JP6912737B2 - Optical parts and manufacturing method of optical parts - Google Patents

Optical parts and manufacturing method of optical parts Download PDF

Info

Publication number
JP6912737B2
JP6912737B2 JP2019104439A JP2019104439A JP6912737B2 JP 6912737 B2 JP6912737 B2 JP 6912737B2 JP 2019104439 A JP2019104439 A JP 2019104439A JP 2019104439 A JP2019104439 A JP 2019104439A JP 6912737 B2 JP6912737 B2 JP 6912737B2
Authority
JP
Japan
Prior art keywords
light
optical component
region
translucent
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019104439A
Other languages
Japanese (ja)
Other versions
JP2019164376A5 (en
JP2019164376A (en
Inventor
輝彦 野口
輝彦 野口
俊夫 秋田
俊夫 秋田
靖長 小谷
靖長 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65029757&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6912737(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nichia Corp filed Critical Nichia Corp
Publication of JP2019164376A publication Critical patent/JP2019164376A/en
Publication of JP2019164376A5 publication Critical patent/JP2019164376A5/ja
Priority to JP2021112541A priority Critical patent/JP7157356B2/en
Application granted granted Critical
Publication of JP6912737B2 publication Critical patent/JP6912737B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光学部品及び光学部品の製造方法に関する。 The present invention relates to an optical component and a method for manufacturing the optical component.

特許文献1に記載の光学部品は、アルミナ等の光取出し部材に、金属膜を介して、透光部材が固定されている(例えば、特許文献1の図2参照。)。 In the optical component described in Patent Document 1, a light-transmitting member is fixed to a light-extracting member such as alumina via a metal film (see, for example, FIG. 2 of Patent Document 1).

特開2015−019013JP 2015-019013

このような光学部品は、金属膜が劣化することにより、輝度が低下する場合がある。 The brightness of such an optical component may decrease due to deterioration of the metal film.

本発明の一形態に係る光学部品は、上面、下面及び側面を有する透光部材と、前記透光部材を取り囲むように前記透光部材の側方に設けられた光反射部材と、を備える。前記光反射部材は、複数の空隙を含むセラミックスからなり、前記透光部材及び前記光反射部材を横切る一断面において、前記複数の空隙は前記透光部材の近傍に偏在している。 An optical component according to an embodiment of the present invention includes a light-transmitting member having an upper surface, a lower surface, and a side surface, and a light-reflecting member provided on the side of the light-transmitting member so as to surround the light-transmitting member. The light-reflecting member is made of ceramics containing a plurality of voids, and the plurality of voids are unevenly distributed in the vicinity of the light-transmitting member in one cross section crossing the light-transmitting member and the light-reflecting member.

本発明の一形態に係る光学部品の製造方法は、上面、下面、及び側面を有する透光部材を準備する工程と、前記透光部材を取り囲むように前記透光部材の側方に無機材料からなる光反射粉末を含む成形体を形成する工程と、前記光反射粉末の焼結体を含む光反射部材と前記透光部材とが一体に形成され、前記透光部材及び前記光反射部材を横切る一断面で、前記光反射部材において前記透光部材の近傍に複数の空隙が偏在するように前記成形体を焼結する工程と、を有する。 A method for manufacturing an optical component according to an embodiment of the present invention includes a step of preparing a light-transmitting member having an upper surface, a lower surface, and a side surface, and an inorganic material on the side of the light-transmitting member so as to surround the light-transmitting member. The step of forming a molded body containing the light-reflecting powder, and the light-reflecting member containing the sintered body of the light-reflecting powder and the light-transmitting member are integrally formed and cross the light-transmitting member and the light-reflecting member. In one cross section, the light reflecting member includes a step of sintering the molded body so that a plurality of voids are unevenly distributed in the vicinity of the light transmitting member.

上記の光学部品によれば、輝度の低下を低減し、且つ、強度を確保した光学部品とすることができる。 According to the above-mentioned optical component, it is possible to obtain an optical component that reduces a decrease in brightness and secures strength.

また、上記の光学部品の製造方法によれば、輝度の低下を低減し、且つ、強度を確保した光学部品を容易に製造することができる。 Further, according to the above-mentioned method for manufacturing an optical component, it is possible to easily manufacture an optical component that reduces a decrease in brightness and secures strength.

図1Aは、第1実施形態に係る光学部品の上面図である。FIG. 1A is a top view of the optical component according to the first embodiment. 図1Bは、図1Aの1B−1B線における断面図である。FIG. 1B is a cross-sectional view taken along the line 1B-1B of FIG. 1A. 図2Aは、第1実施形態に係る光学部品の製造方法を説明するための図である。FIG. 2A is a diagram for explaining a method of manufacturing an optical component according to the first embodiment. 図2Bは、図2Aの2B−2B線における断面図である。FIG. 2B is a cross-sectional view taken along the line 2B-2B of FIG. 2A. 図3Aは、第1実施形態に係る光学部品の製造方法を説明するための図である。FIG. 3A is a diagram for explaining a method of manufacturing an optical component according to the first embodiment. 図3Bは、図3Aの3B−3B線における断面図である。FIG. 3B is a cross-sectional view taken along the line 3B-3B of FIG. 3A. 図4Aは、第1実施形態に係る光学部品の製造方法を説明するための図である。FIG. 4A is a diagram for explaining a method of manufacturing an optical component according to the first embodiment. 図4Bは、図4Aの4B−4B線における断面図である。FIG. 4B is a cross-sectional view taken along the line 4B-4B of FIG. 4A. 図5Aは、第1実施形態に係る光学部品の製造方法を説明するための図である。FIG. 5A is a diagram for explaining a method of manufacturing an optical component according to the first embodiment. 図5Bは、図5Aの5B−5B線における断面図である。FIG. 5B is a cross-sectional view taken along the line 5B-5B of FIG. 5A. 図6Aは、第1実施形態に係る光学部品の製造方法を説明するための図である。FIG. 6A is a diagram for explaining a method of manufacturing an optical component according to the first embodiment. 図6Bは、図6Aの6B−6B線における断面図である。FIG. 6B is a cross-sectional view taken along the line 6B-6B of FIG. 6A. 図7Aは、第1実施形態に係る光学部品の製造方法を説明するための図である。FIG. 7A is a diagram for explaining a method of manufacturing an optical component according to the first embodiment. 図7Bは、図7Aの7B−7B線における断面図である。FIG. 7B is a cross-sectional view taken along the line 7B-7B of FIG. 7A. 図8Aは、光学部品を上面側から観察した二次電子像である。FIG. 8A is a secondary electron image of the optical component observed from the upper surface side. 図8Bは、図8AのA領域におけるSEM画像である。FIG. 8B is an SEM image in the A region of FIG. 8A. 図8Cは、図8AのB領域におけるSEM画像である。FIG. 8C is an SEM image in region B of FIG. 8A. 図9は、第2実施形態に係る光学部品と発光素子とを組み合わせた発光装置の図である。FIG. 9 is a diagram of a light emitting device in which the optical component and the light emitting element according to the second embodiment are combined. 図10Aは、第3実施形態に係る光学部品と発光素子とを組み合わせた発光装置の上面図である。FIG. 10A is a top view of a light emitting device in which the optical component and the light emitting element according to the third embodiment are combined. 図10Bは、図10Aの10B−10B線における断面図である。FIG. 10B is a cross-sectional view taken along the line 10B-10B of FIG. 10A. 図11は、実施例に係る光学部品を上面側から観察した写真である。FIG. 11 is a photograph of the optical component according to the embodiment observed from the upper surface side.

本発明を実施するための形態を、図面を参照しながら以下に説明する。ただし、以下に示す形態は、本発明の技術思想を具体化するためのものであって、本発明を限定するものではない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするために誇張していることがある。 A mode for carrying out the present invention will be described below with reference to the drawings. However, the forms shown below are for embodying the technical idea of the present invention and do not limit the present invention. The size and positional relationship of the members shown in each drawing may be exaggerated to clarify the explanation.

<第1実施形態>
図1Aに第1実施形態に係る光学部品10の上面図を示す。また、図1Bは図1Aの1B−1B線における断面図である。
<First Embodiment>
FIG. 1A shows a top view of the optical component 10 according to the first embodiment. Further, FIG. 1B is a cross-sectional view taken along the line 1B-1B of FIG. 1A.

光学部品10は、上面、下面及び側面を有する透光部材1と、透光部材1を取り囲むように透光部材1の側方に設けられた光反射部材2と、を備える。光反射部材2は、複数の空隙を含むセラミックスからなり、透光部材1及び光反射部材2を横切る一断面において、複数の空隙は透光部材1の近傍に偏在している。 The optical component 10 includes a light-transmitting member 1 having an upper surface, a lower surface, and a side surface, and a light-reflecting member 2 provided on the side of the light-transmitting member 1 so as to surround the light-transmitting member 1. The light reflecting member 2 is made of ceramics containing a plurality of voids, and the plurality of voids are unevenly distributed in the vicinity of the light transmitting member 1 in one cross section crossing the light transmitting member 1 and the light reflecting member 2.

光学部品10によれば、光反射部材2での透過率を低減することができ、且つ、強度も確保した光学部品10とすることができる。以下、この点について説明する。 According to the optical component 10, the optical component 10 can reduce the transmittance of the light reflecting member 2 and secure the strength. This point will be described below.

従来の光学部品においては、透光部材と光取出し部材との間に金属膜を設け、透光部材から光取出し部材に向かう光を金属膜で反射させて取り出している。しかしながら、例えば、車に搭載する場合は、車が沿岸部に配置されることにより塩害等で金属膜が劣化する場合がある。この場合に、光取出し効率が低下する。そこで、金属膜を用いずに、セラミックスからなる光反射部材を透光部材の周囲に設けることが考えられる。この場合に、透光部材から光反射部材に向かう光の透過を抑制して効率的に反射させるために、光反射部材の気孔率を高くすることが考えられるが、全体的に気孔率を高くすると光反射部材の強度が低下してしまう。 In the conventional optical component, a metal film is provided between the light transmitting member and the light extraction member, and the light directed from the light transmitting member to the light extraction member is reflected by the metal film and extracted. However, for example, when the vehicle is mounted on a vehicle, the metal film may be deteriorated due to salt damage or the like due to the vehicle being arranged in the coastal area. In this case, the light extraction efficiency is reduced. Therefore, it is conceivable to provide a light reflecting member made of ceramics around the light transmitting member without using a metal film. In this case, in order to suppress the transmission of light from the light-transmitting member to the light-reflecting member and efficiently reflect the light, it is conceivable to increase the pore ratio of the light-reflecting member, but the overall pore ratio is high. Then, the strength of the light reflecting member decreases.

そこで本願発明者は、光反射部材2として、透光部材1及び光反射部材2を横切る一断面で、複数の空隙が透光部材1の近傍に偏在するセラミックスを用いている。つまり、光反射部材2として、透光部材1に近い側から順に、第1気孔率の第1領域2aと、第1気孔率よりも気孔率が低い第2気孔率の第2領域2bと、を有するセラミックスを用いている。これにより、透光部材1からの光が透過することを第1領域2aで低減しつつ、光学部品10としての強度を第2領域2bで確保することができる。したがって、輝度の低下を低減し、且つ、強度を確保した光学部品10とすることができる。 Therefore, the inventor of the present application uses ceramics as the light-reflecting member 2 in which a plurality of voids are unevenly distributed in the vicinity of the light-transmitting member 1 in one cross section that crosses the light-transmitting member 1 and the light-reflecting member 2. That is, as the light reflecting member 2, the first region 2a of the first porosity and the second region 2b of the second porosity having a porosity lower than the first porosity are arranged in this order from the side closer to the translucent member 1. Ceramics with As a result, it is possible to secure the strength of the optical component 10 in the second region 2b while reducing the transmission of light from the light transmitting member 1 in the first region 2a. Therefore, it is possible to obtain the optical component 10 which reduces the decrease in brightness and secures the strength.

以下、光学部品10の構成要素について説明する。 Hereinafter, the components of the optical component 10 will be described.

(透光部材1)
透光部材1は、発光素子等からの光を透過する材料からなる。透光部材1としては、光反射部材2の焼結温度で溶融しない材料を用いることができる。本実施形態では、透光部材1として、蛍光体を含むセラミックス(以下、「蛍光体セラミックス」という。)を用いている。蛍光体セラミックスでは、その内部で光が散乱しやすくなるため光反射部材2に光が当たりやすくなる。したがって、第1領域2aで光の透過を抑制する効果がより顕著となる。さらに、光反射部材2のうち、気孔率の高い第1領域2aに比べて、気孔率の低い第2領域2bは放熱性に優れる。したがって、蛍光体で生じた熱を、第1領域2aを介して、第2領域2bで効果的に放散させることができる。なお、ここでは、透光部材1として蛍光体セラミックスを用いているが、蛍光体の単結晶を用いてもよい。この場合でも、本実施形態によれば、蛍光体からの熱を光反射部材2の第2領域2bに効率よく放散させることができる。
(Translucent member 1)
The light transmitting member 1 is made of a material that transmits light from a light emitting element or the like. As the light transmitting member 1, a material that does not melt at the sintering temperature of the light reflecting member 2 can be used. In the present embodiment, ceramics containing a phosphor (hereinafter, referred to as “fluorescent ceramics”) are used as the translucent member 1. In fluorescent ceramics, light is likely to be scattered inside the ceramics, so that the light reflecting member 2 is easily exposed to light. Therefore, the effect of suppressing the transmission of light in the first region 2a becomes more remarkable. Further, among the light reflecting members 2, the second region 2b having a low porosity has excellent heat dissipation as compared with the first region 2a having a high porosity. Therefore, the heat generated by the phosphor can be effectively dissipated in the second region 2b via the first region 2a. Although the fluorescent ceramics are used as the translucent member 1 here, a single crystal of the fluorescent material may be used. Even in this case, according to the present embodiment, the heat from the phosphor can be efficiently dissipated to the second region 2b of the light reflecting member 2.

透光部材1と光反射部材2との間に透光性の他の部材を介在させてもよいが、本実施形態では、透光部材1が光反射部材2の側面に接するようにしている。つまり、透光部材1と光反射部材2とが、他の部材を介することなく直接接している。これにより、他の部材により光が吸収されることがないので、光取出し効率が向上する。また、透光部材1に蛍光体が含まれる場合は、他の部材を介する場合と比較して蛍光体で生じる熱を放散しやすくすることができる。 Although another light-transmitting member may be interposed between the light-transmitting member 1 and the light-reflecting member 2, in the present embodiment, the light-transmitting member 1 is in contact with the side surface of the light-reflecting member 2. .. That is, the light transmitting member 1 and the light reflecting member 2 are in direct contact with each other without interposing other members. As a result, the light is not absorbed by other members, so that the light extraction efficiency is improved. Further, when the translucent member 1 contains a phosphor, the heat generated by the phosphor can be easily dissipated as compared with the case where the translucent member 1 is used through the other members.

本実施形態では、蛍光体セラミックスとして、蛍光体と無機材料からなる結着剤とを含むものを用いている。具体的には、蛍光体としてYAG(Yttrium Aluminum Garnet)系蛍光体を用いており、結着剤として酸化アルミニウムを用いている。また、光反射部材2として、酸化アルミニムを主成分として含む材料を用いている。
このように、透光部材1に含まれる結着剤に光反射部材2と同じ材料を含む場合は、透光部材1と光反射部材2との密着力を高くすることができる。
In the present embodiment, as the fluorescent ceramics, those containing a fluorescent material and a binder made of an inorganic material are used. Specifically, a YAG (Yttrium Aluminum Garnet) -based phosphor is used as the phosphor, and aluminum oxide is used as the binder. Further, as the light reflecting member 2, a material containing aluminum oxide as a main component is used.
As described above, when the binder contained in the light transmitting member 1 contains the same material as the light reflecting member 2, the adhesion between the light transmitting member 1 and the light reflecting member 2 can be increased.

蛍光体としては、透光部材1と光反射部材2との密着力を高くするために、光反射部材2の線膨張係数に近い線膨張係数を有する蛍光体を用いることが好ましい。光反射部材2として酸化アルミニウムを主成分として含む材料を用いる場合は、これに近い線膨張係数を有する蛍光体として、YAG系蛍光体が挙げられる。YAG系蛍光体には、例えばYの少なくとも一部をTbに置換したものや、Yの少なくとも一部をLuに置換したものも含まれる。また、YAG系蛍光体は、組成中にGdやGa等が含まれるものであってもよい。蛍光体にYAG系蛍光体を用い、光反射部材2に酸化アルミニウムを用いる場合、同様の理由により、透光部材1に含まれる結着剤は、酸化アルミニウムであることが好ましい。結着剤としては、他にも、例えば、賦活剤を含まないYAG、酸化イットリウムを用いることができる。結着剤を含むことにより、蛍光体の含有量を調整することができるため、透光部材1から出ていく光の色を調整しやすくすることができる。 As the phosphor, it is preferable to use a phosphor having a linear expansion coefficient close to the linear expansion coefficient of the light reflecting member 2 in order to increase the adhesion between the light transmitting member 1 and the light reflecting member 2. When a material containing aluminum oxide as a main component is used as the light reflecting member 2, a YAG-based phosphor can be mentioned as a phosphor having a linear expansion coefficient close to this. The YAG-based phosphor also includes, for example, one in which at least a part of Y is replaced with Tb and one in which at least a part of Y is replaced with Lu. Further, the YAG-based phosphor may contain Gd, Ga or the like in the composition. When a YAG-based phosphor is used as the phosphor and aluminum oxide is used as the light reflecting member 2, the binder contained in the light transmitting member 1 is preferably aluminum oxide for the same reason. As the binder, for example, YAG and yttrium oxide that do not contain an activator can be used. By including the binder, the content of the phosphor can be adjusted, so that the color of the light emitted from the translucent member 1 can be easily adjusted.

透光部材1としては、他にも、蛍光体を含まないサファイア、透光性アルミナ、石英などを用いることができる。透光部材1に蛍光体が含まれない場合でも、透光部材1で散乱等した光を光反射部材2の第1領域2aで効率よく反射させることができるとともに、光反射部材2の第2領域2bで光学部品10の強度を確保することができる。 As the translucent member 1, sapphire, translucent alumina, quartz or the like that does not contain a phosphor can also be used. Even when the light transmitting member 1 does not contain a phosphor, the light scattered by the light transmitting member 1 can be efficiently reflected in the first region 2a of the light reflecting member 2, and the second light reflecting member 2 can be reflected. The strength of the optical component 10 can be secured in the region 2b.

本実施形態では、透光部材1は、四角柱であり、その上面が一方向に長い長方形である。この他にも、円柱、多角柱、多角錘台、円錐台とすることができ、中でも円柱又は円錐台とすることが好ましい。円柱又は円錐台の場合は、第1領域2aの幅(上面から見て、円形状である透光部材1の中心を通る直線と第1領域2aとが重なった部分の長さ)を一定に近づけることができるため、発光むらを低減しやすくすることができる。 In the present embodiment, the translucent member 1 is a quadrangular prism, and its upper surface is a rectangle long in one direction. In addition to this, a cylinder, a polygonal prism, a truncated cone, and a truncated cone can be used, and among them, a cylinder or a truncated cone is preferable. In the case of a cylinder or a truncated cone, the width of the first region 2a (the length of the portion where the straight line passing through the center of the translucent member 1 which is circular when viewed from the upper surface and the first region 2a overlap) is made constant. Since it can be brought closer, it is possible to easily reduce uneven light emission.

(光反射部材2)
光反射部材2は、透光部材1を取り囲むように透光部材1の側方に設けられている。言い換えると、光反射部材2には上下方向に貫通する貫通孔が設けられており、貫通孔の内部に透光部材1が設けられている。そして、透光部材1の上面及び透光部材1の下面が光反射部材2から露出している。
(Light reflecting member 2)
The light reflecting member 2 is provided on the side of the light transmitting member 1 so as to surround the light transmitting member 1. In other words, the light reflecting member 2 is provided with a through hole penetrating in the vertical direction, and the light transmitting member 1 is provided inside the through hole. The upper surface of the light transmitting member 1 and the lower surface of the light transmitting member 1 are exposed from the light reflecting member 2.

光反射部材2は、複数の空隙を含むセラミックスからなる。透光部材1と光反射部材2とを横切る一断面において、複数の空隙は透光部材1の近傍に偏在している。つまり、第1気孔率の第1領域2aと、第1気孔率よりも気孔率が低い第2気孔率の第2領域2bと、を透光部材1に近い側から順に有する。仮に、光反射部材の全体の気孔率を低くすると、強度は高くなるものの透過率が低下してしまう。これは光反射部材2の内部における界面が減るため、光反射部材2の内部に入射した光が伝搬しやすくなるためである。また、仮に、光反射部材の全体の気孔率を高くすると、透過率は低くなるものの強度が低下してしまう。これに対して、本実施形態では、透光部材1に接するようにして気孔率が比較的高い第1領域2aを設けることにより、透光部材1の近傍では光を効率的に反射させている。さらに、第1領域2aの外側においては、気孔率が比較的低い第2領域2bを設けることにより、強度を向上させるとともに、放熱性を向上させている。なお、本明細書において、第1領域2aと第2領域2bとは同じ部材の中にあり、同じ組成を有するものである。つまり、異なる部材同士が接合されているものは本明細書における第1領域2a及び第2領域2bではない。これにより、異なる部材同士が接合されている場合よりも、第1領域2aと第2領域2bとの間での剥離を起こりにくくすることができる。 The light reflecting member 2 is made of ceramics containing a plurality of voids. In one cross section crossing the light transmitting member 1 and the light reflecting member 2, a plurality of voids are unevenly distributed in the vicinity of the light transmitting member 1. That is, it has a first region 2a having a first porosity and a second region 2b having a second porosity having a porosity lower than that of the first porosity, in order from the side closer to the translucent member 1. If the overall porosity of the light reflecting member is lowered, the intensity is increased but the transmittance is lowered. This is because the interface inside the light reflecting member 2 is reduced, so that the light incident on the inside of the light reflecting member 2 is easily propagated. Further, if the porosity of the entire light reflecting member is increased, the transmittance is lowered but the strength is lowered. On the other hand, in the present embodiment, the light is efficiently reflected in the vicinity of the translucent member 1 by providing the first region 2a having a relatively high porosity so as to be in contact with the translucent member 1. .. Further, on the outside of the first region 2a, the strength is improved and the heat dissipation is improved by providing the second region 2b having a relatively low porosity. In the present specification, the first region 2a and the second region 2b are in the same member and have the same composition. That is, what is joined to different members is not the first region 2a and the second region 2b in the present specification. As a result, peeling between the first region 2a and the second region 2b can be made less likely to occur than when different members are joined to each other.

透光部材1の全周囲において、第1領域2aの幅(上方から見て、光学部品10の中心部を通る直線と第1領域2aとが重なった部分の長さ)は直線における第2領域2bの幅(上方から見て、光学部品10の中心部を通る直線と第2領域2bとが重なった部分の長さ)よりも狭いことが好ましい。これにより、光反射部材2の強度を確保しやすくすることができる。 In the entire circumference of the translucent member 1, the width of the first region 2a (the length of the portion where the straight line passing through the central portion of the optical component 10 and the first region 2a overlap when viewed from above) is the second region in the straight line. It is preferably narrower than the width of 2b (the length of the portion where the straight line passing through the central portion of the optical component 10 and the second region 2b overlap when viewed from above). Thereby, it is possible to easily secure the strength of the light reflecting member 2.

第1領域2aの幅は、50μm以上300μm以下の範囲で設定することが好ましく、100μm以上250μm以下の範囲で設定することがより好ましい。50μm以上の範囲で設定することにより、光反射部材2に向かう光が透過することを低減しやすくすることができる。また、300μm以下の範囲で設定することにより、透光部材1として蛍光体を含む部材を用いる場合に、気孔率が低く放熱性が高い第2領域2bまでの距離を小さくすることができるため、蛍光体からの熱を放散しやすくすることができる。 The width of the first region 2a is preferably set in the range of 50 μm or more and 300 μm or less, and more preferably set in the range of 100 μm or more and 250 μm or less. By setting the range in the range of 50 μm or more, it is possible to easily reduce the transmission of light directed to the light reflecting member 2. Further, by setting in the range of 300 μm or less, when a member containing a phosphor is used as the translucent member 1, the distance to the second region 2b having low porosity and high heat dissipation can be reduced. The heat from the phosphor can be easily dissipated.

透光部材1の全周囲において第1領域2aの幅を一定とすることが好ましいが、本実施形態のように異なっていてもよい。一例として、光学部品10を上方から見たときに、透光部材1の外形及び光反射部材2の外形がともに矩形で、両者それぞれの中心部が一致し、且つ両者それぞれの一構成辺が互いに平行である場合を想定する。ここで、透光部材1の中心部を通り透光部材1の一構成辺に垂直をなす直線(以下「L1」という。)と第1領域2aとが重なった部分の距離を「D1a」とし、L1と第2領域2bとが重なった部分の距離を「D1b」とし、透光部材1の中心部を通りL1に垂直をなす直線(以下「L2」という。)と第1領域2aとが重なった部分の距離を「D2a」とし、L2と第2領域2bとが重なった部分の距離を「D2b」とする。この場合、例えば、D1aがD2aよりも大きければ、D1bをD2bよりも大きくすることが好ましい。第1領域2aの幅が大きければ第1領域2aで光を反射しやすくなる反面、強度が低下しやすくなる。しかし、このような場合であっても、幅が大きい第1領域2aの近傍に位置する第2領域2bの幅を大きくすることで、光学部品10としての強度の低下も抑制することができる。 It is preferable that the width of the first region 2a is constant over the entire circumference of the light transmitting member 1, but it may be different as in the present embodiment. As an example, when the optical component 10 is viewed from above, the outer shape of the light transmitting member 1 and the outer shape of the light reflecting member 2 are both rectangular, the central portions of both are coincident, and one constituent side of each is mutual. Assume that they are parallel. Here, the distance of the portion where the straight line (hereinafter referred to as “L1”) passing through the central portion of the translucent member 1 and perpendicular to one constituent side of the translucent member 1 and the first region 2a overlap is defined as “D1a”. , The distance of the portion where L1 and the second region 2b overlap is defined as "D1b", and the straight line (hereinafter referred to as "L2") passing through the central portion of the translucent member 1 and perpendicular to L1 and the first region 2a The distance between the overlapping portions is defined as "D2a", and the distance between the overlapping portions of L2 and the second region 2b is defined as "D2b". In this case, for example, if D1a is larger than D2a, it is preferable to make D1b larger than D2b. If the width of the first region 2a is large, the light is easily reflected in the first region 2a, but the intensity is likely to decrease. However, even in such a case, by increasing the width of the second region 2b located in the vicinity of the first region 2a having a large width, it is possible to suppress a decrease in the strength of the optical component 10.

図1Bに示すように、第1領域2aは透光部材1の側面の上端から下端に亘って配置されていることが好ましい。これにより、透光部材1の側面全域で光の透過を低減することができる。 As shown in FIG. 1B, it is preferable that the first region 2a is arranged from the upper end to the lower end of the side surface of the light transmitting member 1. As a result, it is possible to reduce the transmission of light over the entire side surface of the light transmitting member 1.

光反射部材2としては、酸化アルミニウムの他に、例えば、酸化ジルコニウム、酸化チタンを用いることができる。また、光反射部材2は、主材料と異なる材料からなる添加剤を含んでいてもよい。添加剤としては、酸化イットリム、酸化ジルコニウム、窒化ホウ素、酸化ルテチウム、酸化ランタンが挙げられる。これらの材料によれば、光反射部材2の光透過率を低減することができる。 As the light reflecting member 2, for example, zirconium oxide or titanium oxide can be used in addition to aluminum oxide. Further, the light reflecting member 2 may contain an additive made of a material different from the main material. Additives include itrim oxide, zirconium oxide, boron nitride, lutetium oxide, and lanthanum oxide. According to these materials, the light transmittance of the light reflecting member 2 can be reduced.

上述のとおり、第1領域2aは気孔率が高く、第2領域2bは気孔率が低い。例えば、後述する実施例で説明するように落射型の顕微鏡を用いて光学部品を暗視野観察することにより、気孔率が高い領域(第1領域)と気孔率が低い領域(第2領域)とを見分けることができる。他にも、光反射部材2を走査電子顕微鏡にて観察することで、気孔率の違いを把握することができる。なお、光反射部材2において、「複数の空隙が透光部材1に近い側に偏在している」とは、例えば、走査型電子顕微鏡(SEM)により観察したときの、透光部材1の表面と透光部材1の表面から300μmの線とで挟まれた領域における空隙の密度が、それよりも外側の領域における空隙の密度よりも高いことを指す As described above, the first region 2a has a high porosity, and the second region 2b has a low porosity. For example, by observing the optical component in a dark field using an epi-illumination microscope as described in Examples described later, a region having a high porosity (first region) and a region having a low porosity (second region) can be observed. You can tell. In addition, by observing the light reflecting member 2 with a scanning electron microscope, the difference in porosity can be grasped. In the light reflecting member 2, "a plurality of voids are unevenly distributed on the side close to the light transmitting member 1" means, for example, the surface of the light transmitting member 1 when observed with a scanning electron microscope (SEM). It means that the density of the voids in the region sandwiched by the line of 300 μm from the surface of the translucent member 1 is higher than the density of the voids in the region outside the region.

(その他)
透光部材1として蛍光体を含む部材を用いる場合は、透光部材1の上面、光反射部材2の上面、透光部材1の下面、及び光反射部材2の下面の少なくともいずれかに、透光性の放熱部材3が設けられていることが好ましい。第1領域2aでは気孔率が高いことにより放熱性が低下するおそれがあるが、放熱部材3を設けることにより透光部材1で生じる熱を放熱部材3で放散することができ、透光部材1の温度特性を向上させることができる。
放熱部材3は、排熱性の向上のために、透光部材1及び光反射部材2の少なくとも一方に、直接設けられていることが好ましい。ただし、透光部材1から放熱部材3に向かう光を反射させるフィルタ4を放熱部材3に設けている場合は、フィルタ4を介して間接的に透光部材1及び光反射部材2の少なくとも一方に設けられていてもよい。
(others)
When a member containing a phosphor is used as the light transmitting member 1, it is transparent to at least one of the upper surface of the light transmitting member 1, the upper surface of the light reflecting member 2, the lower surface of the light transmitting member 1, and the lower surface of the light reflecting member 2. It is preferable that the light radiating member 3 is provided. In the first region 2a, the heat dissipation may be lowered due to the high porosity, but by providing the heat dissipation member 3, the heat generated by the light transmission member 1 can be dissipated by the heat dissipation member 3, and the light transmission member 1 can be dissipated. It is possible to improve the temperature characteristics of.
It is preferable that the heat radiating member 3 is directly provided on at least one of the light transmitting member 1 and the light reflecting member 2 in order to improve the heat exhaust property. However, when the heat radiating member 3 is provided with a filter 4 that reflects light from the light transmitting member 1 toward the heat radiating member 3, at least one of the light transmitting member 1 and the light reflecting member 2 is indirectly provided via the filter 4. It may be provided.

次に、図2A〜図7Bを参照しながら、光学部品10の製造方法を説明する。 Next, a method of manufacturing the optical component 10 will be described with reference to FIGS. 2A to 7B.

光学部品10の製造方法は、上面、下面、及び側面を有する透光部材1を準備する工程と、透光部材1を取り囲むように透光部材1の側方に無機材料からなる光反射粉末を含む成形体2dを形成する工程と、光反射粉末の焼結体を含む光反射部材と透光部材とが一体に形成され、透光部材1及び光反射部材2を横切る一断面で、光反射部材2において透光部材1の近傍に複数の空隙が偏在するように成形体2dを焼結する工程と、を有する。 The method for manufacturing the optical component 10 includes a step of preparing a light-transmitting member 1 having an upper surface, a lower surface, and a side surface, and a light-reflecting powder made of an inorganic material on the side of the light-transmitting member 1 so as to surround the light-transmitting member 1. The step of forming the molded body 2d including the light reflecting member, and the light reflecting member including the sintered body of the light reflecting powder and the light transmitting member are integrally formed, and light is reflected in one cross section that crosses the light transmitting member 1 and the light reflecting member 2. The member 2 includes a step of sintering the molded body 2d so that a plurality of voids are unevenly distributed in the vicinity of the translucent member 1.

これにより、輝度の低下を低減し、且つ、強度を確保した光学部品10を容易に製造することができる。 As a result, it is possible to easily manufacture the optical component 10 that reduces the decrease in brightness and secures the strength.

以下で、光学部品10の製造方法に含まれる各工程について説明する。ここで、同一の名称、符号については、上記で説明したものと同一もしくは同質の部材を示しているため、重複した説明は適宜省略する。 Hereinafter, each step included in the manufacturing method of the optical component 10 will be described. Here, since the same names and symbols indicate members having the same or the same quality as those described above, duplicate description will be omitted as appropriate.

(透光部材1を準備する工程)
まず、上面、下面、及び側面を有する透光部材1を準備する。本実施形態では、複数の透光部材1を準備している。これにより、1回の焼結で複数の透光部材1を備える光学部品10を得ることができるため、量産性を向上させることができる。
(Step of preparing the translucent member 1)
First, a translucent member 1 having an upper surface, a lower surface, and a side surface is prepared. In this embodiment, a plurality of translucent members 1 are prepared. As a result, the optical component 10 including the plurality of translucent members 1 can be obtained by one sintering, so that mass productivity can be improved.

(透光部材1を支持部材40に仮止めする工程)
次に、図2A及び図2Bに示すように、透光部材1を支持部材40に仮止めする。これにより、光反射粉末を含む成形体2dを形成する工程において、透光部材1が転倒することを抑制することができる。また、隣り合う透光部材1の距離を一定に保つことができる。本実施形態では、透光部材1と支持部材40との間のみに樹脂を設け、透光部材1を支持部材40に仮止めしている。これにより、透光部材1及び成形体2dから支持部材40を除去する工程において、過度に力を入れることなく支持部材40を除去しやすくすることができる。なお、作業性を考慮すれば支持部材40を用いることが好ましいものの、必ずしも支持部材40を用いる必要はない。
(Step of temporarily fixing the translucent member 1 to the support member 40)
Next, as shown in FIGS. 2A and 2B, the translucent member 1 is temporarily fixed to the support member 40. As a result, it is possible to prevent the translucent member 1 from tipping over in the step of forming the molded body 2d containing the light-reflecting powder. In addition, the distance between adjacent translucent members 1 can be kept constant. In the present embodiment, resin is provided only between the translucent member 1 and the support member 40, and the translucent member 1 is temporarily fixed to the support member 40. Thereby, in the step of removing the support member 40 from the translucent member 1 and the molded body 2d, the support member 40 can be easily removed without applying excessive force. Although it is preferable to use the support member 40 in consideration of workability, it is not always necessary to use the support member 40.

支持部材40の材料は成形体2dを形成する工程において用いる方法に合わせて選択することができる。本実施形態では、スリップキャスト法(泥漿鋳込み成形法)により成形体2dを形成しているため、支持部材40として石膏を用いている。 The material of the support member 40 can be selected according to the method used in the step of forming the molded body 2d. In the present embodiment, since the molded body 2d is formed by the slip casting method (slurry casting molding method), gypsum is used as the support member 40.

成形体2dを形成する際にスリップキャスト法を用いる場合は、石膏の上面の全面に接着剤を塗布するとスラリーに含まれる水分を石膏に吸わせる際に、吸いムラができ、クラックが入るおそれがある。そこで、ここでは、透光部材1と支持部材40との間のみに樹脂を設けることにより、吸いムラを抑制している。樹脂としては、例えば、アクリル系のものを用いることができる。これにより、スラリーに含まれる結合剤と樹脂とが反応することにより樹脂に含まれる成分がスラリーに入ることを抑制することができる。 When the slip cast method is used to form the molded body 2d, if an adhesive is applied to the entire upper surface of the gypsum, uneven suction may occur and cracks may occur when the water contained in the slurry is absorbed by the gypsum. be. Therefore, here, uneven suction is suppressed by providing the resin only between the translucent member 1 and the support member 40. As the resin, for example, an acrylic resin can be used. As a result, it is possible to prevent the components contained in the resin from entering the slurry due to the reaction between the binder contained in the slurry and the resin.

透光部材1と隣り合う透光部材1とは、所定の間隔を置いて、支持部材40の上面に仮止めされている。ある透光部材1の側面から隣り合う透光部材1の側面までの距離は、例えば、1mm以上10mm以下の範囲とすることができる。1mm以上とすることにより、第2領域2bの幅を確保しやすく、10mm以下とすることにより、1回の焼結で得られる光学部品に含まれる透光部材1の数を増やすことができる。 The light-transmitting member 1 adjacent to the light-transmitting member 1 is temporarily fixed to the upper surface of the support member 40 at a predetermined interval. The distance from the side surface of a certain translucent member 1 to the side surface of the adjacent translucent member 1 can be, for example, in the range of 1 mm or more and 10 mm or less. When the width is 1 mm or more, the width of the second region 2b can be easily secured, and when the width is 10 mm or less, the number of the translucent members 1 included in the optical component obtained by one sintering can be increased.

(光反射粉末を含む成形体2dを形成する工程)
次に、図3A、図3B、図4A、及び図4Bに示すように、透光部材1を取り囲むように透光部材1の側方に無機材料からなる光反射粉末を含む成形体2dを形成する。本実施形態では、複数の透光部材1それぞれを取り囲むように透光部材1のそれぞれの側面に成形体2dを形成している。
(Step of forming molded body 2d containing light-reflecting powder)
Next, as shown in FIGS. 3A, 3B, 4A, and 4B, a molded body 2d containing a light-reflecting powder made of an inorganic material is formed on the side of the light-transmitting member 1 so as to surround the light-transmitting member 1. do. In the present embodiment, the molded body 2d is formed on each side surface of the translucent member 1 so as to surround each of the plurality of translucent members 1.

成形体2dは、スリップキャスト法、ドクターブレード法(シート成形法)、乾式成形法などを用いて成形することができる。ドクターブレード法を用いる場合は、具体的には、透光部材を覆うように添加剤を混ぜたスラリーをシート状に塗布した後に、スラリーがシート状に塗布されたグリーンシートを乾燥させて成形体を形成することができる。また、乾式成形法を用いる場合は、具体的には、透光部材を覆うように無機材料からなる光反射粉末を容器に充填し、光反射粉末を押圧することにより成形体を形成することができる。 The molded body 2d can be molded by using a slip casting method, a doctor blade method (sheet molding method), a dry molding method, or the like. When the doctor blade method is used, specifically, a slurry in which an additive is mixed so as to cover the translucent member is applied in a sheet form, and then a green sheet in which the slurry is applied in a sheet form is dried to form a molded product. Can be formed. When the dry molding method is used, specifically, a light-reflecting powder made of an inorganic material is filled in a container so as to cover the light-transmitting member, and the light-reflecting powder is pressed to form a molded body. can.

本実施形態では、スリップキャスト法により成形体2dを形成している。具体的には、まず、図3A及び図3Bに示すように、複数の透光部材1を取り囲む枠体50を支持部材40の上面に配置する。次に、枠体50の内側に光反射粉末を含むスラリー2cを塗布する。次に、スラリー2cに含まれる水分を石膏に吸わせる。石膏は水分を吸収する材料であるため、例えば室温で数時間程度放置すればよい。これにより、光反射粉末を含む成形体2dを形成している。このとき、透光部材1と成形体2dとは、完全に固着しているわけではないものの、一定の形に成形されている(以下、透光部材1と成形体2dとが一定の形に成形されたものを「複合体」という。)。スリップキャスト法を用いることにより、加圧せずに成形することができる。また、ドクターブレード法に比較してスラリーに含まれる有機物を少なくすることができる。これにより、成形密度を高くすることができるため、焼成時に光反射部材2にクラックが入る可能性を低減することができる。 In the present embodiment, the molded body 2d is formed by the slip casting method. Specifically, first, as shown in FIGS. 3A and 3B, a frame body 50 surrounding the plurality of translucent members 1 is arranged on the upper surface of the support member 40. Next, the slurry 2c containing the light-reflecting powder is applied to the inside of the frame body 50. Next, the gypsum is made to absorb the water contained in the slurry 2c. Since gypsum is a material that absorbs water, it may be left at room temperature for several hours, for example. As a result, the molded body 2d containing the light-reflecting powder is formed. At this time, the translucent member 1 and the molded body 2d are not completely fixed to each other, but are molded into a constant shape (hereinafter, the translucent member 1 and the molded body 2d are formed into a constant shape). The molded product is called a "complex"). By using the slip casting method, molding can be performed without pressurization. In addition, the amount of organic substances contained in the slurry can be reduced as compared with the doctor blade method. As a result, the molding density can be increased, so that the possibility of cracks in the light reflecting member 2 during firing can be reduced.

枠体50としては、離形性及び撥水性を有するものを用いることができる。これにより、枠体50の内側面に成形体2dが固着することを低減することができる。また、スラリー2cに含まれる水分が枠体50に吸水されることを抑制することができるため、枠体50近傍における成形体2dの成形密度のむらを低減することができる。本実施形態では、フッ素樹脂からなる枠体50を用いている。 As the frame body 50, one having releasability and water repellency can be used. As a result, it is possible to reduce the sticking of the molded body 2d to the inner surface of the frame body 50. Further, since it is possible to suppress the water contained in the slurry 2c from being absorbed by the frame body 50, it is possible to reduce the unevenness of the molding density of the molded body 2d in the vicinity of the frame body 50. In this embodiment, the frame body 50 made of fluororesin is used.

本実施形態のスラリー2cは、酸化アルミニウム及び酸化イットリウムを含む光反射粉末、分散剤、結合剤、並びに純水を含んでいる。スラリー2cの厚みは透光部材1の厚みよりも大きいことが好ましい。すなわち、スラリー2cが透光部材1の側面のみならず上面まで被覆していることが好ましい。透光部材とスラリーとの厚みを同じにすることは難しいため、透光部材の厚みがスラリーよりも厚くなる場合がある。この場合、後に説明する得られた光学部品10の一部を除去する工程において、研磨等の際に透光部材のみに力が加わるため透光部材が破損するおそれがある。そこで、本実施形態では、厚みを大きくすることで、透光部材1のみに力が加わることを抑制している。スラリー2cの厚みは光学部品10の厚みに対して、2倍以上4倍以下とすることが好ましい。2倍以上とすることにより、透光部材1と成形体2dとの剥離を抑制することができるため、透光部材1及び成形体2dから支持部材40を除去しやすくすることができる。また、4倍以下とすることにより、得られた光学部品10の一部を除去する工程において、除去する光学部品10の厚みを小さくすることができる。 The slurry 2c of the present embodiment contains a light-reflecting powder containing aluminum oxide and yttrium oxide, a dispersant, a binder, and pure water. The thickness of the slurry 2c is preferably larger than the thickness of the translucent member 1. That is, it is preferable that the slurry 2c covers not only the side surface of the translucent member 1 but also the upper surface. Since it is difficult to make the thickness of the translucent member and the slurry the same, the thickness of the translucent member may be thicker than that of the slurry. In this case, in the step of removing a part of the obtained optical component 10 described later, a force is applied only to the translucent member during polishing or the like, so that the translucent member may be damaged. Therefore, in the present embodiment, the force is suppressed from being applied only to the translucent member 1 by increasing the thickness. The thickness of the slurry 2c is preferably 2 times or more and 4 times or less the thickness of the optical component 10. By setting the number to 2 times or more, it is possible to suppress the peeling between the translucent member 1 and the molded body 2d, so that the support member 40 can be easily removed from the translucent member 1 and the molded body 2d. Further, by setting the value to 4 times or less, the thickness of the optical component 10 to be removed can be reduced in the step of removing a part of the obtained optical component 10.

(支持部材40を除去する工程)
次に、図4A及び図4Bに示すように、透光部材1及び成形体2dから支持部材40を除去する。透光部材1と支持部材40とは樹脂により仮止めされているが、透光部材1の下面の面積は比較的小さい。また、透光部材1と成形体2dとはある程度一体的に成形されている。これらの理由により、加熱によって樹脂を軟下させたり、過度に力を入れて引っ張らなくとも透光部材1と支持部材40とを分離させることができる。本実施形態では、支持部材40の上面から枠体50を除去し、その後、複合体を支持部材40から外している。
(Step of removing the support member 40)
Next, as shown in FIGS. 4A and 4B, the support member 40 is removed from the translucent member 1 and the molded body 2d. Although the translucent member 1 and the support member 40 are temporarily fixed with resin, the area of the lower surface of the translucent member 1 is relatively small. Further, the translucent member 1 and the molded body 2d are integrally molded to some extent. For these reasons, the translucent member 1 and the support member 40 can be separated without softening the resin by heating or pulling the resin with excessive force. In the present embodiment, the frame body 50 is removed from the upper surface of the support member 40, and then the composite is removed from the support member 40.

(脱脂工程)
次に、複合体に含まれる有機物(分散剤及び結合剤)を除去するために、成形体2dを焼結する温度よりも低い温度で加熱する。脱脂工程は、例えば、窒素雰囲気や大気雰囲気で行うことができる。脱脂のための加熱は、確実に有機物を除去するために、3時間以上行うことが好ましい。本実施形態では、脱脂工程と成形体2dを焼結する工程とを別の工程で行っているが、成形体2dを焼結する工程において、低い温度で一定の時間脱脂を行い、そのまま温度を高くして成形体2dを焼結してもよい。なお、成形体2dを形成する工程において乾式成形法を用いる場合は、この工程は不要である。
(Degreasing process)
Next, in order to remove the organic substances (dispersant and binder) contained in the composite, the molded product 2d is heated at a temperature lower than the temperature at which it is sintered. The degreasing step can be performed, for example, in a nitrogen atmosphere or an air atmosphere. Heating for degreasing is preferably performed for 3 hours or more in order to reliably remove organic substances. In the present embodiment, the degreasing step and the step of sintering the molded body 2d are performed in separate steps, but in the step of sintering the molded body 2d, degreasing is performed at a low temperature for a certain period of time, and the temperature is kept as it is. The molded product 2d may be sintered at a higher height. When the dry molding method is used in the step of forming the molded body 2d, this step is unnecessary.

(成形体2dを焼結する工程)
次に、光反射粉末の焼結体を含む光反射部材と透光部材とが一体に形成され、透光部材1及び光反射部材2を横切る一断面で、光反射部材2において透光部材1の近傍に複数の空隙が偏在するように成形体2dを焼結する。このような光反射部材2は、焼結温度や焼結時の加圧の程度で調整することができる。ここでは、図5A及び図5Bに示すように、成形体2dを押圧せずに焼結することにより、光反射粉末の焼結体と透光部材1とが一体になった光学部品10を得る。これにより、第1領域2aと、第2領域2bと、を透光部材1の側から順に有する光反射部材2を含む光学部品10とすることができる。第1領域2a及び第2領域2bは以下の理由で形成されていると考えられる。成形体2dを焼結する際に、光反射粉末は近くにある他の光反射粉末と結合しながら収縮する。このとき、透光部材1から遠い領域においては光反射粉末が全周にあるため、光反射粉末同士が結合しやすく気孔ができにくいが、透光部材1の近傍領域においては光反射粉末が外側にしかないため、光反射粉末同士が結合することができず気孔ができやすくなる。押圧せずに焼結することにより、このように光反射粉末同士が離れた状態が維持されたまま焼結が完了するため、透光部材1の近傍においては光反射部材2の気孔率が高くなると考えられる。
(Step of sintering molded body 2d)
Next, the light-reflecting member including the sintered body of the light-reflecting powder and the light-transmitting member are integrally formed, and the light-transmitting member 1 in the light-reflecting member 2 has a cross section that crosses the light-transmitting member 1 and the light-reflecting member 2. The molded body 2d is sintered so that a plurality of voids are unevenly distributed in the vicinity of the above. Such a light reflecting member 2 can be adjusted by adjusting the sintering temperature and the degree of pressurization during sintering. Here, as shown in FIGS. 5A and 5B, by sintering the molded body 2d without pressing it, an optical component 10 in which the sintered body of the light-reflecting powder and the translucent member 1 are integrated is obtained. .. As a result, the optical component 10 including the light reflecting member 2 having the first region 2a and the second region 2b in order from the side of the light transmitting member 1 can be formed. It is considered that the first region 2a and the second region 2b are formed for the following reasons. When the molded product 2d is sintered, the light-reflecting powder shrinks while being combined with other light-reflecting powders nearby. At this time, since the light-reflecting powder is on the entire circumference in the region far from the translucent member 1, the light-reflecting powders are likely to bond with each other and it is difficult to form pores, but the light-reflecting powder is outside in the region near the translucent member 1. Since there is only one, the light-reflecting powders cannot bind to each other and pores are likely to be formed. By sintering without pressing, the sintering is completed while the light-reflecting powders are maintained apart from each other in this way, so that the porosity of the light-reflecting member 2 is high in the vicinity of the light-transmitting member 1. It is considered to be.

蛍光体を含むセラミックスからなる透光部材1の周囲に、95.2重量%の酸化アルミニウムと4.8重量%の酸化イットリウムとを含む光反射粉末を有する成形体2dをスリップキャスト法により形成し、その後押圧せずに焼結した光学部品10を上面側から観察した二次電子像を図8Aに示す。二次電子像を測定する際には、二次電子像を測定するために蒸着によりカーボン膜を形成している。図8Aの第1領域2aは、第1領域2aに含まれる空隙に起因して第2領域2bよりも黒くなっている。また、図8Bに図8AのA領域のSEM画像を示し、図8Cに図8AのB領域のSEM画像を示す。図8Bでは透光部材1の近傍において気孔が多く存在しているのに対して、図8Cでは気孔がほぼなくなっている。これらの結果からわかるように、押圧することなく光反射粉末を焼結して光反射部材2を形成することにより、気孔率の異なる領域を有する光反射部材2を形成することができることを確認できた。 A molded body 2d having a light-reflecting powder containing 95.2% by weight of aluminum oxide and 4.8% by weight of yttrium oxide is formed around a translucent member 1 made of ceramics containing a phosphor by a slip casting method. A secondary electron image of the optical component 10 sintered without pressing is observed from the upper surface side, which is shown in FIG. 8A. When measuring the secondary electron image, a carbon film is formed by vapor deposition in order to measure the secondary electron image. The first region 2a of FIG. 8A is darker than the second region 2b due to the voids contained in the first region 2a. Further, FIG. 8B shows an SEM image of the A region of FIG. 8A, and FIG. 8C shows an SEM image of the B region of FIG. 8A. In FIG. 8B, many pores are present in the vicinity of the translucent member 1, whereas in FIG. 8C, the pores are almost eliminated. As can be seen from these results, it can be confirmed that the light reflecting member 2 having regions having different porosities can be formed by sintering the light reflecting powder without pressing to form the light reflecting member 2. rice field.

光反射性粉末として酸化アルミニウムを用いる場合は、焼結温度を、1200℃以上1800℃以下に設定することが好ましく、1400℃以上1500℃以下に設定することがより好ましい。1200℃以上に設定することにより、光反射部材2としての強度を確保することができる。また、1800℃以下に設定することにより、光反射部材2の透光性が高くなる可能性を低減することができる。 When aluminum oxide is used as the light-reflecting powder, the sintering temperature is preferably set to 1200 ° C. or higher and 1800 ° C. or lower, and more preferably 1400 ° C. or higher and 1500 ° C. or lower. By setting the temperature to 1200 ° C. or higher, the strength of the light reflecting member 2 can be ensured. Further, by setting the temperature to 1800 ° C. or lower, the possibility that the light transmissivity of the light reflecting member 2 becomes high can be reduced.

本実施形態では、大気雰囲気下で焼結している。焼結時間は、例えば、30分以上5時間以下の範囲で設定することが好ましく、2時間以上4時間以下の範囲で設定することがより好ましい。30分以上とすることにより、光反射部材2の強度を確保しやすくすることができる。また、5時間以下とすることにより、必要以上に焼結に時間をかけることを避けることができる。 In this embodiment, it is sintered in an air atmosphere. The sintering time is preferably set in the range of, for example, 30 minutes or more and 5 hours or less, and more preferably set in the range of 2 hours or more and 4 hours or less. By setting the time to 30 minutes or more, it is possible to easily secure the strength of the light reflecting member 2. Further, by setting the time to 5 hours or less, it is possible to avoid taking more time for sintering than necessary.

(光学部品10の一部を除去する工程)
この段階では、透光部材1の上面は光反射部材2で覆われている。そこで、図6A及び図6Bに示すように、透光部材1が露出するまで、光学部品10の上面側から光学部品10の一部を除去する。光学部品10の一部を除去する方法としては、研磨等が挙げられる。本実施形態は、一方側からのみ除去しているが、透光部材1の下面及び光反射部材2の下面の付着物を除去するために、さらに下面側から光学部品10の一部を除去してもよい。本実施形態では、透光部材1が多角柱状態であり、その角と接する部分には第1領域2aが無い、又は、上方から見て角と接する部分の第1領域2aの幅はそれ以外の部分の第1領域2aの幅よりも狭い。なお、本工程は必ずしも必要ではなく、例えば、成形体2dを焼結する工程で透光部材1の上面が光反射部材2の上面から露出した光学部品が得られている場合は本工程を省略してもよい。
(Step of removing a part of the optical component 10)
At this stage, the upper surface of the light transmitting member 1 is covered with the light reflecting member 2. Therefore, as shown in FIGS. 6A and 6B, a part of the optical component 10 is removed from the upper surface side of the optical component 10 until the translucent member 1 is exposed. Examples of the method for removing a part of the optical component 10 include polishing and the like. In the present embodiment, only one side is removed, but in order to remove the deposits on the lower surface of the light transmitting member 1 and the lower surface of the light reflecting member 2, a part of the optical component 10 is further removed from the lower surface side. You may. In the present embodiment, the translucent member 1 is in a polygonal column state, and there is no first region 2a in the portion in contact with the corner, or the width of the first region 2a in the portion in contact with the corner when viewed from above is other than that. It is narrower than the width of the first region 2a of the portion. This step is not always necessary. For example, if an optical component in which the upper surface of the light transmitting member 1 is exposed from the upper surface of the light reflecting member 2 is obtained in the step of sintering the molded body 2d, this step is omitted. You may.

(個片化する工程)
次に、図7A及び図7Bに示すように、1つの光学部品10が1つの透光部材1を含むように複数の光学部品10に個片化する。例えば、ブレードを用いて複数の光学部品10に個片化することができる。なお、本実施形態では、1つの光学部品10が1つの透光部材1を含むように個片化しているが、1つの光学部品10が複数の透光部材1を含むように個片化してもよい。また、本工程は必ずしも必要ではなく、例えば、成形体2dを焼結する工程又は光学部品10の一部を除去する工程で所望の光学部品10を得ることができている場合は、本工程を省略してもよい。
(Individualization process)
Next, as shown in FIGS. 7A and 7B, one optical component 10 is fragmented into a plurality of optical components 10 so as to include one translucent member 1. For example, a blade can be used to separate the optical components 10 into individual pieces. In the present embodiment, one optical component 10 is fragmented so as to include one translucent member 1, but one optical component 10 is fragmented so as to include a plurality of translucent members 1. May be good. Further, this step is not always necessary. For example, when a desired optical component 10 can be obtained by a step of sintering the molded body 2d or a step of removing a part of the optical component 10, this step is performed. It may be omitted.

<第2実施形態>
図9に、第2実施形態に係る光学部品20と発光素子60とを組み合わせた発光装置100の模式図を示す。光学部品20は、次に説明する事項以外は、光学部品10で説明した事項と実質的に同一である。
<Second Embodiment>
FIG. 9 shows a schematic view of a light emitting device 100 in which the optical component 20 and the light emitting element 60 according to the second embodiment are combined. The optical component 20 is substantially the same as the items described in the optical component 10 except for the items described below.

光学部品20は、透光部材1の下面及び光反射部材2の下面の双方に、透光部材1側から順に絶縁膜5及びフィルタ4を介して、放熱部材3が設けられている。透光部材1の下面又は光反射部材2の下面の一方に放熱部材3を設けてもよいが、本実施形態のように、放熱性を考慮して両者に放熱部材3を設けることが好ましい。なお、透光部材1の上面及び光反射部材2の上面の少なくとも一方に放熱部材を設けることもできるが、本実施形態のように、透光部材1の下面及び光反射部材2の下面の少なくとも一方に透光性の放熱部材3が設けられていることが好ましい。透光部材1に放熱部材3を接合する際に、研磨等によって透光部材1の表面を平坦にする場合があるが、この場合に研磨等のレート差により光反射部材2の第1領域2aが、透光部材1や第2領域2bよりも優先して除去されることがあり、その結果、第1領域2aが部分的に凹んで、溝が形成されることがある。したがって、仮に、透光部材の上面及び光反射部材の上面の少なくとも一方に放熱部材を設けようとすると、光取出し側となる上方において、第1領域にできた溝から光が抜けるため輝度が低下するおそれがある。そこで、本実施形態のように、透光部材1の下面及び光反射部材2の下面の少なくとも一方に放熱部材3を設けることが好ましい。 The optical component 20 is provided with a heat radiating member 3 on both the lower surface of the light transmitting member 1 and the lower surface of the light reflecting member 2 via an insulating film 5 and a filter 4 in this order from the light transmitting member 1 side. Although the heat radiating member 3 may be provided on one of the lower surface of the light transmitting member 1 and the lower surface of the light reflecting member 2, it is preferable to provide the heat radiating member 3 on both of them in consideration of heat dissipation as in the present embodiment. Although it is possible to provide a heat radiating member on at least one of the upper surface of the light transmitting member 1 and the upper surface of the light reflecting member 2, at least the lower surface of the light transmitting member 1 and the lower surface of the light reflecting member 2 as in the present embodiment. It is preferable that the light-transmitting heat-dissipating member 3 is provided on one side. When the heat radiating member 3 is joined to the light transmitting member 1, the surface of the light transmitting member 1 may be flattened by polishing or the like. In this case, the first region 2a of the light reflecting member 2 due to the rate difference such as polishing. However, it may be removed with priority over the light transmitting member 1 and the second region 2b, and as a result, the first region 2a may be partially recessed to form a groove. Therefore, if it is attempted to provide a heat radiating member on at least one of the upper surface of the light transmitting member and the upper surface of the light reflecting member, the brightness is lowered because the light escapes from the groove formed in the first region above the light extraction side. There is a risk of Therefore, as in the present embodiment, it is preferable to provide the heat radiating member 3 on at least one of the lower surface of the light transmitting member 1 and the lower surface of the light reflecting member 2.

光学部品20においては、透光部材1で生じる熱を放熱部材3に排熱することができるため、透光部材1の劣化を低減することができる。 In the optical component 20, since the heat generated by the translucent member 1 can be exhausted to the heat radiating member 3, deterioration of the translucent member 1 can be reduced.

本実施形態では、フィルタ4として、発光素子60からの光を透過しやすく、透光部材1の蛍光を反射しやすいものを用いている。本実施形態では、発光素子60として青色光を発するものを用いており、透光部材1として青色光が照射されることにより黄色光を発する蛍光体を含むものを用いている。したがって、青色光を透過しやすく黄色光を反射しやすいフィルタ4を用いている。 In the present embodiment, as the filter 4, a filter 4 that easily transmits the light from the light emitting element 60 and easily reflects the fluorescence of the light transmitting member 1 is used. In the present embodiment, a light emitting element 60 that emits blue light is used, and a light transmitting member 1 that includes a phosphor that emits yellow light when irradiated with blue light is used. Therefore, the filter 4 that easily transmits blue light and easily reflects yellow light is used.

本実施形態では、フィルタ4と透光部材1の下面及び光反射部材2の下面とは絶縁膜5を介して接合されている。本実施形態では、フィルタ4と透光部材1等とを表面活性化接合法により接合するために、透光部材1の下面および光反射部材2の下面を研磨している。このとき、透光部材1と光反射部材2と研磨レートの差により、透光部材1と光反射部材2との境目の近傍に溝ができる。溝があるまま表面活性化接合法を行うと、透光部材1と放熱部材3との間に隙間ができるため、放熱性が低下するおそれがある。このため、絶縁膜5で溝を埋めて、放熱性の低下を低減している。 In the present embodiment, the filter 4 and the lower surface of the light transmitting member 1 and the lower surface of the light reflecting member 2 are joined via an insulating film 5. In the present embodiment, in order to join the filter 4 and the light transmitting member 1 and the like by the surface activation joining method, the lower surface of the light transmitting member 1 and the lower surface of the light reflecting member 2 are polished. At this time, a groove is formed in the vicinity of the boundary between the light transmitting member 1 and the light reflecting member 2 due to the difference in polishing rate between the light transmitting member 1 and the light reflecting member 2. If the surface activation joining method is performed with the grooves, a gap is formed between the light transmitting member 1 and the heat radiating member 3, so that the heat radiating property may be deteriorated. Therefore, the groove is filled with the insulating film 5 to reduce the decrease in heat dissipation.

本実施形態では、絶縁膜5として、酸化アルミニウムを用いている。この他にも、例えば、酸化ケイ素、酸化チタンを用いることができる。絶縁膜5は、放熱性の低下を抑制するために、溝を埋める程度の膜厚で形成することが好ましい。なお、本実施形態では表面活性化接合法によりフィルタ4と透光部材1とを接合しているが、原子拡散接合法を用いて接合してもよい。この場合は、フィルタの上面と透光部材の下面とにそれぞれ金属膜を形成し、金属膜同士を接合することにより、フィルタと透光部材とを接合する。 In this embodiment, aluminum oxide is used as the insulating film 5. In addition to this, for example, silicon oxide and titanium oxide can be used. The insulating film 5 is preferably formed with a film thickness sufficient to fill the groove in order to suppress a decrease in heat dissipation. In the present embodiment, the filter 4 and the translucent member 1 are bonded by the surface activation bonding method, but the filter 4 and the translucent member 1 may be bonded by the atomic diffusion bonding method. In this case, a metal film is formed on the upper surface of the filter and the lower surface of the translucent member, respectively, and the metal films are bonded to each other to bond the filter and the translucent member.

図9に示す発光装置100では、発光素子60としてレーザ素子(Laser Diode、LD)を用いている。LDは、LDからの光が光学部品20に含まれる透光部材1を通過するように、光学部品20と離間して配置されている。透光部材1として蛍光体を含む蛍光体セラミックスを用い、且つ、発光素子60としてLDを用いる場合は、透光部材1からの排熱の必要性が増す。このため、放熱部材3を設けることによる排熱性向上の効果がより顕著となる。 In the light emitting device 100 shown in FIG. 9, a laser element (Laser Diode, LD) is used as the light emitting element 60. The LD is arranged apart from the optical component 20 so that the light from the LD passes through the translucent member 1 included in the optical component 20. When phosphor ceramics containing a phosphor are used as the light transmitting member 1 and LD is used as the light emitting element 60, the need for exhaust heat from the light transmitting member 1 increases. Therefore, the effect of improving the heat exhaust property by providing the heat radiating member 3 becomes more remarkable.

<第3実施形態>
図10Aに、第3実施形態に係る光学部品30と発光素子60とを組み合わせた発光装置200の上面図を示し、図10Bに図10Aの10B−10B線における断面図を示す。光学部品30は、次に説明する事項以外は、光学部品10で説明した事項と実質的に同一である。
<Third Embodiment>
FIG. 10A shows a top view of a light emitting device 200 in which the optical component 30 and the light emitting element 60 according to the third embodiment are combined, and FIG. 10B shows a cross-sectional view taken along the line 10B-10B of FIG. 10A. The optical component 30 is substantially the same as the items described in the optical component 10 except for the items described below.

光学部品30は、1つの光学部品30に複数の透光部材1が含まれている。そして、光反射部材2は、各透光部材1の周囲に第1領域2aを有し、その外側に第2領域2bを有している。 The optical component 30 includes a plurality of translucent members 1 in one optical component 30. The light reflecting member 2 has a first region 2a around each light transmitting member 1 and a second region 2b outside the first region 2a.

図10A及び図10Bに示す発光装置200では、基板70の上面に複数の発光素子60が設けられている。発光装置200では、発光素子60として発光ダイオード(Light Emitting Diode,LED)が用いられている。そして、1つの発光素子60の上面に1つの透光部材1が位置するように、複数の発光素子60の上面に1つの光学部品30が配置されている。また、発光素子60の周囲には光反射性樹脂80が配置されている。 In the light emitting device 200 shown in FIGS. 10A and 10B, a plurality of light emitting elements 60 are provided on the upper surface of the substrate 70. In the light emitting device 200, a light emitting diode (Light Emitting Diode, LED) is used as the light emitting element 60. Then, one optical component 30 is arranged on the upper surface of the plurality of light emitting elements 60 so that one translucent member 1 is located on the upper surface of the one light emitting element 60. Further, a light reflecting resin 80 is arranged around the light emitting element 60.

発光装置200では、1つの発光素子60からの光が1つの透光部材1を通過するように配置しているが、2以上の発光素子からの光が1つの透光部材を通過するように光学部品及び発光素子を配置してもよい。 In the light emitting device 200, the light from one light emitting element 60 is arranged so as to pass through one light transmitting member 1, but the light from two or more light emitting elements passes through one light transmitting member. Optical components and light emitting elements may be arranged.

<実施例>
以下の製造方法により光学部品を作製した。まず、透光部材1として、短辺が500μm、長辺が1000μm、高さが600μmの直方体の蛍光体セラミックスを準備した。
蛍光体セラミックスとしては、YAG蛍光体と酸化アルミニウムとを含む、焼結体からなる蛍光体セラミックスを用いた。
<Example>
Optical parts were manufactured by the following manufacturing methods. First, as the translucent member 1, a rectangular parallelepiped fluorescent ceramic having a short side of 500 μm, a long side of 1000 μm, and a height of 600 μm was prepared.
As the phosphor ceramic, phosphor ceramic made of a sintered body containing a YAG phosphor and aluminum oxide was used.

次に、スリップキャスト法により成形体2dを形成した。具体的には、以下の方法により成形体2dを形成した。まず、アクリル系の樹脂シートに蛍光体セラミックスを配置し、加圧することにより蛍光体セラミックスの下面にアクリル系の樹脂を転写した。そして、支持部材40である石膏の上面に樹脂を介して蛍光体セラミックスの下面を仮止めした。そして、蛍光体セラミックスを取り囲むように、支持部材40の上面に内径が30mmのテフロン(登録商標)リングからなる枠体50を固定した。次に、透光部材1の上面が見えなくなるまで枠体50の内側にスラリー2cを充填した。スラリー2cとしては、光反射粉末を76.4%、分散剤を0.7%、結合剤を2.4%、純水を20.5%含むものを用いた。光反射粉末は、95.2重量%の酸化アルミニウムと、4.8重量%の酸化イットリウムと、を含む。また、分散剤はポリカルボン酸アンモニウム系の材料を含み、結合剤としてはアクリル系の材料を含む。そして、1晩放置して、スラリー2cに含まれる水分を石膏に吸わせることにより、成形体2dを形成した。つまり、蛍光体セラミックスと成形体2dとが一定の形に成形された複合体を形成した。 Next, the molded body 2d was formed by the slip casting method. Specifically, the molded body 2d was formed by the following method. First, the phosphor ceramics were placed on an acrylic resin sheet, and the acrylic resin was transferred to the lower surface of the phosphor ceramics by applying pressure. Then, the lower surface of the phosphor ceramic was temporarily fixed to the upper surface of the gypsum which is the support member 40 via the resin. Then, a frame body 50 made of a Teflon (registered trademark) ring having an inner diameter of 30 mm was fixed to the upper surface of the support member 40 so as to surround the fluorescent ceramics. Next, the slurry 2c was filled inside the frame 50 until the upper surface of the translucent member 1 became invisible. As the slurry 2c, a slurry containing 76.4% of a light-reflecting powder, 0.7% of a dispersant, 2.4% of a binder, and 20.5% of pure water was used. The light-reflecting powder contains 95.2% by weight of aluminum oxide and 4.8% by weight of yttrium oxide. The dispersant contains an ammonium polycarboxylic acid-based material, and the binder includes an acrylic-based material. Then, it was left overnight to allow the gypsum to absorb the water contained in the slurry 2c to form the molded product 2d. That is, a composite in which the fluorescent ceramics and the molded body 2d were molded into a constant shape was formed.

次に、枠体50を外した後に、複合体を支持部材40から外した。このとき、蛍光体セラミックスの下面と石膏とは接着剤により仮止めされているが、蛍光体セラミックスの下面の面積が比較的小さいため複合体を支持部材40から外すことができる。そして、複合体を、窒素雰囲気下で700℃で3時間加熱することにより脱脂した。次に、1450℃で2時間焼成した。これにより、蛍光体セラミックスと光反射部材2とが一体になっており、蛍光体セラミックスの側面及び上面が光反射部材2に覆われた光学部品を得た。次に、得られた光学部品を蛍光体セラミックスの上面が露出するまで上面側から研磨した。これにより、上方から見て、蛍光体セラミックスが光反射部材2に取り囲まれた光学部品が得られた。 Next, after removing the frame body 50, the composite body was removed from the support member 40. At this time, the lower surface of the fluorescent ceramics and the gypsum are temporarily fixed with an adhesive, but since the area of the lower surface of the phosphor ceramics is relatively small, the composite can be removed from the support member 40. Then, the complex was degreased by heating at 700 ° C. for 3 hours in a nitrogen atmosphere. Next, it was calcined at 1450 ° C. for 2 hours. As a result, the phosphor ceramic and the light reflecting member 2 are integrated, and an optical component in which the side surface and the upper surface of the phosphor ceramic are covered with the light reflecting member 2 is obtained. Next, the obtained optical component was polished from the upper surface side until the upper surface of the phosphor ceramic was exposed. As a result, when viewed from above, an optical component in which the fluorescent ceramics were surrounded by the light reflecting member 2 was obtained.

得られた光学部品について、落射型の顕微鏡を用いて暗視野観察を行った写真を図11に示す。図11において、中心にある長方形の部材が透光部材1であり、その外側にあるのが光反射部材2である。光反射部材2において、黒色の部分が第1領域2aであり、その外側の領域が第2領域2bである。図11に示すように、第1領域2aでは、気孔率が高いことから気孔に起因して影になって写る部分が多いために黒色に見えており、第2領域2bは気孔率が低いため影が少なく色が付いていないと考えられる。 FIG. 11 shows a photograph of the obtained optical component obtained by dark-field observation using an epi-illumination microscope. In FIG. 11, the rectangular member at the center is the light transmitting member 1, and the light reflecting member 2 is outside the light transmitting member 1. In the light reflecting member 2, the black portion is the first region 2a, and the outer region thereof is the second region 2b. As shown in FIG. 11, in the first region 2a, since the porosity is high, there are many shadows due to the pores, so that the second region 2b looks black, and the second region 2b has a low porosity. It is considered that there are few shadows and there is no color.

各実施形態に記載の光学部品は、照明、車両用灯具等に使用することができる。 The optical components described in each embodiment can be used for lighting, vehicle lamps, and the like.

1…透光部材
2…光反射部材
2a…第1領域
2b…第2領域
2c…スラリー
2d…成形体
3…放熱部材
4…フィルタ
5…絶縁膜
10、20、30…光学部品
40…支持部材
50…枠体
60…発光素子
70…基板
80…光反射性樹脂
100、200…発光装置
1 ... Light-transmitting member 2 ... Light-reflecting member 2a ... 1st region 2b ... 2nd region 2c ... Slurry 2d ... Molded body 3 ... Heat-dissipating member 4 ... Filter 5 ... Insulating film 10, 20, 30 ... Optical component 40 ... Support member 50 ... Frame 60 ... Light emitting element 70 ... Substrate 80 ... Light reflective resin 100, 200 ... Light emitting device

Claims (17)

上面、下面及び側面を有する透光部材と、
前記透光部材を取り囲むように前記透光部材の側方に設けられた光反射部材と、を備え、
前記光反射部材は、複数の空隙を含むセラミックスからなり、
前記光反射部材は、第1気孔率の第1領域と、前記第1気孔率よりも気孔率が低い第2気孔率の第2領域とを前記透光部材に近い側から順に有することを特徴とする光学部品。
A translucent member having an upper surface, a lower surface and a side surface,
A light reflecting member provided on the side of the translucent member so as to surround the transmissive member is provided.
The light reflecting member is made of ceramics containing a plurality of voids.
The light reflecting member, Rukoto to Yusuke a first region of a first porosity and a second region of a second porosity porosity is lower than the first porosity from the side closer to the light transmitting member in this order An optical component characterized by.
前記光反射部材は、前記透光部材の側面に接して設けられることを特徴とする請求項1に記載の光学部品。 The optical component according to claim 1, wherein the light reflecting member is provided in contact with a side surface of the translucent member. 前記透光部材は、蛍光体を含むセラミックス又は蛍光体の単結晶からなることを特徴とする請求項1又は2に記載の光学部品。 The optical component according to claim 1 or 2, wherein the translucent member is made of a ceramic containing a phosphor or a single crystal of the phosphor. 前記光反射部材は酸化アルミニウムを含むことを特徴とする請求項1〜3のいずれか1項に記載の光学部品。 The optical component according to any one of claims 1 to 3, wherein the light reflecting member contains aluminum oxide. 前記透光部材は、YAG系蛍光体を含む蛍光体セラミックス又はYAG系蛍光体の単結晶からなることを特徴とする請求項4に記載の光学部品。 The optical component according to claim 4, wherein the translucent member is made of a fluorescent ceramics containing a YAG-based phosphor or a single crystal of the YAG-based phosphor. 前記透光部材の下面及び前記光反射部材の下面の少なくとも一方に、直接又は間接的に、透光性の放熱部材が設けられていることを特徴とする請求項1〜5のいずれか1項に記載の光学部品。 Any one of claims 1 to 5, wherein a light-transmitting heat-dissipating member is directly or indirectly provided on at least one of the lower surface of the light-transmitting member and the lower surface of the light-reflecting member. Optical components described in. 第1領域の幅が、第2領域の幅より狭いことを特徴とする請求項1〜6のいずれか1項に記載の光学部品。The optical component according to any one of claims 1 to 6, wherein the width of the first region is narrower than the width of the second region. 第1領域の幅が50μm以上300μm以下であることを特徴とする請求項1〜7のいずれか1項に記載の光学部品。The optical component according to any one of claims 1 to 7, wherein the width of the first region is 50 μm or more and 300 μm or less. 請求項1から8のいずれか1項に記載の光学部品と、発光素子とを含むことを特徴とする発光装置。A light emitting device including the optical component according to any one of claims 1 to 8 and a light emitting element. 上面、下面、及び側面を有する透光部材を準備する工程と、
前記透光部材を取り囲むように前記透光部材の側方に無機材料からなる光反射粉末を含む成形体を形成する工程と、
前記光反射粉末の焼結体を含む光反射部材と前記透光部材とが一体に形成され、前記光反射部材が、第1気孔率の第1領域と、前記第1気孔率よりも気孔率が低い第2気孔率の第2領域とを前記透光部材に近い側から順に有するように前記成形体を焼結する工程と、を有する光学部品の製造方法。
The process of preparing a translucent member having an upper surface, a lower surface, and a side surface, and
A step of forming a molded body containing a light-reflecting powder made of an inorganic material on the side of the light-transmitting member so as to surround the light-transmitting member.
The light-reflecting member containing the sintered body of the light-reflecting powder and the light-transmitting member are integrally formed, and the light-reflecting member has a first region of a first porosity and a porosity higher than the first porosity. method of manufacturing an optical component and a step of sintering the shaped body to chromatic sequentially to the second region of the lower second porosity from the side closer to the light transmitting member.
前記成形体を焼結する工程において、前記成形体を押圧せずに焼結することを特徴とする請求項10に記載の光学部品の製造方法。 The method for manufacturing an optical component according to claim 10, wherein in the step of sintering the molded body, the molded body is sintered without pressing. 前記成形体を形成する工程において、スリップキャスト法により前記成形体を形成することを特徴とする請求項10又は11に記載の光学部品の製造方法。 The method for manufacturing an optical component according to claim 10 or 11, wherein in the step of forming the molded body, the molded body is formed by a slip casting method. 前記透光部材を準備する工程において、前記透光部材として、蛍光体を含む蛍光体セラミックス又は蛍光体の単結晶を準備することを特徴とする請求項10〜12のいずれか1項に記載の光学部品の製造方法。 The method according to any one of claims 10 to 12, wherein in the step of preparing the translucent member, a phosphor ceramic containing a phosphor or a single crystal of the phosphor is prepared as the translucent member. Manufacturing method of optical parts. 前記透光部材を準備する工程において、複数の透光部材を準備し、
前記成形体を形成する工程において、前記複数の透光部材それぞれを取り囲むように前記透光部材それぞれの側方に前記成形体を形成することを特徴とする請求項10〜13のいずれか1項に記載の光学部品の製造方法。
In the step of preparing the translucent member, a plurality of translucent members are prepared.
10. The method for manufacturing an optical component according to.
前記透光部材を準備する工程と前記成形体を形成する工程との間に、前記透光部材を支持部材に仮止めする工程であって、前記透光部材と前記支持部材との間のみに樹脂を設け、前記透光部材を前記支持部材に仮止めする工程を有し、
前記成形体を形成する工程と前記成形体を焼結する工程との間に、前記透光部材及び前記成形体から前記支持部材を除去する工程を有することを特徴とする請求項10〜14のいずれか1項に記載の光学部品の製造方法。
Between the step of preparing the translucent member and the step of forming the molded body, the step of temporarily fixing the transmissive member to the support member, only between the transmissive member and the support member. It has a step of providing a resin and temporarily fixing the translucent member to the support member.
10.14 of claims 10 to 14, wherein a step of removing the light-transmitting member and the support member from the molded body is provided between the step of forming the molded body and the step of sintering the molded body. The method for manufacturing an optical component according to any one item.
第1領域の幅が、第2領域の幅より狭いことを特徴とする請求項10〜15のいずれか1項に記載の光学部品の製造方法。The method for manufacturing an optical component according to any one of claims 10 to 15, wherein the width of the first region is narrower than the width of the second region. 第1領域の幅が50μm以上300μm以下であることを特徴とする請求項10〜16のいずれか1項に記載の光学部品の製造方法。The method for manufacturing an optical component according to any one of claims 10 to 16, wherein the width of the first region is 50 μm or more and 300 μm or less.
JP2019104439A 2017-03-03 2019-06-04 Optical parts and manufacturing method of optical parts Active JP6912737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021112541A JP7157356B2 (en) 2017-03-03 2021-07-07 Optical component and method for manufacturing optical component

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017040495 2017-03-03
JP2017040495 2017-03-03
JP2017125738 2017-06-28
JP2017125738 2017-06-28
JP2017204385A JP6544408B2 (en) 2017-03-03 2017-10-23 Optical component and method of manufacturing optical component

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017204385A Division JP6544408B2 (en) 2017-03-03 2017-10-23 Optical component and method of manufacturing optical component

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021112541A Division JP7157356B2 (en) 2017-03-03 2021-07-07 Optical component and method for manufacturing optical component

Publications (3)

Publication Number Publication Date
JP2019164376A JP2019164376A (en) 2019-09-26
JP2019164376A5 JP2019164376A5 (en) 2020-11-26
JP6912737B2 true JP6912737B2 (en) 2021-08-04

Family

ID=65029757

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2017204385A Active JP6544408B2 (en) 2017-03-03 2017-10-23 Optical component and method of manufacturing optical component
JP2019104439A Active JP6912737B2 (en) 2017-03-03 2019-06-04 Optical parts and manufacturing method of optical parts
JP2021112541A Active JP7157356B2 (en) 2017-03-03 2021-07-07 Optical component and method for manufacturing optical component

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017204385A Active JP6544408B2 (en) 2017-03-03 2017-10-23 Optical component and method of manufacturing optical component

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021112541A Active JP7157356B2 (en) 2017-03-03 2021-07-07 Optical component and method for manufacturing optical component

Country Status (1)

Country Link
JP (3) JP6544408B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7323763B2 (en) 2018-12-27 2023-08-09 日亜化学工業株式会社 Light-emitting device and method for manufacturing light-emitting device
US11205886B2 (en) 2019-03-12 2021-12-21 Nichia Corporation Method of manufacturing optical member, optical member, and light emitting device
JP7111989B2 (en) 2019-04-22 2022-08-03 日亜化学工業株式会社 Wavelength conversion component, method for manufacturing wavelength conversion component, and light emitting device
JP7189446B2 (en) * 2019-08-08 2022-12-14 日亜化学工業株式会社 Light-emitting device and method for manufacturing light-emitting device
JP2021152615A (en) * 2020-03-24 2021-09-30 スタンレー電気株式会社 Optical device
JP2021173925A (en) 2020-04-28 2021-11-01 日亜化学工業株式会社 Wavelength conversion member and method of manufacturing light-emitting device
CN112486021B (en) * 2020-12-07 2021-10-08 燕山大学 Low-complexity control method for asymmetric servo hydraulic position tracking system
US20230318254A1 (en) 2022-03-31 2023-10-05 Nichia Corporation Phosphor member, method of manufacturing phosphor member, and light-emitting device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5490407B2 (en) * 2005-03-14 2014-05-14 コーニンクレッカ フィリップス エヌ ヴェ Phosphor having a polycrystalline ceramic structure, and light emitting device having the phosphor
WO2011039911A1 (en) * 2009-10-02 2011-04-07 シャープ株式会社 Organic el lighting device and manufacturing method therefor
JP5695887B2 (en) * 2010-11-18 2015-04-08 スタンレー電気株式会社 Light source device and lighting device
JP5917183B2 (en) * 2012-02-17 2016-05-11 スタンレー電気株式会社 Light source device and lighting device
US8931922B2 (en) * 2012-03-22 2015-01-13 Osram Sylvania Inc. Ceramic wavelength-conversion plates and light sources including the same
JP2013207049A (en) * 2012-03-28 2013-10-07 Nec Corp Light emitting device using wavelength conversion body
JP6323020B2 (en) * 2014-01-20 2018-05-16 セイコーエプソン株式会社 Light source device and projector
JP2016027613A (en) * 2014-05-21 2016-02-18 日本電気硝子株式会社 Wavelength conversion member and light emitting device using the same
JP2016058624A (en) * 2014-09-11 2016-04-21 パナソニックIpマネジメント株式会社 Light-emitting device
JP2016213451A (en) * 2015-05-01 2016-12-15 日東電工株式会社 Manufacturing method for optical semiconductor element with phosphor layer-sealing layer

Also Published As

Publication number Publication date
JP6544408B2 (en) 2019-07-17
JP2021184093A (en) 2021-12-02
JP7157356B2 (en) 2022-10-20
JP2019009406A (en) 2019-01-17
JP2019164376A (en) 2019-09-26

Similar Documents

Publication Publication Date Title
JP6912737B2 (en) Optical parts and manufacturing method of optical parts
TWI673252B (en) Wavelength converting member and light emitting device using same
US10859216B2 (en) Optical component and method of manufacturing same
WO2017056470A1 (en) Wavelength conversion element and light emitting device
TW201205897A (en) Light emitting device and method of manufacturing the light emitting device
JP2012104267A (en) Light source device and lighting system
KR20180052560A (en) Wavelength conversion member and light-emitting device
WO2018016357A1 (en) Wavelength conversion member and light-emitting device using same
US10578957B2 (en) Fluorescent substrate, light source device, and projection display unit
JP6499381B2 (en) Phosphor element and lighting device
CN111699420B (en) Optical wavelength conversion device
US20170137328A1 (en) Method of making a ceramic wavelength converter assembly
JP2016157905A (en) Optical component
WO2017040433A1 (en) Laser-activated remote phosphor target and system
US20140166902A1 (en) Wavelength Conversion Body And Method For Manufacturing Same
JP5781367B2 (en) Light source device and lighting device
JP7189422B2 (en) WAVELENGTH CONVERSION MEMBER COMPOSITE, LIGHT-EMITTING DEVICE, AND METHOD OF MANUFACTURING WAVELENGTH CONVERSION MEMBER COMPOSITE
US20230299248A1 (en) Optical member, light-emitting device, method for manufacturing optical member, and method for manufacturing light-emitting device
WO2023166638A1 (en) Composite ceramic, phosphor element, laser illumination device, and method for manufacturing composite element
JP7053984B2 (en) Manufacturing method of optical parts and light emitting device, as well as optical parts and light emitting device
JP2023172001A (en) Wavelength conversion member and light-emitting device, and method for manufacturing wavelength conversion member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210621

R150 Certificate of patent or registration of utility model

Ref document number: 6912737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150