WO2019138588A1 - Cellulose nanofiber, sheet-like material obtained therefrom, and method for producing cellulose nanofiber and sheet-like material - Google Patents

Cellulose nanofiber, sheet-like material obtained therefrom, and method for producing cellulose nanofiber and sheet-like material Download PDF

Info

Publication number
WO2019138588A1
WO2019138588A1 PCT/JP2018/009537 JP2018009537W WO2019138588A1 WO 2019138588 A1 WO2019138588 A1 WO 2019138588A1 JP 2018009537 W JP2018009537 W JP 2018009537W WO 2019138588 A1 WO2019138588 A1 WO 2019138588A1
Authority
WO
WIPO (PCT)
Prior art keywords
bamboo
sheet
cellulose nanofibers
treatment
suspension
Prior art date
Application number
PCT/JP2018/009537
Other languages
French (fr)
Japanese (ja)
Inventor
太郎 衣本
Original Assignee
国立大学法人大分大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大分大学 filed Critical 国立大学法人大分大学
Priority to EP18900334.6A priority Critical patent/EP3739118A4/en
Priority to JP2019564277A priority patent/JP7129710B2/en
Priority to US16/649,108 priority patent/US20200224365A1/en
Priority to CN201880061018.9A priority patent/CN111133146A/en
Priority to KR1020207007988A priority patent/KR20200088278A/en
Publication of WO2019138588A1 publication Critical patent/WO2019138588A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/001Modification of pulp properties
    • D21C9/002Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21BFIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
    • D21B1/00Fibrous raw materials or their mechanical treatment
    • D21B1/02Pretreatment of the raw materials by chemical or physical means
    • D21B1/021Pretreatment of the raw materials by chemical or physical means by chemical means
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21BFIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
    • D21B1/00Fibrous raw materials or their mechanical treatment
    • D21B1/04Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres
    • D21B1/06Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by dry methods
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/02Pulping cellulose-containing materials with inorganic bases or alkaline reacting compounds, e.g. sulfate processes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/001Modification of pulp properties
    • D21C9/007Modification of pulp properties by mechanical or physical means
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/12Pulp from non-woody plants or crops, e.g. cotton, flax, straw, bagasse
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H5/00Special paper or cardboard not otherwise provided for
    • D21H5/02Patterned paper

Definitions

  • the present invention relates to cellulose nanofibers, more specifically to cellulose nanofibers obtained from bamboo as a raw material, sheet-like materials comprising the same, and methods for producing them.
  • the invention also relates to the nanofibers obtained by said process, which also contain some amount of lignin, also known as "lignocellulose nanofibers”.
  • plant-based cellulose nanofibers have attracted attention in a wide range of fields such as plastic reinforcements, solar cells, and medicine, and in particular to sheet-like materials produced from them. It has increased.
  • softwood pulp has been mainly used as a raw material of cellulose nanofibers.
  • manufacture of cellulose nanofibers using bamboo as a raw material is also performed.
  • Patent Document 1 discloses a composite material obtained from bamboo-derived cellulose nanofibers and having high tensile strength and tensile modulus and excellent conductivity, and a method for producing the same.
  • Patent Document 2 describes a cellulose nanofiber having a diameter of about 50 nm and a method for producing the same, and bamboo is mentioned as a cellulose material together with various plant materials.
  • Patent Document 3 describes a method of producing fine fibrous cellulose, and as a cellulose raw material, bamboo is also mentioned together with various plant raw materials.
  • Methods of producing cellulose nanofibers include mechanical and chemical methods.
  • cellulose nanofibers are produced by mechanical loosening using softwood or bamboo as a raw material, the degree of crystallinity tends to be low.
  • Industrial products made of bamboo are provided, for example, by Chuetsu Pulp Industry Co., Ltd., and their manufacture is carried out by a mechanical solution method.
  • the known cellulose nanofibers have a purity of at most about 87%, a cellulose crystallinity of at most about 66%, and an aspect ratio of at most about 100. In order to obtain a higher performance sheet-like material, improvement of the properties of cellulose nanofibers is required.
  • An object of the present invention is to provide a cellulose nanofiber capable of providing a sheet material having higher performance, a method of producing the same, and a sheet material obtained from the cellulose nanofiber, in view of the above-mentioned current situation.
  • Another object of the present invention is to provide nanofibers which are obtained by the above-mentioned production method and which contain some amount of lignin and which are also known as "lignocellulose nanofibers".
  • cellulose nanofibers that use bamboo as a raw material instead of softwood pulp
  • the inventors have used both a relatively mild mechanical loosening method (using a mixer) and a multi-step chemical unraveling method.
  • the present inventors have found that cellulose nanofibers having a cellulose purity of 90% or more, a fiber diameter of about 10 to 20 nm, and a crystallinity of 70% or more can be obtained, thereby completing the present invention.
  • the bamboo-derived cellulose nanofiber according to the present invention is characterized by having a cellulose purity of 90% or more, a fiber diameter of 10 to 20 nm, and a crystallinity of 70% or more.
  • the bamboo-derived cellulose nanofiber according to the present invention can be obtained by a production method characterized by including the following steps (1) to (5).
  • a step of producing bamboo fiber by subjecting bamboo to alkali treatment and mechanical treatment (2) Step of delignifying the obtained bamboo fiber (3) mechanically unraveling bamboo fiber subjected to delignification treatment Process (4) Process of removing hemicellulose from unfolded bamboo fiber (5) Process of removing metal component from bamboo fiber after hemicellulose removal
  • the sheet-like material comprising bamboo-derived cellulose nanofibers according to the present invention is characterized by exhibiting a tensile strength of 7 to 200 N at a basis weight of 10 to 210 g / cm 2 . It is also characterized in that it exhibits a tensile strength of 7 to 200 N for a density of 0.3 to 1.1 g / cm 3 .
  • the sheet-like material comprising bamboo-derived cellulose nanofibers according to the present invention can be obtained by the production method of sheet-forming bamboo-derived cellulose nanofibers according to the present invention.
  • Sheeting can be performed by a method of removing the dispersion medium from the suspension of cellulose nanofibers. Natural drying, hot pressing, or lyophilization can be mentioned as an example of the method of removing the dispersion medium.
  • the dispersion medium water and an organic solvent can be used, and an alcohol can be mentioned as an example of the organic solvent.
  • cellulose nanofibers In the case of hot pressing, preferably (A) preparing a suspension of bamboo-derived cellulose nanofibers dispersed in water; (B) removing water from the suspension to recover the residue; (C) subjecting the recovered residue to hot pressing to obtain a sheet-like material,
  • the cellulose nanofibers can be sheeted by
  • the cellulose nanofibers may be recovered from the suspension (a), and another suspension obtained by dispersing the recovered cellulose nanofibers in alcohol may be hot-pressed to obtain a sheet-like material.
  • cellulose nanofibers preferably (A) preparing a suspension of cellulose nanofibers dispersed in alcohol, (B) spreading the suspension on a substrate to form a film; (C) subjecting the film-like suspension to a freeze-drying treatment to obtain a sheet-like material,
  • the cellulose nanofibers can be sheeted by
  • the lignocellulosic nanofibers derived from bamboo according to the present invention have a lignin content of about 1 to 2 wt%, and the delignification treatment in the step (2) of the method for producing cellulose nanofibers derived from bamboo described above is It is obtained by stopping when lignin content is obtained.
  • bamboo-derived lignocellulose nanofibers according to the present invention are more useful composite materials than composite materials using high purity cellulose nanofibers whose lignin content is further reduced by mixing with a resin (for example, automobile It can be expected that it can be used as a composite material for applications and home appliances.
  • bamboo-derived cellulose nanofibers As the raw material. According to the present invention, by using a combination of a relatively mild mechanical unwinding method (using a mixer) and a multi-step chemical unwinding method, cellulose nanofiber production exhibiting improved properties over the prior art can do.
  • the method for producing bamboo-derived cellulose nanofibers according to the present invention includes the following steps (1) to (5).
  • a step of producing bamboo fiber by subjecting bamboo to alkali treatment and mechanical treatment (2) Step of delignifying the obtained bamboo fiber (3) mechanically unraveling bamboo fiber subjected to delignification treatment Process (4) Process of removing hemicellulose from unfolded bamboo fiber (5) Process of removing metal component from bamboo fiber after hemicellulose removal
  • bamboo fibers are produced from bamboo using alkali treatment and mechanical treatment.
  • the bamboo material used in the present invention is not particularly limited, and for example, a plant containing so-called bamboo fibers such as jinso bamboo, bamboo bamboo, black bamboo, bamboo bamboo and the like can be used.
  • inner and outer shells of bamboo In order to improve the effect of the alkali treatment and the purity of the obtained fiber, it is preferable to remove the inner and outer shells of bamboo in advance. More preferably, in order to make the diameter of the produced fiber uniform, inner and outer skin removal is performed such that only the portion where the fiber bundle of bamboo material used is uniform remains.
  • the bamboo material be loosened by pressure rolling (squeezing treatment) with, for example, a pinch roll having a peripheral speed difference in advance, prior to the subsequent treatment with an aqueous alkaline solution.
  • pressure rolling squeeze treatment
  • a pinch roll having a peripheral speed difference in advance
  • This makes it possible to increase the penetration rate of the alkaline aqueous solution and to make the penetration uniform, thereby enhancing the separation and removal efficiency of lignin and hemicellulose in the subsequent alkali treatment.
  • the bamboo material when the bamboo material is dried during the treatment using an alkaline aqueous solution, the treatment effect is reduced, so the bamboo material may be stored in a liquid without being dried until the start of the treatment, or it may be stored frozen or refrigerated Is preferred. More preferably, in order to suppress the growth of various bacteria, it is immersed in an effective liquid such as an aqueous solution of hydrogen peroxide, perchloric acid, sulfuric acid and the like, and kept refrigerated. It is most preferable to use hydrogen peroxide in terms of safety and waste.
  • the bamboo material to which the alkali treatment is applied is appropriately cut and used according to the volume of the treatment container.
  • a bamboo material cut into chips of about 1 to 10 cm in length.
  • the alkali treatment can be performed, for example, by immersing bamboo in an aqueous alkaline solution such as sodium hydroxide, sodium hydrogencarbonate or potassium hydroxide.
  • an aqueous solution of sodium hydroxide is used, the concentration of the aqueous solution is preferably 0.01 to 1.00 M, more preferably 0.10 to 1.00 M, and still more preferably 0.10 to 0.50 M, from the viewpoint of efficiency.
  • the treatment temperature is preferably 30 to 200 ° C., more preferably 50 to 150 ° C., and still more preferably 100 to 150 ° C.
  • the processing pressure is preferably 101 to 500 kPa, and preferably 101 to 200 kPa.
  • the treatment time is preferably 1 to 3 hours, more preferably 3 hours.
  • the alkali-treated bamboo pieces are removed from the aqueous alkali solution and washed with water. Washing with water continues until the water after washing becomes neutral.
  • the pieces of bamboo are then processed mechanically in order to obtain bamboo fibres.
  • This process can be performed using a common mixer and stirring bamboo pieces with water at room temperature.
  • the type of mixer used is not particularly limited as long as bamboo pieces can be disassembled into fibers. Further, the processing conditions may be appropriately set so as to obtain a predetermined processing effect. After treatment, it is dried to obtain bamboo fiber.
  • the delignification treatment step (2) can be carried out by bringing the bamboo fiber obtained in the step (1) into contact with the delignification treatment solution.
  • the delignification treatment solution a solution of peracetic acid, chlorous acid, sodium sulfite, sulfuric acid, ozone, enzymes, microorganisms (bacteria) and the like can be used.
  • bamboo fibers are dispersed in a delignification treatment solution and allowed to stand, and then separated from the treatment solution, followed by washing and drying to obtain a bamboo fiber subjected to delignification treatment.
  • the delignification treatment solution can be carried out, for example, at a temperature of about room temperature to about 220 ° C., preferably about 60 to 100 ° C.
  • the standing time is preferably 1 to 8 hours, more preferably 1 to 6 hours, and still more preferably 3 to 6 hours.
  • the bamboo-derived lignocellulose nanofibers according to the present invention having a lignin content of about 1 to 2 wt% have the lignin content of the bamboo fibers in the delignification treatment solution in this delignification treatment step (2) It is obtained by stopping when the amount is obtained.
  • the standing here may be, for example, about 0.5 to 2 hours, or about 0.5 to 1.5 hours when left at 80 ° C. using peracetic acid as described above. Except for the standing time in step (2), the bamboo-derived lignocellulose nanofibers of the present invention can be produced by the same method as the production of bamboo-derived cellulose nanofibers of the present invention.
  • the mechanical loosening step (3) of the delignified bamboo fiber can be performed by stirring the bamboo fiber with water with a mixer.
  • the type of mixer is not particularly limited as long as unwinding by stirring is performed without any problem.
  • the amount of water is preferably about 10 to 1000 times, more preferably about 100 to 500 times, and still more preferably about 100 to 150 times the mass of bamboo fiber.
  • the stirring treatment is preferably performed at a temperature of about 5 to 60 ° C., and more preferably about 5 to 40 ° C.
  • the operating conditions of the mixer may be set appropriately so as to obtain a predetermined unwinding effect.
  • the step (4) of removing hemicellulose from the unfolded bamboo fiber can be carried out by alkali treatment of the unfolded bamboo fiber.
  • the alkali treatment can be carried out by immersing the unfolded bamboo fiber in an aqueous alkali solution.
  • an aqueous alkali solution an aqueous solution of potassium hydroxide can be used, and in addition, an aqueous sodium hydroxide solution or the like can also be used.
  • an aqueous solution of about 0.5 to 5.0 M, preferably about 1.0 to 2.0 M of KOH aqueous solution is used in an amount of about 50 to 500 ml, preferably 200 It can be used up to about 500 ml.
  • the immersion can be performed at about 20 to 100 ° C.
  • the immersion time is preferably 1 to 24 hours, more preferably 1 to 12 hours, and still more preferably 1 to 8 hours.
  • the step (5) of removing metal components from bamboo fiber after hemicellulose removal can be carried out by acid treatment of bamboo fiber from which hemicellulose has been removed.
  • the acid treatment can be carried out by bringing bamboo fiber into contact with an acid solution and shaking for a predetermined time.
  • an aqueous solution of hydrochloric acid, perchloric acid, sulfuric acid, nitric acid or the like can be used.
  • the concentration of the solution is preferably about 0.001 to 1.0 M, more preferably 0.01 to 1.0 M, and still more preferably 0.01 to 0.1 M.
  • the contact time is preferably 1 to 24 hours, more preferably 3 to 24 hours, still more preferably 1 to 12 hours.
  • This treatment can be carried out at room temperature (about 20 to 30 ° C.).
  • the amount of lignin in bamboo fiber can be measured, for example, by the sulfuric acid method (Japanese Wood Research Society, Wood Science Experiment Manual, pp. 96-97, Bun-ei-do (2010)) (see Examples described later).
  • the hemicellulose content of bamboo fiber can be measured based on the mass of bamboo fiber before and after hemicellulose removal (see Examples described later).
  • the characteristics of bamboo-derived cellulose nanofibers produced by the method of the present invention are that the cellulose purity is 90% or more, the fiber diameter is 10 to 20 nm, and the crystallinity is 70% or more.
  • the cellulose purity and crystallinity of the cellulose nanofibers of the present invention are much higher than those of conventional cellulose nanofibers (about 87% at the maximum) and crystallinity (about 66% at the maximum).
  • the sheet-like material according to the present invention can be obtained by forming the bamboo-derived cellulose nanofibers according to the present invention into a sheet. Sheeting can be performed, for example, using a hot press or using lyophilization. It is also possible to use natural drying.
  • Sheeting by hot pressing can be preferably performed using a suspension obtained by stirring a liquid to be treated to which cellulose nanofibers after removal of metal components are added to water. Water remaining in the dispersion medium is removed from the suspension, and the recovered residue is processed with a hot press into a sheet without drying, and a sheet-like material comprising cellulose nanofibers according to the present invention can be obtained.
  • the residue obtained by removing the water from the suspension may be re-dispersed in a dispersion medium of an alcohol such as ethanol.
  • a dispersion medium such as ethanol
  • the dispersion medium is water
  • aggregation of the fibers is observed in the obtained sheet-like material
  • disintegration of the fibers occurs by alcohol solvation between the cellulose molecules. Is recognized.
  • Sheeting by lyophilization can be preferably performed using a suspension containing an organic solvent (for example, alcohol) as a dispersion medium.
  • the suspension can be spread on a predetermined substrate to form a film, frozen, and subjected to a freeze-drying treatment to obtain a sheet-like material comprising cellulose nanofibers according to the present invention.
  • the dispersion medium is alcohol, ethanol, butanol or the like can be used.
  • the organic solvent other than alcohol ketones (eg, acetone), aromatic compounds (eg, toluene), carboxylic acids (eg, acetic acid), amines (eg, N, N-dimethylformamide), acetonitrile and the like can be used.
  • Coagulation of the fibers is suppressed by sublimation of the dispersion medium (such as alcohol) by lyophilization.
  • the dispersion medium such as alcohol
  • only one type for example, ethanol
  • a mixture of two or more types may be used, or two or more types may be sequentially used (for example, after temporarily recovering bamboo fiber from a suspension of ethanol) , Making a sheet-like material from a suspension in which it is redispersed in butanol). The latter case is advantageous in suppressing aggregation of the cellulose nanofibers.
  • stirring to obtain the suspension can be carried out, for example, using a common mixer or by means of ultrasound.
  • the content of cellulose nanofibers in the suspension may generally be 0.1 to 10 wt%, more preferably 0.1 to 2.0 wt%, and still more preferably 0.1 to 1.0 wt%.
  • the stirring conditions are not particularly limited as long as a suspension in which the cellulose nanofibers are sufficiently dispersed can be obtained. Any treatment such as filtration can be used to remove the dispersion medium water or alcohol.
  • the dispersion medium may be water or an organic solvent such as alcohol. In some cases, the removal of the dispersion medium can be promoted by ventilation or the like.
  • the sheet-like material produced from the bamboo-derived cellulose nanofiber according to the present invention exhibits improved strength when measured under the same conditions as compared to the sheet-like material produced from conventional cellulose nanofibers.
  • Cellulose for example, when comparing the tensile strength for the basis weight of 200 g / m 2 (mass per sheet material 1 m 2), tensile strength of the sheet material according to the present invention whereas about 200 N, were obtained from Daicel Finechem Corporation
  • the tensile strengths of the sheet material produced from the fiber FD100G and the commercial paper obtained from Mondi (ISO 9707-obtained paper) are about 100 N and 145 N, respectively.
  • the sheet-like material made of bamboo-derived cellulose nanofibers according to the present invention exhibiting such high tensile strength can be expected to be used in the fields of reinforcement, acoustics, medicine, food, packaging materials, transportation and the like.
  • the temperature of the water bath (EYELA, SB-350) is 80
  • the vessel was set in a low-temperature water bath (EYELA, NCB-1200) set at o C, and allowed to stand for 1, 3, 6 or 8 hours while refluxing. Thereafter, it was allowed to cool, and suction filtration was performed using a plastic filter (ADVANTEC, KP-47H and KP-47S). The residue was washed with ultrapure water until neutral and then dried for 12 hours with a drier maintained at 60 ° C. to obtain a delignified bamboo fiber.
  • the content of lignin and the extraction ratio with respect to the treatment time with peracetic acid are shown in Table 1, and the graph is shown in FIG.
  • bamboo fibers (containing about 1 wt% residual lignin) obtained after about 1 hour of treatment
  • the process can be continued according to the procedure described below.
  • hemicellulose According to the reference, ⁇ -cellulose and ⁇ -cellulose and hemicellulose are classified as hemicellulose, and others are classified as ⁇ -cellulose (Japan Wood Research Society, Wood Science Experiment Manual, pp. 95, Bungeidou Press (2010) )reference). In the present invention, according to that, hemicellulose was measured using a method for quantifying ⁇ -cellulose (see Japan Wood Research Society, Wood Science Experiment Manual, pp 96-97, Bun-ei-do (2010)). Thus, the hemicellulose here also includes beta and gamma cellulose.
  • the hemicellulose content and extraction rate of bamboo fiber after peracetic acid treatment are shown in Table 2, and the graph is shown in FIG.
  • the peracetic acid treatment did not significantly reduce the hemicellulose content. In addition, there was no significant difference depending on the processing time.
  • the concentration of KOH aqueous solution is fixed at 1.18 M, and the amount of solution is changed to 100 or 200 mL. 4 and the relationship between the solution amount and the hemicellulose content and extraction rate is shown in FIG. From these results, it was found that in this example, the largest amount of hemicellulose was extracted when 200 mL of 1.18 M KOH aqueous solution was used for 5 g of bamboo fiber.
  • ⁇ -cellulose content in the product treated under the most appropriate conditions is around 93%.
  • 200 mL of the washing solution obtained in the above 5 is added to 10 mL of a 30% aqueous acetic acid solution, heated to 80 ° C., and kept warm for 9 hours I left it.
  • the obtained precipitate was collected by a filter paper which was weighed in advance, and the mass increase after drying was taken as the ⁇ -cellulose content (The Japan Wood Research Society, Wood Science Experiment Manual, pp 96, Bun Eido Press (2010) reference).
  • FIGS. 6 (a) to 10 (a) FE-SEM image
  • FIGS. 6 (b) to 10 (b) fiber distribution map
  • the fiber diameter was 15.9 nm on average after 8 hours. Generally, since the diameter of cellulose nanofibers contained in wood and the like is several nm, the diameter is slightly larger than that. The reason for this is that it is essential for the observation material to be completely dried in the observation by FE-SEM, which may be due to the association by the hydrogen bond between the cellulose molecules at the time of the drying.
  • FIG. 11 (a) FE-SEM image
  • FIG. 11 (b) fiber distribution map
  • FT-IR Fourier transform infrared spectrometer
  • the bamboo fiber (bamboo fiber from which lignin was removed) obtained from the above 2 was brought into contact with a hydrochloric acid aqueous solution to remove the metal component.
  • a hydrochloric acid aqueous solution In a plastic sample tube, 1 g of bamboo fiber and 50 mL of a 0.01 M hydrochloric acid aqueous solution were placed. From the sample tube, the solution was immediately removed leaving bamboo fiber to obtain a "pre-treatment" solution. After adding 50 mL of a new hydrochloric acid aqueous solution to the sample tube and continuing shaking for 24 hours, the solution was taken out immediately, leaving bamboo fibers, to obtain a “post-treatment” solution.
  • bamboo is mainly rich in silica (silicon oxide), calcium, potassium, magnesium and sodium as an inorganic substance.
  • the bamboo fiber according to the present invention analyzed here was confirmed to contain potassium and zinc, but other than these, it was a very small amount close to 0%. According to the present invention, it was revealed that metals can be removed by immersing them in hydrochloric acid for 24 hours, and the content can be reduced to about 0.06% with respect to the mass of the obtained cellulose nanofibers.
  • the prepared sheet is ultrasonically dispersed in 1-butanol, dropped onto a grid for TEM (Sek 150, STEM 150 Cu grid), dried in a dryer at 100 ° C., and then the sheet form is transmitted. Observation was performed with an electron microscope (TEM (JEOL, JEM-2100).
  • FIG. 13 (a) A TEM image of a cellulose nanofiber sheet prepared by hot pressing using water as a dispersion medium is shown in FIG. 13 (a), an appearance photograph and an FE-SEM image are shown in FIG. 13 (b). Those of the sheets are shown in FIGS. 14 (a) and 14 (b).
  • the dispersion medium When the dispersion medium is water, it is confirmed that fibers are aggregated, which is considered to be due to strong hydrogen bonding between cellulose molecules. When the dispersion medium was changed to ethanol, it was confirmed that the fibers were slightly dispersed, which is considered to be because ethanol entered between cellulose molecules and was disintegrated by solvation.
  • FIG. 15 (a) The TEM image of the cellulose nanofiber sheet produced by lyophilization is shown in FIG. 15 (a), the appearance photograph and the FE-SEM image are shown in FIG. 15 (b).
  • the sheet Figs. 13 (a) and (b) and Figs. 14 (a) and 14 (b)
  • the XRD patterns of three samples of cellulose nanofiber sheet obtained from three samples are shown in FIGS.
  • the crystallinity of cellulose calculated from these peak intensities is shown in Table 14. The degree of crystallinity was 71 to 77% regardless of the dispersion medium.
  • the BET surface area of the obtained cellulose nanofiber sheet was measured by using a nitrogen gas adsorption / desorption device (AUTOSARB-3, manufactured by Yuasa Ionics Co., Ltd.).
  • An adsorption / desorption isotherm was obtained by adsorbing nitrogen (purity 99.9%) at 77 K to the sheet in the cell and measuring the adsorption amount and the pressure in the cell.
  • the BET surface area was calculated by analyzing the obtained adsorption and desorption isotherm by the BET method.
  • the sample was deaerated by applying a vacuum at 200 ° C. for 24 hours before measurement.
  • the measured gas adsorption / desorption isotherm is shown in FIG. 19, and its BET surface area is shown in Table 15.
  • FIG. 20 sheet produced by hot press using dispersion medium as water
  • FIG. 21 sheet produced by hot press using dispersion medium as ethanol
  • FIG. Sheet the pore size distribution of the sheet is shown in FIG. 20 (sheet produced by hot press using dispersion medium as water), FIG. 21 (sheet produced by hot press using dispersion medium as ethanol), and FIG. Sheet).
  • the dispersion medium was water, and the tensile strength of a cellulose nanofiber sheet produced using a hot press was measured. Cut the prepared sheet into a strip 1.5 cm wide and 2.5 cm long, grasp the top and bottom about 5 mm, and use a bench-type precision universal testing machine (SHIMADZU, AGS-J) at a tension speed of 1 mm / min. Measurements were taken. In addition, as a comparison, a sheet formed by using a hot press from cellulose nanofibers for food (Celish (trademark)) manufactured by Daicel Finechem Co., Ltd. and a commercially available paper manufactured by Mondi (ISO 9707 acquired paper, residual amount of low lignin) are the same. It measured.
  • the bamboo-derived cellulose nanofiber sheet according to the present invention showed the largest strength. This is thought to be because the bamboo-derived cellulose nanofibers according to the present invention are thinner than other fibers, so the amount of fibers per mass is large and the points at which hydrogen bonds between fibers are increased, thereby increasing the strength.
  • an FE-SEM image and a fiber diameter distribution obtained from a sheet of bamboo-derived cellulose nanofiber according to the present invention and a sheet made of Celish (trademark), which is similarly a cellulose nanofiber (FIG. 28) (a) and (b)) it can be confirmed that the fiber of the former is thinner.

Abstract

The present invention provides: a cellulose nanofiber enabling the provision of a high-performance sheet-like material; a method for producing the cellulose nanofiber; and a sheet-like material obtained from the cellulose nanofiber. A bamboo-derived cellulose nanofiber having a cellulose purity of at least 90%, a fiber diameter of 10-20 nm, and a crystallinity of at least 70% can be obtained by a method comprising: (1) a step for subjecting a bamboo material to an alkali treatment and a mechanical treatment to prepare bamboo fibers; (2) a step for delignificating the obtained bamboo fibers; (3) a step for mechanically spreading the delignificated bamboo fibers; (4) a step for removing hemicellulose from the spread bamboo fibers; and (5) a step for removing metal components from the bamboo fibers from which hemicellulose has been removed. A high strength sheet material having a tensile strength of 7-200 N for a basis weight of 10-210 g/m2 or a high strength sheet material having a tensile strength of 7-200 N for a density of 0.3-1.1 g/cm3 can be obtained by making this cellulose nanofiber into a sheet.

Description

セルロースナノファイバー及びそれからなるシート状材料、並びにそれらの製造方法Cellulose nanofibers, sheet-like material comprising the same, and method for producing them
 本発明は、セルロースナノファイバー、より詳しく言えば竹を原料として得られたセルロースナノファイバーと、それからなるシート状材料、及びそれらの製造方法に関する。本発明はさらに、該製造方法により得られる、若干量のリグニンを含み「リグノセルロースナノファイバー」としても知られるナノファイバーにも関する。 The present invention relates to cellulose nanofibers, more specifically to cellulose nanofibers obtained from bamboo as a raw material, sheet-like materials comprising the same, and methods for producing them. The invention also relates to the nanofibers obtained by said process, which also contain some amount of lignin, also known as "lignocellulose nanofibers".
 近年、植物を原料とするセルロースナノファイバーが、プラスチックの補強材、太陽電池、医療などの広範な分野で注目を浴びており、特にそれを原料として製造されるシート状材料に対しても注目が増加している。 In recent years, plant-based cellulose nanofibers have attracted attention in a wide range of fields such as plastic reinforcements, solar cells, and medicine, and in particular to sheet-like materials produced from them. It has increased.
 従来、セルロースナノファイバーの原料としては、針葉樹パルプが主に用いられてきた。近年は、針葉樹以外に、竹を原料としてセルロースナノファイバーの製造も行われている。 Conventionally, softwood pulp has been mainly used as a raw material of cellulose nanofibers. In recent years, in addition to softwood, manufacture of cellulose nanofibers using bamboo as a raw material is also performed.
 例えば、特許文献1には、竹由来のセルロースナノファイバーから得られる、引張強度及び引張弾性率が高く、導電性に優れた複合材料とその製造方法が開示されている。 For example, Patent Document 1 discloses a composite material obtained from bamboo-derived cellulose nanofibers and having high tensile strength and tensile modulus and excellent conductivity, and a method for producing the same.
 特許文献2には、直径が50nm程度のセルロースナノファイバーとその製造方法が記載されており、セルロース原料として、各種植物原料とともに、竹が挙げられている。 Patent Document 2 describes a cellulose nanofiber having a diameter of about 50 nm and a method for producing the same, and bamboo is mentioned as a cellulose material together with various plant materials.
 特許文献3には、微細繊維状セルロースの製造方法が記載されており、セルロース原料として、各種植物原料とともに、やはり竹が挙げられている。 Patent Document 3 describes a method of producing fine fibrous cellulose, and as a cellulose raw material, bamboo is also mentioned together with various plant raw materials.
 セルロースナノファイバーの製造方法には、機械的解纖方法と化学的解纖方法がある。針葉樹や竹を原料として、機械的解纖方法でセルロースナノファイバーを製造すると、結晶化度が低くなりがちである。竹を原料とする工業製品は、例えば中越パルプ工業株式会社から提供されており、その製造は機械的解纖方法により行われている。 Methods of producing cellulose nanofibers include mechanical and chemical methods. When cellulose nanofibers are produced by mechanical loosening using softwood or bamboo as a raw material, the degree of crystallinity tends to be low. Industrial products made of bamboo are provided, for example, by Chuetsu Pulp Industry Co., Ltd., and their manufacture is carried out by a mechanical solution method.
 これまでに知られているセルロースナノファイバーは、純度が最大で87%程度、セルロース結晶化度が最大で66%程度、アスペクト比が最大で100程度である。より高性能のシート状材料を得るために、セルロースナノファイバーの特性の向上が求められている。 The known cellulose nanofibers have a purity of at most about 87%, a cellulose crystallinity of at most about 66%, and an aspect ratio of at most about 100. In order to obtain a higher performance sheet-like material, improvement of the properties of cellulose nanofibers is required.
特開2017-115069号公報JP, 2017-115069, A 特許第5910504号公報Patent No. 5910504 特開2012-012713号公報JP 2012-012713 A
 本発明は、上述の現状に鑑み、より高性能のシート状材料の提供を可能にするセルロースナノファイバーとその製造方法、そのセルロースナノファイバーから得られるシート状材料の提供を目的とするものである。また、前記製造方法により得られる、若干量のリグニンを含み「リグノセルロースナノファイバー」としても知られるナノファイバーの提供も目的とするものである。 An object of the present invention is to provide a cellulose nanofiber capable of providing a sheet material having higher performance, a method of producing the same, and a sheet material obtained from the cellulose nanofiber, in view of the above-mentioned current situation. . Another object of the present invention is to provide nanofibers which are obtained by the above-mentioned production method and which contain some amount of lignin and which are also known as "lignocellulose nanofibers".
 発明者らは、針葉樹パルプに代えて竹材を原料とするセルロースナノファイバーを研究する過程で、比較的温和な機械的解纖方法(ミキサーを使用する)と多段階の化学的解纖方法の両方を行うことにより、セルロース純度が90%以上で、繊維径が10~20nm程度、そして結晶化度が70%以上のセルロースナノファイバーが得られることを突き止め、本発明を完成するに至った。 In the process of studying cellulose nanofibers that use bamboo as a raw material instead of softwood pulp, the inventors have used both a relatively mild mechanical loosening method (using a mixer) and a multi-step chemical unraveling method. As a result, the present inventors have found that cellulose nanofibers having a cellulose purity of 90% or more, a fiber diameter of about 10 to 20 nm, and a crystallinity of 70% or more can be obtained, thereby completing the present invention.
 具体的に言えば、本発明による竹由来のセルロースナノファイバーは、セルロース純度が90%以上で、繊維径が10~20nm、かつ結晶化度が70%以上であることを特徴とする。 Specifically, the bamboo-derived cellulose nanofiber according to the present invention is characterized by having a cellulose purity of 90% or more, a fiber diameter of 10 to 20 nm, and a crystallinity of 70% or more.
 本発明による竹由来のセルロースナノファイバーは、下記の工程(1)~(5)を含むことを特徴とする製造方法により得ることができる。
 (1)竹材にアルカリ処理と機械的処理を施して竹繊維を作製する工程
 (2)得られた竹繊維を脱リグニン処理する工程
 (3)脱リグニン処理した竹繊維を機械的に解纖する工程
 (4)解纖した竹繊維からヘミセルロースを除去する工程
 (5)ヘミセルロース除去後の竹繊維から金属成分を除去する工程
The bamboo-derived cellulose nanofiber according to the present invention can be obtained by a production method characterized by including the following steps (1) to (5).
(1) A step of producing bamboo fiber by subjecting bamboo to alkali treatment and mechanical treatment (2) Step of delignifying the obtained bamboo fiber (3) mechanically unraveling bamboo fiber subjected to delignification treatment Process (4) Process of removing hemicellulose from unfolded bamboo fiber (5) Process of removing metal component from bamboo fiber after hemicellulose removal
 本発明による竹由来のセルロースナノファイバーからなるシート状材料は、坪量10~210g/cm2に対して7~200Nの引張強度を示すことを特徴とする。それはまた、密度0.3~1.1g/cm3に対して7~200Nの引張強度を示すことも特徴とする。 The sheet-like material comprising bamboo-derived cellulose nanofibers according to the present invention is characterized by exhibiting a tensile strength of 7 to 200 N at a basis weight of 10 to 210 g / cm 2 . It is also characterized in that it exhibits a tensile strength of 7 to 200 N for a density of 0.3 to 1.1 g / cm 3 .
 本発明による竹由来のセルロースナノファイバーからなるシート状材料は、本発明による竹由来のセルロースナノファイバーをシート化する製造方法により得ることができる。 The sheet-like material comprising bamboo-derived cellulose nanofibers according to the present invention can be obtained by the production method of sheet-forming bamboo-derived cellulose nanofibers according to the present invention.
 シート化は、セルロースナノファイバーの懸濁液から分散媒を除去する方法により行うことができる。分散媒の除去方法の例として、自然乾燥、ホットプレス処理、あるいは凍結乾燥を挙げることができる。分散媒としては、水、有機溶剤が使用可能であり、有機溶剤の例としてアルコールを挙げることができる。 Sheeting can be performed by a method of removing the dispersion medium from the suspension of cellulose nanofibers. Natural drying, hot pressing, or lyophilization can be mentioned as an example of the method of removing the dispersion medium. As the dispersion medium, water and an organic solvent can be used, and an alcohol can be mentioned as an example of the organic solvent.
 ホットプレス処理の場合、好ましくは、
 (a)竹由来のセルロースナノファイバーを水に分散させた懸濁液を作製すること、
 (b)懸濁液から水を除去して残留物を回収すること、
 (c)回収した残留物にホットプレス処理を施してシート状材料を得ること、
によりセルロースナノファイバーをシート化することができる。
In the case of hot pressing, preferably
(A) preparing a suspension of bamboo-derived cellulose nanofibers dispersed in water;
(B) removing water from the suspension to recover the residue;
(C) subjecting the recovered residue to hot pressing to obtain a sheet-like material,
The cellulose nanofibers can be sheeted by
 前記(a)の懸濁液からセルロースナノファイバーを回収し、回収したセルロースナノファイバーをアルコールに分散させた別の懸濁液にホットプレス処理を施してシート状材料を得てもよい。 The cellulose nanofibers may be recovered from the suspension (a), and another suspension obtained by dispersing the recovered cellulose nanofibers in alcohol may be hot-pressed to obtain a sheet-like material.
 凍結乾燥の場合、好ましくは、
 (a)セルロースナノファイバーをアルコールに分散させた懸濁液を作製すること、
 (b)懸濁液を基材上に広げてフィルム状にすること、
 (c)フィルム状の懸濁液に凍結乾燥処理を施してシート状材料を得ること、
によりセルロースナノファイバーをシート化することができる。
In the case of lyophilization, preferably
(A) preparing a suspension of cellulose nanofibers dispersed in alcohol,
(B) spreading the suspension on a substrate to form a film;
(C) subjecting the film-like suspension to a freeze-drying treatment to obtain a sheet-like material,
The cellulose nanofibers can be sheeted by
 また、本発明による竹由来のリグノセルロースナノファイバーは、リグニン含有量が1~2wt%程度であって、上述の竹由来のセルロースナノファイバー製造方法の工程(2)の脱リグニン処理を、所定のリグニン含有量が得られた時点で停止することにより得られたものである。 The lignocellulosic nanofibers derived from bamboo according to the present invention have a lignin content of about 1 to 2 wt%, and the delignification treatment in the step (2) of the method for producing cellulose nanofibers derived from bamboo described above is It is obtained by stopping when lignin content is obtained.
 本発明によれば、竹由来のセルロースナノファイバーの性能向上が可能となるとともに、それを原料とした高強度のシート状材料の利用が可能となる。それにより、それらの新たな用途への応用が期待できる。また、本発明による竹由来のリグノセルロースナノファイバーは、樹脂と混合することによって、リグニン含有量をさらに減少させた高純度のセルロースナノファイバーを利用した複合材料よりも有用な複合材料(例えば、自動車用や家電用の複合材料)として活用することが期待できる。 According to the present invention, it becomes possible to improve the performance of bamboo-derived cellulose nanofibers, and it is also possible to use a high-strength sheet material made from it. Thereby, application to those new applications can be expected. Furthermore, bamboo-derived lignocellulose nanofibers according to the present invention are more useful composite materials than composite materials using high purity cellulose nanofibers whose lignin content is further reduced by mixing with a resin (for example, automobile It can be expected that it can be used as a composite material for applications and home appliances.
過酢酸での処理時間に対する竹繊維のリグニンの含有量と抽出率を示すグラフである。It is a graph which shows content and extraction rate of lignin of bamboo fiber with respect to the processing time with peracetic acid. 過酢酸処理後の竹繊維のヘミセルロースの含有量と抽出率を処理時間に対して示すグラフである。It is a graph which shows the content and extraction rate of the hemicellulose of bamboo fiber after peracetic acid treatment to processing time. KOH水溶液濃度と竹繊維のヘミセルロースの含有量及び抽出率との関係を示すグラフである。It is a graph which shows the relationship between KOH aqueous solution concentration and the content and extraction rate of hemicellulose of bamboo fiber. KOH水溶液量と竹繊維のヘミセルロースの含有量及び抽出率との関係を示すグラフである。It is a graph which shows the relationship between the amount of KOH aqueous solution, the content of hemicellulose of bamboo fiber, and the extraction rate. ヘミセルロース除去の処理温度とヘミセルロース含有量及び抽出率との関係を示すグラフである。It is a graph which shows the relationship between the processing temperature of hemicellulose removal, hemicellulose content, and an extraction rate. 脱リグニン処理前の竹繊維のFE-SEM観察結果を示す図であって、(a)はFE-SEM像であり、(b)は繊維分布を示すグラフである。It is a figure which shows the FE-SEM observation result of the bamboo fiber before a delignification process, Comprising: (a) is a FE-SEM image, (b) is a graph which shows fiber distribution. 脱リグニン処理1時間後の竹繊維のFE-SEM観察結果を示す図であって、(a)はFE-SEM像であり、(b)は繊維分布を示すグラフである。It is a figure which shows the FE-SEM observation result of the bamboo fiber 1 hour after delignification process, Comprising: (a) is a FE-SEM image, (b) is a graph which shows fiber distribution. 脱リグニン処理3時間後の竹繊維のFE-SEM観察結果を示す図であって、(a)はFE-SEM像であり、(b)は繊維分布を示すグラフである。It is a figure which shows the FE-SEM observation result of the bamboo fiber 3 hours after a delignification process, Comprising: (a) is a FE-SEM image, (b) is a graph which shows fiber distribution. 脱リグニン処理6時間後の竹繊維のFE-SEM観察結果を示す図であって、(a)はFE-SEM像であり、(b)は繊維分布を示すグラフである。It is a figure which shows the FE-SEM observation result of the bamboo fiber 6 hours after delignification process, Comprising: (a) is a FE-SEM image, (b) is a graph which shows fiber distribution. 脱リグニン処理8時間後の竹繊維のFE-SEM観察結果を示す図であって、(a)はFE-SEM像であり、(b)は繊維分布を示すグラフである。It is a figure which shows the FE-SEM observation result of the bamboo fiber 8 hours after delignification process, Comprising: (a) is a FE-SEM image, (b) is a graph which shows fiber distribution. ヘミセルロース除去後の竹繊維のFE-SEM観察結果を示す図であって、(a)はFE-SEM像であり、(b)は繊維分布を示すグラフである。It is a figure which shows the FE-SEM observation result of the bamboo fiber after hemicellulose removal, Comprising: (a) is a FE-SEM image, (b) is a graph which shows fiber distribution. 本発明によるセルロースナノファイバーシートのFT-IRスペクトルである。1 is an FT-IR spectrum of a cellulose nanofiber sheet according to the present invention. 分散媒を水としホットプレスで作製したセルロースナノファイバーシートの電子顕微鏡観察結果を示す図であって、(a)はTEM画像であり、(b)はFE-SEM画像をシートの外観写真とともに示している。It is a figure which shows the electron microscope observation result of the cellulose nanofiber sheet which made dispersion medium water by hot press, and (a) is a TEM image, (b) shows a FE-SEM image with the external appearance photograph of a sheet. ing. 分散媒をエタノールとしホットプレスで作製したセルロースナノファイバーシートの電子顕微鏡観察結果を示す図であって、(a)はTEM画像であり、(b)はFE-SEM画像をシートの外観写真とともに示している。It is a figure which shows the electron microscope observation result of the cellulose nanofiber sheet which made the dispersion medium ethanol by hot press, and (a) is a TEM image, (b) shows a FE-SEM image with the external appearance photograph of a sheet. ing. 凍結乾燥で作製したセルロースナノファイバーシートの電子顕微鏡観察結果を示す図であって、(a)はTEM画像であり、(b)はFE-SEM画像をシートの外観写真とともに示している。It is a figure which shows the electron microscope observation result of the cellulose nanofiber sheet | seat produced by freeze-drying, Comprising: (a) is a TEM image, (b) shows the FE-SEM image with the external appearance photograph of a sheet. 本発明によるセルロースナノファイバーシートの一サンプルのXRDパターンである。It is a XRD pattern of one sample of a cellulose nanofiber sheet according to the present invention. 本発明によるセルロースナノファイバーシートのもう一つサンプルのXRDパターンである。It is a XRD pattern of another sample of the cellulose nanofiber sheet according to the present invention. 本発明によるセルロースナノファイバーシートの更にもう一つサンプルのXRDパターンである。It is a XRD pattern of another sample of the cellulose nanofiber sheet according to the present invention. 本発明によるセルロースナノファイバーシートのガス吸脱着等温線である。It is a gas adsorption-desorption isotherm of the cellulose nanofiber sheet by this invention. 分散媒を水としホットプレスで作製した本発明によるセルロースナノファイバーシートの細孔径分布を示すグラフである。It is a graph which shows pore diameter distribution of the cellulose nanofiber sheet by this invention which used dispersion medium as water and was hot-pressed. 分散媒をエタノールとしホットプレスで作製した本発明によるセルロースナノファイバーシートの細孔径分布を示すグラフである。It is a graph which shows pore diameter distribution of the cellulose nanofiber sheet by this invention which made dispersion medium ethanol by hot press. 凍結乾燥で作製した本発明によるセルロースナノファイバーシートの細孔径分布を示すグラフである。It is a graph which shows the pore size distribution of the cellulose nanofiber sheet by this invention produced by freeze-drying. 分散媒を水としホットプレスで作製した本発明によるセルロースナノファイバーシートの質量に対する引張強度を比較のシートのそれらとともに示すグラフである。It is a graph which shows the tensile strength with respect to the mass of the cellulose nanofiber sheet by this invention which made dispersion medium water by hot press, and shows them with those of a comparison sheet. 分散媒を水としホットプレスで作製した本発明によるセルロースナノファイバーシートの厚さに対する引張強度を比較のシートのそれらとともに示すグラフである。It is a graph which shows the tensile strength with respect to the thickness of the cellulose nanofiber sheet by this invention which used dispersion medium as water and was hot-pressed and with those of a comparison sheet. 分散媒を水としホットプレスで作製した本発明によるセルロースナノファイバーシートの密度に対する引張強度を比較のシートのそれらとともに示すグラフである。It is a graph which shows the tensile strength with respect to the density of the cellulose nanofiber sheet by this invention which used dispersion medium as water and was hot-pressed and with those of a comparison sheet. 分散媒を水としホットプレスで作製した本発明によるセルロースナノファイバーシートの坪量に対する引張強度を比較のシートのそれらとともに示すグラフである。It is a graph which shows the tensile strength with respect to the basis weight of the cellulose nanofiber sheet by this invention which made dispersion medium water by hot press, and shows them with those of a comparison sheet. 本発明によるセルロースナノファイバーシートにおける繊維を説明する図であって、(a)はFE-SEM画像であり、(b)は繊維分布を示すグラフである。It is a figure explaining the fiber in the cellulose nanofiber sheet by this invention, Comprising: (a) is a FE-SEM image, (b) is a graph which shows fiber distribution. セリッシュ(商標)で作製したシートにおける繊維を説明する図であって、(a)はFE-SEM画像であり、(b)は繊維分布を示すグラフである。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining the fiber in the sheet | seat produced by Celish (trademark), Comprising: (a) is a FE-SEM image, (b) is a graph which shows fiber distribution.
 竹由来のセルロースナノファイバーからなるシート状材料を得るためには、その原料となる竹由来のセルロースナノファイバーを製造する必要がある。本発明によれば、比較的温和な機械的解纖方法(ミキサーを使用する)と多段階の化学的解纖方法との組み合わせを利用することで、従来より向上した特性を示すセルロースナノファイバー製造することができる。 In order to obtain a sheet-like material composed of bamboo-derived cellulose nanofibers, it is necessary to produce bamboo-derived cellulose nanofibers as the raw material. According to the present invention, by using a combination of a relatively mild mechanical unwinding method (using a mixer) and a multi-step chemical unwinding method, cellulose nanofiber production exhibiting improved properties over the prior art can do.
 具体的に言えば、本発明による竹由来のセルロースナノファイバーの製造方法は、下記の工程(1)~(5)を含む。
 (1)竹材にアルカリ処理と機械的処理を施して竹繊維を作製する工程
 (2)得られた竹繊維を脱リグニン処理する工程
 (3)脱リグニン処理した竹繊維を機械的に解纖する工程
 (4)解纖した竹繊維からヘミセルロースを除去する工程
 (5)ヘミセルロース除去後の竹繊維から金属成分を除去する工程
Specifically, the method for producing bamboo-derived cellulose nanofibers according to the present invention includes the following steps (1) to (5).
(1) A step of producing bamboo fiber by subjecting bamboo to alkali treatment and mechanical treatment (2) Step of delignifying the obtained bamboo fiber (3) mechanically unraveling bamboo fiber subjected to delignification treatment Process (4) Process of removing hemicellulose from unfolded bamboo fiber (5) Process of removing metal component from bamboo fiber after hemicellulose removal
 竹繊維作製工程(1)では、アルカリ処理と機械的処理を利用して、竹材から竹繊維を作製する。 In the bamboo fiber production step (1), bamboo fibers are produced from bamboo using alkali treatment and mechanical treatment.
 本発明で使用する竹材としては、特に制限されないが、例えば孟宗竹、真竹、黒竹、篠竹などの、いわゆる竹繊維を含む植物を用いることができる。 The bamboo material used in the present invention is not particularly limited, and for example, a plant containing so-called bamboo fibers such as jinso bamboo, bamboo bamboo, black bamboo, bamboo bamboo and the like can be used.
 竹材は、アルカリ処理の効果と得られる繊維の純度を向上させるために、その内外皮を予め除去しておくことが好ましい。より好ましくは、製造される繊維の直径を均一にする目的から、内外皮除去を、用いる竹材の繊維束が均一である部分のみを残すようにして行う。 In order to improve the effect of the alkali treatment and the purity of the obtained fiber, it is preferable to remove the inner and outer shells of bamboo in advance. More preferably, in order to make the diameter of the produced fiber uniform, inner and outer skin removal is performed such that only the portion where the fiber bundle of bamboo material used is uniform remains.
 竹材はまた、その後のアルカリ水溶液による処理に先立ち、例えば予め周速差を持たせたピンチロールにより加圧ローリング(圧搾処理)してほぐしておくことが好ましい。これにより、アルカリ水溶液の浸透速度を大きくし、且つ浸透を均一にして、その後のアルカリ処理でのリグニン及びヘミセルロースの分離除去効率を高めることができる。この目的のためには、そのほかに例えば油圧プレス機を用いる処理や、ローラーによる処理を利用することが可能である。 Also, it is preferable that the bamboo material be loosened by pressure rolling (squeezing treatment) with, for example, a pinch roll having a peripheral speed difference in advance, prior to the subsequent treatment with an aqueous alkaline solution. This makes it possible to increase the penetration rate of the alkaline aqueous solution and to make the penetration uniform, thereby enhancing the separation and removal efficiency of lignin and hemicellulose in the subsequent alkali treatment. For this purpose, it is also possible, for example, to use a treatment using a hydraulic press or a treatment using rollers.
 加えて、アルカリ水溶液を用いる処理の際に竹材が乾燥していると処理効果が低下するため、処理の開始まで竹材は乾燥させることなく、液体中で保存すること、あるいは冷凍又は冷蔵保存することが好ましい。より好ましくは、雑菌の繁殖を抑えるために、それに有効な液体、例えば過酸化水素、過塩素酸、硫酸などの水溶液に浸漬させ、冷蔵保存する。安全性と廃棄物の点から、過酸化水素を用いるのが最も好ましい。 In addition, when the bamboo material is dried during the treatment using an alkaline aqueous solution, the treatment effect is reduced, so the bamboo material may be stored in a liquid without being dried until the start of the treatment, or it may be stored frozen or refrigerated Is preferred. More preferably, in order to suppress the growth of various bacteria, it is immersed in an effective liquid such as an aqueous solution of hydrogen peroxide, perchloric acid, sulfuric acid and the like, and kept refrigerated. It is most preferable to use hydrogen peroxide in terms of safety and waste.
 アルカリ処理を施す竹材は、処理容器の容量に応じて適宜切断して使用される。処理効率を大きくするため、本発明では、例えば長さ1~10cm程度に切断してチップ化した竹材を使用するのが好ましい。 The bamboo material to which the alkali treatment is applied is appropriately cut and used according to the volume of the treatment container. In order to increase the treatment efficiency, in the present invention, it is preferable to use, for example, a bamboo material cut into chips of about 1 to 10 cm in length.
 アルカリ処理は、例えば水酸化ナトリウム、炭酸水素ナトリウム、水酸化カリウムなどのアルカリ水溶液に、竹片を浸して行うことができる。水酸化ナトリウム水溶液を用いる場合、効率の観点から、水溶液の濃度は0.01~1.00Mが好ましく、より好ましくは0.10~1.00M、更に好ましくは0.10~0.50Mである。処理温度は30~200℃が好ましく、より好ましくは50~150℃、更に好ましくは100~150℃である。処理圧力は101~500kPaが好ましく、好ましくは101~200kPaである。処理時間は1~3時間が好ましく、より好ましくは3時間である。アルカリ処理した竹片を、アルカリ水溶液から取り出して水洗する。水洗は、洗浄後の水が中性になるまで継続する。 The alkali treatment can be performed, for example, by immersing bamboo in an aqueous alkaline solution such as sodium hydroxide, sodium hydrogencarbonate or potassium hydroxide. When an aqueous solution of sodium hydroxide is used, the concentration of the aqueous solution is preferably 0.01 to 1.00 M, more preferably 0.10 to 1.00 M, and still more preferably 0.10 to 0.50 M, from the viewpoint of efficiency. . The treatment temperature is preferably 30 to 200 ° C., more preferably 50 to 150 ° C., and still more preferably 100 to 150 ° C. The processing pressure is preferably 101 to 500 kPa, and preferably 101 to 200 kPa. The treatment time is preferably 1 to 3 hours, more preferably 3 hours. The alkali-treated bamboo pieces are removed from the aqueous alkali solution and washed with water. Washing with water continues until the water after washing becomes neutral.
 次いで、竹繊維を得ることを目的に、竹片を機械的に処理する。この処理は、一般的なミキサーを使用し、竹片を室温の水とともに撹拌して行うことができる。竹片を分解して繊維状にすることができる限り、使用するミキサーの種類は特に限定されない。また、処理条件は、所定の処理効果が得られるように適宜設定すればよい。処理後に乾燥させて、竹繊維が得られる。 The pieces of bamboo are then processed mechanically in order to obtain bamboo fibres. This process can be performed using a common mixer and stirring bamboo pieces with water at room temperature. The type of mixer used is not particularly limited as long as bamboo pieces can be disassembled into fibers. Further, the processing conditions may be appropriately set so as to obtain a predetermined processing effect. After treatment, it is dried to obtain bamboo fiber.
 脱リグニン処理工程(2)は、工程(1)で得られた竹繊維を脱リグニン処理液と接触させて行うことができる。脱リグニン処理液としては、過酢酸、亜塩素酸、亜硫酸ナトリウム、硫酸、オゾン、酵素、微生物(細菌)などの溶液を用いることができる。竹繊維を脱リグニン処理液中に分散させて静置後、処理液から分離し、続いて洗浄し乾燥させることで、脱リグニン処理した竹繊維を得ることができる。脱リグニン処理液は、例えば室温~220℃程度、好ましくは60~100℃程度の温度で行うことができる。静置時間は1~8時間が好ましく、より好ましくは1~6時間、更に好ましくは3~6時間である。 The delignification treatment step (2) can be carried out by bringing the bamboo fiber obtained in the step (1) into contact with the delignification treatment solution. As the delignification treatment solution, a solution of peracetic acid, chlorous acid, sodium sulfite, sulfuric acid, ozone, enzymes, microorganisms (bacteria) and the like can be used. Bamboo fibers are dispersed in a delignification treatment solution and allowed to stand, and then separated from the treatment solution, followed by washing and drying to obtain a bamboo fiber subjected to delignification treatment. The delignification treatment solution can be carried out, for example, at a temperature of about room temperature to about 220 ° C., preferably about 60 to 100 ° C. The standing time is preferably 1 to 8 hours, more preferably 1 to 6 hours, and still more preferably 3 to 6 hours.
 処理時間を長くするにつれ、リグニン抽出率が増大する。例えば、過酢酸(酢酸:過酸化水素体積比=1:1)を用い、静置温度を80℃とした場合、6時間の処理で抽出率は100%に達し、白色の繊維が得られた。この場合、ヘミセルロースはほとんど抽出されなかった。竹繊維の径は、処理時間を長くするほど細くなり、6時間の処理で平均直径約16nmの繊維が得られた。 The lignin extraction rate increases as the treatment time increases. For example, when peracetic acid (acetic acid: hydrogen peroxide volume ratio = 1: 1) is used and the standing temperature is 80 ° C., the extraction rate reaches 100% after 6 hours of treatment, and a white fiber is obtained. . In this case, little hemicellulose was extracted. The diameter of bamboo fiber became thinner as the treatment time became longer, and the treatment with 6 hours gave fibers with an average diameter of about 16 nm.
 リグニン含有量が1~2wt%程度である本発明の竹由来のリグノセルロースナノファイバーは、この脱リグニン処理工程(2)における脱リグニン処理液中での竹繊維の静置を、所定のリグニン含有量が得られた時点で停止することにより得られる。ここでの静置は、上述のように過酢酸を用い80℃で静置した場合において、例えば0.5~2時間程度、あるいは0.5~1.5時間程度でよい。工程(2)における静置時間の点を除いて、本発明の竹由来のリグノセルロースナノファイバーは、本発明の竹由来のセルロースナノファイバーの製造と同じ方法で製造することができる。 The bamboo-derived lignocellulose nanofibers according to the present invention having a lignin content of about 1 to 2 wt% have the lignin content of the bamboo fibers in the delignification treatment solution in this delignification treatment step (2) It is obtained by stopping when the amount is obtained. The standing here may be, for example, about 0.5 to 2 hours, or about 0.5 to 1.5 hours when left at 80 ° C. using peracetic acid as described above. Except for the standing time in step (2), the bamboo-derived lignocellulose nanofibers of the present invention can be produced by the same method as the production of bamboo-derived cellulose nanofibers of the present invention.
 例えば処理液として過酢酸を用いた場合、次に示すようにリグニンの芳香環の開裂が起こり、竹繊維からリグニンが除去されるものと考えられる(畠山兵衛,紙パ技協誌,第20巻,第11号,p.15(1966)参照)。 For example, when peracetic acid is used as a processing solution, cleavage of the aromatic ring of lignin occurs as shown below, and it is thought that lignin is removed from bamboo fiber (Keiyama, Heisei, Paper-Papers Technical Journal, Volume 20) , No. 11, p. 15 (1966)).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 脱リグニン処理した竹繊維の機械的解纖工程(3)は、竹繊維を水とともにミキサーで撹拌することで行うことができる。撹拌による解纖が支障なくなされる限り、ミキサーの種類は特に限定されない。処理効率の観点から、水の量は、竹繊維の質量の10~1000倍程度が好ましく、より好ましくは100~500倍程度、更に好ましくは100~150倍程度である。また、撹拌処理は5~60℃程度の温度で行うのが好ましく、より好ましい温度は5~40℃程度である。ミキサーの運転条件は、所定の解纖効果が得られるように、適宜設定すればよい。 The mechanical loosening step (3) of the delignified bamboo fiber can be performed by stirring the bamboo fiber with water with a mixer. The type of mixer is not particularly limited as long as unwinding by stirring is performed without any problem. From the viewpoint of treatment efficiency, the amount of water is preferably about 10 to 1000 times, more preferably about 100 to 500 times, and still more preferably about 100 to 150 times the mass of bamboo fiber. The stirring treatment is preferably performed at a temperature of about 5 to 60 ° C., and more preferably about 5 to 40 ° C. The operating conditions of the mixer may be set appropriately so as to obtain a predetermined unwinding effect.
 解纖した竹繊維からヘミセルロースを除去する工程(4)は、解纖した竹繊維をアルカリ処理することで行うことができる。アルカリ処理は、解纖した竹繊維をアルカリ水溶液に浸漬させることにより行うことができる。アルカリ水溶液としては、水酸化カリウムの水溶液を用いることができ、そのほかに水酸化ナトリウム水溶液などを用いることもできる。水酸化カリウム水溶液を用いる場合、処理効率の観点から、0.5~5.0M程度、好ましくは1.0~2.0M程度のKOH水溶液を、繊維5gに対し50~500ml程度、好ましくは200~500ml程度、使用することができる。浸漬は、20~100℃程度で行うことができる。浸漬時間は1~24時間が好ましく、より好ましくは1~12時間、更に好ましくは1~8時間である。 The step (4) of removing hemicellulose from the unfolded bamboo fiber can be carried out by alkali treatment of the unfolded bamboo fiber. The alkali treatment can be carried out by immersing the unfolded bamboo fiber in an aqueous alkali solution. As the aqueous alkali solution, an aqueous solution of potassium hydroxide can be used, and in addition, an aqueous sodium hydroxide solution or the like can also be used. In the case of using an aqueous potassium hydroxide solution, an aqueous solution of about 0.5 to 5.0 M, preferably about 1.0 to 2.0 M of KOH aqueous solution is used in an amount of about 50 to 500 ml, preferably 200 It can be used up to about 500 ml. The immersion can be performed at about 20 to 100 ° C. The immersion time is preferably 1 to 24 hours, more preferably 1 to 12 hours, and still more preferably 1 to 8 hours.
 ヘミセルロース除去後の竹繊維から金属成分を除去する工程(5)は、ヘミセルロースを除去した竹繊維を酸処理して行うことができる。酸処理は、竹繊維を酸溶液と接触させ、所定の時間振盪することで行うことができる。酸溶液としては、塩酸、過塩素酸、硫酸、硝酸などの水溶液を用いることができる。例えば、塩酸水溶液を用いる場合、溶液の濃度は、0.001~1.0M程度が好ましく、より好ましくは0.01~1.0M、更に好ましくは0.01~0.1Mである。接触時間は1~24時間が好ましく、より好ましくは3~24時間、更に好ましくは1~12時間である。この処理は、室温(20~30℃程度)で行うことができる。 The step (5) of removing metal components from bamboo fiber after hemicellulose removal can be carried out by acid treatment of bamboo fiber from which hemicellulose has been removed. The acid treatment can be carried out by bringing bamboo fiber into contact with an acid solution and shaking for a predetermined time. As the acid solution, an aqueous solution of hydrochloric acid, perchloric acid, sulfuric acid, nitric acid or the like can be used. For example, when using an aqueous solution of hydrochloric acid, the concentration of the solution is preferably about 0.001 to 1.0 M, more preferably 0.01 to 1.0 M, and still more preferably 0.01 to 0.1 M. The contact time is preferably 1 to 24 hours, more preferably 3 to 24 hours, still more preferably 1 to 12 hours. This treatment can be carried out at room temperature (about 20 to 30 ° C.).
 竹繊維のリグニン量は、例えば硫酸法(日本木材学会,木質科学実験マニュアル,pp96-97,文英堂出版(2010))により測定することができる(後述の実施例参照)。 The amount of lignin in bamboo fiber can be measured, for example, by the sulfuric acid method (Japanese Wood Research Society, Wood Science Experiment Manual, pp. 96-97, Bun-ei-do (2010)) (see Examples described later).
 竹繊維のヘミセルロース量は、ヘミセルロース除去前後の竹繊維の質量を基に測定することができる(後述の実施例参照)。 The hemicellulose content of bamboo fiber can be measured based on the mass of bamboo fiber before and after hemicellulose removal (see Examples described later).
 本発明の方法により製造した竹由来のセルロースナノファイバーの特徴は、90%以上のセルロース純度を示し、繊維径が10~20nmで、かつ結晶化度が70%以上であることである。本発明のセルロースナノファイバーにおけるセルロース純度及び結晶化度は、従来のセルロースナノファイバーにおけるセルロース純度(最大で87%程度)及び結晶化度(最大で66%程度)と比べて格段に高い。 The characteristics of bamboo-derived cellulose nanofibers produced by the method of the present invention are that the cellulose purity is 90% or more, the fiber diameter is 10 to 20 nm, and the crystallinity is 70% or more. The cellulose purity and crystallinity of the cellulose nanofibers of the present invention are much higher than those of conventional cellulose nanofibers (about 87% at the maximum) and crystallinity (about 66% at the maximum).
 本発明による竹由来のセルロースナノファイバーをシート化することにより、本発明によるシート状材料を得ることができる。シート化は、例えばホットプレスを利用して、あるいは凍結乾燥を利用して行うことができる。自然乾燥を利用することも可能である。 The sheet-like material according to the present invention can be obtained by forming the bamboo-derived cellulose nanofibers according to the present invention into a sheet. Sheeting can be performed, for example, using a hot press or using lyophilization. It is also possible to use natural drying.
 ホットプレスによるシート化は、好ましくは、水に金属成分の除去後のセルロースナノファイバーを加えた被処理液を撹拌して得られた懸濁液を用いて行うことができる。懸濁液から分散媒の水を除去して回収した残留物を乾燥させずにホットプレス機で処理してシート化し、本発明によるセルロースナノファイバーからなるシート状材料を得ることができる。 Sheeting by hot pressing can be preferably performed using a suspension obtained by stirring a liquid to be treated to which cellulose nanofibers after removal of metal components are added to water. Water remaining in the dispersion medium is removed from the suspension, and the recovered residue is processed with a hot press into a sheet without drying, and a sheet-like material comprising cellulose nanofibers according to the present invention can be obtained.
 懸濁液から水を除去した残留物を、エタノールなどのアルコールの分散媒に再度分散させた懸濁液を用いてもよい。分散媒が水の場合には、得られたシート状材料において繊維の凝集が認められる一方で、分散媒がアルコールの場合には、セルロース分子間をアルコールが溶媒和することにより、繊維の離解が認められる。 The residue obtained by removing the water from the suspension may be re-dispersed in a dispersion medium of an alcohol such as ethanol. When the dispersion medium is water, aggregation of the fibers is observed in the obtained sheet-like material, while when the dispersion medium is alcohol, disintegration of the fibers occurs by alcohol solvation between the cellulose molecules. Is recognized.
 凍結乾燥によるシート化は、好ましくは、有機溶剤(例えばアルコール)を分散媒とする懸濁液を用いて行うことができる。懸濁液を所定の基材上に広げてフィルム状にしてから、冷凍し、凍結乾燥処理を施して、本発明によるセルロースナノファイバーからなるシート状材料を得ることができる。分散媒がアルコールの場合には、エタノールやブタノールなどを用いることができる。アルコール以外の有機溶剤としては、ケトン類(例えばアセトン)、芳香族化合物(例えばトルエン)、カルボン酸(例えば酢酸)、アミン類(例えばN,N-ジメチルホルムアミド)、アセトニトリルなどを用いることができる。凍結乾燥により分散媒(アルコールなど)が昇華することで、繊維の凝集が抑制される。分散媒は、1種類(例えばエタノール)だけを用いてもよく、複数種の混合物を用いてもよく、あるいは複数種を順次用いてもよい(例えばエタノールの懸濁液から竹繊維を一旦回収後に、それをブタノールに再度分散させた懸濁液からシート状材料を作製する)。後者の場合、セルロースナノファイバーの凝集を抑制する点で有利である。 Sheeting by lyophilization can be preferably performed using a suspension containing an organic solvent (for example, alcohol) as a dispersion medium. The suspension can be spread on a predetermined substrate to form a film, frozen, and subjected to a freeze-drying treatment to obtain a sheet-like material comprising cellulose nanofibers according to the present invention. When the dispersion medium is alcohol, ethanol, butanol or the like can be used. As the organic solvent other than alcohol, ketones (eg, acetone), aromatic compounds (eg, toluene), carboxylic acids (eg, acetic acid), amines (eg, N, N-dimethylformamide), acetonitrile and the like can be used. Coagulation of the fibers is suppressed by sublimation of the dispersion medium (such as alcohol) by lyophilization. As the dispersion medium, only one type (for example, ethanol) may be used, or a mixture of two or more types may be used, or two or more types may be sequentially used (for example, after temporarily recovering bamboo fiber from a suspension of ethanol) , Making a sheet-like material from a suspension in which it is redispersed in butanol). The latter case is advantageous in suppressing aggregation of the cellulose nanofibers.
 シート化の手段にかかわらず、懸濁液を得るための撹拌は、例えば一般的なミキサーを用いて、あるいは超音波を利用して、行うことができる。懸濁液におけるセルロースナノファイバーの含有量は、一般に0.1~10wt%でよく、より好ましくは0.1~2.0wt%、更に好ましくは0.1~1.0wt%である。撹拌条件は、セルロースナノファイバーが十分に分散した懸濁液が得られる限り、特に限定されない。分散媒の水あるいはアルコールの除去には、濾過などの任意の処理を利用することができる。 Regardless of the means of sheeting, stirring to obtain the suspension can be carried out, for example, using a common mixer or by means of ultrasound. The content of cellulose nanofibers in the suspension may generally be 0.1 to 10 wt%, more preferably 0.1 to 2.0 wt%, and still more preferably 0.1 to 1.0 wt%. The stirring conditions are not particularly limited as long as a suspension in which the cellulose nanofibers are sufficiently dispersed can be obtained. Any treatment such as filtration can be used to remove the dispersion medium water or alcohol.
 自然乾燥を利用する場合は、竹由来のセルロースナノファイバーを分散させ基材上に広げてフィルム状にした懸濁液を静置して、分散媒を除去することにより行うことができる。分散媒は、水、あるいは有機溶剤、例えばアルコールなどでよい。場合により、通風などにより分散媒の除去を促進することも可能である。 When natural drying is used, it can be carried out by dispersing bamboo-derived cellulose nanofibers and spreading it on a substrate to allow a film-like suspension to stand and remove the dispersion medium. The dispersion medium may be water or an organic solvent such as alcohol. In some cases, the removal of the dispersion medium can be promoted by ventilation or the like.
 本発明による竹由来のセルロースナノファイバーから作製したシート状材料は、従来のセルロースナノファイバーから作製したシート状材料と比べて、同じ条件で測定して向上した強度を示す。例えば、200g/m2の坪量(シート材料1m2当たりの質量)に対する引張強度を比較した場合、本発明によるシート材料の引張強度は約200Nであるのに対し、ダイセルファインケム社より入手したセルロース繊維FD100Gから作製したシート材料及びモンディ社より入手した市販紙(ISO9707取得紙)の引張強度は、それぞれ約100N及び145Nである。 The sheet-like material produced from the bamboo-derived cellulose nanofiber according to the present invention exhibits improved strength when measured under the same conditions as compared to the sheet-like material produced from conventional cellulose nanofibers. Cellulose for example, when comparing the tensile strength for the basis weight of 200 g / m 2 (mass per sheet material 1 m 2), tensile strength of the sheet material according to the present invention whereas about 200 N, were obtained from Daicel Finechem Corporation The tensile strengths of the sheet material produced from the fiber FD100G and the commercial paper obtained from Mondi (ISO 9707-obtained paper) are about 100 N and 145 N, respectively.
 このように高い引張強度を示す本発明による竹由来のセルロースナノファイバーからなるシート状材料は、補強、音響、医療、食品、包材、運輸など分野での利用が期待できる。 The sheet-like material made of bamboo-derived cellulose nanofibers according to the present invention exhibiting such high tensile strength can be expected to be used in the fields of reinforcement, acoustics, medicine, food, packaging materials, transportation and the like.
 次に、実施例により本発明を更に説明する。言うまでもなく、本発明は以下の実施例に限定されるものではない。 The invention will now be further described by way of examples. Needless to say, the present invention is not limited to the following examples.
1.ナノメートルサイズ竹繊維の作製
 内皮と外皮を除去し圧搾処理して、長さ約10cmにチップ化した竹片120gを電気圧力鍋(パナソニック社、SR-P37-N)に入れ、2Lの0.10Mの水酸化ナトリウム水溶液に浸し、120℃、200kPaの条件で、3時間処理した。処理した竹片を放冷後、金属製のざるに移して、超純水で洗浄後の水が中性になるまで洗浄し、竹繊維を得た。得られた繊維60gを、ミキサー(Vitamix(商標) ABS-BU)に入れ、超純水1Lを加えて、37,000rpmで1分間撹拌した。その後、超純水を捨てて乾燥させ、竹繊維を得た。
1. Preparation of Nanometer-Sized Bamboo Fiber The endothelium and the shell were removed and squeezed, and 120 g of bamboo chips which had been chipped to a length of about 10 cm were placed in an electric pressure cooker (Panasonic, SR-P37-N), and 2 L of 0. It was immersed in a 10 M aqueous solution of sodium hydroxide and treated at 120 ° C. and 200 kPa for 3 hours. The treated bamboo pieces were allowed to cool, transferred to a metal sieve, and washed with ultrapure water until the water after washing became neutral, to obtain bamboo fibers. 60 g of the obtained fibers were placed in a mixer (VitamixTM ABS-BU), 1 L of ultrapure water was added, and the mixture was stirred at 37,000 rpm for 1 minute. Thereafter, the ultrapure water was discarded and dried to obtain bamboo fiber.
2.脱リグニン処理
 300mlのガラス製三角フラスコに、17.5M酢酸溶液を加え、それに11.6M過酸化水素水溶液を分液漏斗で徐々に滴下し、過酢酸溶液を100ml作製した。なお、酢酸と過酸化水素の体積比は1:1とした。
2. Delignification treatment A 17.5 M acetic acid solution was added to a 300 ml glass Erlenmeyer flask, to which a 11.6 M aqueous hydrogen peroxide solution was gradually dropped with a separatory funnel to prepare 100 ml of a peracetic acid solution. The volume ratio of acetic acid to hydrogen peroxide was 1: 1.
 上記1から得られた竹繊維10gを、過酢酸溶液100mLを入れた容器に約1gずつ、ガラス棒を用いて撹拌しながら加えた後、ウォーターバス(EYELA社、SB-350)の温度を80Cに設定し、容器を低温恒温水槽(EYELA社、NCB-1200)にセットして、還流しながら1、3、6あるいは8時間静置した。その後、放冷し、プラスチック製の濾過器(ADVANTEC社、KP-47H及びKP-47S)を用いて、吸引濾過を行った。残留物を中性になるまで超純水で洗浄後、60Cに保持した乾燥機で12時間乾燥させ、脱リグニン処理した竹繊維を得た。 After adding about 1 g of bamboo fiber obtained from the above 1 to a container containing 100 mL of peracetic acid solution while stirring with a glass rod, the temperature of the water bath (EYELA, SB-350) is 80 The vessel was set in a low-temperature water bath (EYELA, NCB-1200) set at o C, and allowed to stand for 1, 3, 6 or 8 hours while refluxing. Thereafter, it was allowed to cool, and suction filtration was performed using a plastic filter (ADVANTEC, KP-47H and KP-47S). The residue was washed with ultrapure water until neutral and then dried for 12 hours with a drier maintained at 60 ° C. to obtain a delignified bamboo fiber.
 過酢酸中での1時間の処理で、繊維は茶色から黄色に変わり、3時間の処理後には黄白色になった。さらに6時間処理することで白色の竹繊維が得られた。これは、過酢酸処理時間の経過につれて、着色成分であるリグニンが除去されていくことと対応していると考えられる。6時間以上の処理では変化が見られなかった。 At 1 hour of treatment in peracetic acid, the fibers turned from brown to yellow and became pale yellow after 3 hours of treatment. The treatment was continued for 6 hours to obtain white bamboo fiber. This is considered to correspond to the removal of lignin which is a coloring component as the peracetic acid treatment time passes. No change was observed after 6 hours of treatment.
3.解纖
 超純水に対して、脱リグニン処理した竹繊維をその濃度が0.7wt%となるように加え、ミキサー(Vitamix(商標) ABS-BU)を用いて、37,000rpmで5分間撹拌した。その後、放冷し、断続的に合計で60分間撹拌して、解纖した竹繊維の懸濁液を得た。
3. Clarification Add delignified bamboo fiber to ultra pure water so that its concentration becomes 0.7 wt%, and stir for 5 minutes at 37,000 rpm using a mixer (VitamixTM ABS-BU) did. The mixture was then allowed to cool and stirred intermittently for a total of 60 minutes to obtain a thawed bamboo fiber suspension.
4.リグニンの定量
 100mLのガラス製ビーカーに、13.4M硫酸15mLと上記2から得られた生成物(脱リグニン処理した竹繊維)1gを加えて、ガラス棒で繊維に硫酸が均一に含浸するまで撹拌した。4時間静置後、還流しながら4時間煮沸して放冷した。その後、ガラスフィルター(柴田科学株式会社、1GP16)を用いた吸引濾過で残渣を回収し、これを500mLの熱水で洗浄後、105Cに保持した乾燥機で12時間乾燥させた。乾燥後、収量を小数点第4位まで秤量し、下記の式(1)を用いてリグニンの含有量を求めた(日本木材学会,木質科学実験マニュアル,p97,文英堂出版(2010)参照)。
  リグニン含有量(wt%)=(実験後質量/実験前質量)×100     (1)
4. Determination of lignin In a 100 mL glass beaker, add 15 mL of 13.4 M sulfuric acid and 1 g of the product obtained from the above 2 (delignified bamboo fiber) and stir until the fibers uniformly impregnate the fibers with a glass rod did. After standing for 4 hours, it was boiled for 4 hours under reflux and allowed to cool. Thereafter, the residue was collected by suction filtration using a glass filter (Shibata Scientific Co., Ltd., 1 GP 16), washed with 500 mL of hot water, and dried with a drier maintained at 105 ° C. for 12 hours. After drying, the yield was weighed to the fourth decimal place, and the content of lignin was determined using the following equation (1) (see Japan Wood Research Society, Wood Science Experiment Manual, p. 97, Bun-eidou Publishing (2010)).
Lignin content (wt%) = (mass after experiment / mass before experiment) x 100 (1)
 過酢酸での処理時間に対するリグニンの含有量と抽出率を表1に示し、そのグラフを図1に示す。過酢酸処理の時間が長いほど、抽出率は大きくなり、6時間でリグニンは全量抽出された。 The content of lignin and the extraction ratio with respect to the treatment time with peracetic acid are shown in Table 1, and the graph is shown in FIG. The longer the peracetic acid treatment time, the higher the extraction rate, and the total amount of lignin was extracted in 6 hours.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 いわゆる「リグノセルロースナノファイバー」として知られる、若干の残留リグニンを含むナノファイバーを得ようとする場合には、約1時間の処理後に得られた竹繊維(1wt%程度の残留リグニンを含む)に対して、以下で説明する手順に従って引き続き処理を進めることができる。 When it is intended to obtain nanofibers with some residual lignin known as so-called "lignocellulose nanofibers", bamboo fibers (containing about 1 wt% residual lignin) obtained after about 1 hour of treatment However, the process can be continued according to the procedure described below.
5.ヘミセルロースの定量
 参考文献によれば、β-セルロースとγ-セルロースおよびヘミセルロースがヘミセルロースとして、それら以外がα-セルロースとして分類されている(日本木材学会,木質科学実験マニュアル,pp95,文英堂出版(2010)参照)。本発明では、まずそれに従い、α-セルロースの定量方法を使用し、ヘミセルロースを測定した(日本木材学会,木質科学実験マニュアル,pp96-97,文英堂出版(2010)参照)。したがって、ここでのヘミセルロースにはβとγセルロースも含まれている。
5. Determination of hemicellulose According to the reference, β-cellulose and γ-cellulose and hemicellulose are classified as hemicellulose, and others are classified as α-cellulose (Japan Wood Research Society, Wood Science Experiment Manual, pp. 95, Bungeidou Press (2010) )reference). In the present invention, according to that, hemicellulose was measured using a method for quantifying α-cellulose (see Japan Wood Research Society, Wood Science Experiment Manual, pp 96-97, Bun-ei-do (2010)). Thus, the hemicellulose here also includes beta and gamma cellulose.
 200mLのプラスチック製ビーカーに、5.80M水酸化ナトリウム水溶液25mLと上記2から得られた生成物(脱リグニンした竹繊維)を1g加えた。繊維に液を均一に含浸させてから4分間静置し、その後5分間プラスチック製の撹拌棒を用いて撹拌してから、30分間静置した。ビーカーにさらに超純水を加えて1分間撹拌し、5分間静置した。その後、ガラスフィルター(柴田科学株式会社、1GP250)を用いて吸引濾過を行い、濾液を回収して再濾過した後、濾液が中性になるまで残留物を超純水で洗浄した。残留物と1.75M酢酸水溶液40mLを100mLのガラス製ビーカーに入れて5分間静置後、残留物を吸引濾過で回収し、1Lの超純水で洗浄した。その後、残留物を105℃に保持した乾燥機で12時間乾燥させ、小数点第4位まで秤量し、下記の式(2)を用いてヘミセルロース含有量を求めた(日本木材学会,木質科学実験マニュアル,pp96,文英堂出版(2010)参照)。
  ヘミセルロース含有量(wt%)=
   ((実験前質量-(α-セルロース質量))/実験前質量)×100   (2)
In a 200 mL plastic beaker, 25 mL of a 5.80 M aqueous sodium hydroxide solution and 1 g of the product obtained from 2 above (delignified bamboo fiber) were added. The fiber was uniformly impregnated with the liquid, allowed to stand for 4 minutes, then stirred using a plastic stir bar for 5 minutes, and then allowed to stand for 30 minutes. Ultrapure water was further added to the beaker, stirred for 1 minute, and allowed to stand for 5 minutes. After that, suction filtration was performed using a glass filter (Shibata Scientific Co., Ltd., 1 GP 250), and the filtrate was recovered and refiltered, and then the residue was washed with ultrapure water until the filtrate became neutral. The residue and 40 mL of 1.75 M aqueous acetic acid solution were placed in a 100 mL glass beaker and allowed to stand for 5 minutes. The residue was collected by suction filtration and washed with 1 L of ultrapure water. Thereafter, the residue was dried in a dryer maintained at 105 ° C. for 12 hours, weighed to the fourth decimal place, and the hemicellulose content was determined using the following equation (2) (The Japan Wood Research Society, Wood Science Experiment Manual) , Pp. 96, Bungeidou Publishing (2010)).
Hemicellulose content (wt%) =
((Pre-experiment mass-(α-cellulose mass)) / pre-experiment mass) × 100 (2)
 過酢酸処理後の竹繊維のヘミセルロースの含有量と抽出率を表2に示し、そのグラフを図2に示す。過酢酸処理では、ヘミセルロース含有量が大きく減少することはなかった。また、処理時間による大きな違いも見られなかった。 The hemicellulose content and extraction rate of bamboo fiber after peracetic acid treatment are shown in Table 2, and the graph is shown in FIG. The peracetic acid treatment did not significantly reduce the hemicellulose content. In addition, there was no significant difference depending on the processing time.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
6.ヘミセルロースの除去及び定量
 過酢酸による6時間の脱リグニン処理と解纖処理を施した竹繊維5gを200mLのガラス製三角フラスコに入れ、0.71あるいは1.18Mの水酸化カリウム水溶液200mLを加え、繊維に液を均一に含浸させた。密栓して室温で12時間静置後、プラスチック製の濾過器(ADVANTEC社、KP-47H及びKP-47S)を用いて吸引濾過し、残留物を洗浄液が中性になるまで超純水を用いて洗浄した。その後、60℃に保持した乾燥機で残留物を12時間乾燥させ、上記5と同様の手順と式を用いてヘミセルロースの含有量を測定した。結果を表3に、また、処理液濃度とヘミセルロースの含有量及び抽出率の関係を図3に示す。1.18Mの場合、7%程度のヘミセルロースが含まれていることがわかった。なお、α-セルロース含有量は、93%程度である。
6. Removal and quantification of hemicellulose 5 g of bamboo fiber that has been subjected to delignification treatment and cracking treatment with peracetic acid for 6 hours is put in a 200 mL glass Erlenmeyer flask, and 200 mL of 0.71 or 1.18 M aqueous potassium hydroxide solution is added. The fibers were uniformly impregnated with the solution. After tightly sealing and leaving at room temperature for 12 hours, suction filtration is performed using a plastic filter (ADVANTEC, KP-47H and KP-47S), and the residue is washed with ultrapure water until the washing solution becomes neutral. Was washed. After that, the residue was dried for 12 hours with a dryer maintained at 60 ° C., and the content of hemicellulose was measured using the same procedure and formula as in 5 above. The results are shown in Table 3, and the relationship between the treatment solution concentration and the content of hemicellulose and the extraction rate is shown in FIG. In the case of 1.18 M, it turned out that about 7% of hemicellulose is contained. The α-cellulose content is about 93%.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 そこで、水酸化カリウム処理時の体積と抽出率との関係を明らかにするために、KOH水溶液の濃度を1.18Mに固定し、溶液の量を100あるいは200mLに変えた場合の定量結果を表4に示し、また、溶液量とヘミセルロースの含有量及び抽出率との関係を図4に示す。これらの結果から、この例では、竹繊維5gに対し1.18MのKOH水溶液を200mL用いた時に最も多くのヘミセルロースが抽出されたことが分かった。 Therefore, in order to clarify the relationship between the volume and the extraction rate at the time of potassium hydroxide treatment, the concentration of KOH aqueous solution is fixed at 1.18 M, and the amount of solution is changed to 100 or 200 mL. 4 and the relationship between the solution amount and the hemicellulose content and extraction rate is shown in FIG. From these results, it was found that in this example, the largest amount of hemicellulose was extracted when 200 mL of 1.18 M KOH aqueous solution was used for 5 g of bamboo fiber.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 次に、処理温度とヘミセルロース含有量及び抽出率の関係を調べ、その定量結果を表5と図5に示す。KOH水溶液濃度を1.18M、5gの竹繊維に対する溶液量を200mLとした場合、100Cより室温で処理した方が多くのヘミセルロースが抽出された。なお、処理温度100℃の場合には、テフロン(登録商標)容器に竹繊維とKOH水溶液を加え、更にこの容器を耐熱ステンレス容器に入れ密封した。乾燥機の温度を100Cに設定し、12時間静置させた。放冷後に、上述のように吸引濾過、水洗、乾燥を行った。 Next, the relationship between the treatment temperature and the hemicellulose content and the extraction rate is examined, and the quantitative results are shown in Table 5 and FIG. When the KOH aqueous solution concentration was 1.18 M and the amount of solution for 5 g of bamboo fiber was 200 mL, more hemicellulose was extracted when treated at room temperature than 100 ° C. In the case of a processing temperature of 100 ° C., bamboo fiber and a KOH aqueous solution were added to a Teflon (registered trademark) container, and the container was further put in a heat-resistant stainless steel container and sealed. The temperature of the dryer was set to 100 ° C. and allowed to stand for 12 hours. After leaving to cool, suction filtration, washing with water and drying were performed as described above.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
7.β-セルロースの定量
 最も適切な条件で処理を施した生成物中のα-セルロース含有量は、93%程度である。その生成物中の正確なβ-セルロース量を明らかにするために、生成物を30%酢酸水溶液10mLに、上記5で得られた洗浄液200mLを加えて、80℃に加熱、保温し、9時間放置した。得られた沈殿物を、予め秤量しておいたろ紙で回収し、乾燥後の質量増加分をβ-セルロース含有量とした(日本木材学会,木質科学実験マニュアル,pp96,文英堂出版(2010)参照)。
7. Determination of β-cellulose The α-cellulose content in the product treated under the most appropriate conditions is around 93%. In order to determine the correct amount of β-cellulose in the product, 200 mL of the washing solution obtained in the above 5 is added to 10 mL of a 30% aqueous acetic acid solution, heated to 80 ° C., and kept warm for 9 hours I left it. The obtained precipitate was collected by a filter paper which was weighed in advance, and the mass increase after drying was taken as the β-cellulose content (The Japan Wood Research Society, Wood Science Experiment Manual, pp 96, Bun Eido Press (2010) reference).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表6の上から3段目と4段目に記載した結果から、上記5に記載の方法で測定されたヘミセルロースの97%はβ-セルロースであることがわかった。α-セルロース含有量と合計すると、セルロース含有率は99.8%となることが確認された。 From the results described in the third and fourth rows from the top of Table 6, it was found that 97% of hemicelluloses measured by the method described in the above 5 is β-cellulose. It was confirmed that the cellulose content is 99.8% when added to the α-cellulose content.
8.電界放出型走査電子顕微鏡による形態観察
 上記1で得られた竹繊維(脱リグニン前のもの)の懸濁液1滴にエタノール1mLを加え、超音波分散させた。超音波分散後の懸濁液をグラッシーカーボン上に10μL滴下し、60℃に保持した乾燥機で乾燥させた。その後、乾燥した竹繊維に蒸着装置(JEOL社、JFC-1600)を用いて白金を蒸着し、竹繊維の形態を電界放出型走査電子顕微鏡(FE-SEM(JEOL社、JSM-6701F))で観察した。蒸着条件を表7に、測定条件を表8に示す。また、上記2で説明した脱リグニン処理を1、3、6、8時間施した竹繊維について、同様の観察を行った。各観察結果を、それぞれ図6(a)~10(a)(FE-SEM像)と図6(b)~10(b)(繊維分布図)に示す。
8. Morphological observation with a field emission scanning electron microscope 1 mL of ethanol was added to 1 drop of the suspension of bamboo fiber (before delignification) obtained in the above 1 and ultrasonically dispersed. 10 μL of the suspension after ultrasonic dispersion was dropped on glassy carbon and dried in a dryer maintained at 60 ° C. Thereafter, platinum is deposited on dried bamboo fiber using a vapor deposition apparatus (JEOL, JFC-1600), and the form of bamboo fiber is measured with a field emission scanning electron microscope (FE-SEM (JEOL, JSM-6701F)) I observed it. The deposition conditions are shown in Table 7 and the measurement conditions are shown in Table 8. Moreover, the same observation was performed about the bamboo fiber which gave the delignification process demonstrated by said 2 for 1, 3, 6, 8 hours. Each observation result is shown in FIGS. 6 (a) to 10 (a) (FE-SEM image) and FIGS. 6 (b) to 10 (b) (fiber distribution map), respectively.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 FE-SEMを用いて高倍率で観察すると、脱リグニン処理前の竹繊維の光学顕微鏡観察で確認された直径16μm程度の短繊維(図示せず)は、幅広い直径を有する繊維が絡み合い、束になっていることが明らかとなった(図6(a)と(b))。脱リグニン処理時間が長いほど、繊維直径がわずかに小さくなっていく傾向があった。なお、FE-SEM像の図中の見られる粒状物質は蒸着した白金である。 When observed at high magnification using FE-SEM, short fibers (not shown) having a diameter of about 16 μm confirmed by light microscopy of bamboo fibers before delignification are intertwined with fibers having a wide diameter, into bundles. It became clear that it became (Fig. 6 (a) and (b)). The longer the delignification time, the smaller the fiber diameter tended to be. The particulate matter seen in the FE-SEM image is vapor-deposited platinum.
 また、繊維径は8時間後で、平均15.9nmであった。一般的に、木材等に含まれるセルロースナノファイバーの直径は数nmとされていることから、それよりも若干直径は太くなっている。この理由として、FE-SEMでの観察には、観察資料を絶乾させることが必須であり、その乾燥時においてセルロース分子間の水素結合により会合したためである可能性が挙げられる。 The fiber diameter was 15.9 nm on average after 8 hours. Generally, since the diameter of cellulose nanofibers contained in wood and the like is several nm, the diameter is slightly larger than that. The reason for this is that it is essential for the observation material to be completely dried in the observation by FE-SEM, which may be due to the association by the hydrogen bond between the cellulose molecules at the time of the drying.
 次に、リグニンの除去に加えてヘミセルロースも除去した竹繊維(上記6で1.18M水酸化カリウム水溶液を用いて処理した竹繊維)について、FE-SEMによる同様の観察を行った。結果を、図11(a)(FE-SEM像)と図11(b)(繊維分布図)に示す。ヘミセルロースの除去を試みた繊維でも束の一部が残存していたが、平均繊維径は小さくなっており、ヘミセルロースの抽出と製造されるセルロースナノファイバーの直径には関係があると考えられる。 Next, the same observation by FE-SEM was performed on bamboo fiber from which hemicellulose was also removed in addition to removal of lignin (bamboo fiber treated with 1.18 M potassium hydroxide aqueous solution in 6 above). The results are shown in FIG. 11 (a) (FE-SEM image) and FIG. 11 (b) (fiber distribution map). Even in the fibers in which removal of hemicellulose was attempted, a part of the bundle remained, but the average fiber diameter is smaller, and it is thought that there is a relationship between the hemicellulose extraction and the diameter of the produced cellulose nanofibers.
9.フーリエ変換赤外分光法による定性分析
 1、3、6、8時間の過酢酸処理(脱リグニン処理)後の竹繊維、及び8時間の過酢酸処理後に更にヘミセルロース除去を行った竹繊維をミキサー(Vitamix(商標) ABS-BU)に入れ、超純水を加え、60分間撹拌した。その後、プラスチック製の濾過器(ADVANTEC社、KP-47H及びKP-47S)を用いて吸引濾過し、60Cに保持した乾燥機で乾燥させて得た竹繊維シートを、拡散反射ユニットを備えたフーリエ変換赤外分光装置(FT-IR(Thermo Fisher SCIENTIFIC社、ART iD5))にて、4000~550cm-1の範囲でFT-IRスペクトルを測定した。結果を図12に示す。
9. Qualitative analysis by Fourier transform infrared spectroscopy Bamboo fiber after peracetic acid treatment (delignification treatment) for 1, 3, 6 and 8 hours, and bamboo fiber which has been subjected to further hemicellulose removal after peracetic acid treatment for 8 hours The mixture was placed in Vitamix (trademark) ABS-BU, added with ultrapure water, and stirred for 60 minutes. Thereafter, a bamboo fiber sheet obtained by suction filtration using a plastic filter (ADVANTEC, KP-47H and KP-47S) and dried by a dryer maintained at 60 ° C. is provided with a diffuse reflection unit The FT-IR spectrum was measured in the range of 4000 to 550 cm -1 with a Fourier transform infrared spectrometer (FT-IR (Thermo Fisher SCIENTIFIC, ART iD5)). The results are shown in FIG.
 過酢酸処理(脱リグニン処理)前の原料竹繊維のFT-IRスペクトル(図示せず)で確認されたリグニンに帰属される1760cm-1のCO伸縮、1500cm-1の芳香環のC=C伸縮、1250cm-1のメトキシ基のCO逆対称伸縮、840cm-1の芳香環のCH伸縮のピークが確認されず、セルロース及びヘミセルロースに帰属される3600~3000cm-1のOH伸縮、2920cm-1のCH伸縮のピークが確認された。 Peracetic acid treatment (delignification) before the raw material bamboo (not shown) FT-IR spectra of the fiber CO expansion and contraction of 1760 cm -1 attributable to the confirmed lignins, C = C stretching of the aromatic ring of 1500 cm -1 , CO antisymmetric stretching methoxy groups of 1250 cm -1, the peak of the CH stretching of the aromatic ring of 840 cm -1 is not observed, OH stretching of 3600 ~ 3000 cm -1 attributed to the cellulose and hemicellulose, CH of 2920 cm -1 The peak of expansion and contraction was confirmed.
10.金属成分の除去とICP発光分光分析による金属の定性及び定量分析
 上記2から得られた竹繊維(リグニン除去した竹繊維)を塩酸水溶液と接触させて、金属成分の除去を行った。プラスチック製のサンプル管に、竹繊維1gと0.01Mの塩酸水溶液50mLを入れた。サンプル管から、竹繊維を残して溶液をすぐに取り出して「処理前」の溶液を得た。サンプル管に新しく塩酸水溶液50mLを加えて24時間振盪を継続後、竹繊維を残して溶液をすぐに取り出して、「処理後」の溶液を得た。各溶液をガラス製の10mLねじ口試験管に入れて遠心分離機(アズワン社、C-12B)で処理して固形成分を沈降させ、上澄み溶液を抜き取った。その上澄み溶液を誘導結合プラズマ発光分光分析装置(ICP-OES(Agilent Technologies社、710ICP-OES))で分析し、竹繊維に含まれる金属の定性と定量を行った。結果を表9に示す。
10. Removal of metal component and qualitative and quantitative analysis of metal by ICP emission spectral analysis The bamboo fiber (bamboo fiber from which lignin was removed) obtained from the above 2 was brought into contact with a hydrochloric acid aqueous solution to remove the metal component. In a plastic sample tube, 1 g of bamboo fiber and 50 mL of a 0.01 M hydrochloric acid aqueous solution were placed. From the sample tube, the solution was immediately removed leaving bamboo fiber to obtain a "pre-treatment" solution. After adding 50 mL of a new hydrochloric acid aqueous solution to the sample tube and continuing shaking for 24 hours, the solution was taken out immediately, leaving bamboo fibers, to obtain a “post-treatment” solution. Each solution was placed in a glass 10 mL screw test tube and treated with a centrifuge (As One, C-12B) to precipitate solid components, and the supernatant solution was withdrawn. The supernatant solution was analyzed by inductively coupled plasma emission spectrometry (ICP-OES (Agilent Technologies, 710 ICP-OES)) to characterize and quantify the metals contained in bamboo fiber. The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 竹には無機物として主に、シリカ(酸化ケイ素)、カルシウム、カリウム、マグネシウムそしてナトリウムが多く含まれていることが知られている。ここで分析した本発明による竹繊維は、カリウムと亜鉛を含有していることが確認されたが、それら以外は0%に近い、非常に微少量であった。なお、本発明により金属類を24時間塩酸に浸漬させることで除去可能であり、その含有率は得られるセルロースナノファイバーの質量に対して0.06%程度へと減少できることが明らかとなった。 It is known that bamboo is mainly rich in silica (silicon oxide), calcium, potassium, magnesium and sodium as an inorganic substance. The bamboo fiber according to the present invention analyzed here was confirmed to contain potassium and zinc, but other than these, it was a very small amount close to 0%. According to the present invention, it was revealed that metals can be removed by immersing them in hydrochloric acid for 24 hours, and the content can be reduced to about 0.06% with respect to the mass of the obtained cellulose nanofibers.
11.ホットプレスを用いたセルロースナノファイバーシートの作製
 上記2で説明した手順で過酢酸溶液と6時間反応させた竹繊維3.5gを、繊維含有量が0.7wt%となるように超純水500mLに加え、ミキサー(Vitamix(商標) ABS-BU)を用いて、37,000rpmで5分間撹拌し、放冷後、断続的に合計60分間撹拌して、懸濁液を得た。得られた懸濁液をガラス製の濾過器(ADVANTEC社、KG-47)を用いて吸引濾過した後、乾燥させずに、小型熱プレス機(アズワン社、AH-2003)を用い、120Cでプレスしてシートを作製した。また、上述のようにして得られた懸濁液を濾過後、残留物をエタノール100mLに加え、超音波分散させた後、吸引濾過した。これを2回繰り返した後、小型熱プレス機を用い、同様の方法でシートを作製した。
11. Preparation of Cellulose Nanofiber Sheet Using Hot Press 3.5 g of bamboo fiber reacted with a peracetic acid solution for 6 hours according to the procedure described in 2 above, 500 mL of ultrapure water so that the fiber content is 0.7 wt% And stirred for 5 minutes at 37,000 rpm using a mixer (VitamixTM ABS-BU), allowed to cool, and then intermittently stirred for a total of 60 minutes to obtain a suspension. The resulting suspension is suction filtered using a glass filter (ADVANTEC, KG-47) and then dried, using a small heat press (AS ONE, AH-2003) at 120 ° C. It pressed by C and produced the sheet. In addition, after the suspension obtained as described above was filtered, the residue was added to 100 mL of ethanol, ultrasonically dispersed, and suction filtered. After repeating this twice, a sheet was produced in the same manner using a small heat press.
12.凍結乾燥を用いたセルロースナノファイバーシートの作製
 上記11で得られた懸濁液を濾過後、エタノール50mLに加え、超音波分散させた後、吸引濾過した。これを2回繰り返した後、残留物をt-ブチルアルコール50mLに加え、超音波分散させた。これも2回繰り返し、濾過後に残留物をシャーレに移し、冷凍庫(パナソニック社、NR-B175W)で冷凍させ、凍結真空乾燥装置(日立社、ES-2030)を用いて乾燥させ、シートを作製した。乾燥条件を表10に示す。また、形態を比較するため、水の懸濁液のまま冷凍庫で冷凍させ、凍結乾燥させたシートも作製した。
12. Preparation of Cellulose Nanofiber Sheet Using Lyophilization The suspension obtained in 11 above was filtered, added to 50 mL of ethanol, ultrasonically dispersed, and suction filtered. After repeating this twice, the residue was added to 50 mL of t-butyl alcohol and ultrasonically dispersed. This was also repeated twice, and after filtration, the residue was transferred to a petri dish, frozen in a freezer (Panasonic, NR-B175W), and dried using a freeze vacuum dryer (Hitachi, ES-2030) to produce a sheet . The drying conditions are shown in Table 10. Moreover, in order to compare the form, a suspension of water was frozen in a freezer as it was, and a freeze-dried sheet was also produced.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
13.電界放出型走査電子顕微鏡と透過型電子顕微鏡によるシートの形態観察
 得られたセルロースナノファイバーシートの形態を電界放出型走査電子顕微鏡(FE-SEM)で観察した。測定条件を表11に示す。なお、観察前に蒸着装置(日本電子社、JFC-1600)を用いてシートに白金を蒸着した。蒸着条件を表12に示す。
13. Morphology observation of sheet by field emission scanning electron microscope and transmission electron microscope The morphology of the obtained cellulose nanofiber sheet was observed by a field emission scanning electron microscope (FE-SEM). The measurement conditions are shown in Table 11. Before the observation, platinum was deposited on the sheet using a deposition apparatus (JFC-1600, JEOL Ltd.). The deposition conditions are shown in Table 12.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 また、作製したシートを1-ブタノールに超音波分散させ、TEM用グリッド(応研商事社、STEM 150 Cuグリッド)に滴下して100℃の乾燥器内で乾燥させた後、シートの形態を透過型電子顕微鏡(TEM(日本電子社、JEM-2100)で観察した。 The prepared sheet is ultrasonically dispersed in 1-butanol, dropped onto a grid for TEM (Sek 150, STEM 150 Cu grid), dried in a dryer at 100 ° C., and then the sheet form is transmitted. Observation was performed with an electron microscope (TEM (JEOL, JEM-2100).
 分散媒を水としホットプレスで作製したセルロースナノファイバーシートのTEM画像を図13(a)、外観写真及びFE-SEM画像を図13(b)に示し、分散媒をエタノールとしホットプレスで作製したシートのそれらを図14(a)と14(b)に示す。 A TEM image of a cellulose nanofiber sheet prepared by hot pressing using water as a dispersion medium is shown in FIG. 13 (a), an appearance photograph and an FE-SEM image are shown in FIG. 13 (b). Those of the sheets are shown in FIGS. 14 (a) and 14 (b).
 分散媒を水とした場合、繊維が凝集している様子が確認され、これはセルロース分子間の強い水素結合のためと考えられる。分散媒をエタノールに変えると、繊維がわずかに分散している様子が確認され、これはエタノールがセルロース分子間に入り、溶媒和することで離解したためと考えられる。 When the dispersion medium is water, it is confirmed that fibers are aggregated, which is considered to be due to strong hydrogen bonding between cellulose molecules. When the dispersion medium was changed to ethanol, it was confirmed that the fibers were slightly dispersed, which is considered to be because ethanol entered between cellulose molecules and was disintegrated by solvation.
 凍結乾燥により作製したセルロースナノファイバーシートのTEM画像を図15(a)、外観写真及びFE-SEM画像を図15(b)に示す。凍結乾燥を行うことで、ホットプレスにより作製したシート(図13(a)、(b)及び図14(a)、(b))と比べ、繊維は凝集せず、離解している様子が確認された。これは、凍結乾燥により、分散媒であるt-ブチルアルコールを固体の状態から液体を経由せず直接気体へと昇華させることで繊維の凝集が抑えられたためと考えられる。 The TEM image of the cellulose nanofiber sheet produced by lyophilization is shown in FIG. 15 (a), the appearance photograph and the FE-SEM image are shown in FIG. 15 (b). Compared with the sheet (Figs. 13 (a) and (b) and Figs. 14 (a) and 14 (b)) produced by hot pressing by freeze-drying, it is confirmed that the fibers are not aggregated but disintegrated. It was done. This is considered to be because aggregation of the fibers was suppressed by sublimating the dispersion medium t-butyl alcohol directly from the solid state into a gas without passing through the liquid by lyophilization.
14.XRDによるシートの結晶性の評価
 得られたセルロースナノファイバーシートの結晶性を、X線回折装置(XRD(理学電機社、RINT-Ultima III))を用いて評価した。測定条件を表13に示す。
14. Evaluation of the crystallinity of the sheet by XRD The crystallinity of the obtained cellulose nanofiber sheet was evaluated using an X-ray diffractometer (XRD (Rigaku-Denki, RINT-Ultima III)). The measurement conditions are shown in Table 13.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 また、セルロースの結晶化度を、2θ=15のセルロースの10-1回折線の2θ=10°から80°で引いたベースラインからの強度(I)と2θ=10°から20°で引いたベースラインからの強度(I)から式(3)を用いて算出した。
     結晶化度 = (IA/IB)×100            (3)
Further, the crystallinity of the cellulose, in 20 ° from the intensity (I A) and 2 [Theta] = 10 ° from baseline drawn by 80 ° from the 2 [Theta] = 10 ° 10-1 diffraction lines cellulose 2 [Theta] = 15 o The intensity from the subtracted baseline (I B ) was calculated using equation (3).
Crystallinity = (I A / I B ) x 100 (3)
 3つのサンプルから得られたセルロースナノファイバーシート3つのサンプルのXRDパターンを図16~18に示す。いずれのサンプルにおいても、2θ=15°と22.5°にセルロースの10-1と002回折線が確認された。また、これらのピーク強度から算出したセルロースの結晶化度を表14に示す。分散媒に関わらず結晶化度は71~77%であった。 The XRD patterns of three samples of cellulose nanofiber sheet obtained from three samples are shown in FIGS. In both samples, 10-1 and 002 diffraction lines of cellulose were confirmed at 2θ = 15 ° and 22.5 °. In addition, the crystallinity of cellulose calculated from these peak intensities is shown in Table 14. The degree of crystallinity was 71 to 77% regardless of the dispersion medium.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
15.ガス吸脱着測定による表面積の測定
 得られたセルロースナノファイバーシートのBET表面積を窒素ガス吸脱着装置(ユアサアイオニクス社、AUTOSORB-3)を用いて測定した。セル内のシートに77Kで窒素(純度99.9%)を吸着させ、その吸着量及びセル内の圧力を測定することで、吸脱着等温線を得た。得られた吸脱着等温線をBET法で解析することにより、BET表面積を算出した。なお、測定前に試料を200Cで24時間、真空引きすることで、脱気した。測定されたガス吸脱着等温線を図19に示し、そのBET表面積を表15に示す。
15. Measurement of Surface Area by Gas Adsorption / Desorption Measurement The BET surface area of the obtained cellulose nanofiber sheet was measured by using a nitrogen gas adsorption / desorption device (AUTOSARB-3, manufactured by Yuasa Ionics Co., Ltd.). An adsorption / desorption isotherm was obtained by adsorbing nitrogen (purity 99.9%) at 77 K to the sheet in the cell and measuring the adsorption amount and the pressure in the cell. The BET surface area was calculated by analyzing the obtained adsorption and desorption isotherm by the BET method. In addition, the sample was deaerated by applying a vacuum at 200 ° C. for 24 hours before measurement. The measured gas adsorption / desorption isotherm is shown in FIG. 19, and its BET surface area is shown in Table 15.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 分散媒をエタノールとしホットプレスで作製したシートの場合、繊維の離解が進んだため、分散媒を水とした場合よりも表面積が大きくなった。凍結乾燥で作製したシートでは、ホットプレスで作製したシートに比べ、繊維の凝集が防がれたため、更に大きな表面積が得られた。 In the case of a sheet produced by hot pressing using ethanol as the dispersion medium, the surface area became larger than when the dispersion medium was made into water because the disintegration of the fibers proceeded. In the sheet produced by lyophilization, fiber aggregation was prevented as compared to the sheet produced by hot pressing, and thus a larger surface area was obtained.
 また、シートの細孔径分布を、図20(分散媒を水としホットプレスで作製したシート)、図21(分散媒をエタノールとしホットプレスで作製したシート)、及び図21(凍結乾燥で作製したシート)に示す。 In addition, the pore size distribution of the sheet is shown in FIG. 20 (sheet produced by hot press using dispersion medium as water), FIG. 21 (sheet produced by hot press using dispersion medium as ethanol), and FIG. Sheet).
16.引張試験による強度測定
 分散媒を水とし、ホットプレスを用いて作製したセルロースナノファイバーシートの引張強度を測定した。作製したシートを幅1.5cm、長さ2.5cmの短冊状に切り、上下を約5mm程度つかみ、1mm/minの引張速度で卓上型精密万能試験機(SHIMADZU社、AGS-J)を用いて測定を行った。なお、比較として、ダイセルファインケム社製食品用セルロースナノファイバー(セリッシュ(商標))からホットプレスを用いて成型したシートとモンディ社製の市販紙(ISO9707取得紙、低リグニン残留量)について、同様の測定を行った。
16. Measurement of Strength by Tensile Test The dispersion medium was water, and the tensile strength of a cellulose nanofiber sheet produced using a hot press was measured. Cut the prepared sheet into a strip 1.5 cm wide and 2.5 cm long, grasp the top and bottom about 5 mm, and use a bench-type precision universal testing machine (SHIMADZU, AGS-J) at a tension speed of 1 mm / min. Measurements were taken. In addition, as a comparison, a sheet formed by using a hot press from cellulose nanofibers for food (Celish (trademark)) manufactured by Daicel Finechem Co., Ltd. and a commercially available paper manufactured by Mondi (ISO 9707 acquired paper, residual amount of low lignin) are the same. It measured.
 各サンプルの質量に対する最大強度を図23に、厚さに対する最大強度を図24に、密度に対する最大強度を図25に、坪量(1m2当たりの質量)に対する最大強度を図26に示す。いずれのサンプルにおいても質量、厚さ、密度及び坪量を大きくするにつれ、強度も向上することが確認された。 The maximum intensity for the mass of each sample in Figure 23, the maximum intensity on the thickness in FIG. 24, FIG. 25 the maximum intensity for the density shows the maximum intensity for basis weight (mass per 1 m 2) in FIG. 26. It was confirmed that the strength was also improved as the mass, thickness, density and basis weight were increased in any of the samples.
 また、試験した3種のシートでは、本発明による竹由来セルロースナノファイバーシートが最も大きな強度を示した。これは、本発明による竹由来セルロースナノファイバーの方が他のファイバーよりも繊維が細いため、質量あたりの繊維量が多く、繊維間の水素結合する点が増えることで、強度が増加したためと考えられる。例えば、本発明による竹由来セルロースナノファイバーのシートと、同じようにセルロースナノファイバーであるセリッシュ(商標)で作製したシートとから得られた、FE-SEM画像と繊維径分布(それぞれ図27(a)と(b)及び図28(a)と(b))で比べると、前者の方が繊維が細いことが確認できる。 In addition, among the three sheets tested, the bamboo-derived cellulose nanofiber sheet according to the present invention showed the largest strength. This is thought to be because the bamboo-derived cellulose nanofibers according to the present invention are thinner than other fibers, so the amount of fibers per mass is large and the points at which hydrogen bonds between fibers are increased, thereby increasing the strength. Be For example, an FE-SEM image and a fiber diameter distribution obtained from a sheet of bamboo-derived cellulose nanofiber according to the present invention and a sheet made of Celish (trademark), which is similarly a cellulose nanofiber (FIG. 28) (a) and (b)), it can be confirmed that the fiber of the former is thinner.

Claims (19)

  1.  セルロース純度が90%以上で、繊維径が10~20nm、かつ結晶化度が70%以上であることを特徴とする、竹由来のセルロースナノファイバー。 A bamboo-derived cellulose nanofiber characterized in that the cellulose purity is 90% or more, the fiber diameter is 10 to 20 nm, and the crystallinity is 70% or more.
  2.  請求項1記載の竹由来のセルロースナノファイバーが水に分散している懸濁液。 A suspension in which the bamboo-derived cellulose nanofibers according to claim 1 are dispersed in water.
  3.  請求項1記載の竹由来のセルロースナノファイバーが有機溶剤に分散している懸濁液。 A suspension in which the bamboo-derived cellulose nanofibers according to claim 1 are dispersed in an organic solvent.
  4.  下記の工程(1)~(5)を含むことを特徴とする、竹由来のセルロースナノファイバーの製造方法。
     (1)竹材にアルカリ処理と機械的処理を施して竹繊維を作製する工程
     (2)得られた竹繊維を脱リグニン処理する工程
     (3)脱リグニン処理した竹繊維を機械的に解纖する工程
     (4)解纖した竹繊維からヘミセルロースを除去する工程
     (5)ヘミセルロース除去後の竹繊維から金属成分を除去する工程
    A method for producing bamboo-derived cellulose nanofibers, comprising the following steps (1) to (5):
    (1) A step of producing bamboo fiber by subjecting bamboo to alkali treatment and mechanical treatment (2) Step of delignifying the obtained bamboo fiber (3) mechanically unraveling bamboo fiber subjected to delignification treatment Process (4) Process of removing hemicellulose from unfolded bamboo fiber (5) Process of removing metal component from bamboo fiber after hemicellulose removal
  5.  内外皮を除去してチップ化した竹材を使用する、請求項4記載の方法。 The method according to claim 4, wherein the inner and outer shells are removed to make a chipped bamboo material.
  6.  チップ化した竹材の長さが1~10cmである、請求項5記載の方法。 The method according to claim 5, wherein the length of the chimney bamboo is 1 to 10 cm.
  7.  竹材のアルカリ処理を水酸化ナトリウムを用いて行う、請求項4~6のいずれか1つに記載の方法。 The method according to any one of claims 4 to 6, wherein the alkali treatment of bamboo is carried out using sodium hydroxide.
  8.  竹材の機械的処理をミキサーを用いて行う、請求項4~7のいずれか1つに記載の方法。 The method according to any one of claims 4 to 7, wherein the mechanical treatment of bamboo is performed using a mixer.
  9.  竹繊維の脱リグニン処理を、過酢酸、亜塩素酸、亜硫酸ナトリウム、硫酸、オゾン、酵素、微生物(細菌)のうちの少なくとも1つの溶液を用いて行う、請求項4~8のいずれか1つに記載の方法。 9. The bamboo fiber delignification process is carried out using a solution of at least one of peracetic acid, chlorous acid, sodium sulfite, sulfuric acid, ozone, an enzyme and a microorganism (bacteria). The method described in.
  10.  ヘミセルロースの除去を、水酸化カリウムの水溶液を用いて行う、請求項4~9のいずれか1つに記載の方法。 The method according to any one of claims 4 to 9, wherein the hemicellulose removal is carried out using an aqueous solution of potassium hydroxide.
  11.  金属成分の除去を酸溶液を用いて行う、請求項4~10のいずれか1つに記載の方法。 The method according to any one of claims 4 to 10, wherein the removal of the metal component is performed using an acid solution.
  12.  酸溶液として塩酸溶液を使用する、請求項11記載の方法。 The method according to claim 11, wherein a hydrochloric acid solution is used as the acid solution.
  13.  坪量10~210g/m2に対して7~200Nの引張強度を示すことを特徴とする、竹由来のセルロースナノファイバーからなるシート状材料。 A sheet material comprising bamboo-derived cellulose nanofibers, which exhibits a tensile strength of 7 to 200 N at a basis weight of 10 to 210 g / m 2 .
  14.  密度0.3~1.1g/cm3に対して7~200Nの引張強度の引張強度を示すことを特徴とする、竹由来のセルロースナノファイバーからなるシート状材料。 A sheet material comprising bamboo-derived cellulose nanofibers, which exhibits a tensile strength of 7 to 200 N at a density of 0.3 to 1.1 g / cm 3 .
  15.  請求項4~12のいずれか1つに記載の方法により得られた竹由来のセルロースナノファイバーをシート化することを特徴とする、竹由来のセルロースナノファイバーからなるシート状材料の製造方法。 A method for producing a sheet-like material comprising bamboo-derived cellulose nanofibers, characterized in that the bamboo-derived cellulose nanofibers obtained by the method according to any one of claims 4 to 12 are sheeted.
  16.  シート化を、
     (a)竹由来のセルロースナノファイバーを水に分散させた懸濁液を作製すること、
     (b)懸濁液から水を除去して残留物を回収すること、
     (c)回収した残留物にホットプレス処理を施してシート状材料を得ること、
    により行う、請求項15記載の方法。
    Sheeting,
    (A) preparing a suspension of bamboo-derived cellulose nanofibers dispersed in water;
    (B) removing water from the suspension to recover the residue;
    (C) subjecting the recovered residue to hot pressing to obtain a sheet-like material,
    The method according to claim 15, wherein the method is performed by
  17.  シート化を、前記(a)の懸濁液からセルロースナノファイバーを回収し、回収したセルロースナノファイバーをアルコールに分散させた別の懸濁液にホットプレス処理を施すことにより行う、請求項16記載の方法。 The sheet formation is performed by recovering cellulose nanofibers from the suspension of the above (a) and subjecting the recovered cellulose nanofibers to another suspension obtained by dispersing in alcohol a hot press treatment. the method of.
  18.  シート化を、
     (a)セルロースナノファイバーをアルコールに分散させた懸濁液を作製すること、
     (b)懸濁液を基材上に広げてフィルム状にすること、
     (c)フィルム状の懸濁液に凍結乾燥処理を施してシート状材料を得ること、
    により行う、請求項15記載の方法。
    Sheeting,
    (A) preparing a suspension of cellulose nanofibers dispersed in alcohol,
    (B) spreading the suspension on a substrate to form a film;
    (C) subjecting the film-like suspension to a freeze-drying treatment to obtain a sheet-like material,
    The method according to claim 15, which is performed by
  19.  請求項4~12のいずれか1つに記載の方法で製造され、リグニン含有量が1~2wt%であることを特徴とする、竹由来のリグノセルロースナノファイバー。 A bamboo-derived lignocellulose nanofiber produced by the method according to any one of claims 4 to 12, characterized in that the lignin content is 1 to 2 wt%.
PCT/JP2018/009537 2018-01-10 2018-03-12 Cellulose nanofiber, sheet-like material obtained therefrom, and method for producing cellulose nanofiber and sheet-like material WO2019138588A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18900334.6A EP3739118A4 (en) 2018-01-10 2018-03-12 Cellulose nanofiber, sheet-like material obtained therefrom, and method for producing cellulose nanofiber and sheet-like material
JP2019564277A JP7129710B2 (en) 2018-01-10 2018-03-12 CELLULOSE NANOFIBER AND SHEET-LIKE MATERIAL COMPOSITION THEREOF, AND METHOD FOR MANUFACTURING THEM
US16/649,108 US20200224365A1 (en) 2018-01-10 2018-03-12 Cellulose nanofiber, sheet-like material obtained therefrom, and method for producing cellulose nanofiber and sheet-like material
CN201880061018.9A CN111133146A (en) 2018-01-10 2018-03-12 Cellulose nanofiber, sheet material comprising same, and method for producing same
KR1020207007988A KR20200088278A (en) 2018-01-10 2018-03-12 Cellulose nanofibers and sheet-like materials composed of them, and methods for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018002149 2018-01-10
JP2018-002149 2018-01-10

Publications (1)

Publication Number Publication Date
WO2019138588A1 true WO2019138588A1 (en) 2019-07-18

Family

ID=67218533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009537 WO2019138588A1 (en) 2018-01-10 2018-03-12 Cellulose nanofiber, sheet-like material obtained therefrom, and method for producing cellulose nanofiber and sheet-like material

Country Status (6)

Country Link
US (1) US20200224365A1 (en)
EP (1) EP3739118A4 (en)
JP (1) JP7129710B2 (en)
KR (1) KR20200088278A (en)
CN (1) CN111133146A (en)
WO (1) WO2019138588A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162263A1 (en) * 2022-02-28 2023-08-31 株式会社ダイセル Polysaccharide nanosheet and method for producing same
EP4139254A4 (en) * 2020-04-21 2024-03-27 Univ Maryland Evaporative devices having delignified plant materials, and systems and methods for fabrication and use thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11390970B2 (en) * 2019-04-10 2022-07-19 Rinnovation Co., Ltd. Paper yarn, paper cloth and fabric products
CN112982028B (en) * 2021-03-15 2022-06-07 浙江理工大学 Preparation method of biodegradable hydrophobic oilproof paper
CN115142263B (en) * 2021-03-30 2023-07-04 赣南师范大学 Cationic bamboo cellulose nanofiber and preparation method thereof
WO2023235269A1 (en) * 2022-05-31 2023-12-07 University Of Washington Producing nanofibers, microfibers, and lignin from lignocellulosic biomass
KR102535872B1 (en) * 2023-01-18 2023-05-26 하민우 Manufacturing method for functional sheet with improved thermal insulation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910504B2 (en) 1975-06-12 1984-03-09 ロ−ベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング trigger pulse generator
JP2008501074A (en) * 2005-04-27 2008-01-17 ヒオク リー,クオン Pulp manufacturing method using bamboo and pulp manufactured using this method
JP2012012713A (en) 2010-06-29 2012-01-19 Oji Paper Co Ltd Method of producing microfibrous cellulose
JP2014051767A (en) * 2012-09-10 2014-03-20 Daicel Corp Separator for electricity storage device and production method of the same
JP2017115069A (en) 2015-12-25 2017-06-29 学校法人日本大学 Composite material and manufacturing method therefor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4958097B2 (en) * 2006-07-19 2012-06-20 国立大学法人京都大学 Nanofiber sheet, method for producing the same, and fiber-reinforced composite material
JP5500842B2 (en) * 2009-03-13 2014-05-21 国立大学法人京都大学 Method for producing cellulose nanofiber
JP2011144273A (en) * 2010-01-15 2011-07-28 Oji Paper Co Ltd Method for producing microfibrous cellulose
ES2464733T3 (en) * 2010-04-27 2014-06-03 Omya International Ag Process for the production of gel-based composite materials
KR20120012713A (en) 2010-08-03 2012-02-10 주식회사 엠케이산업개발 A garbage can which possessed the ashtray
CN103757986B (en) * 2014-01-02 2015-12-02 上海大学 A kind of method utilizing bamboo fiber to prepare flexible transparent nano paper
JP5948544B2 (en) * 2014-07-22 2016-07-06 旭化成株式会社 Production method of composite sheet material
TWI703138B (en) 2015-02-12 2020-09-01 義大利商吉斯藥品公司 Compounds having muscarinic receptor antagonist and beta2 adrenergic receptor agonist activity
CN104831572A (en) * 2015-02-13 2015-08-12 国际竹藤中心 Method of preparing microfibrillated cellulose from bamboo parenchyma cells
CN106283793B (en) * 2016-09-21 2018-05-11 东莞市联洲知识产权运营管理有限公司 Whisker modified bamboo fiber of a kind of nano-cellulose and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910504B2 (en) 1975-06-12 1984-03-09 ロ−ベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング trigger pulse generator
JP2008501074A (en) * 2005-04-27 2008-01-17 ヒオク リー,クオン Pulp manufacturing method using bamboo and pulp manufactured using this method
JP2012012713A (en) 2010-06-29 2012-01-19 Oji Paper Co Ltd Method of producing microfibrous cellulose
JP2014051767A (en) * 2012-09-10 2014-03-20 Daicel Corp Separator for electricity storage device and production method of the same
JP2017115069A (en) 2015-12-25 2017-06-29 学校法人日本大学 Composite material and manufacturing method therefor

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"The Japan Wood Research Society, Wood Science Experiment Manual", 2010, BUN-EIDO PUBLISHING CO., LTD., pages: 96 - 97
ANONYMOUS: "The price reduction with the tool which new material is easily familiar to use by bamboo", THE ASAHI SHIMBUN, 12 December 2017 (2017-12-12), pages 31, XP009519574 *
HARUKA MIYOSHI: "Preparation and carbonization of bamboo-derived nano-fibrillated cellulose", 22ND ANNUAL MEETING OF THE CELLULOSE SOCIETY OF JAPAN; 09-10/07/2015, 2015, pages 91, XP009519575 *
HE, W.: "Isolation and characterization of cellulose nanofibers from bambusa rigida", BIORSEOURCES, vol. 8, no. 4, 2013, pages 5678 - 5689, XP055626463 *
HYOE HATAKEYAMA, JAPAN TAPPI JOURNAL, vol. 20, no. 11, 1966, pages 15
LU , Q. L.: "A mechanochemical approach to manufacturing bamboo cellulose nanocrystals", JOURNAL OF MATERIALS SCIENCE, vol. 50, no. 2, 2015, pages 611 - 619, XP055626460 *
See also references of EP3739118A4
YU , M. J .: "Preparation and characterization of bamboo nanocrystalline cellulose", BIORESOURECES, vol. 7, no. 2, 2012, pages 1802 - 1812, XP002757897 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4139254A4 (en) * 2020-04-21 2024-03-27 Univ Maryland Evaporative devices having delignified plant materials, and systems and methods for fabrication and use thereof
WO2023162263A1 (en) * 2022-02-28 2023-08-31 株式会社ダイセル Polysaccharide nanosheet and method for producing same

Also Published As

Publication number Publication date
EP3739118A1 (en) 2020-11-18
US20200224365A1 (en) 2020-07-16
JPWO2019138588A1 (en) 2020-11-19
CN111133146A (en) 2020-05-08
KR20200088278A (en) 2020-07-22
JP7129710B2 (en) 2022-09-02
EP3739118A4 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
WO2019138588A1 (en) Cellulose nanofiber, sheet-like material obtained therefrom, and method for producing cellulose nanofiber and sheet-like material
Ching et al. Effect of preparation conditions on cellulose from oil palm empty fruit bunch fiber
CA2860811C (en) Method for concentrating fibril cellulose and fibril cellulose product
Barbash et al. Preparation and Properties of Nanocellulose from Miscanthus x giganteus
JP2006193858A (en) Microporous cellulose sheet and method for producing the same
Rezanezhad et al. Isolation of nanocellulose from rice waste via ultrasonication
Lazić et al. Effect of chemical treatments on the chemical composition and properties of flax fibers
CN104693426A (en) In-situ lactic acid polymerization modified nanocellulose and preparation method thereof
Li et al. Isolation and characterization of microfibrillated cellulose from agro-industrial soybean residue (okara)
Fadele et al. Effect of chemical treatments on properties of raffia palm (Raphia farinifera) fibers
Gabriele et al. A new physical–chemical process for the efficient production of cellulose fibers from Spanish broom (Spartium junceum L.)
Campos et al. Production of cellulose nanowhiskers from oil palm mesocarp fibers by acid hydrolysis and microfluidization
Burhani et al. Isolation of nanocellulose from oil palm empty fruit bunches using strong acid hydrolysis
Li et al. Effect of pretreatment on the structure and properties of nanofibrillated cellulose from soybean residues
Rodríguez et al. Water uptake, chemical characterization, and tensile behavior of modified banana–plantain fiber and their polyester composites
Okahisa et al. Effects of growth stage of bamboo on the production of cellulose nanofibers
Petrik et al. Isolation and characterisation of cellulose nanocrystal obtained from sugarcane peel
Ismail et al. Influence of sulphuric acid concentration on the physico-chemical properties of microfibrillated cellulose from oil palm empty fruit bunch fibre
US20040206464A1 (en) Cellulosic fiber pulp and highly porous paper products produced therefrom
Ma et al. Facile sulfation of cellulose via recyclable ternary deep eutectic solvents for low-cost cellulose nanofibril preparation
Lamaming et al. Extraction of microcrystalline cellulose from oil palm trunk
Hu et al. Preparation and characterization of self-reinforced paper using NaOH/thiourea aqueous solution at room temperature
Sukmawan et al. Microfibrillated cellulose extraction from bagasse using a modified kitchen blender
Das et al. Nanocellulose-based paper from banana peduncle using high-intensity ultrasonication
Islam et al. An investigation between high and low pressure processes for nanocrystalline cellulose production from agro-waste biomass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900334

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019564277

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018900334

Country of ref document: EP

Effective date: 20200810