WO2017057710A1 - Cellulose nanofiber dispersion liquid and method for producing same - Google Patents

Cellulose nanofiber dispersion liquid and method for producing same Download PDF

Info

Publication number
WO2017057710A1
WO2017057710A1 PCT/JP2016/079089 JP2016079089W WO2017057710A1 WO 2017057710 A1 WO2017057710 A1 WO 2017057710A1 JP 2016079089 W JP2016079089 W JP 2016079089W WO 2017057710 A1 WO2017057710 A1 WO 2017057710A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulp
cellulose
cellulose nanofiber
producing
nanofiber dispersion
Prior art date
Application number
PCT/JP2016/079089
Other languages
French (fr)
Japanese (ja)
Inventor
利一 村松
健嗣 藤井
金野 晴男
伸治 佐藤
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58424009&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017057710(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to JP2017543631A priority Critical patent/JP7033920B2/en
Publication of WO2017057710A1 publication Critical patent/WO2017057710A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres

Definitions

  • the present invention relates to a highly transparent cellulose nanofiber dispersion produced with low power consumption and a method for producing the same.
  • Cellulose nanofibers obtained by refining cellulose are fibers having a nano-level fiber diameter of about 1 to 100 nm, and the dispersion has high transparency. Therefore, it is expected to be applied to applications requiring transparency, for example, optical films, film coating agents, compounding into glass, and the like. For this reason, various studies have been made on methods for producing cellulose nanofibers (Patent Document 1).
  • an object of the present invention is to provide a method for efficiently producing highly transparent cellulose nanofibers with low power consumption.
  • a method for producing a cellulose nanofiber dispersion having an average fiber width of 3 to 100 nm comprising the following steps (A) to (B): Step (A): Pre-defibration step of beating the raw material pulp until the B-type viscosity becomes 50 mPa ⁇ s or more when the concentration is 3% (v / w) pulp slurry using water as a dispersion medium.
  • the present invention it is possible to provide a method for efficiently producing highly transparent cellulose nanofibers with low power consumption. Moreover, according to this invention, generation
  • the B-type viscosity is 50 mPa ⁇ s or more in the step (A): a pulp slurry having a concentration of 3% (v / w) using water as a dispersion medium.
  • “X to Y” includes X and Y which are their end values.
  • cellulose fiber is defibrated by different mechanisms by combining preliminary defibration by mechanical beating processing using a conventional mechanical beating device and this defibration, thereby reducing power consumption.
  • highly transparent cellulose nanofibers can be produced.
  • a highly transparent cellulose nanofiber can be obtained by the present invention.
  • the pulp as a raw material is first refined and the outside of the pulp fiber is loosened, so that a slight increase in viscosity occurs.
  • a device with a relatively high shearing force such as an ultra-high pressure homogenizer
  • the viscosity increases due to preliminary defibration and acts on the pulp without losing the shear energy from the defibrator. Since this defibration can be performed, highly transparent cellulose nanofibers can be produced efficiently.
  • the pulp raw materials include bleached or unbleached wood pulp, bleached or unbleached non-wood pulp, refined linters, jute, Manila hemp, pulp derived from herbs such as kenaf, and the above pulp raw materials.
  • pulp raw materials include fine cellulose obtained by depolymerizing cellulose by performing mechanical treatment such as hydrolysis, alkali hydrolysis, enzymatic decomposition, blasting treatment, and vibration ball mill.
  • the N-oxyl compound is a compound capable of generating a nitroxy radical.
  • any compound can be used as long as it promotes the target oxidation reaction.
  • the amount of the N-oxyl compound used is not particularly limited as long as it is a catalyst amount capable of turning cellulose into nanofibers.
  • 0.01 to 10 mmol is preferable, 0.01 to 1 mmol is more preferable, and 0.05 to 0.5 mmol is more preferable with respect to 1 g of the absolutely dry cellulose raw material.
  • Bromide is a compound containing bromine, and examples thereof include alkali metal bromide that can be dissociated and ionized in water.
  • an iodide is a compound containing iodine, and examples thereof include alkali metal iodide.
  • the amount of bromide or iodide used can be selected as long as the oxidation reaction can be promoted.
  • the total amount of bromide and iodide is, for example, preferably from 0.1 to 100 mmol, more preferably from 0.1 to 10 mmol, and even more preferably from 0.5 to 5 mmol, based on 1 g of an absolutely dry cellulose raw material.
  • oxidizing agent known ones can be used, and for example, halogen, hypohalous acid, halous acid, perhalogen acid or salts thereof, halogen oxide, peroxide and the like can be used.
  • sodium hypochlorite which is the most widely used in industrial processes and has a low environmental load, is particularly preferable.
  • the appropriate amount of the oxidizing agent used is, for example, preferably 0.5 to 500 mmol, more preferably 0.5 to 50 mmol, still more preferably 1 to 25 mmol, and most preferably 3 to 10 mmol with respect to 1 g of the absolutely dry cellulose raw material. preferable.
  • the reaction temperature may be a room temperature of about 15 to 30 ° C.
  • a carboxyl group is generated in the cellulose constituting the pulp, so that the pH of the reaction solution is reduced.
  • an alkaline solution such as an aqueous sodium hydroxide solution is added to maintain the pH of the reaction solution at about 9 to 12, preferably about 10 to 11.
  • the reaction medium is preferably water because it is easy to handle and hardly causes side reactions.
  • the reaction time in the oxidation reaction can be appropriately set according to the progress of the oxidation, and is usually 0.5 to 6 hours, preferably 2 to 6 hours, and more preferably about 4 to 6 hours. However, in the present invention, since the oxidation time can be reduced as described above, the reaction time is preferably 30 minutes to 120 minutes, more preferably 30 to 100 minutes, and even more preferably 30 to 70 minutes.
  • the oxidizing agent used for the oxidation reaction may be added at once or may be added sequentially. Sequential addition can efficiently introduce carboxyl groups into the cellulose raw material and promote the oxidation of the cellulose raw material. Although the end of the oxidation reaction can be confirmed by the disappearance of the color of the oxidizing agent, the reaction may be stopped by decomposing the oxidizing agent with sodium thiosulfate or the like. After completion of the oxidation reaction, the liquid removal treatment may be carried out as it is. However, it is desirable to carry out the liquid removal after neutralization with hydrochloric acid or the like because the oxidized cellulose is likely to be decomposed at a high pH.
  • the conditions are preferably set so that the carboxyl group amount of oxidized cellulose is 0.2 mmol / g or more based on the absolute dry mass of cellulose.
  • the carboxyl group amount is more preferably 0.6 mmol / g to 2.0 mmol / g, and still more preferably 1.0 mmol / g to 1.8 mmol / g.
  • the amount of the carboxyl group can be adjusted by adjusting the oxidation reaction time, adjusting the oxidation reaction temperature, adjusting the pH during the oxidation reaction, adjusting the addition amount of the N-oxyl compound, bromide, iodide, or oxidizing agent.
  • the above cellulose raw material is used as a bottoming raw material, and 3 to 20 times by weight of lower alcohol as a solvent, specifically methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butanol, isobutanol, tertiary butanol, etc.
  • lower alcohol specifically methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butanol, isobutanol, tertiary butanol, etc.
  • a single or a mixture medium of two or more kinds and water is used.
  • the mixing ratio of the lower alcohol is 60 to 95% by weight.
  • the mercerizing agent 0.5 to 20 times moles of alkali metal hydroxide, specifically sodium hydroxide or potassium hydroxide is used per glucose residue of the bottoming material.
  • a bottoming raw material, a solvent, and a mercerizing agent are mixed, and a mercerization process is performed at a reaction temperature of 0 to 70 ° C., preferably 10 to 60 ° C., and a reaction time of 15 minutes to 8 hours, preferably 30 minutes to 7 hours.
  • a carboxymethylating agent is added in an amount of 0.05 to 10.0 times mol per glucose residue, a reaction temperature of 30 to 90 ° C., preferably 40 to 80 ° C., and a reaction time of 30 minutes to 10 hours, preferably 1 hour.
  • the etherification reaction is performed for ⁇ 4 hours.
  • the degree of carboxymethyl substitution per glucose unit in the cellulose is 0.01 to 0.50.
  • the carboxymethyl substituent per glucose unit is smaller than 0.01, sufficient nano-fibrosis cannot be performed.
  • the carboxymethyl substituent per glucose unit is larger than 0.50, it may swell or dissolve, and may not be obtained as a nanofiber.
  • the carboxymethyl substitution degree can be measured by the following method.
  • the cationization of the cellulose raw material can be performed using a known method, and is not particularly limited.
  • a cationizing agent such as hydroxypropyltrialkylammonium hydride or its halohydrin type and a catalyst alkali metal hydroxide (sodium hydroxide, potassium hydroxide, etc.) in the presence of water and / or an alcohol having 1 to 4 carbon atoms.
  • a catalyst alkali metal hydroxide sodium hydroxide, potassium hydroxide, etc.
  • the degree of cation substitution per glucose unit of the cation-modified cellulose obtained is controlled by the addition amount of the cationizing agent to be reacted, the composition ratio of water and / or alcohol having 1 to 4 carbon atoms. Can be adjusted.
  • the cation substitution degree per unit of glucose of the cationized cellulose is preferably 0.012 to 0.450.
  • the celluloses repel each other electrically.
  • transduced the cation substituent can be nano-defibrated easily.
  • the cation substitution degree per glucose unit is smaller than 0.012, nano-fibrosis cannot be sufficiently performed.
  • the degree of cation substitution per glucose unit is larger than 0.450, the fiber form cannot be maintained because it swells or dissolves, and may not be obtained as a nanofiber.
  • esterification examples include thioesterification, phosphate esterification, sulfate esterification, nitrate esterification, and carbonate esterification.
  • the mechanical beating treatment is a general process such as refiner, beater, PFI mill, kneader, disperser, or the like that causes a metal or blade and pulp fibers to act around the rotation axis, or that is caused by friction between pulp fibers.
  • Devices known in the art can be used.
  • a known device can be used as the refiner.
  • a single disc refiner, a conical disc refiner, a double disc refiner, a twin disc refiner, or the like can be used.
  • the beater is a device in which the raw material is drawn between the rotor and the stator by the rotation of the rotor and is struck by both blades to circulate in the circulation tank, and a known device can be used.
  • the PFI mill can use an apparatus defined in JIS P 8221.
  • a kneader or a disperser is a mechanical stirring device designed to give a compressive force to pulp or to receive moderate friction between fibers, and has a uniaxial or biaxial structure, and a rotor blade There is moderate biting between the stator blades, and sufficient shearing force is applied to the fibers even at low speed rotation, so that a known apparatus can be used.
  • Preliminary fiber removal Process (A) In the present invention, it is important to perform preliminary defibration and beating the above-described raw material pulp.
  • the B-type viscosity is 50 mPa ⁇ s or more, preferably 1000 mPa ⁇ s or more, more preferably 2000 mPa ⁇ s. Do as above. Since the raw pulp is beaten to the extent that it exhibits the B-type viscosity by the preliminary defibrating, the load in the next defibrating step can be greatly reduced.
  • the upper limit of the B-type viscosity is not limited, but is preferably 100,000 mPa ⁇ s or less from the viewpoint of workability and the like.
  • the apparatus used for the beating process used in the preliminary defibration is not particularly limited, but when at least one beating apparatus selected from a refiner, a beater, or a disaggregator is used, the outer layer of the pulp fiber is loosened or the fibrils inside This is preferable because nanofibers can be easily obtained in this defibrating step and the load is reduced.
  • the pulp concentration in the preliminary defibrating step (A) is 0.5% (w / v) to 10% (w / v), more preferably 1% (w / v) to 5% (w / v). . If the concentration is lower than 0.5% (w / v), the concentration of the dispersion is too low and not efficient, and if it exceeds 10% (w / v), the viscosity becomes too high and the efficiency is not high.
  • the plate clearance is 0.01 mm to 3 mm, more preferably 0.1 mm to 1 mm. If it is 0.01 mm or less, the plate will be abruptly worn, and if it is 3 mm or more, the clearance will be too wide to proceed the process.
  • a general plate can be used without any problem, but a plate suitable for viscous beating is preferred.
  • the raw material pulp is subjected to a beating process so that the B-type viscosity is 50 mPa ⁇ s or more when the pulp slurry has a concentration of 3% (v / w) using water as a dispersion medium.
  • the viscosity of the pulp slurry increases, and the viscosity is a measure of the beating state of the pulp.
  • the B type viscosity is measured at a rotation speed of 60 rpm and a temperature of 25 ° C. by selecting a rotor suitable for the viscosity.
  • the viscosity is measured after dilution with water to adjust the concentration to 3% (w / v).
  • concentration of the pulp slurry obtained in the step (A) is less than 3% (w / v)
  • the viscosity is measured after removing with water and adjusting the concentration to 3% (w / v).
  • the pulp subjected to the beating treatment may be once isolated and then redispersed in water to prepare a slurry having a concentration of 3% (w / v), and the viscosity may be measured.
  • redispersed in water it is necessary to prevent the actual defibration performed in the step (B) from occurring.
  • this defibration refers to applying a strong shearing force to the pulp obtained by preliminary defibration using a high-speed rotation type, a colloid mill type, a high pressure type, a roll mill type, an ultrasonic type, or the like.
  • This means that the fiber is defibrated to an average fiber width of 3 to 100 nm.
  • a wet high-pressure or ultrahigh-pressure homogenizer that can apply a pressure of 50 MPa or more to the dispersion and can apply a strong shearing force.
  • the pressure is more preferably 100 MPa or more, and further preferably 140 MPa or more.
  • the oxidized pulp is defibrated to form cellulose nanofibers, and the cellulose nanofibers are dispersed in the medium.
  • the medium water is preferably used from the viewpoint of easy handling.
  • the cellulose nanofiber of the present invention preferably has an average fiber length of about 0.1 to 5 ⁇ m, and more preferably about 0.5 to 5 ⁇ m.
  • the fiber length can be adjusted in the step (B), or the fiber length may be adjusted by providing another step.
  • the average fiber length and average fiber width of the cellulose nanofiber can be measured by observing the cellulose nanofiber using an atomic force microscope (AFM).
  • Example 1 Pulp raw material adjustment: oxidized pulp
  • Bleached unbeaten pulp (Nippon Paper Co., Ltd.) 5 g (absolutely dried) derived from coniferous trees, TEMPO (Tokyo Kasei Co., Ltd.) 78 mg (0.5 mmol) and sodium bromide (Wako Pure Chemical Industries, Ltd.) 756 mg (7.35 mmol) )
  • TEMPO Tokyo Kasei Co., Ltd.
  • sodium bromide Wi-Fi Pure Chemical Industries, Ltd.
  • sodium hypochlorite manufactured by Wako Pure Chemical Industries, Ltd.
  • a liquid feed pump was added so that sodium hypochlorite was added at a rate of 0.23 mmol / min per gram of pulp.
  • the addition was continued until the total amount of sodium hypochlorite added was 22.5 mmol.
  • the pH in the system was lowered, but a 3N sodium hydroxide aqueous solution was successively added to adjust the pH to 10.
  • reaction time was taken as the reaction time.
  • the reaction solution was neutralized with hydrochloric acid until neutral, and then the reaction solution was filtered through a glass filter and sufficiently washed with water to obtain an oxidized pulp.
  • the carboxyl group content of the obtained oxidized pulp was 1.60 mmol / g.
  • Example 2 Cellulose nanofibers were produced in the same manner as in Example 1 except that the preliminary defibration was changed to a refiner (manufactured by Kumagai Riki Kogyo Co., Ltd.) and two-pass treatment was performed.
  • the power consumption per 1 kg of pulp in this beating treatment was 0.5 Kwh
  • the B-type viscosity of the obtained pulp slurry (concentration 3% (w / v)) was 2900 mPa ⁇ s.
  • the freeness was 3 mL.
  • the transparency after this defibration was 58%
  • the average fiber length was 1.9 ⁇ m
  • the average fiber width was 5 nm.
  • the clogging of the dispersion nozzle did not occur.
  • Example 3 Cellulose nanofibers were produced in the same manner as in Example 1, except that the preliminary defibration was changed to a refiner 1-pass treatment.
  • the power consumption per 1 kg of pulp in this beating treatment was 0.3 Kwh, and the B-type viscosity of the obtained pulp slurry (concentration 3% (w / v)) was 1500 mPa ⁇ s.
  • the freeness was 25 mL.
  • the transparency of this defibration was 55%, the average fiber length was 2 ⁇ m, and the average fiber width was 10 nm. The clogging of the dispersion nozzle did not occur.
  • Table 1 shows the measurement results of power consumption and transparency of the nanofibers obtained in Examples 1 to 3 and Comparative Example 1.
  • Comparative Example 1 it can be seen that the nozzle of the defibrating machine is clogged during the defibrating, so that the operability is inferior.

Abstract

Provided is a method for efficiently producing a highly transparent cellulose nanofiber with a small power consumption level. The present invention pertains to a method for producing a cellulose nanofiber dispersion liquid having an average fiber width of 3-100 nm, the method comprising: a preliminary fibrillation step (A) for beating a raw material pulp until the type-B viscosity of a pulp slurry containing the raw material pulp at a concentration of 3% (v/w) in water, serving as a dispersion medium, becomes 50 mPa·s or higher; and a true fibrillation step (B) for fibrillating the pulp obtained at the preliminary fibrillation step (A) until the fiber width becomes 3-100 nm.

Description

セルロースナノファイバー分散液及びその製造方法Cellulose nanofiber dispersion and method for producing the same
 本発明は、少ない電力消費量で製造される、透明度の高いセルロースナノファイバー分散液及びその製造方法に関する。 The present invention relates to a highly transparent cellulose nanofiber dispersion produced with low power consumption and a method for producing the same.
 セルロースを微細化して得られたセルロースナノファイバーは、1~100nm程度のナノレベルの繊維径を有する繊維であり、その分散液は高い透明性を有している。このため透明性を求められる用途、例えば光学フィルム、フィルム用のコーティング剤、ガラスへの複合化、等への応用が期待される。そのため、セルロースナノファイバーの製造方法に関して種々の検討が行われている(特許文献1)。 Cellulose nanofibers obtained by refining cellulose are fibers having a nano-level fiber diameter of about 1 to 100 nm, and the dispersion has high transparency. Therefore, it is expected to be applied to applications requiring transparency, for example, optical films, film coating agents, compounding into glass, and the like. For this reason, various studies have been made on methods for producing cellulose nanofibers (Patent Document 1).
特開2008-001728号公報JP 2008-001728 A
 しかしながら、従来のセルロースナノファイバーの製造方法では、一般的に超高圧ホモジナイザーのようなせん断力の強い分散機により複数回、微細化の処理を行うため、製造に莫大な電力を使用する。また、超高圧ホモジナイザーは、非常に細い間隙に、サンプルを押し込み高圧とするため、パルプのような大きな繊維を処理する場合、詰まりなどを発生させ、非常に生産性、作業性が劣ることなどが問題であった。 However, in the conventional method for producing cellulose nanofibers, a large amount of electric power is used for production because the finer treatment is generally performed several times by a dispersing machine having a strong shearing force such as an ultra-high pressure homogenizer. In addition, the ultra-high pressure homogenizer pushes the sample into a very narrow gap to make it high pressure, so when processing large fibers such as pulp, clogging may occur, resulting in extremely poor productivity and workability. It was a problem.
 そこで、本発明は、少ない電力消費量で、透明度の高いセルロースナノファイバーを効率よく製造する方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for efficiently producing highly transparent cellulose nanofibers with low power consumption.
 前記課題を解決するための手段としては、以下の通りである。
[1] 下記の工程(A)~(B)の工程を備える、平均繊維幅3~100nmであるセルロースナノファイバー分散液の製造方法。
 工程(A):水を分散媒とする濃度が3%(v/w)のパルプスラリーとした場合にB型粘度が50mPa・s以上となるまで原料パルプを叩解処理する予備解繊工程
 工程(B):前記予備解繊工程(A)で得られたパルプを繊維幅3~100nmになるまで解繊する本解繊工程
[2] 前記予備解繊工程(A)で得られたパルプのろ水度が1~30ml、平均繊維径が30~1000nmである、前記[1]に記載のセルロースナノファイバー分散液の製造方法。
[3] 前記の機械的叩解処理がリファイナー、ビーター、又は離解機から選ばれる少なくとも1つの解繊装置を用いる、前記[1]又は[2]に記載のセルロースナノファイバー分散液の製造方法。
[4] 前記の叩解処理がリファイナー、ビーター、又は離解機から選ばれる少なくとも1つの叩解装置を用いるこ、前記[1]乃至[3]のいずれか一つに記載のセルロースナノファイバー分散液の製造方法。
[5] 前記原料パルプが、化学変性パルプである、前記[1]乃至[4]のいずれか一つに記載のセルロースナノファイバー分散液の製造方法。
[6] 前記[1]乃至[5]のいずれか一つに記載の製造方法により得られるセルロースナノファイバー分散液。
Means for solving the problems are as follows.
[1] A method for producing a cellulose nanofiber dispersion having an average fiber width of 3 to 100 nm, comprising the following steps (A) to (B):
Step (A): Pre-defibration step of beating the raw material pulp until the B-type viscosity becomes 50 mPa · s or more when the concentration is 3% (v / w) pulp slurry using water as a dispersion medium. B): Main defibrating step of defibrating the pulp obtained in the preliminary defibrating step (A) until the fiber width becomes 3 to 100 nm [2] The pulp filter obtained in the preliminary defibrating step (A) The method for producing a cellulose nanofiber dispersion according to [1], wherein the water degree is 1 to 30 ml and the average fiber diameter is 30 to 1000 nm.
[3] The method for producing a cellulose nanofiber dispersion according to [1] or [2], wherein the mechanical beating process uses at least one defibrating apparatus selected from a refiner, a beater, or a disaggregator.
[4] The production of the cellulose nanofiber dispersion according to any one of [1] to [3], wherein the beating treatment uses at least one beating apparatus selected from a refiner, a beater, or a disaggregator. Method.
[5] The method for producing a cellulose nanofiber dispersion according to any one of [1] to [4], wherein the raw pulp is a chemically modified pulp.
[6] A cellulose nanofiber dispersion obtained by the production method according to any one of [1] to [5].
 本発明によれば、少ない電力消費量で、透明度の高いセルロースナノファイバーを効率よく製造する方法を提供することができる。また、本発明によれば、ナノファイバー化する本解繊工程において、生産性を悪化させる解繊機での詰りの発生を抑制することができる。 According to the present invention, it is possible to provide a method for efficiently producing highly transparent cellulose nanofibers with low power consumption. Moreover, according to this invention, generation | occurrence | production of the clogging in the defibrating machine which deteriorates productivity can be suppressed in this defibrating process to turn into nanofiber.
 本発明のセルロースナノファイバー分散液の製造方法は、工程(A):水を分散媒とする濃度が3%(v/w)のパルプスラリーとした場合にB型粘度が50mPa・s以上になるまで原料パルプを叩解処理する予備解繊工程、及び、工程(B):前記予備解繊工程(A)で得られたパルプを平均繊維幅3~100nmになるまで解繊する本解繊工程、を有することを特徴とする。本発明において「X~Y」はその端値であるXおよびYを含む。 In the method for producing a cellulose nanofiber dispersion of the present invention, the B-type viscosity is 50 mPa · s or more in the step (A): a pulp slurry having a concentration of 3% (v / w) using water as a dispersion medium. A preliminary defibrating step in which the raw pulp is beaten, and step (B): a main defibrating step in which the pulp obtained in the preliminary defibrating step (A) is defibrated to an average fiber width of 3 to 100 nm, It is characterized by having. In the present invention, “X to Y” includes X and Y which are their end values.
 本発明は、従来の機械的叩解装置を用いた機械的叩解処理による予備解繊と、本解繊とを組み合わせることにより、各々異なる機構によってセルロース繊維の解繊が行われるため、消費電力を抑えながら、透明度の高いセルロースナノファイバーを製造することができる。 In the present invention, cellulose fiber is defibrated by different mechanisms by combining preliminary defibration by mechanical beating processing using a conventional mechanical beating device and this defibration, thereby reducing power consumption. However, highly transparent cellulose nanofibers can be produced.
 本発明により透明度の高いセルロースナノファイバーが得られる理由は以下のように推察される。予備解繊では、この予備解繊の工程で、原料となるパルプは最初に微細化され、パルプ繊維の外側がほぐされるため、若干の粘度の上昇が起こる。その後の本解繊を行う際に、超高圧ホモジナイザー等の比較的せん断力の強い装置を使用する場合、予備解繊による粘度上昇によって、本解繊機によるせん断エネルギーをロスすることなくパルプに作用し本解繊を行うことができため、効率的に高透明度のセルロースナノファイバーを製造することができる。 The reason why a highly transparent cellulose nanofiber can be obtained by the present invention is presumed as follows. In the preliminary defibration, in the preliminary defibration process, the pulp as a raw material is first refined and the outside of the pulp fiber is loosened, so that a slight increase in viscosity occurs. When using a device with a relatively high shearing force, such as an ultra-high pressure homogenizer, during the subsequent final defibration, the viscosity increases due to preliminary defibration and acts on the pulp without losing the shear energy from the defibrator. Since this defibration can be performed, highly transparent cellulose nanofibers can be produced efficiently.
(1)パルプ原料
 本発明において、パルプ原料とは、晒又は未晒木材パルプ、晒又は未晒非木材パルプ、精製リンター、ジュート、マニラ麻、ケナフ等の草本由来のパルプなど、及び上記パルプ原料に加水分解、アルカリ加水分解、酵素分解、爆砕処理、振動ボールミル等の機械的処理等をすることによってセルロースを解重合した微細セルロースなどが例示される。
(1) Pulp raw materials In the present invention, the pulp raw materials include bleached or unbleached wood pulp, bleached or unbleached non-wood pulp, refined linters, jute, Manila hemp, pulp derived from herbs such as kenaf, and the above pulp raw materials. Examples thereof include fine cellulose obtained by depolymerizing cellulose by performing mechanical treatment such as hydrolysis, alkali hydrolysis, enzymatic decomposition, blasting treatment, and vibration ball mill.
(2)化学変性処理
 上記のセルロース原料に化学処理を施すことで、平均繊維幅3~100nmになるまで解繊する本解繊工程(B)における負荷が小さくなる好ましい。また、化学変性処理の方法は問わないが、酸化、エーテル化、カチオン化、エステル化などがあげられる。
(2) Chemical modification treatment By subjecting the above cellulose raw material to chemical treatment, it is preferable that the load in the present defibrating step (B) for defibrating until the average fiber width becomes 3 to 100 nm is reduced. Further, the chemical modification treatment method is not limited, but examples thereof include oxidation, etherification, cationization, and esterification.
(2-1)酸化
 上記のセルロース原料を、N-オキシル化合物、及び、臭化物、ヨウ化物若しくはこれらの混合物からなる群から選択される化合物の存在下で酸化剤を用いて水中で酸化することでカルボキシル基をセルロースに導入した酸化セルロースを得ることができる。他の方法としてオゾン酸化も挙げられる。
(2-1) Oxidation By oxidizing the above cellulose raw material in water using an oxidant in the presence of an N-oxyl compound and a compound selected from the group consisting of bromide, iodide or a mixture thereof. Oxidized cellulose having a carboxyl group introduced into cellulose can be obtained. Another method includes ozone oxidation.
 N-オキシル化合物とは、ニトロキシラジカルを発生しうる化合物である。本発明で用いるN-オキシル化合物としては、目的の酸化反応を促進する化合物であれば、いずれの化合物も使用できる。 The N-oxyl compound is a compound capable of generating a nitroxy radical. As the N-oxyl compound used in the present invention, any compound can be used as long as it promotes the target oxidation reaction.
 N-オキシル化合物の使用量は、セルロースをナノファイバー化できる触媒量であれば特に制限されない。例えば、絶乾1gのセルロース原料に対して、0.01~10mmolが好ましく、0.01~1mmolがより好ましく、0.05~0.5mmolがさらに好ましい。 The amount of the N-oxyl compound used is not particularly limited as long as it is a catalyst amount capable of turning cellulose into nanofibers. For example, 0.01 to 10 mmol is preferable, 0.01 to 1 mmol is more preferable, and 0.05 to 0.5 mmol is more preferable with respect to 1 g of the absolutely dry cellulose raw material.
 臭化物とは臭素を含む化合物であり、その例には、水中で解離してイオン化可能な臭化アルカリ金属が含まれる。また、ヨウ化物とはヨウ素を含む化合物であり、その例には、ヨウ化アルカリ金属が含まれる。臭化物またはヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。臭化物およびヨウ化物の合計量は、例えば、絶乾1gのセルロース原料に対して、0.1~100mmolが好ましく、0.1~10mmolがより好ましく、0.5~5mmolがさらに好ましい。 Bromide is a compound containing bromine, and examples thereof include alkali metal bromide that can be dissociated and ionized in water. Further, an iodide is a compound containing iodine, and examples thereof include alkali metal iodide. The amount of bromide or iodide used can be selected as long as the oxidation reaction can be promoted. The total amount of bromide and iodide is, for example, preferably from 0.1 to 100 mmol, more preferably from 0.1 to 10 mmol, and even more preferably from 0.5 to 5 mmol, based on 1 g of an absolutely dry cellulose raw material.
 酸化剤としては、公知のものを使用でき、例えば、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸またはそれらの塩、ハロゲン酸化物、過酸化物などを使用できる。中でも、コストの観点から、現在工業プロセスにおいて最も汎用されている安価で環境負荷の少ない次亜塩素酸ナトリウムが特に好ましい。酸化剤の適切な使用量は、例えば、絶乾1gのセルロース原料に対して、0.5~500mmolが好ましく、0.5~50mmolがより好ましく、1~25mmolがさらに好ましく、3~10mmolが最も好ましい。 As the oxidizing agent, known ones can be used, and for example, halogen, hypohalous acid, halous acid, perhalogen acid or salts thereof, halogen oxide, peroxide and the like can be used. Among these, from the viewpoint of cost, sodium hypochlorite, which is the most widely used in industrial processes and has a low environmental load, is particularly preferable. The appropriate amount of the oxidizing agent used is, for example, preferably 0.5 to 500 mmol, more preferably 0.5 to 50 mmol, still more preferably 1 to 25 mmol, and most preferably 3 to 10 mmol with respect to 1 g of the absolutely dry cellulose raw material. preferable.
 セルロースの酸化工程は、比較的温和な条件であっても反応を効率よく進行させられる。よって、反応温度は15~30℃程度の室温であってもよい。反応の進行に伴ってパルプを構成するセルロース中にカルボキシル基が生成するため、反応液のpHの低下が認められる。酸化反応を効率よく進行させるためには、水酸化ナトリウム水溶液などのアルカリ性溶液を添加して、反応液のpHを9~12、好ましくは10~11程度に維持することが好ましい。反応媒体は、取扱い性の容易さや、副反応が生じにくいこと等から、水が好ましい。 The cellulose oxidation process allows the reaction to proceed efficiently even under relatively mild conditions. Therefore, the reaction temperature may be a room temperature of about 15 to 30 ° C. As the reaction proceeds, a carboxyl group is generated in the cellulose constituting the pulp, so that the pH of the reaction solution is reduced. In order to make the oxidation reaction proceed efficiently, an alkaline solution such as an aqueous sodium hydroxide solution is added to maintain the pH of the reaction solution at about 9 to 12, preferably about 10 to 11. The reaction medium is preferably water because it is easy to handle and hardly causes side reactions.
 酸化反応における反応時間は、酸化の進行の程度に従って適宜設定することができ、通常は0.5~6時間、好ましくは2~6時間、さらに好ましくは4~6時間程度である。しかしながら本発明においては、前述のとおり酸化時間を低減できるので、反応時間は30分以上120分が好ましく、30~100分がより好ましく、30~70分がさらに好ましい。 The reaction time in the oxidation reaction can be appropriately set according to the progress of the oxidation, and is usually 0.5 to 6 hours, preferably 2 to 6 hours, and more preferably about 4 to 6 hours. However, in the present invention, since the oxidation time can be reduced as described above, the reaction time is preferably 30 minutes to 120 minutes, more preferably 30 to 100 minutes, and even more preferably 30 to 70 minutes.
 また、酸化反応に用いる酸化剤は、一度に添加しても良いし、逐次添加を行っても良い。逐次添加の方がセルロース原料に効率よくカルボキシル基を導入でき、セルロース原料の酸化を促進することができる。酸化反応の終了は酸化剤の色味が無くなることで確認することが出来るが、チオ硫酸ナトリウム等で酸化剤を分解し、反応を止めても良い。酸化反応の終了後、そのまま脱液処理を行っても良いが、pHが高い状態では酸化セルロースの分解が起こりやすいため、塩酸などで中性にしてから脱液を行うことが望ましい。 Moreover, the oxidizing agent used for the oxidation reaction may be added at once or may be added sequentially. Sequential addition can efficiently introduce carboxyl groups into the cellulose raw material and promote the oxidation of the cellulose raw material. Although the end of the oxidation reaction can be confirmed by the disappearance of the color of the oxidizing agent, the reaction may be stopped by decomposing the oxidizing agent with sodium thiosulfate or the like. After completion of the oxidation reaction, the liquid removal treatment may be carried out as it is. However, it is desirable to carry out the liquid removal after neutralization with hydrochloric acid or the like because the oxidized cellulose is likely to be decomposed at a high pH.
 酸化セルロースのカルボキシル基量が、セルロースの絶乾質量に対して、0.2mmol/g以上となるように条件を設定することが好ましい。この場合のカルボキシル基量は、より好ましくは0.6mmol/g~2.0mmol/g、さらに好ましくは1.0mmol/g~1.8mmol/gである。カルボキシル基量は、酸化反応時間の調整、酸化反応温度の調整、酸化反応時のpHの調整、N-オキシル化合物や臭化物、ヨウ化物、酸化剤の添加量の調整などを行なうことにより調製できる。 The conditions are preferably set so that the carboxyl group amount of oxidized cellulose is 0.2 mmol / g or more based on the absolute dry mass of cellulose. In this case, the carboxyl group amount is more preferably 0.6 mmol / g to 2.0 mmol / g, and still more preferably 1.0 mmol / g to 1.8 mmol / g. The amount of the carboxyl group can be adjusted by adjusting the oxidation reaction time, adjusting the oxidation reaction temperature, adjusting the pH during the oxidation reaction, adjusting the addition amount of the N-oxyl compound, bromide, iodide, or oxidizing agent.
 なお、酸化セルロース中のカルボキシル基量は、以下の手順で測定することができる:
 酸化セルロースの0.5質量%スラリーを60ml調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定し、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出する:
カルボキシル基量〔mmol/g酸化セルロース〕= a〔ml〕× 0.05/酸化セルロース質量〔g〕。
The amount of carboxyl groups in the oxidized cellulose can be measured by the following procedure:
Prepare 60 ml of 0.5% by mass slurry of oxidized cellulose, add 0.1 M hydrochloric acid aqueous solution to pH 2.5, then add 0.05 N aqueous sodium hydroxide solution dropwise until the pH reaches 11. Is calculated from the amount of sodium hydroxide (a) consumed in the neutralization step of the weak acid with a gradual change in electrical conductivity, using the following formula:
Carboxyl group amount [mmol / g oxidized cellulose] = a [ml] × 0.05 / oxidized cellulose mass [g].
(2-2)エーテル化
 セルロースのエーテル化物としては、カルボキシメチルセルロース、メチルセルロース、エチルセルロース、シアノエチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、エチルヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロースや、これらの塩が挙げられるが、その一例として次のようなカルボキシメチル化の製造方法を述べる。
(2-2) Etherification Examples of the etherified product of cellulose include carboxymethylcellulose, methylcellulose, ethylcellulose, cyanoethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, ethylhydroxyethylcellulose, hydroxypropylmethylcellulose, and salts thereof. As follows, a method for producing carboxymethylation will be described.
<カルボキシメチル化>
 上記のセルロース原料を発底原料にし、溶媒として3~20重量倍の低級アルコール、具体的にはメタノール、エタノール、N-プロピルアルコール、イソプロピルアルコール、N-ブタノール、イソブタノール、第3級ブタノール等の単独、又は2種以上の混合物と水の混合媒体を使用する。なお、低級アルコールの混合割合は、60~95重量%である。マーセル化剤としては、発底原料のグルコース残基当たり0.5~20倍モルの水酸化アルカリ金属、具体的には水酸化ナトリウム、水酸化カリウムを使用する。発底原料と溶媒、マーセル化剤を混合し、反応温度0~70℃、好ましくは10~60℃、かつ反応時間15分~8時間、好ましくは30分~7時間、マーセル化処理を行う。その後、カルボキシメチル化剤をグルコース残基当たり0.05~10.0倍モル添加し、反応温度30~90℃、好ましくは40~80℃、かつ反応時間30分~10時間、好ましくは1時間~4時間、エーテル化反応を行う。
<Carboxymethylation>
The above cellulose raw material is used as a bottoming raw material, and 3 to 20 times by weight of lower alcohol as a solvent, specifically methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butanol, isobutanol, tertiary butanol, etc. A single or a mixture medium of two or more kinds and water is used. The mixing ratio of the lower alcohol is 60 to 95% by weight. As the mercerizing agent, 0.5 to 20 times moles of alkali metal hydroxide, specifically sodium hydroxide or potassium hydroxide is used per glucose residue of the bottoming material. A bottoming raw material, a solvent, and a mercerizing agent are mixed, and a mercerization process is performed at a reaction temperature of 0 to 70 ° C., preferably 10 to 60 ° C., and a reaction time of 15 minutes to 8 hours, preferably 30 minutes to 7 hours. Thereafter, a carboxymethylating agent is added in an amount of 0.05 to 10.0 times mol per glucose residue, a reaction temperature of 30 to 90 ° C., preferably 40 to 80 ° C., and a reaction time of 30 minutes to 10 hours, preferably 1 hour. The etherification reaction is performed for ˜4 hours.
 本発明において、セルロース原料をカルボキシメチル化する場合、セルロースのグルコース単位当たりのカルボキシメチル置換度が0.01~0.50であることが好ましい。セルロースにカルボキシメチル置換基を導入することで、セルロース同士が電気的に反発する。このため、カルボキシメチル置換基を導入したセルロースは容易にナノ解繊することができる。なお、グルコース単位当たりのカルボキシメチル置換基が0.01より小さいと、十分にナノ解繊することができない。一方、グルコース単位当たりのカルボキシメチル置換基が0.50より大きいと、膨潤あるいは溶解するため、ナノファイバーとして得られなくなる場合がある。 In the present invention, when the cellulose raw material is carboxymethylated, it is preferable that the degree of carboxymethyl substitution per glucose unit in the cellulose is 0.01 to 0.50. By introducing a carboxymethyl substituent into cellulose, the celluloses are electrically repelled. For this reason, the cellulose which introduce | transduced the carboxymethyl substituent can be nano-defibrated easily. In addition, when the carboxymethyl substituent per glucose unit is smaller than 0.01, sufficient nano-fibrosis cannot be performed. On the other hand, if the carboxymethyl substituent per glucose unit is larger than 0.50, it may swell or dissolve, and may not be obtained as a nanofiber.
 なお、カルボキシメチル置換度は、以下の方法により測定できる。 The carboxymethyl substitution degree can be measured by the following method.
 試料約2.0gを精秤して、300ml共栓三角フラスコに入れる。硝酸メタノール(無水メタノール1Lに特級濃硝酸100mlを加えた液)100mlを加え、3時間振盪して、カルボキシメチルセルロースナトリウム(Na-CMC)をカルボキシメチルセルロース(H-CMC)にする。その絶乾H-CMC1.5~2.0gを精秤し、300ml共栓三角フラスコに入れる。80%メタノール15mlでH-CMCを湿潤し、0.1NのNaOH100mlを加えて室温で3時間振盪する。指示薬としてフェノールフタレインを用いて、0.1NのHSOで過剰のNaOHを逆滴定する。次式:
[{100× F’-(0.1NのHSO(ml))×F}/(H-CMCの絶乾質量(g))]×0.1=Aカルボキシルメチル置換度=0.162A/(1-0.058A)
A:1gのH-CMCを中和するのに必要な1NのNaOHの量(ml)
F’:0.1NのHSOのファクター
F:0.1NのNaOHのファクター
About 2.0 g of sample is precisely weighed and placed in a 300 ml stoppered Erlenmeyer flask. Add 100 ml of methanol nitric acid (1 ml of anhydrous methanol plus 100 ml of concentrated concentrated nitric acid) and shake for 3 hours to convert sodium carboxymethylcellulose (Na-CMC) to carboxymethylcellulose (H-CMC). Weigh out 1.5-2.0 g of the absolutely dry H-CMC and place in a 300 ml stoppered Erlenmeyer flask. Wet H-CMC with 15 ml of 80% methanol, add 100 ml of 0.1N NaOH, and shake at room temperature for 3 hours. Excess NaOH is back titrated with 0.1 N H 2 SO 4 using phenolphthalein as an indicator. The following formula:
[{100 × F ′-(0.1N H 2 SO 4 (ml)) × F} / (absolute dry mass of H-CMC (g))] × 0.1 = A carboxyl methyl substitution degree = 0. 162A / (1-0.058A)
A: Amount of 1N NaOH required to neutralize 1 g H-CMC (ml)
F ′: Factor of 0.1N H 2 SO 4 F: Factor of 0.1N NaOH
(2-3)カチオン化
 本発明において、セルロース原料のカチオン化は公知の方法を用いて行うことができ、特に限定されないが、その一例として、セルロース原料にグリシジルトリメチルアンモニウムクロリド、3-クロロ-2ヒドロキシプロピルトリアルキルアンモニウムハイドライト又はそのハロヒドリン型などのカチオン化剤と触媒である水酸化アルカリ金属(水酸化ナトリウム、水酸化カリウムなど)を水及び/又は炭素数1~4のアルコールの存在下で反応させることによって、カチオン変性されたセルロースを得ることができる。なお、この方法において、得られるカチオン変性されたセルロースのグルコース単位当たりのカチオン置換度は、反応させるカチオン化剤の添加量、水及び/又は炭素数1~4のアルコールの組成比率をコントロールすることによって、調整することができる。
(2-3) Cationization In the present invention, the cationization of the cellulose raw material can be performed using a known method, and is not particularly limited. As an example, glycidyltrimethylammonium chloride, 3-chloro-2 A cationizing agent such as hydroxypropyltrialkylammonium hydride or its halohydrin type and a catalyst alkali metal hydroxide (sodium hydroxide, potassium hydroxide, etc.) in the presence of water and / or an alcohol having 1 to 4 carbon atoms. By reacting, cation-modified cellulose can be obtained. In this method, the degree of cation substitution per glucose unit of the cation-modified cellulose obtained is controlled by the addition amount of the cationizing agent to be reacted, the composition ratio of water and / or alcohol having 1 to 4 carbon atoms. Can be adjusted.
 本発明において、カチオン化されたセルロースのグルコース単位当たりのカチオン置換度が0.012~0.450であることが好ましい。セルロースにカチオン置換基を導入することで、セルロース同士が電気的に反発する。このため、カチオン置換基を導入したセルロースは容易にナノ解繊することができる。なお、グルコース単位当たりのカチオン置換度が0.012より小さいと、十分にナノ解繊することができない。一方、グルコース単位当たりのカチオン置換度が0.450より大きいと、膨潤あるいは溶解するため、繊維形態を維持できなくなり、ナノファイバーとして得られなくなる場合がある。 In the present invention, the cation substitution degree per unit of glucose of the cationized cellulose is preferably 0.012 to 0.450. By introducing a cationic substituent into cellulose, the celluloses repel each other electrically. For this reason, the cellulose which introduce | transduced the cation substituent can be nano-defibrated easily. In addition, when the cation substitution degree per glucose unit is smaller than 0.012, nano-fibrosis cannot be sufficiently performed. On the other hand, if the degree of cation substitution per glucose unit is larger than 0.450, the fiber form cannot be maintained because it swells or dissolves, and may not be obtained as a nanofiber.
(2-4)エステル化
 エステル化の例としては、チオエステル化、リン酸エステル化、硫酸エステル化、硝酸エステル化、炭酸エステル化などがあげられる。
(2-4) Esterification Examples of esterification include thioesterification, phosphate esterification, sulfate esterification, nitrate esterification, and carbonate esterification.
 本発明において、機械的叩解処理とは、リファイナー、ビーター、PFIミル、ニーダー、ディスパーザーなど回転軸を中心として金属または刃物とパルプ繊維を作用させるもの、あるいはパルプ繊維同士の摩擦によるものなど、一般的に知られている装置を使用することができる。 In the present invention, the mechanical beating treatment is a general process such as refiner, beater, PFI mill, kneader, disperser, or the like that causes a metal or blade and pulp fibers to act around the rotation axis, or that is caused by friction between pulp fibers. Devices known in the art can be used.
 本発明において、リファイナーとしては公知の装置を用いることができ、例えば、シングルディスクリファイナー、コニカルディスクリファイナー、ダブルディスクリファイナー、ツインディスクリファイナー等を用いることができる。 In the present invention, a known device can be used as the refiner. For example, a single disc refiner, a conical disc refiner, a double disc refiner, a twin disc refiner, or the like can be used.
 本発明において、ビーターは原料がローターの回転によってローター、ステーター間に引き込まれ、双方の刃で叩かれて回流槽を循環する装置で、公知の装置を用いることができる。 In the present invention, the beater is a device in which the raw material is drawn between the rotor and the stator by the rotation of the rotor and is struck by both blades to circulate in the circulation tank, and a known device can be used.
 本発明において、PFIミルはJIS P 8221で規定される装置を用いることができる。 In the present invention, the PFI mill can use an apparatus defined in JIS P 8221.
 本発明において、ニーダー或いはディスパーザーは、パルプに圧縮力を与えるか、繊維同士が適度の摩擦を受けるように設計した機械的撹拌装置であり、1軸又は2軸の構造をとり、ローター刃とステーター刃間に適度の食い込みがあり、低速回転でも十分繊維にせん断力を与えられ、公知の装置を用いることができる。 In the present invention, a kneader or a disperser is a mechanical stirring device designed to give a compressive force to pulp or to receive moderate friction between fibers, and has a uniaxial or biaxial structure, and a rotor blade There is moderate biting between the stator blades, and sufficient shearing force is applied to the fibers even at low speed rotation, so that a known apparatus can be used.
(3)予備解繊維:工程(A)
 本発明において、予備解繊を行って上記した原料パルプに叩解処理を施すことが重要である。叩解は、処理したパルプを水に分散させて濃度3%(w/v)のパルプスラリーとしたときに、B型粘度が50mPa・s以上、好ましくは1000mPa・s以上、さらに好ましくは2000mPa・s以上になるように行う。予備解繊により原料パルプが当該B型粘度を呈するほどに叩解されるので、次の本解繊工程での負荷を大幅に低減させることができる。当該B型粘度の上限は限定されないが、作業性等の観点から、100,000mPa・s以下であることが好ましい。
(3) Preliminary fiber removal: Process (A)
In the present invention, it is important to perform preliminary defibration and beating the above-described raw material pulp. In the beating, when the treated pulp is dispersed in water to obtain a pulp slurry having a concentration of 3% (w / v), the B-type viscosity is 50 mPa · s or more, preferably 1000 mPa · s or more, more preferably 2000 mPa · s. Do as above. Since the raw pulp is beaten to the extent that it exhibits the B-type viscosity by the preliminary defibrating, the load in the next defibrating step can be greatly reduced. The upper limit of the B-type viscosity is not limited, but is preferably 100,000 mPa · s or less from the viewpoint of workability and the like.
 予備解繊で使用される叩解処理に使用される装置は特に限定されないが、リファイナー、ビーター、又は離解機から選ばれる少なくとも1つの叩解装置を用いると、パルプ繊維の外層をほぐすことや内部のフィブリル化につながり、本解繊工程でナノファイバーが得やすくなり負荷が低減されるので好ましい。 The apparatus used for the beating process used in the preliminary defibration is not particularly limited, but when at least one beating apparatus selected from a refiner, a beater, or a disaggregator is used, the outer layer of the pulp fiber is loosened or the fibrils inside This is preferable because nanofibers can be easily obtained in this defibrating step and the load is reduced.
 予備解繊工程(A)でのパルプ濃度は0.5%(w/v)~10%(w/v)、より好ましくは1%(w/v)~5%(w/v)である。当該濃度が0.5%(w/v)より低いと分散液の濃度が低すぎて効率的ではなく、10%(w/v)を超えると粘度が高くなりすぎて効率的でない。 The pulp concentration in the preliminary defibrating step (A) is 0.5% (w / v) to 10% (w / v), more preferably 1% (w / v) to 5% (w / v). . If the concentration is lower than 0.5% (w / v), the concentration of the dispersion is too low and not efficient, and if it exceeds 10% (w / v), the viscosity becomes too high and the efficiency is not high.
 予備解繊工程(A)で、リファイナーを用いる場合、プレートのクリアランスは0.01mm~3mm、より好ましくは0.1mm~1mmである。0.01mm以下だとプレートの摩耗が激しくなり、また3mm以上だとクリアランスが広すぎて処理が進みにくい。 When using a refiner in the preliminary defibrating step (A), the plate clearance is 0.01 mm to 3 mm, more preferably 0.1 mm to 1 mm. If it is 0.01 mm or less, the plate will be abruptly worn, and if it is 3 mm or more, the clearance will be too wide to proceed the process.
 予備解繊工程(A)で、リファイナーを用いる場合、一般的なプレートで問題なく処理ができるが、粘状叩解に適したプレートが好ましい。 In the preliminary defibrating step (A), when a refiner is used, a general plate can be used without any problem, but a plate suitable for viscous beating is preferred.
 本工程では、水を分散媒とする濃度が3%(v/w)のパルプスラリーとした場合にB型粘度が50mPa・s以上となるように、原料パルプに叩解処理を施す。パルプの叩解が進めばパルプスラリーの粘度は上昇するので、当該粘度はパルプの叩解状態の目安となる。B型粘度は、粘度に適したローターを選択し、回転速度60rpm、温度25℃で測定される。工程(A)で得られたパルプスラリーの濃度が3%(w/v)を超える場合は、水で希釈して濃度を3%(w/v)に調製した後に粘度を測定する。一方、工程(A)で得られたパルプスラリーの濃度が3%(w/v)未満である場合は、水で除去して濃度を3%(w/v)に調製した後に粘度を測定する。あるいは、叩解処理を施したパルプを一度単離してから水に再分散させて濃度が3%(w/v)のスラリーを調製して粘度を測定してもよい。ただし、水に再分散させる際には工程(B)で実施する本解繊が生じないようにする必要がある。 In this step, the raw material pulp is subjected to a beating process so that the B-type viscosity is 50 mPa · s or more when the pulp slurry has a concentration of 3% (v / w) using water as a dispersion medium. As the pulp beating progresses, the viscosity of the pulp slurry increases, and the viscosity is a measure of the beating state of the pulp. The B type viscosity is measured at a rotation speed of 60 rpm and a temperature of 25 ° C. by selecting a rotor suitable for the viscosity. When the concentration of the pulp slurry obtained in the step (A) exceeds 3% (w / v), the viscosity is measured after dilution with water to adjust the concentration to 3% (w / v). On the other hand, when the concentration of the pulp slurry obtained in the step (A) is less than 3% (w / v), the viscosity is measured after removing with water and adjusting the concentration to 3% (w / v). . Alternatively, the pulp subjected to the beating treatment may be once isolated and then redispersed in water to prepare a slurry having a concentration of 3% (w / v), and the viscosity may be measured. However, when redispersed in water, it is necessary to prevent the actual defibration performed in the step (B) from occurring.
 (4)本解繊:工程(B)
 本発明において、本解繊とは、予備解繊によって得られたパルプを、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などの装置を用いて強力なせん断力を印加して、平均繊維幅3~100nmまで解繊を行うことをいう。特に、セルロースナノファイバーを効率よく得るには、前記分散液に50MPa以上の圧力を印加し、かつ強力なせん断力を印加できる湿式の高圧または超高圧ホモジナイザーを用いることが好ましい。前記圧力は、より好ましくは100MPa以上であり、さらに好ましくは140MPa以上である。この処理により、酸化パルプが解繊してセルロースナノファイバーが形成され、かつセルロースナノファイバーが媒体中に分散する。媒体としては、取扱い容易性から、水を用いることが好ましい。
(4) Main defibration: Process (B)
In the present invention, this defibration refers to applying a strong shearing force to the pulp obtained by preliminary defibration using a high-speed rotation type, a colloid mill type, a high pressure type, a roll mill type, an ultrasonic type, or the like. This means that the fiber is defibrated to an average fiber width of 3 to 100 nm. In particular, in order to efficiently obtain cellulose nanofibers, it is preferable to use a wet high-pressure or ultrahigh-pressure homogenizer that can apply a pressure of 50 MPa or more to the dispersion and can apply a strong shearing force. The pressure is more preferably 100 MPa or more, and further preferably 140 MPa or more. By this treatment, the oxidized pulp is defibrated to form cellulose nanofibers, and the cellulose nanofibers are dispersed in the medium. As the medium, water is preferably used from the viewpoint of easy handling.
 本発明のセルロースナノファイバーは、平均繊維長が0.1~5μm程度であることが好ましく、0.5~5μm程度であることがより好ましい。繊維長は工程(B)において調整することもできるし、別の工程を設けて繊維長を調整してもよい。 The cellulose nanofiber of the present invention preferably has an average fiber length of about 0.1 to 5 μm, and more preferably about 0.5 to 5 μm. The fiber length can be adjusted in the step (B), or the fiber length may be adjusted by providing another step.
<平均繊維長及び平均繊維幅の測定方法>
セルロースナノファイバーの平均繊維長及び平均繊維幅は原子間力顕微鏡(AFM)を用いてセルロースナノファイバーを観察することで、測定することができる。
<Measuring method of average fiber length and average fiber width>
The average fiber length and average fiber width of the cellulose nanofiber can be measured by observing the cellulose nanofiber using an atomic force microscope (AFM).
 次に実施例に基づき、本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されない。 Next, the present invention will be described in more detail based on examples, but the present invention is not limited to the following examples.
 [実施例1]
 (パルプ原料の調整:酸化パルプ)
 針葉樹由来の漂白済み未叩解パルプ(日本製紙社製)5g(絶乾)を、TEMPO(東京化成社製)78mg(0.5mmol)と臭化ナトリウム(和光純薬社製)756mg(7.35mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで攪拌した。ここに次亜塩素酸ナトリウム(和光純薬社製)2.3mmolを水溶液の形態で加え、次いで、次亜塩素酸ナトリウムをパルプ1g当たり0.23mmol/分の添加速度となるように送液ポンプを用いて徐々に添加し、パルプの酸化を行った。次亜塩素酸ナトリウムの全添加量が22.5mmolとなるまで添加を継続した。反応中は系内のpHは低下するが、3N水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。水酸化ナトリウム水溶液を添加し始めてから(すなわち、酸化反応が開始されてpHの低下が見られた時点から)、添加を終了するまで(すなわち、酸化反応が終了してpHの低下が見られなくなった時点まで)の時間を反応時間とした。この反応液を塩酸にて中性になるまで中和した後、反応後の液をガラスフィルターで濾過し、十分に水洗することで酸化処理したパルプを得た。
[Example 1]
(Pulp raw material adjustment: oxidized pulp)
Bleached unbeaten pulp (Nippon Paper Co., Ltd.) 5 g (absolutely dried) derived from coniferous trees, TEMPO (Tokyo Kasei Co., Ltd.) 78 mg (0.5 mmol) and sodium bromide (Wako Pure Chemical Industries, Ltd.) 756 mg (7.35 mmol) ) Was dissolved in 500 ml of the dissolved aqueous solution and stirred until the pulp was uniformly dispersed. To this, 2.3 mmol of sodium hypochlorite (manufactured by Wako Pure Chemical Industries, Ltd.) was added in the form of an aqueous solution, and then a liquid feed pump was added so that sodium hypochlorite was added at a rate of 0.23 mmol / min per gram of pulp. Was added gradually to oxidize the pulp. The addition was continued until the total amount of sodium hypochlorite added was 22.5 mmol. During the reaction, the pH in the system was lowered, but a 3N sodium hydroxide aqueous solution was successively added to adjust the pH to 10. From the start of the addition of the aqueous sodium hydroxide solution (that is, from the time when the oxidation reaction is started and a decrease in pH is observed) until the addition is completed (that is, the oxidation reaction is completed and no decrease in pH is observed) The reaction time was taken as the reaction time. The reaction solution was neutralized with hydrochloric acid until neutral, and then the reaction solution was filtered through a glass filter and sufficiently washed with water to obtain an oxidized pulp.
 (酸化パルプのカルボキシル基量の測定)
 酸化パルプのカルボキシル基量は、次の方法で測定した:
 酸化パルプの0.5質量%スラリーを60ml調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定し、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出した:
カルボキシル基量〔mmol/g酸化パルプ〕=a〔ml〕×0.05/酸化パルプ質量〔g〕。
(Measurement of carboxyl group content of oxidized pulp)
The carboxyl group content of oxidized pulp was measured by the following method:
Prepare 60 ml of 0.5% by weight slurry of oxidized pulp, add 0.1 M hydrochloric acid aqueous solution to pH 2.5, then add 0.05 N aqueous sodium hydroxide solution dropwise until the pH is 11 Was calculated from the amount of sodium hydroxide (a) consumed in the neutralization step of the weak acid with a gradual change in electrical conductivity using the following formula:
Amount of carboxyl group [mmol / g oxidized pulp] = a [ml] × 0.05 / oxidized pulp mass [g].
 この測定の結果、得られた酸化パルプのカルボキシル基量は1.60mmol/gであった。 As a result of this measurement, the carboxyl group content of the obtained oxidized pulp was 1.60 mmol / g.
(酸化パルプの予備解繊)
 上記酸化処理を経た濃度3%(w/v)の酸化パルプのスラリーをナイアガラビータ(熊谷理機工業株式会社製)で叩解処理を施した。なお、この叩解処理におけるパルプ1kgあたりの電力消費量は0.5Kwhであった。また、得られたパルプスラリー(濃度3%(w/v))の25℃、60rpmの条件で、B型粘度は、2000mPa・sであった。
また、得られたパルプスラリーの濾水度は、10mLであった。
(Preliminary defibration of oxidized pulp)
The slurry of oxidized pulp having a concentration of 3% (w / v) that had undergone the above oxidation treatment was subjected to beating treatment with Niagara Beata (manufactured by Kumagaya Riki Kogyo Co., Ltd.). In addition, the power consumption per 1 kg of pulp in this beating process was 0.5 Kwh. Moreover, B type viscosity was 2000 mPa * s on the conditions of 25 degreeC and 60 rpm of the obtained pulp slurry (concentration 3% (w / v)).
Moreover, the freeness of the obtained pulp slurry was 10 mL.
 (酸化パルプの本解繊)
 上記予備解繊処理を施したパルプスラリーを濃度1%(w/v)に希釈後、超高圧ホモジナイザーによる処理を処理圧140MPaでおこなった。この時のパルプ1kgの消費電力は7.5Kwhであった。なお、分散ノズルの詰まりは発生しなかった。また、得られたセルロースナノファイバー分散液を超音波装置にて脱泡した後、紫外可視分光光度計(UV-1800、島津製作所製)の660nmの波長にて測定した透過度(%)を透明度は、60%であった。また、得られたセルロース分散液を原子間力顕微鏡(AFM)を用いて観察したところ、ランダムに選んだ50本の繊維の平均繊維長は2μm、平均繊維幅は10nmであった。
(This defibration of oxidized pulp)
After the pulp slurry subjected to the preliminary defibrating treatment was diluted to a concentration of 1% (w / v), the treatment with an ultrahigh pressure homogenizer was performed at a treatment pressure of 140 MPa. The power consumption of 1 kg of pulp at this time was 7.5 Kwh. The clogging of the dispersion nozzle did not occur. Further, after defoaming the obtained cellulose nanofiber dispersion with an ultrasonic device, the transparency (%) measured at a wavelength of 660 nm of an ultraviolet-visible spectrophotometer (UV-1800, manufactured by Shimadzu Corporation) is used as the transparency. Was 60%. Moreover, when the obtained cellulose dispersion was observed using an atomic force microscope (AFM), the average fiber length of 50 randomly selected fibers was 2 μm, and the average fiber width was 10 nm.
 [実施例2]
 予備解繊をリファイナー(熊谷理機工業株式会社製)での処理に変更し、2パス処理した以外は、実施例1と同様にセルロースナノファイバーを製造した。なお、この叩解処理におけるパルプ1kgあたりの電力消費量は0.5Kwhであり、得られたパルプスラリー(濃度3%(w/v))のB型粘度は2900mPa・sであった。また、濾水度は3mLであった。また、本解繊後の透明度は58%で、平均繊維長は1.9μm、平均繊維幅は5nmであった。分散ノズルの詰まりは発生しなかった。
[Example 2]
Cellulose nanofibers were produced in the same manner as in Example 1 except that the preliminary defibration was changed to a refiner (manufactured by Kumagai Riki Kogyo Co., Ltd.) and two-pass treatment was performed. The power consumption per 1 kg of pulp in this beating treatment was 0.5 Kwh, and the B-type viscosity of the obtained pulp slurry (concentration 3% (w / v)) was 2900 mPa · s. The freeness was 3 mL. Moreover, the transparency after this defibration was 58%, the average fiber length was 1.9 μm, and the average fiber width was 5 nm. The clogging of the dispersion nozzle did not occur.
 [実施例3]
 予備解繊をリファイナーの1パス処理に変更した以外は、実施例1と同様にセルロースナノファイバーを製造した。なお、この叩解処理におけるパルプ1kgあたりの電力消費量は0.3Kwhであり、得られたパルプスラリー(濃度3%(w/v))のB型粘度は1500mPa・sであった。また、濾水度は25mLであった。また、本解繊の透明度は55%、平均繊維長は2μm、平均繊維幅は10nmであった。分散ノズルの詰まりは発生しなかった。
[Example 3]
Cellulose nanofibers were produced in the same manner as in Example 1, except that the preliminary defibration was changed to a refiner 1-pass treatment. The power consumption per 1 kg of pulp in this beating treatment was 0.3 Kwh, and the B-type viscosity of the obtained pulp slurry (concentration 3% (w / v)) was 1500 mPa · s. The freeness was 25 mL. Further, the transparency of this defibration was 55%, the average fiber length was 2 μm, and the average fiber width was 10 nm. The clogging of the dispersion nozzle did not occur.
 [比較例1]
 予備解繊を行わずに、本解繊のみを超高圧ホモジナイザーを用いてパルプ1kgの消費電力が、8.0Kwhとなるように処理を行った以外は、実施例1と同様に製造した。その結果、本解繊前のパルプスラリー(濃度3%(w/v))のB型粘度は40mPa・sであった。また、ろ水度は500mLであった。本解繊後の透明度は34%、平均繊維長は3μm、平均繊維幅は110nmであり、分散ノズルの詰まりが5回発生した。
[Comparative Example 1]
Only preliminary defibration was carried out in the same manner as in Example 1 except that only the actual defibration was processed using an ultra-high pressure homogenizer so that the power consumption of 1 kg of pulp was 8.0 Kwh. As a result, the B-type viscosity of the pulp slurry (concentration 3% (w / v)) before this defibration was 40 mPa · s. The freeness was 500 mL. The transparency after this defibration was 34%, the average fiber length was 3 μm, the average fiber width was 110 nm, and the clogging of the dispersion nozzle occurred 5 times.
 比較例1に対して、実施例1~3では透明度が高い高品質なセルロースナノファイバーが製造できた。また、本解繊の操業性は良好で、分散ノズルの詰まりは発生しなかった。 Compared with Comparative Example 1, in Examples 1 to 3, high-quality cellulose nanofibers with high transparency could be produced. Moreover, the operability of this defibration was good, and the clogging of the dispersion nozzle did not occur.
 実施例1~3及び比較例1で得られたナノファイバーの消費電力及び透明度等の測定結果は表1の通りであった。 Table 1 shows the measurement results of power consumption and transparency of the nanofibers obtained in Examples 1 to 3 and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、予備解繊と本解繊に要する電力消費の総和は、実施例1~3及び比較例1では同じであり、実施例1~3では、効率よく高明度の高いセルロースなセルロースナノファイバーを製造することができることがわかる。 From Table 1, the total power consumption required for preliminary defibration and this defibration is the same in Examples 1 to 3 and Comparative Example 1, and in Examples 1 to 3, cellulose cellulose nanometers with high efficiency and high brightness are obtained. It can be seen that fibers can be produced.
 また、比較例1では本解繊時に解繊機のノズルの詰まりが発生することから、操業性に劣ることがわかる。 Further, in Comparative Example 1, it can be seen that the nozzle of the defibrating machine is clogged during the defibrating, so that the operability is inferior.

Claims (6)

  1.  下記の工程(A)~(B)の工程を備える、平均繊維幅3~100nmであるセルロースナノファイバー分散液の製造方法。
     工程(A):水を分散媒とする濃度が3%(v/w)のパルプスラリーとした場合にB型粘度が50mPa・s以上となるまで原料パルプを叩解処理する予備解繊工程
     工程(B):前記予備解繊工程(A)で得られたパルプを繊維幅3~100nmになるまで解繊する本解繊工程。
    A method for producing a cellulose nanofiber dispersion having an average fiber width of 3 to 100 nm, comprising the following steps (A) to (B):
    Step (A): Pre-defibration step of beating the raw material pulp until the B-type viscosity becomes 50 mPa · s or more when the concentration is 3% (v / w) pulp slurry using water as a dispersion medium. B): This defibrating step of defibrating the pulp obtained in the preliminary defibrating step (A) until the fiber width becomes 3 to 100 nm.
  2.  前記予備解繊工程(A)で得られたパルプのろ水度が1~30ml、平均繊維径が30~1000nmである、請求項1に記載のセルロースナノファイバー分散液の製造方法。 2. The method for producing a cellulose nanofiber dispersion according to claim 1, wherein the pulp obtained in the preliminary defibrating step (A) has a freeness of 1 to 30 ml and an average fiber diameter of 30 to 1000 nm.
  3.  前記叩解処理がリファイナー、ビーター、又は離解機から選ばれる少なくとも1つの解繊装置を用いる、請求項1又は2に記載のセルロースナノファイバー分散液の製造方法。 The method for producing a cellulose nanofiber dispersion according to claim 1 or 2, wherein the beating process uses at least one defibrating device selected from a refiner, a beater, or a disaggregator.
  4.  前記叩解処理がリファイナー、ビーター、又は離解機から選ばれる少なくとも1つの叩解装置を用いる、請求項1~3のいずれか一項に記載のセルロースナノファイバー分散液の製造方法。 The method for producing a cellulose nanofiber dispersion according to any one of claims 1 to 3, wherein the beating process uses at least one beating apparatus selected from a refiner, a beater, or a disaggregator.
  5.  前記原料パルプが、化学変性パルプである、請求項1~4記載のいずれか一項に記載のセルロースナノファイバー分散液の製造方法。 The method for producing a cellulose nanofiber dispersion according to any one of claims 1 to 4, wherein the raw material pulp is a chemically modified pulp.
  6.  請求項1~5のいずれか一項に記載の製造方法により得られるセルロースナノファイバー分散液。
     
    A cellulose nanofiber dispersion obtained by the production method according to any one of claims 1 to 5.
PCT/JP2016/079089 2015-09-30 2016-09-30 Cellulose nanofiber dispersion liquid and method for producing same WO2017057710A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017543631A JP7033920B2 (en) 2015-09-30 2016-09-30 Cellulose nanofiber dispersion liquid and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-193766 2015-09-30
JP2015193766 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057710A1 true WO2017057710A1 (en) 2017-04-06

Family

ID=58424009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079089 WO2017057710A1 (en) 2015-09-30 2016-09-30 Cellulose nanofiber dispersion liquid and method for producing same

Country Status (2)

Country Link
JP (1) JP7033920B2 (en)
WO (1) WO2017057710A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176465A1 (en) * 2018-03-14 2019-09-19 日本製紙株式会社 Method for producing cellulose nanofiber dispersion
CN111819328A (en) * 2018-03-20 2020-10-23 大王制纸株式会社 Method for producing cellulose nanofibers
CN114075796A (en) * 2020-08-20 2022-02-22 华南理工大学 Plant-based cellulose nanofibrils as well as preparation method and application thereof
WO2023026882A1 (en) * 2021-08-27 2023-03-02 日本製紙株式会社 Aqueous dispersion composition containing microfibrillated cellulose fibers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08284090A (en) * 1995-04-07 1996-10-29 Tokushu Paper Mfg Co Ltd Ultrafine fibrillated cellulose and its production, production of coated paper using the ultrafine fibrillated cellulose and production of dyed paper
JP2000017592A (en) * 1998-06-23 2000-01-18 Daicel Chem Ind Ltd Fibrillar cellulose and its production
JP2008075214A (en) * 2006-09-21 2008-04-03 Kimura Chem Plants Co Ltd Method for producing nanofiber and nanofiber
JP2012180602A (en) * 2011-02-28 2012-09-20 Mitsubishi Chemicals Corp Cellulose fiber dispersion liquid, method for manufacturing cellulose fiber dispersion liquid and method for manufacturing micro cellulose fiber
JP2014173208A (en) * 2013-03-11 2014-09-22 Mitsubishi Paper Mills Ltd Method of manufacturing fine fiber for ligneous heat insulation material
WO2014184438A1 (en) * 2013-05-14 2014-11-20 Upm-Kymmene Corporation A method and a device for producing nanofibrillar cellulose

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI126688B (en) 2014-06-30 2017-03-31 Upm Kymmene Corp Method and apparatus for controlling the quality of nanofibrillar cellulose

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08284090A (en) * 1995-04-07 1996-10-29 Tokushu Paper Mfg Co Ltd Ultrafine fibrillated cellulose and its production, production of coated paper using the ultrafine fibrillated cellulose and production of dyed paper
JP2000017592A (en) * 1998-06-23 2000-01-18 Daicel Chem Ind Ltd Fibrillar cellulose and its production
JP2008075214A (en) * 2006-09-21 2008-04-03 Kimura Chem Plants Co Ltd Method for producing nanofiber and nanofiber
JP2012180602A (en) * 2011-02-28 2012-09-20 Mitsubishi Chemicals Corp Cellulose fiber dispersion liquid, method for manufacturing cellulose fiber dispersion liquid and method for manufacturing micro cellulose fiber
JP2014173208A (en) * 2013-03-11 2014-09-22 Mitsubishi Paper Mills Ltd Method of manufacturing fine fiber for ligneous heat insulation material
WO2014184438A1 (en) * 2013-05-14 2014-11-20 Upm-Kymmene Corporation A method and a device for producing nanofibrillar cellulose

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176465A1 (en) * 2018-03-14 2019-09-19 日本製紙株式会社 Method for producing cellulose nanofiber dispersion
JPWO2019176465A1 (en) * 2018-03-14 2021-03-11 日本製紙株式会社 Method for producing cellulose nanofiber dispersion
CN111819328A (en) * 2018-03-20 2020-10-23 大王制纸株式会社 Method for producing cellulose nanofibers
CN111819328B (en) * 2018-03-20 2023-04-25 大王制纸株式会社 Method for producing cellulose nanofiber
US11905657B2 (en) 2018-03-20 2024-02-20 Daio Paper Corporation Method for producing cellulose nanofibers
CN114075796A (en) * 2020-08-20 2022-02-22 华南理工大学 Plant-based cellulose nanofibrils as well as preparation method and application thereof
CN114075796B (en) * 2020-08-20 2022-12-16 华南理工大学 Plant-based cellulose nanofibrils as well as preparation method and application thereof
WO2023026882A1 (en) * 2021-08-27 2023-03-02 日本製紙株式会社 Aqueous dispersion composition containing microfibrillated cellulose fibers

Also Published As

Publication number Publication date
JP7033920B2 (en) 2022-03-11
JPWO2017057710A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
JP5544053B1 (en) Cellulose nanofiber
JP6351821B1 (en) Method for producing carboxymethylated cellulose nanofiber
JP6404411B2 (en) Pulp mold
JP6361123B2 (en) Water-based adhesive composition
JP5857881B2 (en) Fine fibrous cellulose and method for producing the same, non-woven fabric
JP7033920B2 (en) Cellulose nanofiber dispersion liquid and its manufacturing method
WO2019111928A1 (en) Method for manufacturing carboxymethylated cellulose nanofiber
JPWO2011074301A1 (en) Method for oxidizing cellulose and method for producing cellulose nanofiber
WO2017078084A1 (en) Filtration method for cellulose nanofiber dispersion, and production process therefor
JP6784709B2 (en) Manufacturing method of cellulose nanofibers
JP6015232B2 (en) Method for producing oxidized cellulose and cellulose nanofiber
JP6619576B2 (en) Method for producing cellulose nanofiber
JP2018135421A (en) Method for producing cellulose nano-fiber
JP7402154B2 (en) Method for producing cellulose nanofiber dispersion
JP2017043677A (en) Method for producing cellulose nanofiber
JP2019183320A (en) Molded pulp
JP7162433B2 (en) Method for producing composition containing cellulose nanofibers and polyvinyl alcohol-based polymer
JP7239294B2 (en) Method for producing anion-modified cellulose nanofiber
JP7098467B2 (en) Manufacturing method of cellulose nanofibers
JP2019163390A (en) Carboxyalkylated cellulose, and manufacturing method of carboxyalkylated cellulose nanofiber
JP6857289B1 (en) Method for Producing Chemically Modified Microfibril Cellulose Fiber
JP2023148586A (en) fine cellulose fiber
JP6737978B1 (en) Method for producing anion-modified cellulose nanofiber
JP7250455B2 (en) Composition containing anion-modified cellulose nanofibers
JP2014070204A (en) Methods of producing modified cellulose and modified cellulose nanofibers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851879

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543631

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851879

Country of ref document: EP

Kind code of ref document: A1