JP2012012713A - Method of producing microfibrous cellulose - Google Patents

Method of producing microfibrous cellulose Download PDF

Info

Publication number
JP2012012713A
JP2012012713A JP2010148067A JP2010148067A JP2012012713A JP 2012012713 A JP2012012713 A JP 2012012713A JP 2010148067 A JP2010148067 A JP 2010148067A JP 2010148067 A JP2010148067 A JP 2010148067A JP 2012012713 A JP2012012713 A JP 2012012713A
Authority
JP
Japan
Prior art keywords
aqueous solution
cellulose
fine fibrous
mass
fibrous cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010148067A
Other languages
Japanese (ja)
Inventor
Go Banzashi
豪 盤指
真代 ▲高▼崎
Mayo Takasaki
Yasutomo Noisshiki
泰友 野一色
Takashi Kawamukai
隆 河向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP2010148067A priority Critical patent/JP2012012713A/en
Publication of JP2012012713A publication Critical patent/JP2012012713A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing microfibrous cellulose comprising mechanically defibrating cellulose fiber so as to easily provide microfibrous cellulose with a fiber width of 2-1000 nm.SOLUTION: There is provided a method of producing microfibrous cellulose in which a cellulose fiber is treated at least through a degreasing process, a delignifying process, a hemicellulose-removing process and a refining process so as to produce the microfibrous cellulose with a fiber width of 2-1000 nm, and an acid aqueous solution treatment is performed in the delignifying process. In the delignifying process, the acid aqueous solution treatment is followed by an aqueous alkali solution treatment.

Description

本発明は、セルロース繊維を機械的に解繊することによって、繊維幅が2〜1000nmの微細繊維状セルロースを容易に得ることができる微細繊維状セルロースの製造方法に関する。   The present invention relates to a method for producing fine fibrous cellulose that can easily obtain fine fibrous cellulose having a fiber width of 2 to 1000 nm by mechanically defibrating cellulose fibers.

近年、物質をナノメートルサイズの大きさにすることによりバルクや分子レベルとは異なる物性を得ることを目的としたナノテクノロジーが注目されている。一方で、石油資源の代替および環境意識の高まりから再生産可能な天然繊維の応用にも注目が集まっている。
天然繊維の中でもセルロース繊維、とりわけ木材由来のセルロース繊維(パルプ)は主に紙製品として幅広く使用されている。紙に使用されるセルロース繊維の幅は10〜50μmのものがほとんどである。このようなセルロース繊維から得られる紙(シート)は不透明であり、不透明であるが故に印刷用紙として幅広く利用されている。一方、セルロース繊維をレファイナーやニーダー、サンドグラインダーなどで処理(叩解、粉砕)し、セルロース繊維を微細化(ミクロフィブリル化)すると透明紙(グラシン紙等)が得られる。しかし、この透明紙の透明性は半透明レベルであり、光の透過性は高分子フィルムに比べると低く、曇り度合い(ヘーズ値)も大きい。
In recent years, nanotechnology aimed at obtaining physical properties different from the bulk and molecular levels by making a material a nanometer size has attracted attention. On the other hand, attention is also focused on the application of natural fibers that can be regenerated due to the substitution of petroleum resources and the growing environmental awareness.
Among natural fibers, cellulose fibers, particularly wood-derived cellulose fibers (pulp) are widely used mainly as paper products. Most cellulose fibers used for paper have a width of 10 to 50 μm. Paper (sheet) obtained from such cellulose fibers is opaque and is widely used as printing paper because it is opaque. On the other hand, when the cellulose fiber is treated (beating, pulverizing) with a refiner, kneader, sand grinder or the like, and the cellulose fiber is refined (microfibril), a transparent paper (glassine paper or the like) is obtained. However, the transparency of the transparent paper is at a semi-transparent level, the light transmittance is lower than that of the polymer film, and the haze level (haze value) is large.

また、セルロース繊維は弾性率が高く、熱膨張率の低いセルロース結晶の集合体であり、セルロース繊維を高分子とコンポジット化することによって耐熱寸法安定性が向上するため、積層板などに利用されている。ただし、通常のセルロース繊維は結晶の集合体であり、筒状の空隙を有する繊維であるため寸法安定性には限界がある。
セルロース繊維を機械的に粉砕し、その繊維幅を50nm以下とした微細繊維状セルロースの水分散液は透明である。他方、微細繊維状セルロースシートは空隙を含むため白く乱反射し、不透明性が高くなるが、微細繊維状セルロースシートに樹脂を含浸すると該空隙が埋まるため、透明なシートが得られる。さらに、微細繊維状セルロースシートの繊維はセルロース結晶の集合体で、非常に剛直であり、また、繊維幅が小さいため、通常のセルロースシート(紙)に比べると同質量において繊維の本数が飛躍的に多くなる。そのため、高分子とコンポジット化すると高分子中で細い繊維がより均一かつ緻密に分散し、耐熱寸法安定性が飛躍的に向上する。また、繊維が細いため透明性が高い。このような特性を有する微細繊維状セルロースのコンポジットは、有機ELや液晶ディスプレイ用のフレキシブル透明基板(曲げたり折ったりすることのできる透明基板)として非常に大きな期待が寄せられている。
Cellulose fibers are aggregates of cellulose crystals with a high modulus of elasticity and a low coefficient of thermal expansion, and heat resistant dimensional stability is improved by compositing cellulose fibers with polymers. Yes. However, normal cellulosic fibers are aggregates of crystals, and are fibers having cylindrical voids, so that dimensional stability is limited.
The aqueous dispersion of fine fibrous cellulose having mechanically pulverized cellulose fibers and having a fiber width of 50 nm or less is transparent. On the other hand, since the fine fibrous cellulose sheet contains voids, it is diffusely reflected white and becomes highly opaque. However, when the fine fibrous cellulose sheet is impregnated with a resin, the voids are filled, so that a transparent sheet is obtained. Furthermore, the fibers of the fine fibrous cellulose sheet are an aggregate of cellulose crystals, very stiff, and because the fiber width is small, the number of fibers is dramatically increased at the same mass compared to ordinary cellulose sheets (paper). To be more. Therefore, when composited with a polymer, fine fibers are dispersed more uniformly and densely in the polymer, and the heat-resistant dimensional stability is dramatically improved. Moreover, since the fibers are thin, the transparency is high. A fine fibrous cellulose composite having such characteristics is expected to be very large as a flexible transparent substrate (a transparent substrate that can be bent or folded) for organic EL or liquid crystal displays.

微細繊維状セルロースに関する微細化技術については数多く開示されているが、パルプを機械的に解繊することによって容易に2〜1000nmの直径の微細繊維状セルロースを得ることができるパルプに関する技術についてはほとんど開示されていないのが現状である。   There have been many disclosures on the fine fiber technology related to fine fibrous cellulose, but most of the technology related to pulp that can easily obtain fine fibrous cellulose having a diameter of 2 to 1000 nm by mechanically defibrating the pulp. The current situation is not disclosed.

特許文献1に、水保持力を規定した微細繊維状セルロースの技術が開示されているが、クラフトパルプを高圧処理することによって微細繊維状セルロースを得ている。しかし、解繊効率が悪く、直径の細い繊維を得るためには長時間の処理が必要となる。
特許文献2に、セルロースミクロフィブリルの凝集体に、酵素の浸透性を向上させた非晶部分にエンドグルカナーゼを作用させてセルロースナノファイバーを高収率で得る技術が開示されている。しかしながら原料としてあらかじめ微細繊維状になっているセルロースの凝集体を使用しているため、全体の生産性を考慮すると効率が低いといった問題がある。
特許文献3に、湿式で離解したセルロース系繊維原料を予備的に解繊し、超音波処理の工程中にセルラーゼやキシラナーゼ、ヘミセルラーゼなどの酵素を作用させて、効率よくナノファイバーを製造する技術が開示されているが、酵素処理工程が必要であり、効率も十分に高いとは言えない。また、原料には通常の製紙用のパルプが用いられている。
特許文献4に、過硫酸などの酸化剤を用いて繊維を酸化し、酵素で処理し、還元処理を行いフィブリル化する技術が開示されているが、繊維の幅が3〜5μmと大きく、微細化が十分に進んでいない。
特許文献5に、リグノセルロース繊維をシュウ酸アンモニウム、水酸化ナトリウム、亜塩素酸塩、次亜塩素酸塩のいずれかを用いて叩解処理する技術が開示されているが、フィブリル化は進むものの繊維の幅は太い状態であり、微細化効率の向上には至っていない。
特許文献6に、最大繊維径1μm以下のセルロース繊維からなる微多孔性セルロースシートが開示されているが、パルプ原料は通常の製紙用パルプあるいはバクテリアセルロースが用いられている。
Patent Document 1 discloses a technique of fine fibrous cellulose that defines water retention, but fine fibrous cellulose is obtained by high-pressure treatment of kraft pulp. However, the defibrating efficiency is poor, and a long time treatment is required to obtain a fiber having a small diameter.
Patent Document 2 discloses a technique for obtaining cellulose nanofibers in a high yield by allowing an endoglucanase to act on an amorphous portion having improved enzyme permeability on an aggregate of cellulose microfibrils. However, since cellulose aggregates that are in the form of fine fibers in advance are used as raw materials, there is a problem that the efficiency is low in consideration of the overall productivity.
Patent Document 3 describes a technique for efficiently producing nanofibers by preliminarily defibrating cellulosic fiber raw material that has been disaggregated in a wet manner, and allowing enzymes such as cellulase, xylanase, and hemicellulase to act during the ultrasonic treatment process. Is disclosed, however, an enzyme treatment step is required, and it cannot be said that the efficiency is sufficiently high. In addition, ordinary pulp for papermaking is used as a raw material.
Patent Document 4 discloses a technique in which fibers are oxidized using an oxidizing agent such as persulfuric acid, treated with an enzyme, and subjected to a reduction treatment to form a fibril. However, the fiber width is as large as 3 to 5 μm and fine. The process has not progressed sufficiently.
Patent Document 5 discloses a technique for beating a lignocellulose fiber using any one of ammonium oxalate, sodium hydroxide, chlorite, and hypochlorite. The width of is in a thick state, and the miniaturization efficiency has not been improved.
Patent Document 6 discloses a microporous cellulose sheet composed of cellulose fibers having a maximum fiber diameter of 1 μm or less, and normal pulp for papermaking or bacterial cellulose is used as a pulp raw material.

化学的処理と機械的粉砕処理とを組合せた方法としては、パルプを軽度に加水分解し、濾過水洗後、乾燥、粉砕して一部非晶領域を含むセルロース微粒子の製造方法や精製パルプを塩酸または硫酸で加水分解して結晶領域のみを残して微粉化する技術が開示されているが、微細化のレベルとしては充分ではなく、得られた微細繊維状セルロースの水系懸濁液の透明性も不充分である(非特許文献1)。ここでは塩酸や硫酸で加水分解しているが、この方法はパルプ化した後の処理であり、本発明とは全く異なる技術であり、解繊性も不十分である。   As a method of combining chemical treatment and mechanical pulverization treatment, pulp is slightly hydrolyzed, washed with filtered water, dried and pulverized to produce cellulose fine particles partially containing amorphous regions, and purified pulp is treated with hydrochloric acid. Alternatively, a technique of hydrolyzing with sulfuric acid and pulverizing leaving only the crystalline region is disclosed, but the level of refinement is not sufficient, and the transparency of the obtained aqueous suspension of fine fibrous cellulose is also Insufficient (Non-Patent Document 1). Here, hydrolysis is carried out with hydrochloric acid or sulfuric acid, but this method is a treatment after pulping, which is a technique completely different from the present invention, and the defibration property is insufficient.

N−オキシル化合物によるセルロースの表面酸化反応を利用し、最大繊維径が1000nm以下かつ数平均繊維径が2〜150nmであり、セルロースの水酸基の一部がカルボキシル基およびアルデヒド基からなる群から選ばれる少なくとも1つの官能基に酸化されており、且つセルロースI型結晶構造を有する微細繊維状セルロースを提供する技術(特許文献7)が開示されている。しかし、この方法では、表面の酸化により親水基が導入されるので、疎水性の樹脂の含浸が困難になるなど、実用面で問題がある。   Utilizing the surface oxidation reaction of cellulose by N-oxyl compound, the maximum fiber diameter is 1000 nm or less and the number average fiber diameter is 2 to 150 nm, and some of hydroxyl groups of cellulose are selected from the group consisting of carboxyl group and aldehyde group A technique (Patent Document 7) that provides fine fibrous cellulose that is oxidized to at least one functional group and has a cellulose I-type crystal structure is disclosed. However, this method has a problem in practical use, such as impregnation with a hydrophobic resin, because a hydrophilic group is introduced by oxidation of the surface.

酵素処理、酸処理、アルカリ処理、膨潤薬品処理のいずれかにより前処理した繊維状セルロースを振動ミル粉砕機にて湿式粉砕する技術が開示されている(特許文献8)が、効率が依然として低く、微細繊維状セルロースの収率が低く、実用性に乏しい。また、酵素処理でセルロース繊維の一部が50〜70nmの幅に解繊されているが、繊維の一部であり効率は低い。また、酸処理によってセルロース繊維の幅が1000nm以下になるという記載は無い。   A technique for wet-grinding fibrous cellulose pretreated by any of enzyme treatment, acid treatment, alkali treatment, and swelling chemical treatment with a vibration mill grinder is disclosed (Patent Document 8), but the efficiency is still low. The yield of fine fibrous cellulose is low and the practicality is poor. Moreover, although a part of cellulose fiber is defibrated to a width of 50 to 70 nm by the enzyme treatment, it is a part of the fiber and the efficiency is low. Moreover, there is no description that the width | variety of a cellulose fiber will be 1000 nm or less by acid treatment.

さらに、木粉を脱脂し、亜塩素酸ナトリウムと酢酸で脱リグニンし、洗浄、脱ヘミセルロースした後、微細化して微細繊維状セルロースを製造する方法が提案されている(特許文献9)が、塩素化合物である亜塩素酸ナトリウムを使用するため、木粉表面のリグニンは除去されるものの、浸透性が悪いので、木粉の内部にあるリグニンは除去しにくく、その結果、低いYI値の微細繊維は得にくく、また、反応後の排水中に有機塩素化合物が含まれ、環境上の問題が発生する。   Furthermore, a method has been proposed in which wood powder is defatted, delignified with sodium chlorite and acetic acid, washed, dehemicellulosed, and then refined to produce fine fibrous cellulose (Patent Document 9). Since the compound uses sodium chlorite, the lignin on the surface of the wood flour is removed, but the permeability is poor, so it is difficult to remove the lignin inside the wood flour, and as a result, fine fibers with a low YI value. In addition, organic chlorine compounds are contained in the wastewater after the reaction, which causes environmental problems.

非特許文献2〜4に酸性水溶液とアルカリ水溶液によって脱リグニンする技術が開示されているが、ヘミセルロースを残してパルプ収率を向上させようとする技術であって、このパルプを利用して機械的解繊して、微細繊維状セルロースを製造するという技術思想はない。
また、特許文献10には、木質チップを希苛性ソーダにより常温で親水化し、希硝酸中でリグニンを選択的に部分酸化して変性し、希苛性ソーダ水溶液を用いて大気圧下で蒸解してパルプを製造する技術が開示されている。高収率でパルプを製造し、リグニンを回収する技術であるが、微細繊維状セルロース用のパルプとして利用する記載はない。
Non-Patent Documents 2 to 4 disclose a technique for delignifying with an acidic aqueous solution and an alkaline aqueous solution, but this is a technique for improving the pulp yield by leaving hemicellulose, and mechanically using this pulp. There is no technical idea of defibrating to produce fine fibrous cellulose.
Patent Document 10 discloses that wood chips are hydrophilized with dilute caustic soda at room temperature, lignin is selectively partially oxidized in dilute nitric acid, denatured, and digested under atmospheric pressure using dilute caustic soda aqueous solution. Techniques for manufacturing are disclosed. Although it is a technique for producing pulp with a high yield and recovering lignin, there is no description of utilizing it as a pulp for fine fibrous cellulose.

上記のように、繊維状セルロースを微細化する技術が種々開示されているが、工業的なレベルで収率の高い微細繊維状セルロースの製造技術の開発が望まれている。   As described above, various techniques for refining fibrous cellulose have been disclosed. However, development of a technique for producing fine fibrous cellulose having a high yield on an industrial level is desired.

山口章「セルロースの微粉化・ミクロフィブリル化」紙パルプ技術タイムス28巻9号5頁以下(1985年)Akira Yamaguchi "Pulverization and Microfibrillation of Cellulose" Paper and Pulp Technology Times Vol. 28, No. 9, pp. 5 (1985) ウェン・バン・バ「硝酸法パルプに関する研究(第1報) 木材多糖類の挙動」木材学会誌26巻1号12頁以下(1980)Wen Bang Ba “Research on nitrate pulp (Part 1) Behavior of wood polysaccharides” Journal of the Wood Society Vol. 26, No. 12, p. 12 (1980) ウェン・バン・バ「硝酸法パルプに関する研究(第2報)硝酸法パルプ化に関する研究(第2法) 炭水化物の挙動についてのモデル実験 」木材学会誌26巻11号738頁以下(1980)Wen Bang Ba “Research on nitrate pulp (2nd report) Study on nitrate pulp (2nd method) Model experiment on behavior of carbohydrates” Journal of Wood Science, Vol. 26, No. 11, p. 738 (1980) ウェン・バン・バ「硝酸法パルプに関する研究(第3報) Vanillyl Alcoholと希硝酸の反応」木材学会誌28巻2号129頁以下(1982)Wen Bang Ba "Studies on nitrate pulp (Part 3) Reaction of Vanillyl Alcohol and dilute nitric acid" Journal of the Wood Society Vol. 28, No. 2, p. 129 (1982)

特開昭56−100801号公報JP-A 56-1000080 特開2008−150719号公報JP 2008-150719 A 特開2008−169497号公報JP 2008-169497 A 特表2004−520494号公報Special table 2004-520494 gazette 特許第4306373号公報Japanese Patent No. 4306373 特開2006−193858号公報JP 2006-193858 A 特開2008−1728号公報JP 2008-1728 A 特開平6−10288号公報JP-A-6-10288 特開2008−24788号公報JP 2008-24788 A 特開2009−167554号公報JP 2009-167554 A

本発明は、セルロース繊維を機械的に解繊することによって、繊維幅が2〜1000nmの微細繊維状セルロースを容易に得ることができる微細繊維状セルロースの製造方法を提供するものである。   The present invention provides a method for producing fine fibrous cellulose, in which fine fibrous cellulose having a fiber width of 2 to 1000 nm can be easily obtained by mechanically defibrating cellulose fibers.

本発明者らは、セルロース繊維(木材チップ)を酸性水溶液処理、アルカリ水溶液処理による脱リグニン処理を行ったパルプを機械的に解繊することにより、繊維幅が2〜1000nmである微細繊維状セルロースが容易に得られることを見出し、本発明を完成させた。   The present inventors mechanically defibrated pulp obtained by subjecting cellulose fibers (wood chips) to delignification treatment by acidic aqueous solution treatment and alkaline aqueous solution treatment, whereby fine fibrous cellulose having a fiber width of 2 to 1000 nm. Was easily obtained, and the present invention was completed.

本発明は、以下の各発明を包含する。
(1)セルロース繊維を少なくとも脱脂工程、脱リグニン工程、脱ヘミセルロース工程、微細化工程を経て処理し、繊維幅が2〜1000nmの微細繊維状セルロースを製造する方法であって、該脱リグニン工程において酸性水溶液処理を行う微細繊維状セルロースの製造方法である。
The present invention includes the following inventions.
(1) A method of producing a fine fibrous cellulose having a fiber width of 2 to 1000 nm by treating cellulose fibers through at least a degreasing step, a delignification step, a dehemicellulose step, and a micronization step, in the delignification step It is a manufacturing method of the fine fibrous cellulose which performs acidic aqueous solution processing.

(2)前記脱リグニン工程において酸性水溶液処理を行ってからアルカリ水溶液処理を行う(1)に記載の微細繊維状セルロースの製造方法である。 (2) The method for producing fine fibrous cellulose according to (1), wherein the alkaline aqueous solution treatment is performed after the acidic aqueous solution treatment is performed in the delignification step.

(3)前記脱リグニン工程における酸性水溶液が硫酸水溶液、塩酸水溶液、硝酸水溶液、ギ酸水溶液、酢酸水溶液から選択される少なくとも1種類である(1)または(2)に記載の微細繊維状セルロースの製造方法である。 (3) Production of fine fibrous cellulose according to (1) or (2), wherein the acidic aqueous solution in the delignification step is at least one selected from sulfuric acid aqueous solution, hydrochloric acid aqueous solution, nitric acid aqueous solution, formic acid aqueous solution, and acetic acid aqueous solution. Is the method.

(4)前記脱リグニン工程におけるアルカリ水溶液が水酸化ナトリウム水溶液または水酸化カリウム水溶液である(2)に記載の微細繊維状セルロースの製造方法である。 (4) The method for producing fine fibrous cellulose according to (2), wherein the alkaline aqueous solution in the delignification step is a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution.

(5)セルロース繊維を脱脂工程、脱リグニン工程、脱ヘミセルロース工程、微細化工程を順次経て処理する(1)〜(4)のいずれか1項に記載の微細繊維状セルロースの製造方法である。 (5) It is a manufacturing method of the fine fibrous cellulose of any one of (1)-(4) which processes a cellulose fiber sequentially through a degreasing process, a delignification process, a dehemicellulose process, and a refinement | miniaturization process.

本発明者らは、微細繊維状セルロースの収率を向上させる方法を種々検討した。まず最初に、クラフトパルプ(NBKPやLBKP)やサルファイトパルプ(SP)などの化学パルプを酸性水溶液で処理したが、機械的処理で所望の解繊ができず、微細繊維状セルロースが得られないことが分かった。これはクラフト蒸解やサルファイト蒸解などの脱リグニン方法を適用するとリグニンは除去されるが、同時にセルロースの結晶領域を構成するミクロフィブリル間の結合力を強めてしまい、解繊しにくくなるものと考えられる。
次に、本発明者らは木粉をセルロース繊維の原料として選び、木粉を脱脂処理し、酸性水溶液で脱リグニン処理を行った。このようにして得られたセルロース繊維は非常に解繊性に優れ、繊維幅が2〜1000nmの微細繊維状セルロースが容易に得られることを見出した。これは、脱リグニン工程において酸性水溶液処理を施すことによりリグニンが効果的に除去され、セルロースとリグニンとの結合が弱められ、それによって微細なフィブリル間、さらには結晶領域を構成するミクロフィブリル間の結合力が低下して、機械的処理によるパルプの微細化が容易にできるものと考えられる。
The present inventors have studied various methods for improving the yield of fine fibrous cellulose. First, chemical pulp such as kraft pulp (NBKP or LBKP) or sulfite pulp (SP) was treated with an acidic aqueous solution, but the desired fibrillation could not be achieved by mechanical treatment, and fine fibrous cellulose could not be obtained. I understood that. When delignification methods such as kraft cooking and sulfite cooking are applied, lignin is removed, but at the same time, the bonding force between microfibrils constituting the crystalline region of cellulose is strengthened, and it is thought that it becomes difficult to defibrate. It is done.
Next, the present inventors selected wood flour as a raw material for cellulose fibers, degreased the wood flour, and delignified with an acidic aqueous solution. It has been found that the cellulose fibers thus obtained are very excellent in defibration properties and fine fibrous cellulose having a fiber width of 2 to 1000 nm can be easily obtained. This is because the lignin is effectively removed by applying an acidic aqueous solution treatment in the delignification step, and the bond between cellulose and lignin is weakened, thereby causing fine fibrils and even between microfibrils constituting the crystalline region. It is considered that the binding force is reduced and the pulp can be easily refined by mechanical treatment.

一方、微細繊維状セルロースを得るためセルロース繊維をフィブリル化させる方法として、酵素(キシラナーゼ、セルラーゼ)処理や薬品(アルカリ、塩化亜鉛、エチレンジアミン、チオ尿素、ベンゼンスルホン酸)処理等が知られているが、本発明では脱リグニン方法としては大きなメリットがないと言われた酸性水溶液による脱リグニンを採用したことに特徴を有するものである。
本発明によって微細繊維状セルロースを容易に得ることができる微細繊維状セルロースの製造方法を提供することができる。
On the other hand, enzyme (xylanase, cellulase) treatment, chemical (alkali, zinc chloride, ethylenediamine, thiourea, benzenesulfonic acid) treatment and the like are known as methods for fibrillating cellulose fibers to obtain fine fibrous cellulose. The present invention is characterized in that delignification using an acidic aqueous solution, which is said to have no great merit as a delignification method, is employed.
According to the present invention, it is possible to provide a method for producing fine fibrous cellulose from which fine fibrous cellulose can be easily obtained.

以下、本発明について詳細に説明する。
本発明の微細繊維状セルロースを得るための原料としては植物由来のセルロースが好ましい。より具体的には、針葉樹や広葉樹の木材系原料、コットンリンターやコットンリントなどの綿系原料、麻や稲わら、麦わら、バガス(サトウキビしぼり粕)、竹、ケナフ、コウゾ、ミツマタなどの非木材系原料などが挙げられる。これらの中でも木材系原料や非木材系原料が微細繊維化しやすい点で好ましい。綿系原料は微細繊維化しにくいため好ましくない。
なお、該原料の形状は木粉が好ましい。木粉の大きさは1mm以下が好ましく、0.6mm以下がさらに好ましく、0.3mm以下が特に好ましい。木粉の大きさが1mmを超えると微細繊維化し難くなり、好ましくない。
さらに、原料として砕木パルプ、例えば、SGW(Stone Ground Wood)、あるいは亜硫酸ソーダなどで軽度に化学処理した後、砕木化するCGP(Chemical Groundwood Pulp)等も使用可能であり、針葉樹、広葉樹の砕木パルプが好ましく使用される。
Hereinafter, the present invention will be described in detail.
Plant-derived cellulose is preferred as a raw material for obtaining the fine fibrous cellulose of the present invention. More specifically, wood-based raw materials for conifers and broad-leaved trees, cotton-based raw materials such as cotton linter and cotton lint, non-wood such as hemp, rice straw, straw, bagasse (sugar cane squeezed rice cake), bamboo, kenaf, kouzo, and mitsumata System materials and the like. Among these, wood-based raw materials and non-wood-based raw materials are preferable because they can be easily made into fine fibers. Cotton-based materials are not preferred because they are difficult to make into fine fibers.
The raw material is preferably wood flour. The size of the wood powder is preferably 1 mm or less, more preferably 0.6 mm or less, and particularly preferably 0.3 mm or less. If the size of the wood powder exceeds 1 mm, it is difficult to form fine fibers, which is not preferable.
Furthermore, ground wood pulp such as SGP (Stone Ground Wood) or CGP (Chemical Groundwood Pulp), which is lightly chemically treated with sodium sulfite and then ground, can be used. Are preferably used.

本発明において上記原料のセルロース含有量は40質量%〜70質量%であることが好ましく、45質量%〜65質量%が特に好ましい。セルロース含有量が40質量%未満であると得られるパルプの収率が低下して、好ましくない。セルロース含有量が70質量%を超えると微細繊維化することが困難となり、好ましくない。
上記原料のリグニンの含有量は10質量%〜40質量%であることが好ましく、15質量%〜35質量%が特に好ましい。リグニン含有量が10質量%未満の場合は微細繊維化することが困難となる。リグニン含有量が40質量%を超えるとパルプの収率が低下して好ましくない。
上記原料のヘミセルロース(キシランやアラバンなどのペントサン)の含有量は2質量%〜35質量%であることが好ましく、5質量%〜30質量%が特に好ましい。ヘミセルロースの含有量が2質量%未満であると微細繊維化が困難となり好ましくない。ヘミセルロースの含有量が35質量%を超えるとパルプの収率が低下して好ましくない。
上記原料の結晶化度は30%〜45%が好ましく、33%〜42%が特に好ましい。結晶化度が30%未満となると微細繊維状セルロースの収率が低下するので好ましくない。結晶化度が45%を超えると微細繊維化し難くなるので好ましくない。
In this invention, it is preferable that the cellulose content of the said raw material is 40 mass%-70 mass%, and 45 mass%-65 mass% are especially preferable. When the cellulose content is less than 40% by mass, the yield of the obtained pulp is lowered, which is not preferable. When the cellulose content exceeds 70% by mass, it is difficult to make fine fibers, which is not preferable.
The content of lignin as the raw material is preferably 10% by mass to 40% by mass, and particularly preferably 15% by mass to 35% by mass. When the lignin content is less than 10% by mass, it becomes difficult to make fine fibers. If the lignin content exceeds 40% by mass, the yield of the pulp decreases, which is not preferable.
The content of hemicellulose (pentosan such as xylan and araban) as the raw material is preferably 2% by mass to 35% by mass, and particularly preferably 5% by mass to 30% by mass. If the hemicellulose content is less than 2% by mass, it is difficult to make fine fibers, which is not preferable. When the content of hemicellulose exceeds 35% by mass, the yield of the pulp decreases, which is not preferable.
The crystallinity of the raw material is preferably 30% to 45%, particularly preferably 33% to 42%. A crystallinity of less than 30% is not preferable because the yield of fine fibrous cellulose decreases. If the crystallinity exceeds 45%, it is difficult to form fine fibers, which is not preferable.

本発明においては微細繊維状セルロースを得るために上記原料を少なくとも脱脂工程、脱リグニン工程、脱ヘミセルロース工程、微細化工程を経て処理するものである。
本発明において該脱脂工程では、炭酸塩、アルコール、アルコール−ベンゼンの1:2混合溶液であるアルベン、ベンゼン、脂肪酸のトリグリセリドを分解する酵素であるリパーゼなどを適宜用いることができ、常温で、攪拌しながら、あるいは高温高圧で処理する方法等が挙げられるが、薬剤としては安価で、かつ有機溶媒ではなく、さらに圧力容器を用いないで簡便に使用でき、しかも脱脂効率が高いという理由で炭酸ナトリウム法が好ましい。
In the present invention, in order to obtain fine fibrous cellulose, the raw material is processed through at least a degreasing process, a delignification process, a dehemicellulose process, and a refinement process.
In the degreasing step of the present invention, carbene, alcohol, lipase, which is an enzyme that decomposes triglycerides of fatty acids, and the like, which are 1: 2 mixed solutions of carbonate, alcohol, and alcohol-benzene, can be used as appropriate. However, there is a method of treating at high temperature and high pressure, etc., but sodium carbonate is used because it is inexpensive as an agent, is not an organic solvent, can be used easily without using a pressure vessel, and has high degreasing efficiency. The method is preferred.

脱脂工程における炭酸ナトリウムは水溶液として使用するが、炭酸ナトリウム水溶液の濃度は0.1質量%〜10質量%が好ましく、0.3質量%〜7質量%が好ましく、0.5質量%〜4質量%が特に好ましい。炭酸ナトリウム水溶液の濃度が0.1質量%未満であると脱脂効率が低下して好ましくない。炭酸ナトリウム水溶液の濃度が10%を超えると脱脂効果が飽和し、経済的にも必要性に乏しい。
炭酸ナトリウム水溶液に対する原料の添加割合は、1質量%〜10質量%が好ましく、原料の添加割合が1質量%未満になると生産性が低下し、好ましくない。10質量%を超えると脱脂効率が低下し、好ましくない。
炭酸ナトリウム水溶液の温度は40℃〜99℃が好ましく、60℃〜96℃がさらに好ましく、80℃〜93℃が特に好ましい。温度が40℃未満になると脱脂効率が極端に悪くなり、好ましくない。温度が100℃を超えると微細繊維化が困難となり、好ましくない。
Sodium carbonate in the degreasing step is used as an aqueous solution, and the concentration of the sodium carbonate aqueous solution is preferably 0.1% by mass to 10% by mass, preferably 0.3% by mass to 7% by mass, and 0.5% by mass to 4% by mass. % Is particularly preferred. When the concentration of the sodium carbonate aqueous solution is less than 0.1% by mass, the degreasing efficiency is lowered, which is not preferable. When the concentration of the sodium carbonate aqueous solution exceeds 10%, the degreasing effect is saturated and the necessity is economically low.
The addition ratio of the raw material with respect to the sodium carbonate aqueous solution is preferably 1% by mass to 10% by mass. When it exceeds 10 mass%, degreasing efficiency falls and it is not preferable.
The temperature of the sodium carbonate aqueous solution is preferably 40 ° C to 99 ° C, more preferably 60 ° C to 96 ° C, and particularly preferably 80 ° C to 93 ° C. When the temperature is lower than 40 ° C., the degreasing efficiency is extremely deteriorated, which is not preferable. If the temperature exceeds 100 ° C., it is difficult to make fine fibers, which is not preferable.

脱リグニン方法としては酸性水溶液処理を行う必要がある。さらに、酸性水溶液処理を行った後、アルカリ水溶液処理を行った方が微細繊維状セルロースの収率が向上するため、好ましい。酸性水溶液の処理によってリグニンが低分子量化し、低分子量化したリグニンをアルカリ水溶液で除去するという原理である。
脱リグニン工程における酸性水溶液としては、酢酸、硫酸、塩酸、リン酸、硝酸、酢酸、安息香酸、メタクロロ安息香酸、ギ酸、プロピオン酸等の水溶液が挙げられるが、扱い方が比較的容易な硫酸水溶液、塩酸水溶液、硝酸水溶液、ギ酸水溶液、酢酸水溶液から選択される少なくとも1種を用いるのが好ましい。
酸性水溶液の酸の濃度は、特に制限はないが酸が硫酸や塩酸、リン酸、硝酸などの強酸の場合は、1質量%〜40質量%が好ましく、5質量%〜20質量%が特にこのましい。強酸の濃度が1質量%未満であると微細繊維化が困難となり好ましくない。強酸の濃度が40質量%を超えると原料に含まれるセルロース繊維が分解されてしまい、収率が低下したり、得られる微細繊維状セルロースの繊維幅が細くなり好ましくない。酸が酢酸、安息香酸、メタクロロ安息香酸、ギ酸、プロピオン酸などの弱酸の場合は、70質量%〜100質量%が好ましく、80質量%〜95質量%が特に好ましい。弱酸の濃度が70質量%未満であると微細繊維化が困難となり好ましくない。
酸性水溶液に対する原料(脱脂工程が終了した原料が好ましい)の添加割合(酸性水溶液に対するパルプの固形質量)は0.5質量%〜10質量%が好ましい。原料の添加割合が0.5質量%未満になると生産性が低下し、好ましくない。原料の添加割合が10質量%を超えると脱リグニンの効率が低下し、好ましくない。
酸性水溶液で原料を処理する際の酸性水溶液の温度は40℃〜99℃が好ましく、50℃〜98℃がさらに好ましく、60℃〜97℃が特に好ましい。温度が40℃未満であると脱リグニンの効率が悪くなり、また色が着いた状態となり、好ましくない。99℃を超えると微細繊維化が困難となり好ましくない。
As a delignification method, it is necessary to perform an acidic aqueous solution treatment. Furthermore, it is preferable to perform the alkaline aqueous solution treatment after the acidic aqueous solution treatment because the yield of fine fibrous cellulose is improved. This is the principle that lignin is reduced in molecular weight by treatment with an acidic aqueous solution, and the reduced molecular weight lignin is removed with an alkaline aqueous solution.
Examples of the acidic aqueous solution in the delignification step include aqueous solutions of acetic acid, sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, acetic acid, benzoic acid, metachlorobenzoic acid, formic acid, propionic acid, and the like. It is preferable to use at least one selected from hydrochloric acid aqueous solution, nitric acid aqueous solution, formic acid aqueous solution and acetic acid aqueous solution.
The acid concentration of the acidic aqueous solution is not particularly limited, but when the acid is a strong acid such as sulfuric acid, hydrochloric acid, phosphoric acid or nitric acid, 1% by mass to 40% by mass is preferable, and 5% by mass to 20% by mass is particularly preferable. Good. If the concentration of the strong acid is less than 1% by mass, it is difficult to make fine fibers, which is not preferable. If the concentration of the strong acid exceeds 40% by mass, the cellulose fibers contained in the raw material are decomposed and the yield is lowered, or the fiber width of the obtained fine fibrous cellulose is not preferable. When the acid is a weak acid such as acetic acid, benzoic acid, metachlorobenzoic acid, formic acid or propionic acid, 70% by mass to 100% by mass is preferable, and 80% by mass to 95% by mass is particularly preferable. When the concentration of the weak acid is less than 70% by mass, it is difficult to make fine fibers, which is not preferable.
0.5 mass%-10 mass% of the addition ratio (solid mass of the pulp with respect to acidic aqueous solution) of the raw material with respect to acidic aqueous solution (The raw material after the degreasing process was preferable) is preferable. When the addition ratio of the raw material is less than 0.5% by mass, productivity is lowered, which is not preferable. When the addition ratio of the raw material exceeds 10% by mass, the efficiency of delignification decreases, which is not preferable.
The temperature of the acidic aqueous solution when the raw material is treated with the acidic aqueous solution is preferably 40 ° C to 99 ° C, more preferably 50 ° C to 98 ° C, and particularly preferably 60 ° C to 97 ° C. When the temperature is lower than 40 ° C., the efficiency of delignification is deteriorated, and the color becomes unfavorable. If it exceeds 99 ° C, it is difficult to make fine fibers, which is not preferable.

脱リグニン工程におけるアルカリ水溶液としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化カルシウム、水酸化マグネシウムが挙げられるが、収率や脱リグニンの効率の点から水酸化ナトリウムや水酸化カリウムが好ましい。
脱リグニン工程におけるアルカリ水溶液の濃度は0.1質量%〜10質量%が好ましく、0.3質量%〜7質量%がより好ましく、0.5質量%〜4質量%が特に好ましい。アルカリ水溶液の濃度が0.1質量%未満であると脱リグニンの効率が低下して好ましくない。アルカリ水溶液の濃度が10%を超えると脱リグニンの効果が飽和し、経済的にも必要性に乏しい。
アルカリ水溶液に対する原料の添加割合は、1質量%〜10質量%が好ましい。原料の添加割合が1質量%未満になると生産性が低下し好ましくない。10質量%を超えると脱リグニンの効果が低下し好ましくない。
アルカリ水溶液の温度は40℃〜99℃が好ましく、60℃〜96℃がさらに好ましく、80℃〜93℃が特に好ましい。温度が40℃未満になると脱リグニンの効率が悪くなり好ましくない。温度が100℃を超えると脱リグニンの効果が飽和し、経済的にも必要性に乏しい。
Examples of the alkaline aqueous solution in the delignification step include sodium hydroxide, potassium hydroxide, lithium hydroxide, calcium hydroxide, and magnesium hydroxide. From the viewpoint of yield and efficiency of delignification, sodium hydroxide and potassium hydroxide. Is preferred.
The concentration of the alkaline aqueous solution in the delignification step is preferably 0.1% by mass to 10% by mass, more preferably 0.3% by mass to 7% by mass, and particularly preferably 0.5% by mass to 4% by mass. If the concentration of the alkaline aqueous solution is less than 0.1% by mass, the efficiency of delignification is not preferred. When the concentration of the alkaline aqueous solution exceeds 10%, the effect of delignification is saturated and the necessity is economically low.
As for the addition ratio of the raw material with respect to aqueous alkali solution, 1 mass%-10 mass% are preferable. When the addition ratio of the raw material is less than 1% by mass, the productivity is undesirably lowered. If it exceeds 10% by mass, the effect of delignification decreases, which is not preferable.
The temperature of the alkaline aqueous solution is preferably 40 ° C to 99 ° C, more preferably 60 ° C to 96 ° C, and particularly preferably 80 ° C to 93 ° C. If the temperature is less than 40 ° C., the efficiency of delignification deteriorates, which is not preferable. When the temperature exceeds 100 ° C., the effect of delignification is saturated, and it is not necessary economically.

本発明においては脱リグニン工程の後に、脱ヘミセルロース工程を追加してもかまわない。脱ヘミセルロース化する方法としては、アルカリ金属の水酸化物の水溶液を用いて室温で一晩浸漬処理したり、該水溶液中で攪拌しながら高温で短時間処理したり、該水溶液中に圧力下で攪拌しながら高温高圧下で処理する方法などが挙げられる。なかでも用いる薬品としては安価で、常温常圧で使用でき、しかも脱ヘミセルロースの効率が高いという理由で水酸化カリウムが最も好ましい。
水酸化カリウムの濃度は1質量%〜20質量%が好ましく、2質量%〜15質量%が好ましく、3質量%〜10質量%が特に好ましい。水酸化カリウムの濃度が1質量%未満であると脱ヘミセルロースの効率が低下して好ましくない。水酸化カリウムの濃度が20%を超えるとセルロースがマーセル化してしまい、その結果微細繊維状セルロースの収率が低下して好ましくない。
水酸化カリウム水溶液に対する原料の添加割合は、1質量%〜10質量%が好ましい。原料の添加割合が1質量%未満になると生産性が低下し好ましくない。10質量%を超えると脱脂効率が低下し好ましくない。
水酸化カリウム水溶液の温度は1℃〜40℃が好ましく、4℃〜36℃がさらに好ましく、8℃〜32℃が特に好ましい。温度が1℃未満になると脱ヘミセルロースの効率が悪くなり好ましくない。温度が40℃を超えると微細繊維化が困難となるので好ましくない。
In the present invention, a dehemicellulose step may be added after the delignification step. As a method for dehemicellulose formation, an immersion treatment at room temperature overnight using an aqueous solution of an alkali metal hydroxide, a short treatment at a high temperature while stirring in the aqueous solution, or a pressure in the aqueous solution under pressure. The method of processing under high temperature and high pressure, stirring, etc. are mentioned. Among them, potassium hydroxide is most preferable because it is inexpensive, can be used at room temperature and normal pressure, and the efficiency of dehemicellulose is high.
The concentration of potassium hydroxide is preferably 1% by mass to 20% by mass, preferably 2% by mass to 15% by mass, and particularly preferably 3% by mass to 10% by mass. When the concentration of potassium hydroxide is less than 1% by mass, the efficiency of dehemicellulose is undesirably lowered. If the concentration of potassium hydroxide exceeds 20%, the cellulose becomes mercerized, and as a result, the yield of fine fibrous cellulose is lowered, which is not preferable.
As for the addition ratio of the raw material with respect to potassium hydroxide aqueous solution, 1 mass%-10 mass% are preferable. When the addition ratio of the raw material is less than 1% by mass, the productivity is undesirably lowered. When it exceeds 10 mass%, degreasing efficiency falls and it is not preferable.
The temperature of the potassium hydroxide aqueous solution is preferably 1 ° C to 40 ° C, more preferably 4 ° C to 36 ° C, and particularly preferably 8 ° C to 32 ° C. If the temperature is less than 1 ° C., the efficiency of dehemicellulose deteriorates, which is not preferable. If the temperature exceeds 40 ° C., it is difficult to make fine fibers, which is not preferable.

上記脱ヘミセルロース処理を施したセルロース繊維は水に分散され、水性懸濁液として微細化処理に供される。該水性懸濁液の濃度としては0.1質量%〜7質量%であることが好ましく、0.3〜5質量%であることがより好ましい。濃度が0.1質量%未満であると生産性が低下して好ましくない。一方、濃度が7質量%を超えると、粉砕処理中に粘度が上昇し過ぎ、取扱いが非常に困難になるおそれがある。   The cellulose fibers subjected to the dehemicellulose treatment are dispersed in water and subjected to a finer treatment as an aqueous suspension. The concentration of the aqueous suspension is preferably 0.1% by mass to 7% by mass, and more preferably 0.3-5% by mass. When the concentration is less than 0.1% by mass, the productivity is undesirably lowered. On the other hand, if the concentration exceeds 7% by mass, the viscosity may increase excessively during the pulverization process, and handling may become very difficult.

本発明において、繊維状セルロースの微細化方法には特に制限はないが、高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ディスク型リファイナー、コニカルリファイナー、二軸混錬機(二軸押出機)、振動ミル、高速回転下でのホモミキサー、超音波分散機、ビーターなどの機械的作用を利用する湿式粉砕でセルロース系繊維を細くする方法が好ましい。なかでも、高速解繊機、石臼粉砕、高圧ホモジナイザー、あるいはボールミル処理は微細な繊維が効率的に得られるため、特に好ましい。また、TEMPO酸化、オゾン処理、酵素処理などの化学処理を施してから微細化してもかまわない。   In the present invention, the method for refining fibrous cellulose is not particularly limited, but a high-speed fibrillator, a grinder (stone mill type pulverizer), a high-pressure homogenizer or an ultra-high pressure homogenizer, a high-pressure collision type pulverizer, a ball mill, a disk type refiner, A method of thinning cellulosic fibers by wet grinding using mechanical action such as conical refiner, twin-screw kneader (double-screw extruder), vibration mill, homomixer under high-speed rotation, ultrasonic disperser, beater, etc. Is preferred. Among these, a high-speed defibrator, a stone mill, a high-pressure homogenizer, or a ball mill treatment is particularly preferable because fine fibers can be obtained efficiently. Further, it may be refined after chemical treatment such as TEMPO oxidation, ozone treatment, enzyme treatment or the like.

本発明における微細繊維状セルロースは通常製紙用途で用いるパルプ繊維よりもはるかに幅の狭いセルロース繊維あるいは棒状粒子である。微細繊維状セルロースは結晶状態のセルロース分子の集合体であり、その結晶構造はI型(平行鎖)である。微細繊維状セルロースの幅は電子顕微鏡で観察して2nm〜1000nmが好ましく、より好ましくは2nm〜500nm、さらに好ましくは4nm〜100nmである。繊維の幅が2nm未満であると、セルロース分子として水に溶解しているため、微細繊維としての物性(強度や剛性、寸法安定性)が発現しなくなる。1000nmを超えると微細繊維とは言えず、通常のパルプに含まれる繊維にすぎないため、微細繊維としての物性(強度や剛性、寸法安定性)が得られない。また、微細繊維状セルロースのコンポジットに透明性が求められる用途であると、微細繊維の幅は50nm以下が好ましい。これらの微細繊維状セルロースから得られる複合材料は密度が高く、緻密な構造体となるために強度が高く、セルロース結晶に由来した高い弾性率が得られることに加え、可視光の散乱が少ないため高い透明性も得られる。   The fine fibrous cellulose in the present invention is a cellulose fiber or rod-like particle that is much narrower than the pulp fiber usually used in papermaking. Fine fibrous cellulose is an aggregate of crystalline cellulose molecules, and its crystal structure is type I (parallel chain). The width of the fine fibrous cellulose is preferably 2 nm to 1000 nm as observed with an electron microscope, more preferably 2 nm to 500 nm, still more preferably 4 nm to 100 nm. When the width of the fiber is less than 2 nm, since the cellulose molecule is dissolved in water, the physical properties (strength, rigidity, dimensional stability) as the fine fiber are not expressed. If it exceeds 1000 nm, it cannot be said that it is a fine fiber, and is merely a fiber contained in ordinary pulp, and physical properties (strength, rigidity, dimensional stability) as a fine fiber cannot be obtained. Moreover, when it is a use by which transparency is required for the composite of fine fibrous cellulose, the width of the fine fibers is preferably 50 nm or less. Composite materials obtained from these fine fibrous celluloses have high density and high density because they become dense structures, and in addition to obtaining high elastic modulus derived from cellulose crystals, there is little scattering of visible light High transparency is also obtained.

ここで、微細繊維状セルロースがI型結晶構造をとっていることは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて、2θ=14〜17°付近と2θ=22〜23°付近の2箇所の位置に典型的なピークをもつことから同定することができる。また、微細繊維状セルロースの電子顕微鏡観察による繊維幅の測定は以下のようにして行う。濃度0.05〜0.1質量%の微細繊維状セルロースの水系懸濁液を調製し、該懸濁液を親水化処理したカーボン膜被覆グリッド上にキャストしてTEM観察用試料とする。幅の広い繊維を含む場合には、ガラス上にキャストした表面のSEM像を観察してもよい。構成する繊維の幅に応じて5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。この際、得られた画像内に縦横任意の画像幅の軸を想定した場合に少なくとも軸に対し、20本以上の繊維が軸と交差するような試料および観察条件(倍率等)とする。この条件を満足する観察画像に対し、1枚の画像当たり縦横2本ずつの無作為な軸を引き、軸に交錯する繊維の繊維幅を目視で読み取っていく。こうして最低3枚の重なっていない表面部分の画像を電子顕微鏡で観察し、各々2つの軸の交錯する繊維の繊維幅の値を読み取る(最低20本×2×3=120本の繊維幅)。
微細繊維の繊維長は1μm〜1000μmが好ましく、5μm〜800μmがさらに好ましく、10μm〜600nmが特に好ましい。繊維長が1μm未満になると、微細繊維シートを形成し難くなる。1000μmを超えると微細繊維のスラリー粘度が非常に高くなり、扱いづらくなる。
繊維長は、TEMやSEM、AFMの画像解析より求めることができる。本発明で言う繊維長は、繊維の30%以上を占める繊維長である。
本発明による微細繊維の軸比は100〜10000の範囲であることが好ましい。軸比が100未満であると微細繊維シートを形成し難くなるおそれがある。また、幅が太くなり、微細繊維の特徴が発現しなくなるおそれがある。軸比が10000を超えるとスラリー粘度が高くなり、好ましくない。
Here, the fact that the fine fibrous cellulose has a type I crystal structure is that 2θ = 14 in a diffraction profile obtained from a wide-angle X-ray diffraction photograph using CuKα (λ = 1.54184) monochromatized with graphite. It can be identified by having typical peaks at two positions near -17 ° and 2θ = 22-23 °. Moreover, the measurement of the fiber width by electron microscope observation of fine fibrous cellulose is performed as follows. An aqueous suspension of fine fibrous cellulose having a concentration of 0.05 to 0.1% by mass is prepared, and the suspension is cast on a carbon film-coated grid subjected to a hydrophilic treatment to obtain a sample for TEM observation. When a wide fiber is included, an SEM image of the surface cast on glass may be observed. Observation with an electron microscope image is performed at a magnification of 5000 times, 10000 times, or 50000 times depending on the width of the constituent fibers. At this time, when an axis of arbitrary vertical and horizontal image width is assumed in the obtained image, a sample and observation conditions (magnification, etc.) are set so that at least 20 fibers intersect the axis at least with respect to the axis. With respect to the observation image satisfying this condition, two random axes are drawn vertically and horizontally for each image, and the fiber width of the fiber intersecting with the axis is visually read. In this way, images of at least three non-overlapping surface portions are observed with an electron microscope, and the fiber width values of the fibers where two axes intersect each other are read (at least 20 × 2 × 3 = 120 fiber widths).
The fiber length of the fine fibers is preferably 1 μm to 1000 μm, more preferably 5 μm to 800 μm, and particularly preferably 10 μm to 600 nm. When the fiber length is less than 1 μm, it is difficult to form a fine fiber sheet. If it exceeds 1000 μm, the slurry viscosity of the fine fibers becomes very high and it becomes difficult to handle.
The fiber length can be obtained by image analysis of TEM, SEM, or AFM. The fiber length referred to in the present invention is a fiber length that occupies 30% or more of the fiber.
The axial ratio of the fine fibers according to the present invention is preferably in the range of 100 to 10,000. If the axial ratio is less than 100, it may be difficult to form a fine fiber sheet. Moreover, there is a possibility that the width becomes thick and the characteristics of the fine fiber are not expressed. When the axial ratio exceeds 10,000, the slurry viscosity becomes high, which is not preferable.

本発明においては、微細化工程での微細繊維状セルロースの収率が30%以上であることが好ましい。収率が30%未満であると、セルロースを微細化させない成分が多くなり経済性の点からも好ましくない。   In the present invention, the yield of fine fibrous cellulose in the refinement step is preferably 30% or more. If the yield is less than 30%, there are many components that do not refine cellulose, which is not preferable from the viewpoint of economy.

なお、本発明においてはセルロース繊維原料を脱脂工程、脱リグニン工程、脱ヘミセルロース工程、微細化工程の順番で処理することが収率の点で好ましい実施態様である。   In the present invention, it is a preferred embodiment in terms of yield that the cellulose fiber raw material is processed in the order of a degreasing step, a delignification step, a dehemicellulose step, and a refinement step.

以下、本発明を更に詳しく説明するために実施例を挙げるが、いうまでもなく本発明はこれらに限定されるものではない。また、例中の部および%は特に断らない限り、それぞれ質量部および質量%を示す。   Examples are given below to describe the present invention in more detail, but it goes without saying that the present invention is not limited thereto. Moreover, unless otherwise indicated, the part and% in an example show a mass part and mass%, respectively.

<実施例1>
原料としてベイマツの木粉(平均粒子径0.2mm、結晶化度55%)を用い、脱脂処理工程として、木粉(BD30g)を2%炭酸ナトリウム水溶液(1800g)中で攪拌しながら90℃で2時間処理した。処理後の原料は、10倍量の蒸留水で洗浄し、ブフナーで脱水した。
次に脱リグニン工程として、前記脱脂処理した木粉を10%の硝酸水溶液(1500g)に加え80℃、2時間で処理を行った。処理後の原料は、10倍量の蒸留水で洗浄し、ブフナーで脱水した。蒸留水を加えて0.5%のパルプ懸濁液を作製し、微細繊維状セルロース用パルプを得た。
得られた微細繊維状セルロース用パルプを高速解繊機(エムテクニック社製「クレアミックスCLM−2.2S」)で21500回転、30分間解繊(微細化処理)し、微細繊維状セルロース水系懸濁液を得、この上澄み液濃度を測定した。得られた微細繊維状セルロース懸濁液について遠心分離機(コクサン社製「H−200NR」)を用いて約12000Gで10分間処理し、上澄み液濃度を測定し、以下のような計算から収率を求めた。
収率(%)=(遠心分離後の上澄み液の濃度)÷(微細化処理後のスラリー濃度)×100
遠心分離して得た上澄み液中の繊維を電子顕微鏡で観察し、繊維幅を測定した。さらに遠心分離して得られた上澄み液を孔径0.45μmのメンブレンフィルター上で吸引ろ過し、シート化できることを確認した。
<Example 1>
Using bay pine wood flour (average particle size 0.2 mm, crystallinity 55%) as a raw material, as a degreasing process, wood flour (BD 30 g) was stirred at 90 ° C. in a 2% sodium carbonate aqueous solution (1800 g). Treated for 2 hours. The raw material after the treatment was washed with 10 times the amount of distilled water and dehydrated with a Buchner.
Next, as the delignification step, the degreased wood flour was added to a 10% nitric acid aqueous solution (1500 g) and treated at 80 ° C. for 2 hours. The raw material after the treatment was washed with 10 times the amount of distilled water and dehydrated with a Buchner. Distilled water was added to prepare a 0.5% pulp suspension to obtain a fine fibrous cellulose pulp.
The resulting fine fiber cellulose pulp is defibrated (refined) for 21500 rotations for 30 minutes with a high-speed defibrator ("CLEAMIX CLM-2.2S" manufactured by M Technique Co., Ltd.), and the fine fibrous cellulose aqueous suspension A liquid was obtained, and the supernatant concentration was measured. The obtained fine fibrous cellulose suspension was treated at about 12000 G for 10 minutes using a centrifuge (“H-200NR” manufactured by Kokusan Co., Ltd.), the supernatant concentration was measured, and the yield was calculated from the following calculation. Asked.
Yield (%) = (Concentration of supernatant after centrifugation) ÷ (Slurry concentration after refinement) × 100
The fibers in the supernatant obtained by centrifugation were observed with an electron microscope, and the fiber width was measured. Further, the supernatant obtained by centrifugation was suction filtered on a membrane filter having a pore diameter of 0.45 μm, and it was confirmed that it could be formed into a sheet.

<実施例2>
原料としてベイマツの木粉(0.2mm、結晶化度55%)を用い、脱脂処理工程として、木粉(BD30g)を2%炭酸ナトリウム水溶液(1800g)中で攪拌しながら90℃で2時間処理した。処理後の原料は、10倍量の蒸留水で洗浄し、ブフナーで脱水した。
次に脱リグニン工程として、前記脱脂処理した木粉を10%の硝酸水溶液(1500g)に加え80℃、2時間で処理を行った。処理後の原料は、10倍量の蒸留水で洗浄し、ブフナーで脱水した。次に1%の水酸化ナトリウム水溶液(600g)に前記処理した木粉を加え、95℃、1時間で処理した。
処理後の原料は、10倍量の蒸留水で洗浄し、ブフナーで脱水した。蒸留水を加えて0.5%のパルプ懸濁液を作製し微細繊維状セルロース用パルプを得た。
得られた微細繊維状セルロース用パルプを高速解繊機(エムテクニック社製「クレアミックスCLM−2.2S」)で21500回転、30分間解繊(微細化処理)し、微細繊維状セルロース水系懸濁液を得、この上澄み液濃度を測定した。得られた微細繊維状セルロース懸濁液について遠心分離機(コクサン社製「H−200NR」)を用いて約12000Gで10分間処理し、上澄み液濃度を測定し、以下のような計算から収率を求めた。
収率(%)=(遠心分離後の上澄み液の濃度)÷(微細化処理後のスラリー濃度)×100
遠心分離して得た上澄み液中の繊維を電子顕微鏡で観察し、繊維幅を測定した。さらに遠心分離して得られた上澄み液を孔径0.45μmのメンブレンフィルター上で吸引ろ過し、シート化できることを確認した。
<Example 2>
Using bay pine wood flour (0.2 mm, crystallinity 55%) as a raw material, as a degreasing process, wood flour (BD 30 g) was treated in a 2% aqueous sodium carbonate solution (1800 g) at 90 ° C. for 2 hours. did. The raw material after the treatment was washed with 10 times the amount of distilled water and dehydrated with a Buchner.
Next, as the delignification step, the degreased wood flour was added to a 10% nitric acid aqueous solution (1500 g) and treated at 80 ° C. for 2 hours. The raw material after the treatment was washed with 10 times the amount of distilled water and dehydrated with a Buchner. Next, the treated wood flour was added to a 1% aqueous sodium hydroxide solution (600 g) and treated at 95 ° C. for 1 hour.
The raw material after the treatment was washed with 10 times the amount of distilled water and dehydrated with a Buchner. Distilled water was added to prepare a 0.5% pulp suspension to obtain a fine fibrous cellulose pulp.
The resulting fine fiber cellulose pulp is defibrated (refined) for 21500 rotations for 30 minutes with a high-speed defibrator ("CLEAMIX CLM-2.2S" manufactured by M Technique Co., Ltd.), and the fine fibrous cellulose aqueous suspension A liquid was obtained, and the supernatant concentration was measured. The obtained fine fibrous cellulose suspension was treated at about 12000 G for 10 minutes using a centrifuge (“H-200NR” manufactured by Kokusan Co., Ltd.), the supernatant concentration was measured, and the yield was calculated from the following calculation. Asked.
Yield (%) = (Concentration of supernatant after centrifugation) ÷ (Slurry concentration after refinement) × 100
The fibers in the supernatant obtained by centrifugation were observed with an electron microscope, and the fiber width was measured. Further, the supernatant obtained by centrifugation was suction filtered on a membrane filter having a pore diameter of 0.45 μm, and it was confirmed that it could be formed into a sheet.

<実施例3>
脱リグニン工程の酸性水溶液である10%の硝酸水溶液の代わりに10%の塩酸水溶液を用いたこと以外は実施例2と同様にして微細繊維状パルプを得た。
実施例2と同様に高速解繊機で解繊処理を行い、微細繊維状セルロースの収率及び繊維幅を測定した。また、シート化できることも確認した。
<Example 3>
A fine fibrous pulp was obtained in the same manner as in Example 2 except that a 10% hydrochloric acid aqueous solution was used instead of the 10% nitric acid aqueous solution which was an acidic aqueous solution in the delignification step.
In the same manner as in Example 2, the fiber was defibrated using a high-speed defibrator, and the yield and fiber width of the fine fibrous cellulose were measured. It was also confirmed that it could be made into a sheet.

<実施例4>
脱リグニン工程の酸性水溶液である10%の硝酸水溶液の代わりに10%の硫酸水溶液を用いたこと以外は実施例2と同様にして微細繊維状パルプを得た。
実施例2と同様に高速解繊機で解繊処理を行い、微細繊維状セルロースの収率及び繊維幅を測定した。また、シート化できることも確認した。
<Example 4>
A fine fibrous pulp was obtained in the same manner as in Example 2 except that a 10% sulfuric acid aqueous solution was used instead of the 10% nitric acid aqueous solution which was an acidic aqueous solution in the delignification step.
In the same manner as in Example 2, the fiber was defibrated using a high-speed defibrator, and the yield and fiber width of the fine fibrous cellulose were measured. It was also confirmed that it could be made into a sheet.

<実施例5>
脱リグニン工程の酸性水溶液である10%の硝酸水溶液の代わりに90%のギ酸水溶液を用いたこと以外は実施例2と同様にして微細繊維状パルプを得た。
実施例2と同様に高速解繊機で解繊処理を行い、微細繊維状セルロースの収率及び繊維幅を測定した。また、シート化できることも確認した。
<Example 5>
A fine fibrous pulp was obtained in the same manner as in Example 2 except that a 90% formic acid aqueous solution was used instead of the 10% nitric acid aqueous solution which was an acidic aqueous solution in the delignification step.
In the same manner as in Example 2, the fiber was defibrated using a high-speed defibrator, and the yield and fiber width of the fine fibrous cellulose were measured. It was also confirmed that it could be made into a sheet.

<実施例6>
脱リグニン工程の酸性水溶液である10%の硝酸水溶液の代わりに90%の酢酸水溶液を用いたこと以外は実施例1と同様にして微細繊維状パルプを得た。
実施例2と同様に高速解繊機で解繊処理を行い、微細繊維状セルロースの収率及び繊維幅を測定した。また、シート化できることも確認した。
<Example 6>
A fine fibrous pulp was obtained in the same manner as in Example 1 except that a 90% acetic acid aqueous solution was used instead of the 10% nitric acid aqueous solution which was an acidic aqueous solution in the delignification step.
In the same manner as in Example 2, the fiber was defibrated using a high-speed defibrator, and the yield and fiber width of the fine fibrous cellulose were measured. It was also confirmed that it could be made into a sheet.

<比較例1>
王子製紙製NBKP(春日井工場製、原料はベイマツ、フリーネス550mlcsf.)を高速解繊機(エムテクニック社製「クレアミックスCLM−2.2S」)で21500回転、30分間解繊(微細化処理)し、微細繊維状セルロース水系懸濁液を得、この上澄み液濃度を測定した。得られた微細繊維状セルロース懸濁液について遠心分離機(コクサン社製「H−200NR」)を用いて約12000Gで10分間処理し、上澄み液濃度を測定し、以下のような計算から収率を求めた。
収率(%)=(遠心分離後の上澄み液の濃度)÷(微細化処理後のスラリー濃度)×100
遠心分離して得た上澄み液中の繊維を電子顕微鏡で観察し、繊維幅を測定しようとしたが収率が低すぎて測定できなかった。さらに、遠心分離して得られた上澄み液を孔径0.45μmのメンブレンフィルター上で吸引ろ過したが、収率が低いために非常に薄いシートしか形成できなかった。
<Comparative Example 1>
Oji Paper's NBKP (made by Kasugai Factory, raw material is pine, freeness 550ml csf.) Is defibrated (refined) for 30 minutes at 21500 rpm with a high-speed defibrator ("CLEARMIX CLM-2.2S" manufactured by MTechnic Co., Ltd.). Then, a fine fibrous cellulose aqueous suspension was obtained, and the supernatant concentration was measured. The obtained fine fibrous cellulose suspension was treated at about 12000 G for 10 minutes using a centrifuge (“H-200NR” manufactured by Kokusan Co., Ltd.), the supernatant concentration was measured, and the yield was calculated from the following calculation. Asked.
Yield (%) = (Concentration of supernatant after centrifugation) ÷ (Slurry concentration after refinement) × 100
The fibers in the supernatant obtained by centrifugation were observed with an electron microscope and an attempt was made to measure the fiber width, but the yield was too low to measure. Further, the supernatant obtained by centrifugation was suction filtered on a membrane filter having a pore diameter of 0.45 μm. However, since the yield was low, only a very thin sheet could be formed.

<比較例2>
原料としてベイマツの木粉(平均粒子径0.2mm、結晶化度55%)を用い、脱脂処理工程として、木粉(BD30g)を2%炭酸ナトリウム水溶液(1800g)中で攪拌しながら90℃で2時間処理した。処理後の原料は、10倍量の蒸留水で洗浄し、ブフナーで脱水した。
次に脱リグニン工程として、前記脱脂処理した木粉を1%の水酸化ナトリウム水溶液(600g)に加え、95℃、1時間で処理した。処理後の原料は、10倍量の蒸留水で洗浄し、ブフナーで脱水した。蒸留水を加えて0.5%のパルプ懸濁液を作製し、微細繊維状セルロース用パルプを得た。
得られた微細繊維状セルロース用パルプを高速解繊機(エムテクニック社製「クレアミックスCLM−2.2S」)で21500回転、30分間解繊(微細化処理)し、微細繊維状セルロース水系懸濁液を得、この上澄み液濃度を測定した。得られた微細繊維状セルロース懸濁液について遠心分離機(コクサン社製「H−200NR」)を用いて約12000Gで10分間処理し、上澄み液濃度を測定し、以下のような計算から収率を求めた。
収率(%)=(遠心分離後の上澄み液の濃度)÷(微細化処理後のスラリー濃度)×100
遠心分離して得た上澄み液中の繊維を電子顕微鏡で観察し、繊維幅を測定しようとしたが収率が低すぎて測定できなかった。さらに、遠心分離して得られた上澄み液を孔径0.45μmのメンブレンフィルター上で吸引ろ過したが、収率が低いために非常に薄いシートしか形成できなかった。
<Comparative example 2>
Using bay pine wood flour (average particle size 0.2 mm, crystallinity 55%) as a raw material, as a degreasing process, wood flour (BD 30 g) was stirred at 90 ° C. in a 2% sodium carbonate aqueous solution (1800 g). Treated for 2 hours. The raw material after the treatment was washed with 10 times the amount of distilled water and dehydrated with a Buchner.
Next, as a delignification step, the degreased wood flour was added to a 1% aqueous sodium hydroxide solution (600 g) and treated at 95 ° C. for 1 hour. The raw material after the treatment was washed with 10 times the amount of distilled water and dehydrated with a Buchner. Distilled water was added to prepare a 0.5% pulp suspension to obtain a fine fibrous cellulose pulp.
The resulting fine fiber cellulose pulp is defibrated (refined) for 21500 rotations for 30 minutes with a high-speed defibrator ("CLEAMIX CLM-2.2S" manufactured by M Technique Co., Ltd.), and the fine fibrous cellulose aqueous suspension A liquid was obtained, and the supernatant concentration was measured. The obtained fine fibrous cellulose suspension was treated at about 12000 G for 10 minutes using a centrifuge (“H-200NR” manufactured by Kokusan Co., Ltd.), the supernatant concentration was measured, and the yield was calculated from the following calculation. Asked.
Yield (%) = (Concentration of supernatant after centrifugation) ÷ (Slurry concentration after refinement) × 100
The fibers in the supernatant obtained by centrifugation were observed with an electron microscope and an attempt was made to measure the fiber width, but the yield was too low to measure. Further, the supernatant obtained by centrifugation was suction filtered on a membrane filter having a pore diameter of 0.45 μm. However, since the yield was low, only a very thin sheet could be formed.

<比較例3>
原料としてベイマツの木粉(平均粒子径0.2mm、結晶化度55%)を用い、脱脂処理工程として、木粉(BD30g)を2%炭酸ナトリウム水溶液(1800g)中で攪拌しながら90℃で2時間処理した。処理後の原料は、10倍量の蒸留水で洗浄し、ブフナーで脱水し、微細繊維状セルロース用パルプを得た。
得られた微細繊維状セルロース用パルプを高速解繊機(エムテクニック社製「クレアミックスCLM−2.2S」)で21500回転、30分間解繊(微細化処理)し、微細繊維状セルロース水系懸濁液を得、この上澄み液濃度を測定した。得られた微細繊維状セルロース懸濁液について遠心分離機(コクサン社製「H−200NR」)を用いて約12000Gで10分間処理し、上澄み液濃度を測定し、以下のような計算から収率を求めた。
収率(%)=(遠心分離後の上澄み液の濃度)÷(微細化処理後のスラリー濃度)×100
遠心分離して得た上澄み液中の繊維を電子顕微鏡で観察し、繊維幅を測定しようとしたが収率が低すぎて測定できなかった。さらに遠心分離して得られた上澄み液を孔径0.45μmのメンブレンフィルター上で吸引ろ過したが、収率が低いために非常に薄いシートしか形成できなかった。
<Comparative Example 3>
Using bay pine wood flour (average particle size 0.2 mm, crystallinity 55%) as a raw material, as a degreasing process, wood flour (BD 30 g) was stirred at 90 ° C. in a 2% sodium carbonate aqueous solution (1800 g). Treated for 2 hours. The treated raw material was washed with 10 times the amount of distilled water and dehydrated with a Buchner to obtain a pulp for fine fibrous cellulose.
The resulting fine fiber cellulose pulp is defibrated (refined) for 21500 rotations for 30 minutes with a high-speed defibrator ("CLEAMIX CLM-2.2S" manufactured by M Technique Co., Ltd.), and the fine fibrous cellulose aqueous suspension A liquid was obtained, and the supernatant concentration was measured. The obtained fine fibrous cellulose suspension was treated at about 12000 G for 10 minutes using a centrifuge (“H-200NR” manufactured by Kokusan Co., Ltd.), the supernatant concentration was measured, and the yield was calculated from the following calculation. Asked.
Yield (%) = (Concentration of supernatant after centrifugation) ÷ (Slurry concentration after refinement) × 100
The fibers in the supernatant obtained by centrifugation were observed with an electron microscope and an attempt was made to measure the fiber width, but the yield was too low to measure. Further, the supernatant obtained by centrifugation was suction filtered on a membrane filter having a pore diameter of 0.45 μm. However, since the yield was low, only a very thin sheet could be formed.

<比較例4>
原料として王子製紙製NBKP(春日井工場製、原料はベイマツ、フリーネス550mlcsf.)を用い、脱脂処理工程として、木粉(BD30g)を2%炭酸ナトリウム水溶液(1800g)中で攪拌しながら90℃で2時間処理した。処理後の原料は、10倍量の蒸留水で洗浄し、ブフナーで脱水した。
次に脱リグニン工程として、前記脱脂処理した木粉を10%の硝酸水溶液(1500g)に加え80℃、2時間で処理を行った。処理後の原料は、10倍量の蒸留水で洗浄し、ブフナーで脱水した。蒸留水を加えて0.5%のパルプ懸濁液を作製し微細繊維状セルロース用パルプを得た。
得られた微細繊維状セルロース用パルプを高速解繊機(エムテクニック社製「クレアミックスCLM−2.2S」)で21500回転、30分間解繊(微細化処理)し、微細繊維状セルロース水系懸濁液を得、この上澄み液濃度を測定した。得られた微細繊維状セルロース懸濁液について遠心分離機(コクサン社製「H−200NR」)を用いて約12000Gで10分間処理し、上澄み液濃度を測定し、以下のような計算から収率を求めた。
収率(%)=(遠心分離後の上澄み液の濃度)÷(微細化処理後のスラリー濃度)×100
遠心分離して得た上澄み液中の繊維を電子顕微鏡で観察し、繊維幅を測定しようとしたが収率が低すぎて測定できなかった。さらに、遠心分離して得られた上澄み液を孔径0.45μmのメンブレンフィルター上で吸引ろ過したが、収率が低いために非常に薄いシートしか形成できなかった。
<Comparative example 4>
Oji Paper NBKP (made by Kasugai Factory, raw material is bay pine, freeness 550 ml csf.) Was used as a raw material, and wood powder (BD 30 g) was stirred at 2O 0 C at 2O 0 C while stirring in 2% aqueous sodium carbonate solution (1800 g) as a degreasing treatment step. Time processed. The raw material after the treatment was washed with 10 times the amount of distilled water and dehydrated with a Buchner.
Next, as the delignification step, the degreased wood flour was added to a 10% nitric acid aqueous solution (1500 g) and treated at 80 ° C. for 2 hours. The raw material after the treatment was washed with 10 times the amount of distilled water and dehydrated with a Buchner. Distilled water was added to prepare a 0.5% pulp suspension to obtain a fine fibrous cellulose pulp.
The resulting fine fiber cellulose pulp is defibrated (refined) for 21500 rotations for 30 minutes with a high-speed defibrator ("CLEAMIX CLM-2.2S" manufactured by M Technique Co., Ltd.), and the fine fibrous cellulose aqueous suspension A liquid was obtained, and the supernatant concentration was measured. The obtained fine fibrous cellulose suspension was treated at about 12000 G for 10 minutes using a centrifuge (“H-200NR” manufactured by Kokusan Co., Ltd.), the supernatant concentration was measured, and the yield was calculated from the following calculation. Asked.
Yield (%) = (Concentration of supernatant after centrifugation) ÷ (Slurry concentration after refinement) × 100
The fibers in the supernatant obtained by centrifugation were observed with an electron microscope and an attempt was made to measure the fiber width, but the yield was too low to measure. Further, the supernatant obtained by centrifugation was suction filtered on a membrane filter having a pore diameter of 0.45 μm. However, since the yield was low, only a very thin sheet could be formed.

Figure 2012012713
Figure 2012012713

表1から明らかのように、本発明の方法で高い収率で微細繊維状パルプを得ることができ、それを解繊してシート化が可能となる。   As is apparent from Table 1, fine fibrous pulp can be obtained with high yield by the method of the present invention, and it can be fibrillated to form a sheet.

本発明の方法で得られたパルプを機械的に解繊することによって、繊維幅が2〜1000nmの微細繊維状セルロースを容易に得ることができ、さらにシート化が可能となる。   By mechanically defibrating the pulp obtained by the method of the present invention, fine fibrous cellulose having a fiber width of 2 to 1000 nm can be easily obtained, and further can be formed into a sheet.

Claims (5)

セルロース繊維を少なくとも脱脂工程、脱リグニン工程、脱ヘミセルロース工程、微細化工程を経て処理し、繊維幅が2〜1000nmの微細繊維状セルロースを製造する方法であって、該脱リグニン工程において酸性水溶液処理を行うことを特徴とする微細繊維状セルロースの製造方法。   A method for producing a fine fibrous cellulose having a fiber width of 2 to 1000 nm by treating cellulose fibers through at least a degreasing step, a delignification step, a dehemicellulose step, and a micronization step, wherein an acidic aqueous solution treatment is performed in the delignification step. The manufacturing method of the fine fibrous cellulose characterized by performing. 前記脱リグニン工程において酸性水溶液処理を行ってからアルカリ水溶液処理を行うことを特徴とする請求項1に記載の微細繊維状セルロースの製造方法。   The method for producing fine fibrous cellulose according to claim 1, wherein the aqueous alkaline solution treatment is performed after the acidic aqueous solution treatment is performed in the delignification step. 前記脱リグニン工程における酸性水溶液が硫酸水溶液、塩酸水溶液、硝酸水溶液、ギ酸水溶液、酢酸水溶液から選択される少なくとも1種類であることを特徴とする請求項1または請求項2に記載の微細繊維状セルロースの製造方法。   The fine fibrous cellulose according to claim 1 or 2, wherein the acidic aqueous solution in the delignification step is at least one selected from sulfuric acid aqueous solution, hydrochloric acid aqueous solution, nitric acid aqueous solution, formic acid aqueous solution, and acetic acid aqueous solution. Manufacturing method. 前記脱リグニン工程におけるアルカリ水溶液が水酸化ナトリウム水溶液または水酸化カリウム水溶液であることを特徴とする請求項2に記載の微細繊維状セルロースの製造方法。   The method for producing fine fibrous cellulose according to claim 2, wherein the alkaline aqueous solution in the delignification step is a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution. セルロース繊維を脱脂工程、脱リグニン工程、脱ヘミセルロース工程、微細化工程を順次経て処理する請求項1〜4のいずれか1項に記載の微細繊維状セルロースの製造方法。   The manufacturing method of the fine fibrous cellulose of any one of Claims 1-4 which processes a cellulose fiber through a degreasing process, a delignification process, a dehemicellulose process, and a refinement | purification process one by one.
JP2010148067A 2010-06-29 2010-06-29 Method of producing microfibrous cellulose Pending JP2012012713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010148067A JP2012012713A (en) 2010-06-29 2010-06-29 Method of producing microfibrous cellulose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010148067A JP2012012713A (en) 2010-06-29 2010-06-29 Method of producing microfibrous cellulose

Publications (1)

Publication Number Publication Date
JP2012012713A true JP2012012713A (en) 2012-01-19

Family

ID=45599479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010148067A Pending JP2012012713A (en) 2010-06-29 2010-06-29 Method of producing microfibrous cellulose

Country Status (1)

Country Link
JP (1) JP2012012713A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061485A1 (en) * 2012-10-16 2014-04-24 日本製紙株式会社 Cellulose nanofibers
WO2015080335A1 (en) * 2013-11-26 2015-06-04 한국생산기술연구원 Method for producing nanofibrillated cellulose
KR101746583B1 (en) * 2016-02-01 2017-06-13 현대자동차주식회사 The method of manufacturing cellulose fiber with bagasse
WO2017208600A1 (en) * 2016-06-03 2017-12-07 株式会社Kri Method for producing cellulose fine fiber
US10093066B2 (en) 2013-12-19 2018-10-09 Korea Institute Of Industrial Technology Multilayered composite material using nanofibrillated cellulose and thermoplastic matrix polymer
WO2019138588A1 (en) 2018-01-10 2019-07-18 国立大学法人大分大学 Cellulose nanofiber, sheet-like material obtained therefrom, and method for producing cellulose nanofiber and sheet-like material
JP2019131725A (en) * 2018-01-31 2019-08-08 北越コーポレーション株式会社 Manufacturing method of cellulose nanofiber
JP2020059929A (en) * 2018-10-04 2020-04-16 日本製紙株式会社 Vegetable fiber bundle
CN112624781A (en) * 2020-11-23 2021-04-09 南京林业大学 Composite material based on lignocellulose and bacterial cellulose and preparation method and application thereof
JP2021521353A (en) * 2018-04-12 2021-08-26 マーサー インターナショナル インコーポレイテッド How to improve a high aspect ratio cellulose filament blend
CN113924321A (en) * 2019-04-17 2022-01-11 赛力康有限公司 Process for preparing microcrystalline or nanocrystalline cellulose
CN113913482A (en) * 2021-11-15 2022-01-11 中冶生态环保集团有限公司 Plant-based solid-liquid mixed carbon source and preparation method thereof
CN114012851A (en) * 2021-11-15 2022-02-08 中冶生态环保集团有限公司 Pretreatment plant powder, pretreatment method for plant straw and pretreatment system for plant straw
CN114012851B (en) * 2021-11-15 2024-04-26 中冶生态环保集团有限公司 Pretreatment plant powder, plant straw pretreatment method and plant straw pretreatment system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061485A1 (en) * 2012-10-16 2014-04-24 日本製紙株式会社 Cellulose nanofibers
JP5544053B1 (en) * 2012-10-16 2014-07-09 日本製紙株式会社 Cellulose nanofiber
WO2015080335A1 (en) * 2013-11-26 2015-06-04 한국생산기술연구원 Method for producing nanofibrillated cellulose
KR101550656B1 (en) 2013-11-26 2015-09-08 한국생산기술연구원 A preparation method of nanofibrillated cellulose
US10093066B2 (en) 2013-12-19 2018-10-09 Korea Institute Of Industrial Technology Multilayered composite material using nanofibrillated cellulose and thermoplastic matrix polymer
KR101746583B1 (en) * 2016-02-01 2017-06-13 현대자동차주식회사 The method of manufacturing cellulose fiber with bagasse
WO2017208600A1 (en) * 2016-06-03 2017-12-07 株式会社Kri Method for producing cellulose fine fiber
WO2019138588A1 (en) 2018-01-10 2019-07-18 国立大学法人大分大学 Cellulose nanofiber, sheet-like material obtained therefrom, and method for producing cellulose nanofiber and sheet-like material
JP2019131725A (en) * 2018-01-31 2019-08-08 北越コーポレーション株式会社 Manufacturing method of cellulose nanofiber
JP7273058B2 (en) 2018-04-12 2023-05-12 マーサー インターナショナル インコーポレイテッド Methods for improving high aspect ratio cellulose filament blends
JP2021521353A (en) * 2018-04-12 2021-08-26 マーサー インターナショナル インコーポレイテッド How to improve a high aspect ratio cellulose filament blend
JP2020059929A (en) * 2018-10-04 2020-04-16 日本製紙株式会社 Vegetable fiber bundle
CN113924321A (en) * 2019-04-17 2022-01-11 赛力康有限公司 Process for preparing microcrystalline or nanocrystalline cellulose
CN113924321B (en) * 2019-04-17 2023-11-17 赛力康有限公司 Preparation method of microcrystalline or nanocrystalline cellulose
CN112624781A (en) * 2020-11-23 2021-04-09 南京林业大学 Composite material based on lignocellulose and bacterial cellulose and preparation method and application thereof
CN112624781B (en) * 2020-11-23 2022-04-19 南京林业大学 Composite material based on lignocellulose and bacterial cellulose and preparation method and application thereof
CN114012851A (en) * 2021-11-15 2022-02-08 中冶生态环保集团有限公司 Pretreatment plant powder, pretreatment method for plant straw and pretreatment system for plant straw
CN113913482A (en) * 2021-11-15 2022-01-11 中冶生态环保集团有限公司 Plant-based solid-liquid mixed carbon source and preparation method thereof
CN113913482B (en) * 2021-11-15 2024-04-19 中冶生态环保集团有限公司 Plant-based solid-liquid mixed carbon source and preparation method thereof
CN114012851B (en) * 2021-11-15 2024-04-26 中冶生态环保集团有限公司 Pretreatment plant powder, plant straw pretreatment method and plant straw pretreatment system

Similar Documents

Publication Publication Date Title
JP2012012713A (en) Method of producing microfibrous cellulose
Chaker et al. Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps
JP5544747B2 (en) Method for producing fine fibrous cellulose
Hassan et al. Effect of xylanase pretreatment of rice straw unbleached soda and neutral sulfite pulps on isolation of nanofibers and their properties
Santucci et al. Evaluation of the effects of chemical composition and refining treatments on the properties of nanofibrillated cellulose films from sugarcane bagasse
AU2014353890B2 (en) Nanocellulose
Jonoobi et al. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review
JP6327149B2 (en) Method for producing fine fiber, method for producing nonwoven fabric, and fine fibrous cellulose
Iglesias et al. Pulping processes and their effects on cellulose fibers and nanofibrillated cellulose properties: A review
Zeng et al. Cellulose nanofibrils manufactured by various methods with application as paper strength additives
JP2012036508A (en) Manufacturing method for microfibrous cellulose
KR20120093144A (en) Process for producing microfibrillated cellulose
JP5862345B2 (en) Method for producing fine fibrous cellulose
Wang et al. Preparation of nanocellulose with high-pressure homogenization from pretreated biomass with cooking with active oxygen and solid alkali
JP5887857B2 (en) Method for producing fine fibrous cellulose
JP5857881B2 (en) Fine fibrous cellulose and method for producing the same, non-woven fabric
CN108350090B (en) Cellulose xanthate nanofibers
JP5655432B2 (en) Method for producing fine fibrous cellulose
JP5988843B2 (en) Composite material
JP2012111849A (en) Method for producing microfibrous cellulose, method for producing microfibrous cellulose sheet, and microfibrous cellulose composite
JP2011236398A (en) Method of manufacturing fine fibrous cellulose
Rezanezhad et al. Isolation of nanocellulose from rice waste via ultrasonication
JP2013011026A (en) High-strength material including cellulose nanofiber as main component and method for producing the same
JP2012046848A (en) Method for producing microfibrous cellulose
US20200339783A1 (en) Filaments of microfibrillated cellulose