Masuko Sangyo Co., Ltd.), and then subjected to high-pressure collision. 10 times with a type disperser (“Ultimizer” manufactured by Sugino Machine Co., Ltd.), and finally, ultrasonic treatment at 20 KHz was performed for 1 minute to obtain a fine fibrous cellulose aqueous suspension.
The fine fibrous cellulose aqueous suspension was treated at about 5000 G for 5 minutes using a centrifuge (“H-200NR” manufactured by Kokusan Co., Ltd.), and the supernatant concentration was measured and found to be 0.35%. Moreover, when the fiber in a supernatant liquid was observed with the electron microscope, the fiber diameter was 200 nm or less.

<実施例3>
容器にLBKP(セニブラ社製:水分50%、フリーネス600mLcsf)40gおよび空気2Lを加えた後、オゾン濃度200g/mのオゾン/酸素混合気体を5L加え、25℃で2分間振とうした後、30分静置した。この時のオゾン添加率はパルプ乾燥質量に対して5質量%である。処理後のパルプをイオン交換水で十分に洗浄した後に、パルプ濃度が1%になるように水を加えてディスインテグレーターで解繊した。
得られたパルプ懸濁液を0.5%に希釈し、このパルプ懸濁液を石臼型分散機(増幸産業社製「スーパーマスコロイダー」)を用いて4回処理を行った後、高圧衝突型分散機(スギノマシン社製「アルティマイザー」)で10回処理し、最後に20KHzの超音波処理を1分間行い、微細繊維状セルロース水系懸濁液を得た。
得られた微細繊維状セルロースの水系懸濁液について遠心分離機(コクサン社製「H−200NR」)を用いて約5000Gで5分間処理し、上澄濃度を測定したところ、0.37%であった。また、上澄み液中の繊維を電子顕微鏡で観察したところ、繊維径は200nm以下であった。
<Example 3>
After 40 g of LBKP (manufactured by CENIBRA: moisture 50%, freeness 600 mLcsf) and 2 L of air were added to the container, 5 L of an ozone / oxygen mixed gas having an ozone concentration of 200 g / m 3 was added and shaken at 25 ° C. for 2 minutes. Let stand for 30 minutes. The ozone addition rate at this time is 5 mass% with respect to the pulp dry mass. After the treated pulp was sufficiently washed with ion-exchanged water, water was added so that the pulp concentration was 1%, and defibration was performed with a disintegrator.
The obtained pulp suspension was diluted to 0.5%, and this pulp suspension was treated four times using a stone mill type disperser (“Supermass colloider” manufactured by Masuko Sangyo Co., Ltd.), and then subjected to high-pressure collision. 10 times with a type disperser (“Ultimizer” manufactured by Sugino Machine Co., Ltd.), and finally, ultrasonic treatment at 20 KHz was performed for 1 minute to obtain a fine fibrous cellulose aqueous suspension.
The obtained aqueous suspension of fine fibrous cellulose was treated at about 5000 G for 5 minutes using a centrifuge (“H-200NR” manufactured by Kokusan Co., Ltd.), and the supernatant concentration was measured to be 0.37%. there were. Moreover, when the fiber in a supernatant liquid was observed with the electron microscope, the fiber diameter was 200 nm or less.

<実施例4>
容器にLBKP(セニブラ社製:水分53.0%、フリーネス600mLcsf)40gおよび空気2Lを加えた後、オゾン濃度200g/mのオゾン/酸素混合気体を20L加え、25℃で2分間振とうした後、30分静置した。この時のオゾン添加率はパルプ乾燥質量に対して20質量%である。処理後のパルプをイオン交換水で十分に洗浄した後に、パルプ濃度が1%になるように水を加えてディスインテグレーターで解繊した。
得られたパルプ懸濁液を0.5%に希釈し、このパルプ懸濁液を石臼型分散機(増幸産業社製「スーパーマスコロイダー」)を用いて4回処理を行った後、高圧衝突型分散機(スギノマシン社製「アルティマイザー」)で10回処理し、最後に20KHzの超音波処理を1分間行い、微細繊維状セルロース水系懸濁液を得た。
得られた微細繊維状セルロースの水系懸濁液について遠心分離機(コクサン社製「H−200NR」)を用いて約5000Gで5分間処理し、上澄濃度を測定したところ、0.39%であった。また、上澄み液中の繊維を電子顕微鏡で観察したところ、繊維径は200nm以下であった。
<Example 4>
After 40 g of LBKP (manufactured by CENIBRA: moisture 53.0%, freeness 600 mLcsf) and 2 L of air were added to the container, 20 L of an ozone / oxygen mixed gas having an ozone concentration of 200 g / m 3 was added and shaken at 25 ° C. for 2 minutes. Then, it was left still for 30 minutes. The ozone addition rate at this time is 20 mass% with respect to the pulp dry mass. After the treated pulp was sufficiently washed with ion-exchanged water, water was added so that the pulp concentration was 1%, and defibration was performed with a disintegrator.
The obtained pulp suspension was diluted to 0.5%, and this pulp suspension was treated four times using a stone mill type disperser (“Supermass colloider” manufactured by Masuko Sangyo Co., Ltd.), and then subjected to high-pressure collision. 10 times with a type disperser (“Ultimizer” manufactured by Sugino Machine Co., Ltd.), and finally, ultrasonic treatment at 20 KHz was performed for 1 minute to obtain a fine fibrous cellulose aqueous suspension.
The obtained aqueous suspension of fine fibrous cellulose was treated at about 5000 G for 5 minutes using a centrifuge (“H-200NR” manufactured by Kokusan Co., Ltd.), and the supernatant concentration was measured. there were. Moreover, when the fiber in a supernatant liquid was observed with the electron microscope, the fiber diameter was 200 nm or less.

<比較例1>
LBKP(セニブラ社製:水分50%、フリーネス600mLcsf)40gをパルプ濃度が1%になるように水を加えてディスインテグレーターで解繊した。
得られたパルプ懸濁液を0.5%に希釈し、このパルプ懸濁液を石臼型分散機(増幸産業社製「スーパーマスコロイダー」)を用いて4回処理を行った後、高圧衝突型分散機(スギノマシン社製「アルティマイザー」)で10回処理し、最後に20KHzの超音波処理を1分間行い、微細繊維状セルロース水系懸濁液を得た。
遠心分離機(コクサン社製「H−200NR」)を用いて約5000Gで5分間処理し、上澄濃度を測定したところ、0.17%であった。また、上澄み液中の繊維を電子顕微鏡で観察したところ、繊維径は200nm以下であった。
<Comparative Example 1>
40 g of LBKP (manufactured by CENIBRA: moisture 50%, freeness 600 mLcsf) was added with water so that the pulp concentration was 1%, and defibrated with a disintegrator.
The obtained pulp suspension was diluted to 0.5%, and this pulp suspension was treated four times using a stone mill type disperser (“Supermass colloider” manufactured by Masuko Sangyo Co., Ltd.), and then subjected to high-pressure collision. 10 times with a type disperser (“Ultimizer” manufactured by Sugino Machine Co., Ltd.), and finally, ultrasonic treatment at 20 KHz was performed for 1 minute to obtain a fine fibrous cellulose aqueous suspension.
Using a centrifuge (“H-200NR” manufactured by Kokusan Co., Ltd.), it was treated at about 5000 G for 5 minutes, and the supernatant concentration was measured and found to be 0.17%. Moreover, when the fiber in a supernatant liquid was observed with the electron microscope, the fiber diameter was 200 nm or less.

Figure 0005544747
Figure 0005544747

本発明により、最大繊維幅1000nm以下の微細繊維状セルロースを簡便な方法により効率的に製造することが可能となる。   According to the present invention, it becomes possible to efficiently produce fine fibrous cellulose having a maximum fiber width of 1000 nm or less by a simple method.

Claims (5)

最大繊維幅1000nm以下の微細繊維状セルロースの製造方法において、セルロース繊維をオゾン含有気体中でオゾン処理した後、水に分散し、得られたセルロース繊維の水系懸濁液を粉砕処理することを特徴とする微細繊維状セルロースの製造方法。 In the method for producing fine fibrous cellulose having a maximum fiber width of 1000 nm or less, the cellulose fiber is treated with ozone in an ozone-containing gas , then dispersed in water, and the resulting aqueous suspension of cellulose fiber is pulverized. A method for producing fine fibrous cellulose. オゾン処理におけるオゾン添加率が絶乾セルロース繊維質量当たり0.1〜30質量%であることを特徴とする請求項1に記載の微細繊維状セルロースの製造方法。   The method for producing fine fibrous cellulose according to claim 1, wherein the ozone addition rate in the ozone treatment is 0.1 to 30% by mass per mass of the absolutely dry cellulose fiber. 粉砕処理が石臼粉砕、高圧ホモジナイザー、ボールミルから選択される少なくとも1種であることを特徴とする請求項1または請求項2に記載の微細繊維状セルロースの製造方法。   The method for producing fine fibrous cellulose according to claim 1 or 2, wherein the pulverization treatment is at least one selected from stone mill pulverization, a high-pressure homogenizer, and a ball mill. 粉砕処理における水系懸濁液の濃度が0.1〜3質量%であることを特徴とする請求項1〜3のいずれか1項に記載の微細繊維状セルロースの製造方法。   The method for producing fine fibrous cellulose according to any one of claims 1 to 3, wherein the concentration of the aqueous suspension in the pulverization treatment is 0.1 to 3% by mass. オゾン処理の後に洗浄処理、粉砕処理を順次行うことを特徴とする請求項1〜4のいずれか1項に記載の微細繊維状セルロースの製造方法。   The method for producing fine fibrous cellulose according to any one of claims 1 to 4, wherein washing treatment and pulverization treatment are sequentially performed after the ozone treatment.
JP2009102630A 2009-04-21 2009-04-21 Method for producing fine fibrous cellulose Active JP5544747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009102630A JP5544747B2 (en) 2009-04-21 2009-04-21 Method for producing fine fibrous cellulose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009102630A JP5544747B2 (en) 2009-04-21 2009-04-21 Method for producing fine fibrous cellulose

Publications (2)

Publication Number Publication Date
JP2010254726A JP2010254726A (en) 2010-11-11
JP5544747B2 true JP5544747B2 (en) 2014-07-09

Family

ID=43316026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009102630A Active JP5544747B2 (en) 2009-04-21 2009-04-21 Method for producing fine fibrous cellulose

Country Status (1)

Country Link
JP (1) JP5544747B2 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6003080B2 (en) 2011-02-21 2016-10-05 三菱化学株式会社 Cellulose fiber and method for producing cellulose fiber
JP5915979B2 (en) * 2011-02-28 2016-05-11 国立研究開発法人産業技術総合研究所 Method for producing fine fibrous cellulose
JP5862345B2 (en) * 2012-02-13 2016-02-16 王子ホールディングス株式会社 Method for producing fine fibrous cellulose
JP5783253B2 (en) * 2012-05-21 2015-09-24 王子ホールディングス株式会社 Method for producing fine fiber and fine fiber-containing sheet
JP5857881B2 (en) * 2012-05-24 2016-02-10 王子ホールディングス株式会社 Fine fibrous cellulose and method for producing the same, non-woven fabric
WO2013176102A1 (en) * 2012-05-24 2013-11-28 王子ホールディングス株式会社 Fine fibrous cellulose, method for producing same, fine fibrous cellulose dispersion, and non-woven fabric
JP5857885B2 (en) * 2012-06-08 2016-02-10 王子ホールディングス株式会社 Fine fibrous cellulose and production method thereof, fine fibrous cellulose dispersion, non-woven fabric
US10563352B2 (en) * 2012-06-13 2020-02-18 University Of Maine System Board Of Trustees Energy efficient process for preparing nanocellulose fibers
JP6070200B2 (en) * 2013-01-09 2017-02-01 王子ホールディングス株式会社 Method for producing fiber raw material and method for producing cellulose sheet
JP6132020B2 (en) 2013-06-03 2017-05-24 王子ホールディングス株式会社 Method for producing fine fiber-containing sheet
TWI667270B (en) 2014-05-26 2019-08-01 日商王子控股股份有限公司 Methods for producing fine fiber and fine-fiber-containing sheet, sheet obtained thereby, and resin-laminated composite sheet
WO2016002688A1 (en) 2014-06-30 2016-01-07 王子ホールディングス株式会社 Underground layer processing composition containing minute cellulose fibers
WO2016002689A1 (en) 2014-06-30 2016-01-07 王子ホールディングス株式会社 Composition containing minute cellulose fibers
JP2016061002A (en) * 2014-09-22 2016-04-25 国立大学法人信州大学 Cellulose nanofiber production process
JP6619576B2 (en) * 2015-07-24 2019-12-11 大王製紙株式会社 Method for producing cellulose nanofiber
US10899899B2 (en) 2015-08-05 2021-01-26 Oji Holdings Corporation Sheet, method for producing sheet, and laminate
KR102100114B1 (en) 2015-09-30 2020-04-13 오지 홀딩스 가부시키가이샤 Sheet and laminate
EP3385443A4 (en) 2015-11-30 2019-05-29 Oji Holdings Corporation Sheet and sheet manufacturing method
JP6916425B2 (en) * 2015-12-04 2021-08-11 国立大学法人愛媛大学 Manufacturing method of ultra-small cellulose
KR101865616B1 (en) * 2016-06-16 2018-06-11 캠코아 주식회사 Treatmenting method of natural fibers and composite comprising the same
KR101859998B1 (en) 2016-06-16 2018-05-23 캠코아 주식회사 Treatmenting method of natural fibers and composite comprising the same
WO2017217791A1 (en) * 2016-06-16 2017-12-21 캠코아 주식회사 Treating method of natural fiber, and composite comprising same
JP6839511B2 (en) * 2016-09-20 2021-03-10 大王製紙株式会社 Cellulose nanofiber manufacturing equipment and cellulose nanofiber manufacturing method
JP6669694B2 (en) 2017-06-28 2020-03-18 ユニ・チャーム株式会社 Method for producing pulp fiber for forming cellulose nanofiber, and pulp fiber for forming cellulose nanofiber
CN109881521A (en) * 2017-12-06 2019-06-14 山东省圣泉生物质石墨烯研究院 A kind of nano-cellulose, Preparation method and use
CN110055788B (en) * 2018-01-19 2020-11-10 山东省圣泉生物质石墨烯研究院 Micro-nano lignocellulose dispersion liquid and preparation method and application thereof
WO2020096013A1 (en) 2018-11-09 2020-05-14 ユニ・チャーム株式会社 Method for producing recycled pulp fibers, recycled pulp fibers, and use for ozone
JP7045980B2 (en) 2018-11-09 2022-04-01 ユニ・チャーム株式会社 How to make recycled pulp fiber and recycled pulp fiber
EP3885488A4 (en) 2018-12-31 2022-01-19 Unicharm Corporation Method for producing pulp fiber raw material, and pulp fiber raw material as cellulose raw material
EP4056597A4 (en) * 2019-12-16 2023-01-18 Unicharm Corporation Cellulose nanofiber manufacturing method and cellulose nanofiber
JP6797320B2 (en) * 2020-02-28 2020-12-09 大王製紙株式会社 Manufacturing method of cellulose nanofibers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2730252B1 (en) * 1995-02-08 1997-04-18 Generale Sucriere Sa MICROFIBRILLED CELLULOSE AND ITS PROCESS FOR OBTAINING IT FROM PULP OF PLANTS WITH PRIMARY WALLS, IN PARTICULAR FROM PULP OF SUGAR BEET.
EP1226179A4 (en) * 1999-07-02 2002-10-29 Mendell Co Inc Edward Treatment of pulp to produce microcrystalline cellulose
FR2854161B1 (en) * 2003-04-28 2008-02-22 Centre Nat Rech Scient CRYSTALLINE POLYSACCHARIDE DERIVATIVES, PROCESSES FOR THEIR PRODUCTION AND THEIR APPLICATIONS
JP5330882B2 (en) * 2009-03-30 2013-10-30 日本製紙株式会社 Method for producing cellulose gel dispersion
JP5329279B2 (en) * 2009-03-30 2013-10-30 日本製紙株式会社 Method for producing cellulose nanofiber

Also Published As

Publication number Publication date
JP2010254726A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP5544747B2 (en) Method for producing fine fibrous cellulose
JP6773071B2 (en) Manufacturing method of fine fibers and manufacturing method of non-woven fabric
Kumar et al. Waste paper: An underutilized but promising source for nanocellulose mining
Khalil et al. Production and modification of nanofibrillated cellulose using various mechanical processes: a review
Zeng et al. Cellulose nanofibrils manufactured by various methods with application as paper strength additives
Yang et al. Preserving cellulose structure: delignified wood fibers for paper structures of high strength and transparency
Nechyporchuk et al. Production of cellulose nanofibrils: A review of recent advances
ES2744788T3 (en) Energy efficiency process to prepare nanocellulose fibers
Li et al. Enhanced thermal and mechanical properties of PVA composites formed with filamentous nanocellulose fibrils
JP5500842B2 (en) Method for producing cellulose nanofiber
JP2012111849A (en) Method for producing microfibrous cellulose, method for producing microfibrous cellulose sheet, and microfibrous cellulose composite
JP2012036508A (en) Manufacturing method for microfibrous cellulose
JP2012012713A (en) Method of producing microfibrous cellulose
JP5862345B2 (en) Method for producing fine fibrous cellulose
WO2011129241A1 (en) Process for production of fine fibrous cellulose
JP5887857B2 (en) Method for producing fine fibrous cellulose
JP2008075214A (en) Method for producing nanofiber and nanofiber
JP5857881B2 (en) Fine fibrous cellulose and method for producing the same, non-woven fabric
JP2012046848A (en) Method for producing microfibrous cellulose
JP2013011026A (en) High-strength material including cellulose nanofiber as main component and method for producing the same
Rezanezhad et al. Isolation of nanocellulose from rice waste via ultrasonication
JP5655432B2 (en) Method for producing fine fibrous cellulose
JP2012219413A (en) Method for producing fine fiber
Cebreiros et al. Enhancing cellulose nanofibrillation of eucalyptus Kraft pulp by combining enzymatic and mechanical pretreatments
Hiasa et al. Prevention of aggregation of pectin‐containing cellulose nanofibers prepared from mandarin peel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131001

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R150 Certificate of patent or registration of utility model

Ref document number: 5544747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250