JP6911816B2 - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
JP6911816B2
JP6911816B2 JP2018115792A JP2018115792A JP6911816B2 JP 6911816 B2 JP6911816 B2 JP 6911816B2 JP 2018115792 A JP2018115792 A JP 2018115792A JP 2018115792 A JP2018115792 A JP 2018115792A JP 6911816 B2 JP6911816 B2 JP 6911816B2
Authority
JP
Japan
Prior art keywords
path
heat exchange
outflow
inflow
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018115792A
Other languages
English (en)
Other versions
JP2019219090A (ja
Inventor
靖樹 廣田
靖樹 廣田
山内 崇史
崇史 山内
忠史 吉田
忠史 吉田
亮 宮▲崎▼
亮 宮▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2018115792A priority Critical patent/JP6911816B2/ja
Publication of JP2019219090A publication Critical patent/JP2019219090A/ja
Application granted granted Critical
Publication of JP6911816B2 publication Critical patent/JP6911816B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱交換器に関する。
特許文献1に記載の熱交換器は、扁平形状に形成され、熱交換対象物と熱交換する熱媒体が内部を流通する流路管と、流路管の内部に配置され、熱交換対象物と熱媒体との伝熱面積を増大させる板状のインナーフィンと、を備えている。
特開2016−152302号公報
従来、熱交換器では、一方向に流れる流体(熱媒体)が、一方向に長く延びた熱交換路に一方向から流入し、熱交換路から一方向へ流出する。このように、熱交換路が一方向に長く延びているため、流体の圧力損失が高くなる。一方、流体の圧力損失を低下させるために、熱交換路の流路断面積を大きくすると、単位流量当たりの流体が熱交換部材(インナーフィン)と接触する接触面積が減ってしまう。これにより、流体から熱交換部材への伝熱量が減ってしまう。
本発明の課題は、一方向に流れる流体が一方向に長く延びた熱交換路に一方向から流入し、熱交換路から一方向へ流出する場合と比して、流体の圧力損失が高くなるのを抑制した上で、流体から熱交換部材への伝熱量を増やすことである。
第1態様に係る熱交換器は、一方向に延びていると共に端部から前記一方向に流れる流体が流入して前記一方向に流れる流入路と、前記一方向に対して交差する交差方向で前記流入路と離間して前記一方向に延びていると共に前記一方向に流れる流体が端部から流出する流出路との間に、前記一方向に並んで複数配置され、前記流入路と前記流出路とを前記交差方向に繋いでおり、熱交換対象部材と流体との間で熱交換するための熱交換部材で形成されている熱交換路であって、前記交差方向における長さをLとし、流路幅をW1とすると下記式(1)が満たされている前記熱交換路を有する熱交換器であって、前記流入路を前記一方向に流れる流体の流れを止め、流体を前記熱交換路に案内する案内部材を有することを特徴とする。
W1/2≦L≦5W1・・・・・(1)
上記構成によれば、流体は、一方向に延びている流入路の端部から流入路へ流入し、一方向へ流れる。さらに、流入路を流れる流体は、案内部材によって一方向への流れが止められ、流れ方向を変えて、一方向に並んで複数配置された熱交換路を夫々流れる(案内される)。また、熱交換路を形成している熱交換部材を介して、熱交換路を流れる流体と熱交換対象部品との間で熱交換が行われる。さらに、複数の熱交換路を夫々流れる流体は、流れ方向を変えて、一方向に延びている流出路へ流入し、流出路から流出する。
以上説明したように、熱交換路は複数設けられている。さらに、流入路から熱交換路へ流入する流体は、流れ方向を変えて熱交換路へ流入する。また、熱交換路から流出路へ流入する流体は、流れ方向を変えて流出路へ流入する。さらに、交差方向における熱交換路の長さをLとし、熱交換路の流路幅をW1とすると下記式(1)が満たされている。
W1/2≦L≦5W1・・・・・(1)
このため、一方向に流れる流体が一方向に長く延びた熱交換路に一方向から流入し、熱交換路から一方向へ流出する場合と比して、流体の圧力損失が高くなるのを抑制した上で、流体から熱交換部材への伝熱量を増やすことができる。
第2態様に係る熱交換器は、第1態様に記載の熱交換器において、前記一方向に流れる流体が前記流出路の端部から前記流出路に流入するのを抑制する抑制部材を有することを特徴とする。
上記構成によれば、抑制部材が、一方向に流れる流体が流出路の端部から流出路に流入するのを抑制する。つまり、熱交換路から流出路に流入する流体を妨げる流体が流出路に流入するのが抑制されている。このため、一方向に流れる流体が流出路の端部から流出路に流入する場合と比して、熱交換路を通過する流体の流量を増やすことができる。
第3態様に係る熱交換器は、第1態様又は第2態様に記載の熱交換器において、前記流入路を挟んで両側に、前記熱交換路及び前記流出路が夫々形成されていることを特徴とする。
上記構成によれば、流入路を挟んで両側に、熱交換路及び流出路が夫々形成されている。このため、流入路の片側だけに、熱交換路及び流出路が形成されている場合と比して、流体から熱交換部材への伝熱量を増やすことができる。
第4態様に係る熱交換器は、第1態様第3態様の何れか一態様に記載の熱交換器において、前記流入路は複数形成され、前記流出路は複数形成され、前記流入路と前記流出路とは交互に並んでいることを特徴とする。
上記構成によれば、流入路は複数形成され、流出路は複数形成され、流入路と流出路とは交互に並んでいる。このため、流出路及び流出路の少なくとも一方が1個である場合と比して、流体から熱交換部材への伝熱量を増やすことができる。
第5態様に係る熱交換器は、第1態様第4態様の何れか一態様に記載の熱交換器において、前記流入路において前記熱交換路が臨んでいる部分の流路幅は、流体が流れる流れ方向において上流側から下流側に向かって狭くなっていることを特徴とする。
上記構成によれば、流入路において熱交換路が臨んでいる部分の流路幅は、流体が流れる流れ方向において上流側から下流側に向かって狭くなっている。このため、流入路の流路幅が一定の場合と比して、流入路から、一の熱交換路へ流入する流体の流量と、他の熱交換路へ流入する流量との差を少なくすることができる。
第6態様に係る熱交換器は、第1態様第5態様の何れか一態様に記載の熱交換器において、前記流出路において前記熱交換路が臨んでいる部分の流路幅は、流体が流れる流れ方向において上流側から下流側に向かって広くなっていることを特徴とする。
上記構成によれば、流出路において熱交換路が臨んでいる部分の流路幅は、流体が流れる流れ方向において上流側から下流側に向かって広くなっている。このため、流出路の流路幅が一定の場合と比して、一の熱交換路から流出路へ流入する流体の流量と、他の熱交換路から流出路へ流入する流体の流量との差を少なくすることができる。
第7態様に係る熱交換器は、第1態様第6態様の何れか一態様に記載の熱交換器において、前記流入路、前記流出路、及び前記熱交換路は、平行な2枚の平面の間に形成されていることを特徴とする。
上記構成によれば、流入路、流出路、及び熱交換路は、平行な2枚の平面の間に形成されている。このため、管材を用いて、流入路、流出路、及び熱交換路を形成する場合と比して、簡易な構成で流入路、流出路、及び熱交換路を形成することができる。
本発明によれば、一方向に流れる流体が一方向に長く延びた熱交換路に一方向から流入し、熱交換路から一方向へ流出する場合と比して、流体の圧力損失が高くなるのを抑制した上で、流体から熱交換部材への伝熱量を増やすことができる。
本発明の第1実施形態に係る熱交換器を示した平面図である。 (A)(B)(C)本発明の第1実施形態に係る熱交換器を示した断面図である。 本発明の第1実施形態に係る熱交換器の特性を説明するのに用いた説明図である。 (A)(B)本発明の比較形態に係る熱交換器を示した平面図、断面図である。 本発明の第2実施形態に係る熱交換器を示した平面図である。 本発明の第3実施形態に係る熱交換器を示した平面図である。 本発明の第4実施形態に係る熱交換器を示した平面図である。 本発明の第4実施形態に係る熱交換器を示した拡大平面図である。 本発明の実施形態に対する変形形態に係る熱交換器を示した平面図である。
<第1実施形態>
本発明の第1実施形態に係る熱交換器の一例について図1〜図4を用いて説明する。なお、図中に示す矢印Hは、装置の上下方向(鉛直方向)を示し、矢印Wは、装置の幅方向(水平方向)を示し、矢印Dは、装置の奥行方向(水平方向)を示す。
(全体構成)
本第1実施形態に係る熱交換器10は、例えば、流体(熱媒体)としての給水G1と、熱交換対象部材(冷却対象部材)である電子部品Eとの間で熱交換するための装置である。具体的には、流体としての給水G1を用いて、電子部品Eを冷却する装置である。
この熱交換器10は、図1に示されるように、熱交換器10へ流入する給水G1が流れる流入路12と、熱交換が終了した排水G2が流れる流出路22とを有している。さらに、熱交換器10は、電子部品E(図2(B)参照)と給水G1との間で熱交換するための熱交換フィン34、36で形成されている熱交換路32を複数有している。熱交換フィン34、36は、アルミニウムや銅等の高い熱伝導性を有する金属製のプレートを積層し、これらのプレートを接合して構成されている板状の部材である。つまり、熱交換フィン34、36とは、例えば、熱伝導率70〔W/m・K〕以上の金属又は金属の積層体である。熱交換フィン34、36は、熱交換部材の一例である。
そして、流入路12、流出路22、及び熱交換路32は、図2(A)(B)(C)に示されるように、装置上下方向に離間すると共に平行な2枚の平面40A、42Aの間に形成されている。具体的には、熱交換器10は、装置上下方向に離間すると共に金属材料を用いて成形された2個の板材40、42を備えている。そして、板材40の流入路12、流出路22、及び熱交換路32側が平面40Aとされており、板材42の流入路12、流出路22、及び熱交換路32側が平面42Aとされている。
また、電子部品Eは、図2(B)に示されるように、熱交換路32に対して板材42を挟んで反対側で、板材42において平面42Aの反対側の平面42Bと接触している。
本実施形態では、平面間の距離(図中H1)は、熱交換路32の流路幅W1(詳細は後述)と比して長くされている。
〔流入路12〕
流入路12は、図1、図2(A)に示されるように、装置奥行方向に延びている。さらに、長手方向に対して直交する方向で切断した流入路12の形状は、矩形状とされており、装置奥行方向において同様の形状とされている。装置奥行方向は、一方向の一例である。
また、流入路12は、流入路12の装置幅方向の一方側(図中左側)の側板14Aと、流入路12の装置幅方向の他方側(図中右側)の側板14Bと、流入路12の装置奥行方向の奥側の底板16とを含んで形成されている。さらに、側板14A、14B、及び底板16は、金属材料を用いて成形されている。底板16は案内部材の一例である。
また、流入路12において装置幅方向の他方側には、熱交換路32の一端が臨んでいる。具体的には、流入路12において装置幅方向の他方側については、装置奥行方向の手前側から奥側に、側板14B、及び熱交換路32がこの順番で並んでいる。なお、本実施形態では、側板14Bの装置奥行方向の長さ、及び流入路12の流路幅(図2(A)のB1)は、熱交換路32の流路幅W1(詳細は後述)に対して±30〔%〕以内の長さとされている。
この構成において、給水G1は、流入路12において装置奥行方向の手前側の端部から流入し、流入路12を装置奥行方向の手前側から奥側へ流れる。
〔流出路22〕
流出路22は、図1、図2(C)に示されるように、装置幅方向で流入路12と離間し、装置奥行方向に延びている。さらに、長手方向に対して直交する方向で切断した流出路の形状は、矩形状とされており、装置奥行方向において同様の形状とされている。
また、流出路22は、流出路22の装置幅方向の他方側(流入路12とは反対側)の側板24Aと、流出路22の装置幅方向の一方側(流入路12側)の側板24Bと、流出路22の装置奥行方向の手前側の底板26とで形成されている。さらに、側板24A、24B、及び底板26は、金属材料を用いて形成されている。底板26は、抑制部材の一例である。
また、流出路22において装置幅方向の一方側には、熱交換路32の他端が臨んでいる。具体的には、流出路22において装置幅方向の一方側については、装置奥行方向の奥側から手前側に、側板24B、及び熱交換路32がこの順番で並んでいる。なお、本実施形態では、側板24Bの装置奥行方向の長さ、及び流出路22の流路幅(図2(C)のB2)は、熱交換路32の流路幅W1(詳細は後述)と同様の寸法とされている。
この構成において、排水G2は、流出路22を装置奥行方向の手前側から奥側へ流れ、流出路22において装置奥行方向の奥側の端部から流出する。また、底板26は、装置奥行方向に流れる流体が流出路22の端部から流出路22に流入するのを抑制する。
〔熱交換路32〕
熱交換路32は、図1、図2(B)に示されるように、装置奥行方向に並んで3個配置されており、流入路12と流出路22とを装置幅方向に繋いでいる。装置幅方向は、交差方向の一例である。
さらに、長手方向に対して直交する方向で切断した熱交換路32の形状は、矩形状とされており、装置幅方向において同様の形状とされている。そして、熱交換路32の一端は、流入路12に臨んでおり、熱交換路32の他端は、流出路22に臨んでいる。
熱交換路32は、熱交換路32の装置奥行方向の両側の熱交換フィン34、36で形成されている。熱交換フィン34は、隣り合う熱交換路32を仕切るように2個配置されている。また、熱交換フィン36は、装置奥行方向から2個の熱交換フィン34を挟むように2個配置されている。なお、以下の説明では、便宜上、3個の熱交換路32については、装置奥行方向の手前側から順に、熱交換路32A、熱交換路32B、熱交換路32Cと称することがある。
本実施形態では、熱交換フィン36の厚さは、一例として、2〔mm〕以上4〔mm〕以下とされており、熱交換フィン34の厚さは、熱交換フィン36の厚さの2倍とされている。また、熱交換路32の流路幅(図2(B)のW1)は、4〔mm〕以上8〔mm〕以下とされている。
さらに、熱交換路32の長さ(図1のL)と、熱交換路32の流路幅W1とについては、下記式(1)が満たされている。
W1/2≦L≦5W1・・・・・(1)
なお、熱交換路32の長さLは、熱交換路32の中心線と熱交換路32を形成している熱交換フィン34、36の一端を結んだ線との交点から、熱交換路32の中心線と熱交換路32を形成している熱交換フィン34、36の他端を結んだ線との交点までの長さである。
(作用)
次に、熱交換器10の作用について、比較形態に係る熱交換器500と比較しつつ説明する。先ず、比較形態に係る熱交換器500の構成について説明する。
〔熱交換器500の構成〕
熱交換器500は、図4(A)に示されるように、装置奥行方向に延びている熱交換路532を備えている。この熱交換路532は、図4(B)に示されるように、装置上下方向に離間すると共に平行な2枚の平面40A、42Aの間に形成されている。また、熱交換路532は、熱交換路532の装置幅方向の両側の熱交換フィン534を含んで形成されている。
熱交換フィン534は、アルミニウムや銅等の高い熱伝導性を有する金属製のプレートを積層し、これらのプレートを接合して構成されている板状の部材であり、熱交換フィン534の厚さは、熱交換器10の熱交換フィン36の厚さと同様とされている。また、熱交換路532の流路幅(図4(B)のB4)は、熱交換器10における熱交換路32の流路幅W1(図2(B)参照)と同様とされている。さらに、熱交換路532の長さ(図4のL10)については、熱交換器10における熱交換路32の長さL(図1参照)の3倍とされている。
つまり、熱交換路532の長さL10は、3個の熱交換路32の長さLの合計と同様とされており、熱交換器500の熱交換路532の流路容積は、熱交換器10の3個の熱交換路32における流路容積の合計と同様とされている。また、熱交換器500の熱交換路532を流れる給水G1と熱交換フィン534との接触面積は、熱交換器10の熱交換路32を流れる給水G1と熱交換フィン34、36との接触面積の合計と同様とされている。
また、電子部品Eは、熱交換路532に対して板材42を挟んで反対側で、板材42において平面42Aの反対側の平面42Bと接触するように配置されている。
〔熱交換器500の作用〕
給水G1は、図4(A)に示す熱交換路532の装置奥行方向の手前側の端部から熱交換路532へ流入する。本実施形態では、一例として、25〔℃〕の給水G1が、空間速度300〔h−1〕で熱交換路532へ流入する。
熱交換路532へ流入した給水G1は、熱交換路532を装置奥行方向の奥側へ流れる(図中矢印K1)。さらに、板材42及び熱交換フィン534を介して、熱交換路532を流れる給水G1と電子部品Eとの間で熱交換が行われる。これにより、電子部品Eが冷却される。また、熱交換が終了した排水G2が、熱交換路532の装置奥行方向の奥側の端部から流出する。
〔熱交換器10の作用〕
給水G1は、図1(A)に示す流入路12において装置奥行方向の手前側の端部から流入路12へ流入する。本実施形態では、一例として、25〔℃〕の給水G1が、空間速度300〔h−1〕で流入路12へ流入する。流入路12へ流入した給水G1は、流入路12を装置奥行方向の奥側へ流れる(図中矢印M1)。
流入路12を流れる給水G1の一部は、流れ方向を装置幅方向に変えて熱交換路32Aへ流入する(図中矢印M2)。また、熱交換路32Aへ流入した給水G1は、熱交換路32Aを装置幅方向へ流れる(図中矢印M3)。さらに、板材42及び熱交換フィン34、36を介して、熱交換路32Aを流れる給水G1と電子部品Eとの間で熱交換が行われる。
また、熱交換が終了した排水G2は、熱交換路32Aから流れ方向を装置奥行方向に変えて流出路22へ流入する(図中矢印M4)。流出路22へ流入した排水G2は、流出路22を装置奥行方向の奥側へ流れ、流出路22の装置奥行方向の奥側から流出する(図中矢印M5)。
また、流入路12を流れる給水G1の他の一部は、流れ方向を装置幅方向に変えて熱交換路32Bへ流入する(図中矢印M6)。また、熱交換路32Bへ流入した給水G1は、熱交換路32Aを装置幅方向へ流れる(図中矢印M7)。さらに、板材42及び一対の熱交換フィン34を介して、熱交換路32Bを流れる給水G1と電子部品Eとの間で熱交換が行われる。
また、熱交換が終了した排水G2は、熱交換路32Bから流れ方向を装置奥行方向に変えて流出路22へ流入する(図中矢印M8)。流出路22へ流入した排水G2は、流出路22を装置奥行方向の奥側へ流れ、流出路22の装置奥行方向の奥側から流出する(図中矢印M5)。
さらに、流入路12を流れる給水G1の残部は、底板16によって装置奥行方向への流れが止められて熱交換路32C側に案内される。そして、給水G1は、流れ方向を装置幅方向に変えて熱交換路32Cへ流入する(図中矢印M9)。また、熱交換路32Cへ流入した給水G1は、熱交換路32Cを装置幅方向へ流れる(図中矢印M10)。さらに、板材42及び熱交換フィン34、36を介して、熱交換路32Cを流れる給水G1と電子部品E(図2(B)参照)との間で熱交換が行われる。
また、熱交換が終了した排水G2は、熱交換路32Cから流れ方向を装置奥行方向に変えて流出路22へ流入する(図中矢印M11)。流出路22へ流入した排水G2は、流出路22を装置奥行方向の奥側へ流れ、流出路22の装置奥行方向の奥側から流出する(図中矢印M5)。
これにより、熱交換路32Aを単位時間当たりに流れる給水G1の流量、及び熱交換路32Bを単位時間当たりに流れる給水G1の流量は、熱交換器500の熱交換路532を単位時間当たりに流れる給水G1の流量と比して少なくなる。さらに、熱交換路32Cを単位時間当たりに流れる給水G1の流量は、熱交換器500の熱交換路532を単位時間当たりに流れる給水G1の流量と比して少なくなる。
また、熱交換路32A、32B、32Cの夫々の長さLは、熱交換器500の熱交換路532の長さL10の1/3とされている。このため、熱交換器10では、熱交換器500と比して、熱交換路32を流れる給水G1の圧力損失が高くなるのが抑制されている。
ここで、図3を用いて、一方向(図中左右方向)に延びた熱交換路632を流れる給水G1から熱交換フィン634へ熱が伝達される様子について説明する。
図3に示されるように、給水G1が熱交換路632に熱交換路632の一端(図中左端)から流入すると、熱交換フィン634側を流れる部分の給水G1の熱(温度の低い熱)が、熱交換フィン634に伝達される。つまり、熱交換フィン634側を流れる部分の給水G1の温度が高くなる。具体的には、温度が高くなった給水G1の部分が、給水G1の流れ方向の上流側から下流側に向かって増加する。
このため、温度が低いままの給水G1−1と、温度が高くなった給水G1−2とに境界層S1が生じる。この境界層S1と熱交換フィン634とは、給水G1の流れ方向の上流側から下流側に向かうに従って流路幅方向で離れ、何れ、境界層S1と熱交換フィン634との距離は一定となる(飽和する)。ここで、CFD(Computational Fluid Dynamics)解析を行いこの解析結果から得た知見に基づき、熱交換路632の流入口から、境界層S1と熱交換フィン634との距離が一定となる位置までの距離(図中L50)は、熱交換路632の流路幅(図中W50)の5倍程度である。
ここで、熱交換路632において流入口から流路幅W50の5倍の長さ以下の領域を領域R1とし、熱交換路632において流入口から流路幅W50の5倍の長さより長い領域を領域R2とする。そうすると、領域R1では、領域R2と比して、温度が低いままの給水G1−1と熱交換フィン634との距離が近く、給水G1の温度の低い熱が効果的に熱交換フィン634に伝達される(放熱される)。
また、単位流量当たりの給水G1が熱交換フィン634と接触する接触面積を確保する観点から、熱交換路632の長さは、熱交換路632の流入口から流路幅W50の半分の長さ以上であることが好ましい。
以上より、熱交換路632の長さは、給水G1の温度の低い熱を効果的に熱交換フィン634に伝達させる観点から、流路幅W50の半分の長さ以上で、かつ、流路幅W50の5倍の長さ以下であることが好ましい。
ここで、本実施形態では、熱交換器10の熱交換路32の長さLは、前述した式(1)を満たしている。つまり、熱交換路32の長さLは、流路幅W1の半分の長さ以上で、かつ、流路幅W1の5倍の長さ以下である。
また、熱交換器10では、図1に示されるように、流入路12を流れる給水G1は、流れ方向を装置幅方向に変えて熱交換路32へ流入する(図1の矢印M2、M6、M9)。このため、熱交換器10では、給水G1が流れ方向を変えずに熱交換路へ流入する場合と比して、前述した境界層S1の形成が開始される位置が、給水G1の流れ方向の下流側へ移動する。これにより、熱交換器10では、給水G1から熱交換フィン34、36への伝熱量が増えている。
また、熱交換器10では、図1に示されるように、熱交換路32を流れる排水G2は、流れ方向を装置幅方向に変えて流出路22へ流入する(図1の矢印M4、M8、M11)。このため、熱交換器10では、排水G2が流れ方向を変えずに熱交換路から流出する場合と比して、熱交換路32において排水G2の流れ方向の下流側の部分の境界層S1が乱される。これにより、熱交換器10では、給水G1から熱交換フィン34、36への伝熱量が増えている。
また、熱交換器10では、熱交換路32Aを流れる給水G1の流路長と、熱交換路32Bを流れる給水G1の流路長と、熱交換路32Cを流れる給水G1の流路長とが同様となる。このため、流路長が異なる場合と比して、給水G1から満遍なく熱が熱交換フィン34、36へ伝達される。
また、熱交換器10では、流入路12及び流出路22は、装置奥行方向に延びている。これにより、装置奥行方向へ流れる給水G1が流入路12へ流入し、熱交換が終了した排水G2が流出路22から装置奥行方向へ流出する。つまり、熱交換器10は、装置奥行方向から流入した給水G1を、排水G2として装置奥行方向へ流出させる。
(まとめ)
以上説明したように、熱交換器10では、熱交換器500と比して、熱交換路32を流れる給水G1の圧力損失が高くなるのを抑制した上で、給水G1から熱交換フィン34、36への伝熱量を増やすことができる。
また、熱交換器10では、前述したように、装置奥行方向から流入した給水G1を、排水G2として装置奥行方向へ流出させることができる。つまり、熱交換器10では、熱交換器10に流入する給水G1の流れ方向と、熱交換器10から流出する排水G2の流れ方向とを同様の方向にすることができる。
また、底板16が、流入路12を装置奥行方向に流れる給水G1の流れを止め、給水G1を熱交換路32に案内する。これにより、流入路12を流れる全ての給水G1の流れ方向を変えて、給水G1を熱交換路32へ流入させることができる。
底板26が、装置奥行方向に流れる給水G1等の流体が流出路22の端部から流出路22に流入するのを抑制する。つまり、熱交換路32から流出路22に流入する排水G2を妨げる流体が流出路22に流入するのが抑制されている。このため、装置奥行方向に流れる流体が流出路の端部から流出路に流入する場合と比して、熱交換路32を通過する排水G2の流量を増やすことができる。
また、流入路12、流出路22、及び熱交換路32は、平行な2枚の平面40A、42Aの間に形成されている。このため、管材を用いて、流入路、流出路、及び熱交換路を形成する場合と比して、簡易な構成で流入路12、流出路22、及び熱交換路32を形成することができる。
<第2実施形態>
本発明の第2実施形態に係る熱交換器の一例について図5を用いて説明する。なお、第2実施形態については、第1実施形態と異なる部分を主に説明する。
第2実施形態に係る熱交換器110は、図5に示されるように、装置奥行方向に延びている流入路12の中心線C1に対して対称とされている。具体的には、熱交換器110は、熱交換フィン34、36に対応した熱交換フィン134、136と、熱交換路32A、32B、32Cに対応した熱交換路132A、132B、132Cと、流出路22に対応した流出路122とを有している。さらに、熱交換器110は、側板24A、24Bに対応した側板124A、124Bと、底板26に対応した底板126と、側板14Bに対応した側板114Bとを有している。このように、流入路12を挟んで両側に、熱交換路32、132及び流出路22、122が夫々形成されている。
この構成において、給水G1は、熱交換器110の流入路12の装置奥行方向の手前側の端部から流入路12へ流入する(図中矢印M1)。
流入路12を流れる給水G1の一部は、流れ方向を装置幅方向に変えて熱交換路32A、132Aへ流入する(図中矢印M2−1、M2−2)。また、熱交換路32A、132Aへ流入した給水G1は、熱交換路32A、132Aを装置幅方向へ流れる(図中矢印M3−1、M3−2)。さらに、板材42及び熱交換フィン34、36、熱交換フィン134、136を介して、熱交換路32A、132Aを流れる給水G1と電子部品Eとの間で熱交換が行われる。
また、熱交換が終了した排水G2は、熱交換路32A、132Aから流れ方向を装置奥行方向に変えて流出路22、122へ流入する(図中矢印M4−1、M4−2)。流出路22、122へ流入した排水G2は、流出路22、122を装置奥行方向の奥側へ流れ、流出路22、122の装置奥行方向の奥側の端部から流出する(図中矢印M5−1、M5−2)。
また、流入路12を流れる給水G1の他の一部は、熱交換路32B、132Bへ流入する(図中矢印M6−1、M6−2)。熱交換路32B、132Bへ流入した給水G1は、熱交換路32B、132Bを流れる(図中矢印M7−1、M7−2)。さらに、板材42及び熱交換フィン34、熱交換フィン134を介して、熱交換路32B、132Bを流れる給水G1と電子部品Eとの間で熱交換が行われる。
また、熱交換が終了した排水G2は、熱交換路32B、132Bから流出路22、122へ流入する(図中矢印M8−1、M8−2)。流出路22、122へ流入した排水G2は、流出路22、122の装置奥行方向の奥側の端部から流出する(図中矢印M5−1、M5−2)。
また、流入路12を流れる給水G1の残部は、底板16によって装置奥行方向への流れが止められて熱交換路32C、132C側に案内される。そして、給水G1は、流れ方向を装置幅方向に変えて熱交換路32C、132Cへ流入する(図中矢印M9-1、M9-2)。熱交換路32C、132Cへ流入した給水G1は、熱交換路32C、132Cを流れる(図中矢印M10−1、M10−2)。さらに、板材42及び熱交換フィン34、36、熱交換フィン134、136を介して、熱交換路32C、132Cを流れる給水G1と電子部品Eとの間で熱交換が行われる。
また、熱交換が終了した排水G2は、熱交換路32C、132Cから流出路22、122へ流入する(図中矢印M11−1、M11−2)。流出路22、122へ流入した排水G2は、流出路22、122の装置奥行方向の奥側の端部から流出する(図中矢印M5−1、M5−2)。
以上説明したように、本第2実施形態の熱交換器110では、熱交換路32A、132A、熱交換路32B、132B、及び熱交換路32C、132Cが、装置幅方向におけて流入路12の両側に形成されている。このため、熱交換器10と比して、給水G1から熱交換フィン34、36、熱交換フィン134、136への伝熱量を増やすことができる。具体的には、給水G1が一方側にのみ流れ方向を変えて熱交換路32に流入する場合と比して、給水G1が一方側及び他方側に流れ方向を変えて熱交換路32、132に流入する。このため、給水G1と熱交換フィン34、36、熱交換フィン134、136とを効果的に接触させることができ、前述した伝熱量を増やすことができる。他の作用については、第1実施形態の作用と同様である。
<第3実施形態>
本発明の第3実施形態に係る熱交換器の一例について図6を用いて説明する。なお、第3実施形態については、第2実施形態と異なる部分を主に説明する。
第3実施形態に係る熱交換器210は、図6に示されるように、装置奥行方向に延びている流出路122の中心線C2に対して対称とされている。具体的には、熱交換器210は、流入路12に対応した流入路212と、熱交換フィン34、36に対応した熱交換フィン234、236と、熱交換フィン134、136に対応した熱交換フィン284、286とを有している。さらに、熱交換器210は、熱交換路32A、32B、32Cに対応した熱交換路232A、232B、232Cと、熱交換路132A、132B、132Cに対応した熱交換路282A、282B、282Cとを有している。また、熱交換器210は、流出路22に対応した流出路222と、側板24A、24Bに対応した側板224A、224Bと、底板26に対応した底板226とを有している。さらに、熱交換器210は、側板14B、114Bに対応した側板214B、264Bと、側板124Bに対応して側板274Bと、底板16に対応した底板216とを有している。底板216は、案内部材の一例である。
この構成において、流出路122には、熱交換路132A、282Aから流入した排水G2、熱交換路132B、282Aから流入した排水G2、及び熱交換路132C、282Cから流入した排水G2が流入する。そして、流出路122へ流入した排水G2は、流出路122の装置奥行方向の奥側の端部から流出する。
以上説明したように、熱交換器210では、流入路12、122は2個(複数)形成され、流出路22、122、222は3個(複数)形成されており、流入路12、122と流出路22、122、222とは交互に並んでいる。これにより、流入路及び流出路の少なくとも一方が1個の場合と比して、給水G1から熱交換フィン34、36、熱交換フィン134、136、熱交換フィン234、236、熱交換フィン284、286への伝熱量を増やすことができる。他の作用については、第2実施形態の作用と同様である。
<第4実施形態>
本発明の第4実施形態に係る熱交換器の一例について図7、図8を用いて説明する。なお、第4実施形態については、第3実施形態と異なる部分を主に説明する。
第4実施形態に係る熱交換器310では、流入路12において熱交換路32、132が臨んでいる部分の流路幅は、給水G1の流れ方向において上流側から下流側に向かって狭くなっている。また、熱交換器310では、流入路212において熱交換路232、282が臨んでいる部分の流路幅は、給水G1の流れ方向において上流側から下流側に向かって狭くなっている。
さらに、熱交換器310では、流出路22において、熱交換路32が臨んでいる部分の流路幅は、排水G2の流れ方向の上流側から下流側に向かって広くなっている。また、熱交換器310では、流出路122において、熱交換路132、282が臨んでいる部分の流路幅は、排水G2の流れ方向の上流側から下流側に向かって広くなっている。さらに、熱交換器310では、流出路222において、熱交換路232が臨んでいる部分の流路幅は、排水G2の流れ方向の上流側から下流側に向かって広くなっている。
具体的には、熱交換フィン34、36の装置幅方向の位置、熱交換フィン134、136の装置幅方向の位置、熱交換フィン234、236の装置幅方向の位置、及び熱交換フィン284、286の装置幅方向の位置が、隣の熱交換フィンに対して装置幅方向にずれている。さらに、熱交換器310の流出路22、122、222の流出口の流路幅は、熱交換器210の流出路の流出口の流路幅と比して広くなっている。これにより、流入路12、212、及び流出路22、122、222の流路幅が変えられている。
以上の構成において、熱交換器310では、流入路の流路幅が一定の場合と比して、流入路12から、熱交換路32Aへ流入する給水G1の流量と、熱交換路32Bへ流入する給水G1の流量と、熱交換路32Cへ流入する給水G1の流量との互いの差を少なくすることができる。
また、熱交換器310では、流入路の流路幅が一定の場合と比して、流入路12から、熱交換路132Aへ流入する給水G1の流量と、熱交換路132Bへ流入する給水G1の流量と、熱交換路132Cへ流入する給水G1の流量との互いの差を少なくすることができる。
なお、流入路212から各熱交換路へ流入する給水G1の流量についても同様である。
また、熱交換器310では、流出路の流路幅が一定の場合と比して、熱交換路32Aから流出路22へ流入する排水G2の流量と、熱交換路32Bから流出路22へ流入する排水G2の流量と、熱交換路32Cから流出路22へ流入する排水G2の流量との互いの差を少なくすることができる。
なお、各熱交換路から流出路122へ流入する排水G2の流量、及び各熱交換路から流出路222へ流入する排水G2の流量についても同様である。
また、他の作用については、第3実施形態の作用と同様である。
なお、本発明を特定の実施形態について詳細に説明したが、本発明は係る実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態をとることが可能であることは当業者にとって明らかである。例えば、上記実施形態では、給水G1は、流入路12、212を装置奥行方向の手前側から奥側に流れ、排水G2は、流出路22、122、222を装置奥行方向の手前側から奥側に流れた。このように、給水G1と排水G2とが同じ方向に流れたが、排水G2が給水G1に対して逆方向に流れてもよい。つまり、排水G2が装置奥行方向の奥側から手前側に流れてもよい。
また、上記第3、第4実施形態では、流入路12、122は2個形成され、流出路22、122、222は3個形成されたが、流入路が3個以上形成されてもよく、流出路が4個以上形成されてもよい。
また、上記実施形態では、装置上下方向から見て、熱交換路は、流入路及び流出路が延びている装置奥行方向に対して直交する直交方向に延びて、流入路と流出路とを繋いていた。しかし、熱交換路が、流入路及び流出路が延びている方向に対して交差する交差方向に延びて、流入路と流出路とを繋いでいればよい。
また、上記実施形態では、流入路と流出路とが同じ方向に延びていたが、流入路が延びている方向と熱交換路が延びている方向とが交差しており、かつ、流出路が延びている方向と熱交換路が延びている方向とが交差していればよい。
また、上記実施形態では、熱媒体の流体として、水を用いたが、他の流体であってもよい。例えば、油、水蒸気、二酸化炭素等であってもよい。
また、上記実施形態では、電子部品(熱交換対象物)を冷却したが、熱交換対象物を加熱してもよく、保温してもよい。
また、上記実施形態では、特に説明しなかったが、図9に示されるように、熱交換フィンをV字状に配置してもよい。
10 熱交換器
12 流入路
16 底板(案内部材の一例)
22 流出路
26 底板(抑制部材の一例)
32 熱交換路
32A 熱交換路
32B 熱交換路
32C 熱交換路
34 熱交換フィン(熱交換部材の一例)
36 熱交換フィン(熱交換部材の一例)
40A 平面
42A 平面
110 熱交換器
122 流出路
126 底板(抑制部材の一例)
132 熱交換路
132A 熱交換路
132B 熱交換路
132C 熱交換路
134 熱交換フィン(熱交換部材の一例)
136 熱交換フィン(熱交換部材の一例)
210 熱交換器
212 流入路
216 底板(案内部材の一例)
222 流出路
226 底板(抑制部材の一例)
232 熱交換路
232A 熱交換路
232B 熱交換路
232C 熱交換路
234 熱交換フィン(熱交換部材の一例)
236 熱交換フィン(熱交換部材の一例)
282 熱交換路
282A 熱交換路
282B 熱交換路
282C 熱交換路
284 熱交換フィン(熱交換部材の一例)
286 熱交換フィン(熱交換部材の一例)
310 熱交換器

Claims (7)

  1. 一方向に延びていると共に端部から前記一方向に流れる流体が流入して前記一方向に流れる流入路と、前記一方向に対して交差する交差方向で前記流入路と離間して前記一方向に延びていると共に前記一方向に流れる流体が端部から流出する流出路との間に、前記一方向に並んで複数配置され、前記流入路と前記流出路とを前記交差方向に繋いでおり、熱交換対象部材と流体との間で熱交換するための熱交換部材で形成されている熱交換路であって、前記交差方向における長さをLとし、流路幅をW1とすると下記式(1)が満たされている前記熱交換路と、
    前記流入路を前記一方向に流れる流体の流れを止め、流体を前記熱交換路に案内する案内部材と、
    を有し、
    前記流出路は、複数形成され、
    前記流入路は、1個又は複数形成され、
    複数の前記流出路の端部の総断面積は、1個又は複数の前記流入路の端部の総断面積よりも大きい、熱交換器。
    W1/2≦L≦5W1・・・・・(1)
  2. 前記一方向に流れる流体が前記流出路の端部から前記流出路に流入するのを抑制する抑制部材を有する請求項1に記載の熱交換器。
  3. 前記流入路を挟んで両側に、前記熱交換路及び前記流出路が夫々形成されている請求項1又は2に記載の熱交換器。
  4. 前記流入路は複数形成され、
    前記流出路は複数形成され、
    前記流入路と前記流出路とは交互に並んでいる請求項1〜3の何れか1項に記載の熱交換器。
  5. 前記流入路において前記熱交換路が臨んでいる部分の流路幅は、流体が流れる流れ方向において上流側から下流側に向かって狭くなっている請求項1〜4の何れか1項に記載の熱交換器。
  6. 前記流出路において前記熱交換路が臨んでいる部分の流路幅は、流体が流れる流れ方向において上流側から下流側に向かって広くなっている請求項1〜5の何れか1項に記載の熱交換器。
  7. 前記流入路、前記流出路、及び前記熱交換路は、平行な2枚の平面の間に形成されている請求項1〜6の何れか1項に記載の熱交換器。
JP2018115792A 2018-06-19 2018-06-19 熱交換器 Active JP6911816B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018115792A JP6911816B2 (ja) 2018-06-19 2018-06-19 熱交換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018115792A JP6911816B2 (ja) 2018-06-19 2018-06-19 熱交換器

Publications (2)

Publication Number Publication Date
JP2019219090A JP2019219090A (ja) 2019-12-26
JP6911816B2 true JP6911816B2 (ja) 2021-07-28

Family

ID=69096093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018115792A Active JP6911816B2 (ja) 2018-06-19 2018-06-19 熱交換器

Country Status (1)

Country Link
JP (1) JP6911816B2 (ja)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2812334A1 (de) * 1978-03-21 1979-09-27 Siemens Ag Kuehlkoerper fuer elektrische bauelemente
JPH07114250B2 (ja) * 1990-04-27 1995-12-06 インターナショナル・ビジネス・マシーンズ・コーポレイション 熱伝達システム
JPH08172285A (ja) * 1994-12-16 1996-07-02 Asia Electron Inc 冷却プレートおよび冷却装置
JP2001352025A (ja) * 2000-06-05 2001-12-21 Toshiba Corp 発熱体冷却装置
KR100619076B1 (ko) * 2005-04-11 2006-08-31 삼성전자주식회사 전자소자 방열용 히트싱크장치
JP4776032B2 (ja) * 2006-07-26 2011-09-21 古河スカイ株式会社 熱交換器
CN101868854B (zh) * 2007-11-26 2012-10-03 株式会社丰田自动织机 液冷式冷却装置
JP2011134978A (ja) * 2009-12-25 2011-07-07 Fuji Electric Co Ltd 流体冷却式ヒートシンク
JP2014029232A (ja) * 2012-07-31 2014-02-13 Nippon Soken Inc 冷却装置
JP2014192302A (ja) * 2013-03-27 2014-10-06 Panasonic Corp 冷却装置およびこれを搭載した電気自動車および電子機器

Also Published As

Publication number Publication date
JP2019219090A (ja) 2019-12-26

Similar Documents

Publication Publication Date Title
JP4907703B2 (ja) マイクロチャネル熱交換器、熱源を冷却する方法
TWI299081B (ja)
JP6951786B2 (ja) ヒートシンク
US9766015B2 (en) Heat exchanger
CN109479385B (zh) 层叠型散热器的芯
JP2012229880A (ja) プレート式熱交換器
JP4544187B2 (ja) 冷却器
KR20210002712A (ko) 적층형 열교환기
JP6160385B2 (ja) 積層型熱交換器
JP6911816B2 (ja) 熱交換器
US20090090493A1 (en) Twist vane counter-parallel flow heat exchanger apparatus and method
JP6614068B2 (ja) 熱交換器
WO2017195588A1 (ja) 積層型熱交換器
JP2022128039A (ja) 熱交換器
CN110199169B (zh) 水热交换器
KR102154815B1 (ko) 열교환판 및 이를 포함하는 판형 열교환기
JP2018132298A (ja) 水熱交換器
JP6432613B2 (ja) 水熱交換器
JP6281422B2 (ja) 積層型熱交換器
JP5818396B2 (ja) プレート式熱交換器
JP5933605B2 (ja) プレート式熱交換器
JP2019021872A (ja) 積層型熱交換器
KR101740804B1 (ko) 다채널 플랫 튜브들을 포함한 고압 냉매 열 교환기
JP2011165957A (ja) 積層型冷却器
JP4983664B2 (ja) 冷却装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210119

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210119

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210129

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210405

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210621

R150 Certificate of patent or registration of utility model

Ref document number: 6911816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150