JP6910068B2 - ヘマトキシリン・エオシン(h&e)染色組織画像における関心領域を調べて、多重化/高多重化蛍光組織画像で腫瘍内細胞空間的不均一性を定量化するシステム及び方法 - Google Patents

ヘマトキシリン・エオシン(h&e)染色組織画像における関心領域を調べて、多重化/高多重化蛍光組織画像で腫瘍内細胞空間的不均一性を定量化するシステム及び方法 Download PDF

Info

Publication number
JP6910068B2
JP6910068B2 JP2017563619A JP2017563619A JP6910068B2 JP 6910068 B2 JP6910068 B2 JP 6910068B2 JP 2017563619 A JP2017563619 A JP 2017563619A JP 2017563619 A JP2017563619 A JP 2017563619A JP 6910068 B2 JP6910068 B2 JP 6910068B2
Authority
JP
Japan
Prior art keywords
data
stained tissue
tissue image
image
color space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017563619A
Other languages
English (en)
Other versions
JP2018525707A (ja
Inventor
チェンヌボトラ,エス.チャクラ
テイラー,ディー.ランシング
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Pittsburgh
Original Assignee
University of Pittsburgh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Pittsburgh filed Critical University of Pittsburgh
Publication of JP2018525707A publication Critical patent/JP2018525707A/ja
Application granted granted Critical
Publication of JP6910068B2 publication Critical patent/JP6910068B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37217Means for communicating with stimulators characterised by the communication link, e.g. acoustic or tactile
    • A61N1/37223Circuits for electromagnetic coupling
    • A61N1/37229Shape or location of the implanted or external antenna
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/155Segmentation; Edge detection involving morphological operators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/162Segmentation; Edge detection involving graph-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/174Segmentation; Edge detection involving the use of two or more images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/187Segmentation; Edge detection involving region growing; involving region merging; involving connected component labelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/26Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/42Global feature extraction by analysis of the whole pattern, e.g. using frequency domain transformations or autocorrelation
    • G06V10/422Global feature extraction by analysis of the whole pattern, e.g. using frequency domain transformations or autocorrelation for representing the structure of the pattern or shape of an object therefor
    • G06V10/426Graphical representations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/56Extraction of image or video features relating to colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/695Preprocessing, e.g. image segmentation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10064Fluorescence image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20036Morphological image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30096Tumor; Lesion

Description

[関連出願の相互参照]
本願は、米国特許法第119条e項の下、2015年6月11日に出願された、発明の名称が「A Common Framework for Finding Regions of Interest in Hematoxylin and Eosin (H&E) Stained Tissue Images and Quantifying Intratumor Cellular Spatial Heterogeneity in Multiplexed/Hyperplexed Fluorescence Tissue Images」である米国仮出願第62/174,187号に基づく優先権を主張しており、その内容は引用を以て本明細書に組込まれる。
本発明は、デジタルパソロジー(digital pathology)に関しており、特に、ヘマトキシリン・エオシン(H&E)で染色された組織画像中の関心領域を調べるための、そして、多重化/高多重化(multiplexed/hyperplexed)蛍光組織画像における腫瘍内細胞空間的不均一性を定量化するための共通のフレームワークに関する。
デジタルパソロジーとは、組織学的に染色された組織試料の取得、保存及び表示を言い、最初に、セカンドオピニオン遠隔病理診断、免疫染色判断や術中遠隔病理診断のようなニッチな用途で注目を集めつつある。通常、3〜50個のスライドで構成される大量の患者データが生検標本から作られて、顕微鏡下で病理医により目視で評価されるが、デジタル技術を用いると高解像度モニターで検分される。手作業が含まれるために、現在のワークフローの実務は、時間がかかり、間違えやすく、主観的である。
癌は不均一性疾患(heterogeneous disease)である。ヘマトキシリン・エオシン(H&E)で染色された組織画像は、不均一性は、上皮内癌、浸潤癌、脂肪組織、血管及び正常な管のような種々の組織学的構造の存在で特徴付けられている。腫瘍内不均一性及び腫瘍間不均一性の両方に対するプレシジョン・メディシンアプローチの1つは、生検組織の配列を決定し、そして、具体的には各患者について疾患関連ゲノム・シグネチャーのパネルと単一の患者の腫瘍の明確な領域とを特定することである。しかしながら、ゲノム/エピゲノム・プロファイリングには、組織の粉砕又は腫瘍から複数のコア試料の取出しの何れかをする必要があり、時間がかかり、不均一状態を理解するには解像度が低い。種々の組織学的構造間の空間的相互関係は、疾患の兆候を示す。例えば、(浸潤)血管に成長する腫瘍巣は、転移のリスクが高まっていることを示唆する。従って、組織学的構造の正確なセグメント化は、空間的相互関係マップの構築を助けることで、ディープ・モレキュラー・プロファイリングのためにタンパク質、DNA及びRNAバイオマーカーを組み合わせるプレシジョン・メディシン調査を容易にする。更に、この空間的相互関係マップは、病理医には探索ツールとして、又は、更なる分子プロファイリングには顕微解剖へのガイドとして役に立ち得る。
正常な管や上皮内癌のような構造は明確な境界を有するが、浸潤癌やストロマのような他の多くのものは明確な境界を持たないために、組織学的構造セグメント化はかなり困難な仕事となる。また、構造形態は、組織源(例えば、胸対肺)と、組織標本手法及び染色手法とに大きく依存する。歴史的には、核は全てのより高いレベルの組織構造に関してブロックを構築しているので、生物学的画像分析の研究報告は、核をセグメント化することに注目してきた。より最近の方法は、核−内腔関連性(nuclei-lumen association)、領域成長、マルコフ確率場と組み合わせた領域ベース動的輪郭、及び深層学習に基づくアプローチを用いた、前立腺及び胸部の組織画像における腺のような他の組織学的構造のセグメント化にまで広がっている。他の幾つかのアプローチは、症状特異エクストラクタ(extractor)及び臓器特異エクストラクタを設計して、MITOS(有糸分裂像)及びGlaS(腺)のような一般に利用可能なデータセットの分析を促進する。例えば、代表的な腺のセグメント化の方法は、最初に内腔を特定する工程と、次いで細胞の周囲上皮層をサーチする工程とを含んでいる。しかしながら、この方法は、導管腔が腫瘍細胞により完全に満たされている非浸潤性乳癌の場合には使えない。基本的な数学的基礎理論は、H&E画像の管理されたセグメント化を発展させてきたが、その基礎理論は、2,3以上の例を超えて試験されてこなかった。
さらに、多くの悪性腫瘍においては、分子細胞不均一性は、異なる患者の腫瘍の間で、1人の患者の腫瘍の異なる部位間で、及び単一の腫瘍内において、際立った特徴となる。腫瘍内不均一性は、腫瘍微小環境(TME)を含む、表現型的に異なる癌細胞クローン亜集団と他の細胞型とに影響を及ぼす。これらの癌細胞クローン亜集団及び他の細胞型には、局所的な骨髄由来ストロマ的幹細胞及び前駆細胞と、腫瘍促進又は腫瘍致死の何れかである免疫炎症性細胞のサブクラスと、癌関連線維芽細胞と、内皮細胞と、周皮細胞とがある。TMEは、発展する生態系と見ることができ、そこでは、癌細胞がこれら他の細胞型との異型相互関係にかかわり、利用可能な資源を使用して増殖し、生き延びる。この考えに則って、TME内の細胞型の間の空間的相互関係(即ち、空間的不均一性)は、疾患進行及び治療抵抗の主な駆動機構の1つと思われる。従って、TME内の空間的不均一性を明らかにして、特定の疾患サブタイプを正しく決定し、個々の患者の最適な治療コースを特定することは是非とも必要なことである。
今日まで、腫瘍内不均一性は、3つの主要なアプローチを使用して調査されてきた。第1のアプローチは、腫瘍の特定領域からコア試料を採取し、集団平均を測定する。試料の不均一性は、全エクソーム解析、エピジェネティクス、プロテオミクス、及びメタボロミクスなどの複数の技術を使用して、腫瘍内の複数のコアを分析することにより測定される。第2のアプローチは、組織からの細胞の分離後に、上記の方法、RNASeq、画像化又はフローサイトメトリーを使用する「単一細胞分析」を含んでいる。第3のアプローチは、光学顕微鏡画像化の空間分解能を利用して空間コンテクストを維持し、分子特異的ラベルと組み合わされて生体内の細胞のバイオマーカーを測定するものである。
光学顕微鏡画像化を利用する空間分析によれば、細胞レベル及び細胞下レベルで、大領域の組織セクション及び/又は複数の腫瘍マイクロアレイセクションの分析が容易になる。例えば、細胞下レベルの分解能により、特定のバイオマーカーの活性化状態(例えば、転写因子の核への転移)の特定が可能になる。加えて、質量分析画像化における近年の発展によれば、多くの細胞構成要素の組織セクションに亘る測定を光学顕微鏡よりも低い分解能で行うことができる。
透過光及び蛍光発光を含む腫瘍内の細胞バイオマーカー発現レベルを特徴付けるために、数種の光学顕微鏡画像化プラットフォームが開発されている。DNA、RNA及びタンパク質バイオマーカー、通常同じ試料内に1〜7個までの蛍光標識された(多重化蛍光発光として知られる)バイオマーカーに基づく大領域組織セクション及び組織マイクロアレイ(TMA)の画像から、蛍光発光に基づく多変量情報が取得されている。現在、幾つかの市販のプラットフォームを使用して、取得し、処理し、セグメント化し、組織試料のバイオマーカーの信号レベルの幾つかの基本的な分析を行うことができる。近年、標識化、画像化及び蛍光発光のクエンチの反復サイクルにおいて、60種までの蛍光標識された抗体と、数種のDNA又はRNA交雑プローブとを取得可能なプラットフォームが実証されている。また、現在、組織セクション及びTMAにおける細胞外構成要素だけでなく、特異的細胞型の位置、細胞活性化の状態、細胞バイオマーカー発現レベル及び部位を「マップする」ことも可能である。
主たる課題は、バイオマーカーのパネルに基づいてTME内の重要な空間的関係(相互関係及びその欠落)を定量化できるアルゴリズムを開発することである。組織セクションの不均一性の測定における初期の試みは、シャノンエントロピーやラオの二次エントロピーのような生態学的研究からのダイバーシティメトリック(diversity metrics)を適用した。しかしながら、これらの方法は、多重化(7種までのバイオマーカー)又は高多重化(7種を超えるバイオマーカー)免疫蛍光(IF)データには適切でなかった。高次元データを説明する他の方法には、各バイオマーカーを「オン」又は「オフ」のみにする精巧な細胞表現型方法がないかもしれない。さらに、これらの方法が、不均一性スコアにおいてバイオマーカー・パターン間に空間的関係を組み入れることはほとんどない。実際、TMEの空間組織は、癌細胞及び非癌細胞から選択されたバイオマーカーの発現レベルに加えて、重要な診断バイオマーカーであると仮定されてきた。
他の不均一性特徴化方法は、(i)ネットワークベースのアプローチの使用や多重化の利点を得ることなく、関心領域のサンプリングにより空間情報を組み入れており、(ii)非線形関連性や空間情報を考慮せずに、多重化/高多重化IFデータでバイオマーカー間の線形関係を分析しており、(iii)腫瘍内の空間構成の特徴付けをすることなく、多重化細胞表現型の関連性を特徴付けてきた。さらに、他の方法の大半は、腫瘍内不均一性を単一のスコアとして報告しており、従って、TMEの2つの空間的に異なる構成を誤って同じスコアにマッピングすることもあり得る。
故に、多重化/高多重化蛍光組織画像における、H&E画像のセグメント化及び腫瘍内細胞空間的不均一性の定量化の分野には、改良の余地がある。
ある実施形態では、H&E染色組織画像において関心領域を特定する方法が提供される。その方法は、H&E染色組織画像を表す画像データを受け取る工程と、受け取った画像データに基づいて、H&E染色組織画像について局所的空間的統計を定量化する工程と、局所的空間的統計に基づいて、H&E染色組織画像内の組織学的構造を特定する工程と、受け取った画像データ及び特定した組織学的構造を使用して、セグメント化H&E染色組織画像を生成する工程とを含んでいる。
別の実施形態では、コンピュータによって実行された場合、コンピュータに上記の方法を行わせる命令を含む1以上のプログラムを格納する非一時的なコンピュータ可読媒体が提供される。
さらに別の実施形態では、H&E染色組織画像において関心領域を特定するコンピュータシステムが提供される。そのシステムは処理装置を含んでおり、当該処理装置は、(i)H&E染色組織画像を表す受け取った画像データに基づいて、H&E染色組織画像に関する局所的空間的統計を定量化するように構成された定量化コンポーネントと、(ii)局所的空間的統計に基づいて、H&E染色組織画像の組織学的構造を特定するように構成された特定コンポーネントと、(iii)受け取った画像データ及び特定した組織学的構造を使用して、セグメント化H&E染色組織画像を生成するように構成されたセグメント化組織画像生成コンポーネントとを含む。
さらに別の実施形態では、蛍光組織画像にて腫瘍内細胞空間的不均一性を定量化する方法が提供される。その方法は、幾つかの蛍光組織画像を表す画像データを受け取る工程と、受け取った画像データで細胞セグメント化を行い、幾つかの蛍光組織画像にて幾つかの細胞を特定する工程と、各細胞を複数の所定のバイオマーカー強度パターンの1つに割り当てる工程と、割り当てられた所定のバイオマーカー強度パターンに基づいて、幾つかの蛍光組織画像の空間的統計を定量化する工程と、定量化された空間的統計の視覚表示を作成する工程とを含む。
別の実施形態では、コンピュータによって実行された場合、当該コンピュータに上記の方法を行わせる命令を含む1以上のプログラムを格納する非一時的なコンピュータ可読媒体が提供される。
さらに別の実施形態では、蛍光組織画像にて腫瘍内細胞空間的不均一性を定量化するコンピュータシステムが提供される。そのシステムは処理装置を含んでおり、当該処理装置は、(i)幾つかの蛍光組織画像を表す画像データで細胞セグメント化を行い、幾つかの蛍光組織画像における幾つかの細胞を特定するように構成された細胞セグメント化コンポーネントと、(ii)各細胞を複数の所定のバイオマーカー強度パターンの1つに割り当てるように構成された割当てコンポーネントと、(iii)割り当てられた所定のバイオマーカー強度パターンに基づいて、前記幾つかの蛍光組織画像の空間的統計を定量化する定量化コンポーネントと、(iv)定量化された空間的統計の視覚表示を作成する視覚表示作成コンポーネントとを含む。
図1は、試料のH&E染色画像である。 図2は、H&E色相空間に変換した図1のH&E画像であって、ヒートマップ(左)及び角度ヒストグラム(右)として示されている。 図3は、本開示概念の一態様による第1のセグメント化方法を示すフローチャートである。 図4は、本開示概念の一態様による第2のセグメント化方法を示すフローチャートである。 図5は、本開示概念の一態様による一組の優性バイオマーカー強度パターンを構築する方法を示すフローチャートである。 図6は、バイオマーカー強度分布グラフを示しており、縦軸は、本明細書で記載される方法で使用される例示的なバイオマーカーについて2つの異なるレジームL1及びL2を示している。 図7は、図6に示す2つのバイオマーカー強度レジームL1及びL2について、それぞれ得られたパターン辞書を示す。 図8は、L1レジームの細胞集団からのバイオマーカー・データの3D表示を示しており、各細胞は、辞書中の唯一のパターンに属するようにフェノタイプ化されており(phenotyped)、別々の色で示されている。 図9は、バイオマーカー強度レジームL1及びL2のパターン辞書の最適寸法の決定を示す。 図10は、レジームL1及びL2のパターン辞書の統合を示す。 図11は、例示的な実施形態による多重化/高多重化蛍光組織画像の空間的不均一性を定量化する方法のステップを示すフローチャートである。 図12は、例示的な実施形態により使用される所定の優性バイオマーカー強度パターンの模式的表示を示す。 図13は、例示的な実施形態による細胞空間依存画像を示す。 図14は、例示的な実施形態によるPMIマップを示す。 図15は、代表的な細胞空間依存画像及びPMIマップを示す。 図16は、代表的な細胞空間依存画像及びPMIマップを示す。 図17は、代表的な細胞空間依存画像及びPMIマップを示す。 図18は、本明細書に記載したH&E画像をセグメント化する手順を実施するシステムの概略図である。 図19は、本明細書に記載する腫瘍内空間的不均一性を定量化する手順を実施するシステムの概略図である。
本明細書で使用されるように、単数形「1つ」及び「その」は、別段の明確な記載がない限り、複数形態も述べている。
本明細書で使用されるように、2つ以上の部分又は要素を「結合する」という記載は、1つ以上の中間部分又は要素を介して、それらの部分が、直接又は間接的に、繋げられる又は共に動作することを意味する。
本明細書で使用されるように、用語「幾つか」は、1又は2以上の整数(即ち、複数)を意味する。
本明細書で使用されるように、用語「コンポーネント」及び用語「システム」は、ハードウェア、ハードウェアとソフトウェアの組合せ、ソフトウェア、又は実行されているソフトウェアのようなコンピュータに関連したエンティティを意味する。例えば、コンポーネントは、プロセッサ上で作動するプロセス、プロセッサ、オブジェクト、実行可能なファイル、実行の脈絡、プログラム及び/又はコンピュータであり得るが、これらに限定されない。例としては、サーバで作動するアプリケーション及びサーバはどちらもコンポーネントであり得る。1つ以上のコンポーネントが、実行プロセス及び/又はスレッド内に存在してよく、1つのコンポーネントが、1つのコンピュータに局在してよく及び/又は2つ以上のコンピュータに配置されてよい。本明細書では、ユーザに情報を表示する幾つかの方法は、幾つかの図又はグラフについてスクリーン又はスクリーンショットとして示されて、説明されているが、当業者は、種々の他の代替法を使用できることを理解するだろう。スクリーン又はスクリーンショットは、表示記述として、グラフィカル・ユーザ・インターフェースとして、又はスクリーン(例えば、パーソナル・コンピュータ、PDA、携帯電話、又は他の適切なデバイスのどれか)に情報を描写するその他の方法によって保存及び/又は転送され、ここで、ページに表示されるレイアウト及び情報又はコンテンツは、メモリ、データベース、又は別の格納場所に保存される。また、スクリーン又はスクリーンショットは、必要に応じて、プリントされてもよい。
本明細書で使用されるように、用語「スーパーピクセル」は、同様な画像統計を有するピクセルのコヒーレントパッチ又はグループを意味する。
本明細書で使用する方向を示す表現は、例えば、上、底、左、右、上部、下部、前、後、及びこれらの派生語であってこれらに限定されないが、図に示された要素の方向を示しており、明示的に述べられていない限り、特許請求の範囲を限定するものではない。
<A.H&E染色組織画像のセグメント化>
開示されている概念の第1態様は、特に、浸潤癌のような胸部組織、上皮内癌、非定型及び正常管、脂肪組織及び/又はリンパ球のような組織のH&E染色画像における組織学的構造のセグメント化でのデジタル・パソロジー・システムの機能及び動作の改良(例えば、処理能力の改良)に焦点を当てている。本発明者らは、空間画像統計は、組織学的構造の広範なクラスをセグメント化するための判別可能なフィンガープリントを与えると仮定した。本明細書においてより詳しく記載する本開示概念のこの態様は、2つのグラフ理論的セグメント化方法を提供しており、各々は、局所的空間的統計の特徴付けに依存している。
第1の方法では、グラフの各ノードは画像のピクセルに対応しており、エッジは2つのノードが同じグループに属する強さに対応している。エッジの強さは、H&E画像におけるピンクと紫の染色の間の分離を強調するように作られた反対色空間において、二変量フォン・ミーゼス混合分布の形で、ペアをなすピクセル統計を測定することによって決定される。スペクトル法がグラフを区分化するのに使用される。第1の方法は、はっきりした境界を有する構造(例えば、脂肪組織及び血管)のセグメント化においてより成功することが期待される。
第2の方法は、無定型な空間範囲を有する組織学的構造(例えば、腫瘍巣)を抽出するのに好適に設計されている。この策では、仮想の核中心が、H&E画像における核の空間分布を取得するために作成されるグラフのノードとなる。核間空間距離にデータ駆動閾値(data-driven thresholds)を適用することにより、ネットワークは、均質な画像パッチに区分される。
本明細書で記載する2つのセグメント化方法は、2つの共通エレメント、即ち、反対色表示及び外見正規化(appearance normalization)を有しており、これらはそれぞれ、以下に詳細に記載される。セグメント化方法は、これらが画像統計をどのようにして取得し、及び方法を区画するグラフにこれらをどのようにしてはめ込むかで相違する。その方法のこれらの態様は、本明細書で個別に記載される。
公知の典型的な反対色(反対色軸として赤−緑、黄−青を有する)色相−彩度−明度(HSV)変換が、H&Eからの赤−緑−青(RGB)画像に適用される場合、ピンクと紫の範囲は、色環の青−赤四分円に限定される。本開示概念のこの態様の目的は、下流の空間分析パイプラインがより強固になるように、ピンクと紫の色の間の分離を強調することである。このために、色空間の構築が最適化されて、ピンク及び紫の色が反対に配置される。具体的には、例示的な実施例では、専門家は、ピンク及び紫のピクセルの集まりを選択することを許された。次いで、特異値分解がデータのこの集まりで行われて、サイズ3×3の直交射影行列が得られた。本開示概念のこの態様は、反対空間HSVのように、投影座標に特定の解釈をもたらす。具体的には、第1の特異ベクトル(非負の値を有するように強制されている)上への投影は、H&E−輝度値bを得る。残り2つの投影座標c2及びc3は、H&E−彩度s=sqrt(c +c )と、H&E−色相θ=tan−1(c+ic)である複素面を形成する。この構成から、紫及びピンクのピクセルの色相値は、複素色面において最大限に分離されると予測される。例として、ここで、試料H&E染色画像である図1のピンク及び紫のピクセルの平均色相値における角度差は、図2に示すように、1:7ラジアンであって、図1のH&E画像をH&E色相空間に変換したものであって、図2は、ヒートマップ(左)及び角度ヒストグラム(右)を示している。この広がりは、標準HSV反対色空間から得られる約0:4ラジアンの値を超えている。彩度が低い場合、色相値は不安定である。これは、複素面の基点にマップされたピクセルに関して正しい(c;c≒0)。典型的なHSV表示においては、全ての白のピクセルは、低い彩度値を持ち、従って不安定な色相角を有するだろう。ここで留意すべきは、脂肪組織、内腔、組織の裂け目、及び収縮のため、白のピクセルはH&E画像の重要な部分を形成できることである。本開示概念のこの態様の反対色表示では、専門家が選択したピンク/紫のピクセルの集まりからの回転行列を知得することで、白のピクセルに、より高い彩度値及びより安定な色相角を与えることができる。しかしながら、複素面の基点にマップする、低い彩度値(例えば、<0:005)を有するピクセルの集団があるだろう。この集団は、使用されたサイズ2K×2KのH&E画像については約0:3%と経験的に推定される。
加えて、区分化、染色及び画像化におけるばらつきは、H&E画像のカラーアピアランスの変化となる。従って、例示的な実施形態では、データは正規化される。従来の正規化方法は、非負値行列因子分解のような染色ベクター評価法(stain vector estimation methods)を利用していた。これらの方法は、幾つか画像の色分布がほとんど紫又はほとんどピンクにひどく傾くので、本開示概念のこの態様については効果がないことが分かった。本発明者らは、2つの画像のカラーアピアランスは、これらの色統計量がマッチするならば、類似すると仮定した。しかしながら、ソース画像及びターゲット画像における全ピクセル集団の統計量をマッチングさせることは、意図しないアーチファクトをもたらす可能性がある。例えば、もしソース画像が主としてピンクのピクセル(ストロマ)を有しており、ターゲット画像が主として紫のピクセル(浸潤癌)を有するならば、ソース画像統計量のターゲット画像統計量へのマッチングは、ソース画像中の多くのピンクのピクセルを紫に変えてしまい、ストロマから核へとこれらのピクセルの細胞要素の素性を間違って変化させるだろう。この問題に対処するために、ピンク(エオシン)、紫(ヘマトキシリン)、及び白(例えば、脂肪、収縮)である3つのクラスのピクセルが最初に特定されて、統計量は、これらのクラスの各々について、別々にマッチングされる。3つのクラスを特定するため、H&E画像は、説明したように、H&E−色相チャネル、H&E−彩度チャネル、及びH&E−明度チャネルに変換される。H&E−色相空間は角度があり、この空間のピンク、紫及び白のピクセルのクラウドの間に分離が与えられると、色相値は、一変量フォン・ミーゼス分布の混合を用いてモデル化される。角統計の一変量フォン・ミーゼス分布は、線形統計の一変量正規分布の等価相対物である。フォン・ミーゼス分布は、2つのパラメータ、つまり、平均 −π<μ≦πと、濃度パラメータ κ>0とを特徴とし、f(x)={2κI(κ)}−1expκcos(x−μ)(式中、I(κ)は、0次の第1種変形ベッセル関数である)で表される。K一変量フォン・ミーゼス分布の混合は、下式で表される。
Figure 0006910068
ここで、mは、事前確率であり、μ及びκは、平均パラメータ及び濃度パラメータである。低い彩度値及び不安定な色相角を有するピクセルを明示的に構成するために、均一な角ノイズが、事前確率が約0.3%である追加の混合要素として加えられる。一変量フォン・ミーゼス混合のパラメータを、期待値最大化(EM)アルゴリズムを用いて求めることができる。分布の統計は、モーメントの無限集合を特徴とし得る。しかしながら、例示的な実施形態においては、分析の便宜のため、モーメントは、4次(平均、標準偏差、歪度、尖度)までのみをコンピュータで計算される。各チャネルにおいて、ソース画像からの各ピクセルクラスのモーメントが、ターゲット画像にマッチされる。例えば、ソース画像における紫のピクセルのモーメントは、全3チャネル中のターゲット画像における紫のピクセルのモーメントにマッチされる。H&E反対色空間中の統計量を正規化した後、得られたピクセル値は、上記の回転行列の逆関数を使用して、(正規化RGBデータを生成するために)RGB空間に変換される。
2つのセグメント化方法の2つの共通エレメント、即ち、反対色表示及びアピアランスの正規化を説明した。次に、各セグメント化方法の残りを詳細に記載する。各セグメント化方法においては、正規化画像データが入力として使われる。具体的には、正規化H&E−色相データは、第1の方法において入力として使用され、正規化RGBデータは、第2の方法において入力として使用される。
第1の方法に関して、正常な胸部組織は、それぞれが細胞の集合体である小領域の管を取り囲む、ピンクで染色された大領域の結合組織(CT)を有する。これらの細胞の核は暗い紫に染色されるであろうが、核からの紫の染色が細胞質に波及し得るので、核を取り巻く細胞質は、ピンク及び紫の混合を示す。統計学的に言えば、これらの核の何れかにあるならば、核を表す紫のピクセルと細胞質を表すピンク−紫のピクセルとに囲まれると予測されるであろう。これらの細胞が管構造物を構成するならば、各細胞の特定の近隣において、類似の特性を発揮する他の細胞が見つかるはずである。一方、通常は結合組織中に散乱するのが見られるものが線維芽細胞核にあるなれば、その近隣で、ほとんどピンクのピクセルを見つけるであろう。管のような構造内の統計的関連性はその境界のところより高いと仮定すれば、結合組織のあちこちに散乱した線維芽細胞を無視して、管をセグメント化できるはずである。
一変量フォン・ミーゼス分布の混合を使用することで、画像ピクセルを、ピンク、紫及び白のクラスに分離することができるが、腺/管のような組織学的構造の輪郭を描くには、これらの構造は3つのクラスの全てからのピクセルを含むので、不充分である。本開示概念のこの態様では、これらの構造をセグメント化するために、管のような構造内における統計的関連性はその境界にわたるよりも高いと仮定され、この統計的関連性が、二変量フォン・ミーゼス分布の混合を使用して、本開示概念のこの態様によってモデル化される。H&E−色相は角変数なので、2つの隣接ピクセルからの色相値の同時分布P(A,B)は、トーラス上にある。この同時密度は、二変量フォン・ミーゼス分布の混合としてモデル化される。H&E−色相空間におけるピクセルA及びBの値を、それぞれφ及びψとする。2つの角変数−π<φ≦π及び−π<ψ≦πの二変量分布は、f(φ,ψ)=Cexp[κcos(φ−μ)+κcos(ψ−ν)−κcos(φ−μ−ψ+ν)]となる。ここで、μ、υは平均であり、κ、κ>0は、それぞれ、φ及びψの濃度であり、κは相関係数であり、Cは正規化定数である。完全な二変量フォン・ミーゼスモデルは8つのパラメータを有するが、例示的な実施形態では、正の相互関係を有する縮小された5パラメータ・コサイン・モデルを使用する。周辺密度は、f(ψ)=C2πI(κ13)(ψ)exp{κcos(ψ−ν)}である。κの値は、分布が単峰性であるか二峰性であるかを示す。具体的には、κ>κ>0及びκ>κ>0である場合において、κ<κκ/(κ+κ)であれば、同時密度は単峰性であり、κ>κκ/(κ+κ)であれば二峰性である。
H&E−色相空間におけるH&E画像の隣接ピクセルの値を考慮する場合、トーラス上塊には最大で6つの可能性、即ち、紫−紫、ピンク−ピンク、白−白、及び3つの異なる対相互関係がある。この同時分布をモデル化するために、6個の単峰性二変量フォン・ミーゼス分布の混合を使用する。K個の二変量フォン・ミーゼス分布の混合モデルは、下式によってパラメータで表すことができる。
Figure 0006910068
μ、ν、κ1i及びκ2iの初期値は、画像の全ピクセルに関する一変量フォン・ミーゼスの混合から作成される。濃度パラメータκ1i及びκ2iと、相関パラメータκ3iとは、fに関する単峰性条件を満たす。κ3iは、楕円形パターン(試料化されたデータで観察される)の歪みを回避するために、−1と1の間の値を有するよう拘束される。上記の制約と合わせて、混合のパラメータは、EMアルゴリズムによって推定される。先に論じた様に、混合モデルの多くても6つの要素が存在するので、明確なモデル選択のステップは、混合モデルに関して保障されない。H&E画像が3つの基本色、つまり、紫、ピンク及び白の何れか1つを欠く場合、その色に関連した事前確率又はクラスターの混合比は、0に近くなるであろう。
H&E反対色空間における隣接ピクセルの色相角間の統計的依存性をモデル化することを考える。同時確率を統計的関連性の尺度として使用する場合、結合組織におけるピンク−ピンクのピクセルペアは、管内部の紫−紫のピクセルペア又はCT−管の境界にわたったピンク−紫のピクセルペアよりも高い確率を有することが分かるかも知れない。しかしながら、幾つかのH&E画像ではピンクが過剰であるために、CT−管境界にわたったピンク−紫のピクセルペアの組合せは、管内部の紫−紫のピクセルペアと同じ又はそれより高い確率を有することもある。ピンク−ピンクのペアは最も高い同時確率を持ち、紫−紫ペアは紫−ピンクペアと同様な同時確率を有することもある。換言すれば、同時確率は正しい境界を探知するには十分ではないかもしれない。これは、相互情報量(MI)を使用して、相対的存在量を修正することで改善できる。MIをコンピュータで計算するために、下式の特徴
Figure 0006910068
(例えば、H&E−色相角)を有する複数のピクセルペア(A,B)を、閾値未満の距離内にある画像の全ての場所から無作為に選択する。距離dだけ離れた特徴A及びBの同時確率は、P(A,B;d)で表される。全体的な同時確率は、下式で規定される。
Figure 0006910068
dの値は、パラメータσに依存しており、具体的には、d=2+2|r|であり、ここで、r〜Ν(0,σ)である。核は、10倍の倍率で直径が約15ピクセルである。セグメント化アルゴリズムは核の集合体をターゲットとするので、サンプルのピクセルペアの間の距離は、少なくとも核の直径をカバーすべきである。故に、σは3に設定される。自己相互情報量(pointwise mutual information)(PMI)は、二変量フォン・ミーゼス分布の混合によってモデル化された同時確率と、一変量フォン・ミーゼス分布の混合によってモデル化された周辺確率P(A)及びP(B)とによって計算される。具体的には、下式となる。
Figure 0006910068
例示的な実施形態では、log[P(A,B)ρ/{P(A)P(B)}]の上限について正規化するために、ρ=2とされる。
さらに、親和性関数が、PMIから規定されて、2つのピクセルを同じ組織学的構造にグループ化する尤度を示す。エレメントwi,jを有する親和性行列Wは、ピクセルi及びjの間の類似性を表す。ここで、
Figure 0006910068
である。親和性関数は、標準スペクトルグラフセグメント化方法に対して入力として使用される。当該方法は、自然画像をセグメント化する現状技術であって、例えば、Arbelaez, P.らの「Contour Detection and Hierarchical Image Segmentation」、IEEE TPAMI、33(5)、898−916(20122)に記載されている。親和性行列Wから、一般化システムの固有対
Figure 0006910068
は、下式とわかる。
Figure 0006910068
主固有ベクトルマップ(小さい固有値)は、潜在的な組織学的構造の境界位置を示す。周知のように、単一固有ベクトルは、複素画像における全ての可能性のある境界を取得できないだろう。従って、通常の実施では、多数の主固有ベクトルの方向空間微分からエッジ強さマップが計算される。後処理ステップが、擬似境界ピクセルを削除するために使用される。
図3は、詳細に説明した第1セグメント化方法をまとめたフローチャートである。その方法は、対象スライドに関する正規化H&E−色相データを受け取るステップ5で始まる。次に、ステップ10で、H&E−色相データにおける複数の隣接ピクセル間の正規化H&E−色相値の同時分布が推定される。次いで、ステップ15で、正規化H&E−色相データに関するPMIが、推定された同時分布に基づいて計算される。ステップ20にて、親和性関数が、計算されたPMIから規定される。最後に、ステップ25で、対象スライドにおける組織が、親和性関数及びスペクトルグラフセグメント化方法(スペクトラルクラスタリングとしても知られている)を使用してセグメント化される。
第2セグメント化方法に関して、局所的空間的統計は、胸部組織における種々の組織学的構造間で変化する。例えば、腺管上皮内癌の細胞の凝集は、それらの境界が互いに極めて近接するように集まる傾向にある。これは、生体内腫瘍が増殖するが、管内部に留まるからである。一方、浸潤癌における上皮細胞は、空間的に遠く離れている。それらはまた、増殖するが、胸部ストロマに自由に侵入できて、管内に制限されない。正常な管の局所統計はより規則正しく、特に正常な上皮(内部)及び筋上皮細胞(外側)は、空洞(内腔)を取り囲む2つの層を形成する。
脂肪組織では、核は小さくて細胞の片側にある。脂肪組織の大半は、脂肪滴で構成される。本発明の発明者は、異なる組織学的構造は、核間距離(局所統計量)の異なる分布を有すると仮定した。以下に説明するように、本開示概念のこの態様の第2セグメント化方法は、この仮説に基づいている。
組織病理学的及び細胞病理学的画像における核のセグメント化は、詳しく研究されている課題である。しかしながら、乳癌における上皮細胞の近接と、有糸核分裂像(分裂細胞)の広まりとは、核の境界を正確に検出することを困難にし、これはヒトの眼でも困難である。この問題を避けるため、第2セグメント化方法では、推定核位置をスーパーピクセル形式で特定することで、核を近似的に示し、スーパーピクセルを接続するグラフを構築することで、各スーパーピクセル対に関する隣接・距離情報が得られる。より具体的に言うと、例示的な実施形態では、H&E画像からスーパーピクセルを作成するために、先ず、ピクセル色が先に記載したように正規化される。次いで、Tosun,A.B.及びGunduz−Demir,C.「Graph Run−length Matrices for Histopathological Image Segmentation」IEEE TMI、30(3)、721−732(2011)で提案されているアルゴリズムが実行されて、円状にスーパーピクセルが合わせられる。簡単に言うと、このアルゴリズムは、先ず、k−平均アルゴリズムを用いて強度に基づいて3つのクラスにピクセルをクラスター化する。クラスター中心は、主要素分析を使用して、無作為に選択されたトレーニング画像にわたって決定される。これらの3つのクラスは、紫領域、ピンク領域及び白領域を示し、これらは、それぞれ、核領域、ストロマ領域及び内腔/白領域に相当する。次に、このアルゴリズムは、円状のスーパーピクセルを、核、ストロマ及び内腔/白要素に関するクラスター化ピクセルに合わせる。スーパーピクセル分解後、スーパーピクセルの中心座標に基づいてデローニの三角分割が形成され、各スーパーピクセルの近隣が決定される。各スーパーピクセル・ペアに関する距離情報があれば、グリーディ法でこのグラフを区画し、特定のタイプのセグメントについてマージ規則(merging rules)を適用することによって、組織学的構造の最終的なセグメント化が達成される。これは以下の部分で詳述される。提案方法は、核間距離分布を動機とするが、紫及び白のピクセルクラスの両方からのスーパーピクセルは、管、血管及び脂肪組織のような複合体組織学的構造を占めると考えられる。例えば、正常な管は、白の内腔領域を囲む2つの細胞層を形成する紫の核を有する。一方、ストロマ(ピンク)クラスは、バックグラウンドであると考えられ、グラフ分割ステップに含まれない。
より具体的には、各スーパーピクセルは、グラフにおけるノードと考えられ、グラフの接続性は、距離閾値により決定される。各クラスについて、スーパーピクセルの中心とそれに最も近い15個の隣りのもの(デローニの三角分割により特定される)の間の対距離(pairwise distance)を計算する。距離閾値τは、距離分布の中央値(δ)に比例するとして設定される。比例定数は、全データベースに関するアルゴリズムのパフォーマンスを極大化するように設定される。スーパーピクセル・グラフを作った後、貪欲接続要素分析アルゴリズム(greedy connected component analysis)を使用して、スーパーピクセルを標識セグメントへとクラスター化する。例示的な実施形態では、組織領域に関する最も大きな15個のセグメントが選択される。例示的な実施形態における組織画像のサイズは2K×2Kなので、管、腫瘍巣、脂肪滴の一握りだけが、与えられた任意の画像にて予測される。この点で、標識セグメントの2つのセットは、紫及び白のスーパーピクセルから得られている。
紫のセグメントと白のセグメントを最終的な組織学的構造へとマージするため、数種の簡単なルールに従い、核クラスターによって形成された重要な構造が見過ごされていないことを確かめる。白のセグメントが、紫のセグメントによって完全にカバーされている場合、紫の全領域は、紫のセグメントのラベルを得る。白のセグメントが紫のセグメントと重なっている場合、重なった領域に関わらず、重なった部分は紫のセグメントのラベルを得、重なっていない部分は白のセグメントのラベルを得る。紫のセグメントが白のセグメントにより完全にカバーされている場合、紫の領域は、紫のセグメントのラベルを取り、残りの白の領域は、白のセグメントのラベルを保持する。これは、血管内に存在する核凝集を見過ごさないためである。紫及び白のセグメントがマージされた後、残りのラベル化されていない領域は、バックグラウンド又はストロマと考えられる。
図4は、詳細に記載した第2セグメント化方法をまとめたフローチャートである。その方法は、対象スライドに関する正規化RGBデータを受け取るステップ30で始まる。次に、ステップ35で、RGBデータから、推定核位置をスーパーピクセル形式で特定する。次いで、ステップ40で、各スーパーピクセルとその最も近い隣接したものの幾つかとの間の対距離に基づいて、スーパーピクセル・グラフを作る。次に、ステップ45で、スーパーピクセル・グラフを使用して、スーパーピクセルを標識セグメントにクラスター化又はグループ分けする。最後に、ステップ50で、標識セグメントを最終的な組織学的構造へとマージする。次いで、決定された最終的な組織学的構造を、対象スライドをセグメント化(即ち、対象スライドがセグメント化されている画像を作る)ために使用する。
<B.腫瘍内空間的不均一性の定量化>
本明細書でより詳しく説明されるように、本開示概念の別の態様は、デジタル・パソロジー・システムの機能及び動作における改善(例えば、処理の改善)を提供する。特に、この態様は、腫瘍内空間的不均一性を定量化する方法を提供し、これは、単一のバイオマーカー、多重化、又は高多重化免疫蛍光(IF)データを処理する。その方法は、アプローチが全体論的であり、TMAにおける全腫瘍組織セクション及び/又はスポットの発現及び空間情報の両方を使用して、空間的関連性を特徴付ける。本明細書で詳細に記載する例示的な実施形態では、本方法は、主要な及びマイナーな亜集団の両方の空間的関連性を明示的に解明する2次元不均一性マップを生成する。腫瘍内空間的不均一性の特徴化は、癌の進行、増殖及び治療に対する反応について重要な診断バイオマーカーとなり、従って、本開示概念のこの態様の方法及びシステムは、価値のある診断及び治療ツールとなると信じられる。
本開示概念のこの態様によれば、特定のバイオマーカーの所定のセットを使用して、多重化/高多重化蛍光組織画像における空間的不均一性が定量化される。目的の明確化のため、本開示概念のこの態様が、限定でない例示的な実施形態において実施される。当該実施形態では、3種の乳癌バイオマーカー(エストロゲン受容体(ER)、ヒト上皮成長因子2(HER2)及びプロゲステロン受容体(PR))が、核、細胞膜、細胞質及び上皮細胞を含むセグメントについてバイオマーカーと組み合わせて使用されて、空間的不均一性が定量化される。しかしながら、本開示概念のこの態様において、異なる及び/又は追加のバイオマーカーが使用されてよいことは理解されるだろう。また、空間的腫瘍内不均一性を定量化するために自己相互情報量(PMI)を用いる本開示概念のこの態様の効果は、本明細書に記載する特定の例示的な実施形態を超えて広がりうることも理解されるだろう。例えば、本開示概念のこの態様は、数多くの癌及びストロマバイオマーカーで標識化された全体スライド(whole-slide)IF画像の分析に広げてもよく、これに限定されない。
さらに、本開示概念のこの態様は、本明細書では表現型とも言う、優性のバイオマーカー強度パターン(使用される特定のバイオマーカーの所定のセットに基づいている)の所定のセットを使用して、細胞空間的不均一性を測定して定量化する。従って、図5を参照しながら、最初に、優性バイオマーカー強度パターンを構築する、限定ではない代表的な方法を以下に説明する。その後、優性バイオマーカー強度パターンを使用して空間的不均一性を定量化することを説明する。
図5を参照すると、先ず、ステップ105にて、既に細胞セグメント化されたデジタル・バイオマーカー画像を各コントロール・スライドが含むような一組のデジタル・コントロール・スライドを得る(即ち、ここでは細胞セグメント化方法が行われる)。例示を目的として、本明細書に記載する例示的な実施形態では、少なくとも前記3種のバイオマーカー(ER、PR及びHER2)を使用して、コントロール・スライドのバイオマーカー画像が作成される。次に、ステップ110で、コントロール・スライドについて、免疫蛍光(IF)データが作成される。具体的には、ステップ110では、各バイオマーカー画像について、バイオマーカー画像における各セグメント化細胞の所定のバイオマーカーの強度レベルを得ることによって、IFデータが作成される。従って、本明細書の記載から理解できるように、IFデータは、コントロール・スライドの各バイオマーカー画像の各セグメント化細胞に関するバイオマーカー強度レベル・データを含むだろう。
次に、ステップ115で、信号強度が真のバイオマーカー発現を示すと仮定して、各バイオマーカーの信号強度の分布に基づいて、IFデータからの細胞が、(以下に記載する閾値を用いて)2つの区画に分離される。図6は、代表的なバイオマーカー(ER、PR、HER2)のそれぞれについて、バイオマーカー強度分布グラフを示している。図6で示すLog−発生分布は、それぞれ、2つ以上の線形方程式によってモデル化できる。これらの2つの異なるモデルが出くわすであろうノッチが、特定のバイオマーカー・チャネルにおいて閾値として設定され、図6のバイオマーカー強度分布グラフでは、垂直線で描かれている。任意の所与の細胞について、そのバイオマーカー強度の1又は複数が閾値を超える場合、その細胞はレベル1(L1)に属する。任意の所与の細胞のバイオマーカー強度の全てが、それらに対応するバイオマーカー・チャネルにおける閾値未満であれば、その細胞はレベル2(L2)に属する。これらの2つの区画は、それらの信号雑音比で解釈することができ、比較すると、L1はより高い信号雑音比を有し、L2はより低い信号雑音比を有する。細胞の各区画を使用して、バイオマーカー強度パターンの固有のセットがわかる。L1及びL2データに関するパターン係数の分布は、一般的に異なるガウス的性質を有することを考えると、このアプローチは、特に賢明である。図6で示すように、調べたバイオマーカー強度は、長い尾の形をした分布を有しているので、数的に安定したパターン認識アルゴリズムを導くためにLog強度表示が選択される。
次に、図5のステップ120で、本明細書では表現型とも称する優性バイオマーカー強度パターンのセットを、以下のようにして区画IFデータから知る。先ず、図7に示すように、IFデータの各区画、L1及びL2について、スパース信号表示を導き出す。より具体的には、図7を参照すると、列はIFデータにおける各細胞を示し、行は各細胞のログ・バイオマーカー強度を示している(それぞれ、上から下にER、HER2、PR)所与のデータ行列Xは、行列D及びWの積により近似できる。Dは、データセットXにおける細胞の集合から得られる潜在的なバイオマーカー強度パターンの辞書を示しており、各列は、データから得られるパターンの1つを示し、各行は、各パターンの個々のバイオマーカー強度を示す。Wはスパース行列であり、Xにおける各細胞を、特定のスケーリング係数で、Dにおける特異的パターンにフェノタイプ化する。従って、各細胞(Wにおける列)は、スパース・コードがあるバイオマーカー・パターン(Dにおける列)に相当するただ1つの細胞表現型により示される。各行列の色スペクトルは、1つの色、例えば、青(低強度)から他の色、例えば黄(高強度)まで変化する。行列DWは、実際のデータ行列とその復元との間の類似性を表すために示されている。行列X及びDWは、それらが最も一致する辞書エレメントによってカラムソートされており、列である行列X及びDWを視察することによって、バイオマーカー強度パターンの各々がデータに存在していることが観察できる。データのこの復元の利益は、少数の解釈可能なバイオマーカー強度パターンで、大きなアレイの細胞レベル・データを示して、図8で示すようなデータベースに固有の高度にクラスター化されたクラウドを記述できる能力である。3DLog・バイオマーカー強度空間の各細胞は、その表現型でコード化されている色である。辞書D及び辞書係数行列Wへの所定のデータセットXの線形表示の復元エラーは、Dの次元に、即ち、データセットXを記述するために使用されるパターンの数に非常に依存する。
Dの理想的な次元を選ぶために、図9に示すように、データ復元の10倍クロス検証が実行される。これらの分析において典型的であるように、次元が増加するにつれて、エラー分散が次元とともに増加し始めるある点まで、復元エラー及びエラーの分散は減少する。例示的な実施形態では、11個のパターンの辞書サイズが、データ区画L1及びL2の両方について、復元エラー及びエラーの分散の両方を最適化することが分かっている。データL1及びL2の重なり合わない区画の各々について11個パターンのセットを知ることで、2つの辞書を、全データセットを記述できる1つの大きなバイオマーカー強度パターンの辞書にマージすることができた。しかしながら、これらのパターンは、同じ実験条件下で取得された同じデータセットに由来する区画から別々に得られたので、L1データから得た辞書とL2データから得た辞書との間に幾つかの重複があることが分かった。故に、例示的な実施形態では、k−平均クラスター化を使用して、大きな22パターン辞書(各区画からの11個のパターンを有する)を、本明細書に記載するアプローチから発見された特有のパターンのみを含むようなより小さな最終辞書に集約する。図10は、L1から得た11個のパターンと、L2から得た11個のパターンとを示している。各バイオマーカー・パターンは、そのER、HER2及びPR強度のステムプロットとしてそれぞれ示されている便宜上、ステムプロットの強度パターンは、高、中、低として記述されるであろう。例えば、L1辞書(左に示している)のパターン8は、ER高、HER2中、及びPR低と記述できる。
図10において右側に示されたk−平均クラスター化の結果は、8個のバイオマーカー強度パターンの最終辞書次元となる。例示的な実施形態では、最終次元は、クラスター評価についてのシルエット基準の結果に基づいて選ばれた。なお、1個のパターンは、区画L2に特有であり、最終パターン・セットのパターン7が、ER低発現、HER2中発現、及びPR高発現であった。これは、データを2つのグループ、L1及びL2に区分することの価値を実証しており、1つの区画では優勢であるが他の区画では優勢ではないパターンが解明され得る。
一組の優性バイオマーカー強度パターンを得る代表的な手順を説明してきたが、議論は、次に、この優性バイオマーカー強度パターンを使用して空間的不均一性を定量化する方法に移る。具体的には、図11は、例示的な実施形態による、多重化/高多重化蛍光組織画像の空間的不均一性を定量化する方法のステップを示すフローチャートである。
図11を参照すると、その方法は、分析すべき複数のデジタル多重化蛍光スライドを得るステップ125から始まる。ステップ125で得られるスライドの数は、1個のスライドでも、1人の患者からの複数のスライドでも、又は全患者群の複数のスライドでもよい。本明細書から理解できるように、ステップ125で得られたスライドの各々は、関心腫瘍のセクションを含んでおり、そのセクションのバイオマーカー画像となる。本明細書の他の部分で述べたように、例示的な実施形態で使用されるバイオマーカーは、ER、PR及びHER2である。次に、ステップ130で、細胞セグメント化が、対象スライド(複数を含む)のデジタル・スライド・データ上で実行される。ステップ130では、数多くの公知の又は後で開発される適切な細胞セグメント化アルゴリズムの何れかが使用されてよい。次いで、ステップ135で、対象スライド(複数を含む)における各細胞について空間位置及びバイオマーカー強度データが得られる。次に、ステップ140で、対象スライド(複数を含む)の各細胞を、細胞のバイオマーカー強度構成に基づいて、所定の優性バイオマーカー強度パターン(即ち表現型の1つ)の1つに割り当てる。図12は、1〜8と付された所定の優性バイオマーカー強度パターンの各々の模式的表示160を示す。例示的な実施形態では、各模式的表示160は、その模式的表示を他のものから容易に区別できるように、固有の色(複数を含む)で表されている。次に、ステップ145で、細胞割当てと図12に示す模式的表示とを利用して、対象組織試料(複数を含む)の不均一性を目に見えるように表示する細胞空間依存画像(cell spatial dependency image)が生成される。図13は、本開示概念の1つの特定の例示的な実施形態による細胞空間依存画像165を示す。図13でわかるように、細胞空間依存画像165は、模式的表示160を使用して、対象スライド(複数を含む)の細胞の間の空間依存性を示す。例示的な実施形態では、細胞空間依存画像165は、以下ケースの確率を記録する:(i)免疫細胞が癌細胞の近くで発生する場合、(ii)免疫細胞及び癌細胞が互いを抑制する場合、及び(iii)免疫細胞及び癌細胞は互いに非依存性である場合。細胞空間依存画像165は、特定の組織構造を示してはいない。
次に、ステップ150で、空間ネットワークを構築して、対象スライド(複数を含む)における優性バイオマーカー強度パターンの構成を記述する。次いで、ステップ155で、対象スライド(複数を含む)の不均一性を、本明細書で記載したように、スライド(複数を含む)のPMIマップを生成することによって、定量化する。例示的な実施形態では、ステップ150及び155は、以下に述べるようにして実行される。
対象スライドのバイオマーカー画像(即ち、組織/腫瘍試料)におけるバイオマーカー・パターンの空間構成を示すために、ネットワークを、対象スライドについて構築する。腫瘍試料に関する空間ネットワークの構築により、細胞バイオマーカー強度データ(ネットワークのノードで)は、空間データ(ネットワークのエッジで)に固有に結合される。ネットワーク構築における仮定は、細胞は、ある限界、例えば250μmまで、近くの細胞とのコミュニケーション機能を有しており、その限界内での細胞のコミュニケーション機能は、細胞の距離に依存するということである。従って、例示的な実施形態の確率分布は、対象スライドにおける細胞とそれに最も近い10個の隣接物との間の距離についてコンピュータで計算される。ハード限界は、(標準偏差を検出するため)この分布の中央値の1.5倍で選択されて、ネットワーク内の細胞は、この限界内でのみ接続された。次いで、ネットワークにおける細胞間のエッジは、隣り合う細胞間の距離により重み付けられる。
次に、自己相互情報量(PMI)を使用して、対象スライドについて、辞書におけるバイオマーカー・パターン、つまり異なる細胞表現型の各ペアの間の関連性を測る。この測定手法は、線形及び非線形の両方の一般的統計的関連性を取得し、従来の研究はスピアマンのロー係数のような線形計量法を使用していた。バイオマーカー・パターンの各ペアについて、PMがコンピュータで計算されると、対象スライドのデータにおける全ての関連性の測定値がPMIマップに表示される。典型的なPMIマップ170を図14に示す。
PMIマップ170は、対象スライドの微小環境内における異なる細胞表現型の間の関係を記述する。特に、PMIマップ170におけるエントリ172は、全ての表現型にわたるランダム(又はバックグラウンド)分布により予測される相互関係と比べた場合に、データセットにおいて、2つの表現型(行及び列の番号で表される)の間の特定の空間的相互関係がどの程度の頻度で起こるかを示す。赤のような第1色におけるエントリは、表現型の間の強い空間的関連性を表しており、黒のような第2色におけるエントリは、共局在化がないこと(表現型の間の弱い空間的関連性)を表す。他の色は、他の関連性を表すために使用されてもよい。例えば、緑のような第3色に色付けされたPMIエントリ172は、全データセットにわたる細胞表現型のランダム分布にすきないという関連性を表す。また、PMIマップ170は、エントリ172が青のような第4色で示されると、反関連性を表してよい(例えば、表現型1がほとんど現れなければ、空間的に近い表現型3)。
従って、PMIマップ170は、強い対角エントリ及び弱い非対角エントリを有しており、全体的には不均質であるが局所的には均質な腫瘍を記述する。そのようなPMIマップ170Aの例を図15に示す。この例では、表現型2、4及び8に関する対角エントリにおける関連性が強い。このことは、図15で示す腫瘍試料画像の個々の微小ドメインの構成によって示されるように、これらの表現型が、同じ表現型の細胞と空間的に関連していることを示唆している。逆に、強い非対角エントリを有するPMIマップ170Bは、局所的に不均質な腫瘍を記述することができる。そのようなPMIマップ170Bの例を図16に示す。この例では、細胞表現型1及び6、細胞表現型2及び4、ならびに細胞表現型3及び8の間の関連性が空間的に局在化している。さらに、PMIマップ170Bは、表現型7の細胞とそれ自身とのただ1つの関連性を示している。図17で示す例示的なPMIマップ170Cは、腫瘍画像における全ての表現型の間の関連性を示し、従って、PMIマップ170Cは、色が完全に混在している。既存の測定にわたったPMIマップの利益は、そのマップが表現型間の空間的関係を再現することである。それらは、細胞構成の概要だけでなく、腫瘍トポロジーの近似も提供する。簡単にするため、より複雑なPMIマップの例は含んでいないが、全てのPMIマップ170は、これらの単純な相互関係で成り立っていることは理解されるだろう。
例示的な実施形態では、対象スライドのPMIは、以下のように計算される。過完備辞書D(Dの各列は別個のパターンdである)へのIFデータセットX(Xの各列は、細胞xである)の線形脱構築(linear deconstruction)と、各細胞をただ1つの単一バイオマーカー強度パターンに割り当てるスパースコーディング行列Wとが与えられると、本明細書で説明したように(ステップ140)、各細胞は、表現型f(iは、Wの列wにおけるゼロ以外のインデックスである)を有するように割り当てられる。アルゴリズムの潜在的な落とし穴は、信号強度が高い及び低い細胞が、同じ細胞表現型に割当てられる可能性があることである。所与のネットワーク又はネットワークセットsについての1組のバイオマーカー表現型(f,f)の間のPMIは、下式で与えられる。
Figure 0006910068
ここで、P(fis)は、表現型fがネットワークセットsで起こる確率であり、P(fit)は、表現型fがネットワークの完全集合から得られるバックグラウンド確率分布である。個々のネットワークを全体として組織スライドの分布と比較するために、バックグラウンド分布は、全データセットに基づいていることに留意のこと。この構成は、DNA又はタンパク質配列について位置特異的スコア行列(PSSM)に類似しており、バックグラウンド分布は、任意の所与の位置について、配列のデータセットにわたる任意の特定のヌクレオチド又はアミノ酸を見出す確率を示す。PMIマップは、所与のネットワークセットsについて、単語集のパターンの可能なペア毎にPMIスコアで構成される。不均一性を充分に理解するために、二次元PMIマップの解釈を唱道してきたが、文献にある他の一次元スコアとの比較に関心のある読者の便宜のため、PMIマップから一次元不均一性スコア値も導き出すことにする。情報不十分な一次元不均一性スコアは、下式で規定される。
Figure 0006910068
ここで、より高いスコアは、バックグラウンド分布からのより大きな差異を表す。一次元スコアは、それらのPMIマップによって示されるように、TMEの2つの空間的に異なる構成を同じスコアに間違ってマップする可能性がある。
対象スライドについてPMIマップ170をコンピュータで計算し、有意な相互関係又は相互関係モチーフを特定した後で、この有意な関連性に寄与した細胞を調べる必要がある。有意な相互関係は、PMI値が±1に近い場合に考慮される。1に近いPMI値は、バイオマーカー・パターンのこの特定の空間的相互関係が、バックグラウンド分布において観察されるよりも頻繁に起こることを意味する。−1に近いPMI値は、1つのパターンがネットワークにおいて観察される場合、他のパターンが、バックグラウンド分布から予測されるよりも数少なく観察されることが見られることを意味する。0に近いPMI値は、バックグラウンド分布によって適切に記述され得る相互関係を意味する。
<C.システムの実施>
図18は、本明細書で記載するH&E染色組織画像セグメント化する手順を実施可能な例示的なシステム・デジタル・パソロジー(pathology)200の概略図である。図18に示すように、システム200は、本明細書で説明されているように、H&E染色組織画像を表すデジタル画像データを受け取って、これらの画像を処理するように構成されたコンピューティング・デバイスである。システム200は、例えば、PC、ラップトップ・コンピュータ、タブレット・コンピュータ、スマートフォン、又は本明細書に記載した機能を行うように構成された任意の他の適切なデバイスであってよく、これらに限定されない。システム200は、入力装置202(例えば、キーボード)、ディスプレイ204(例えば、LCD)、及び処理装置206を含む。ユーザは入力装置202を使用して処理装置206に入力することができ、処理装置206は、出力信号をディスプレイ204に提供し、本明細書で詳細に記載するように、ディスプレイ204にユーザに対して情報(例えば、セグメント化組織画像)を表示するようにする。処理装置206は、プロセッサとメモリとを含む。プロセッサは、例えば、マイクロプロセッサ(μP)、マイクロコントローラ、又はメモリとインターフェイスで接続する他の適切なプロセッシング・デバイスでもよく、これらに限定されない。メモリは、限定ではないが、コンピュータの内部記憶領域の形をしたデータ記憶のためのRAM、ROM、EPROM(複数を含む)、EEPROM(複数を含む)、FLASH、記憶レジスタをもたらすものような、種々のタイプの内部及び/又は外部記憶媒体の任意の1種又は複数であってよく、例えば、機械読み取り可能媒体であり、揮発性メモリ又は不揮発性メモリであってもよい。メモリは、本明細書に記載された開示概念を実施するためのルーチンを含む、プロセッサによって実行可能な数多くのルーチンをそこに格納している。特に、処理装置206は、H&E染色組織画像を表す、受け取った画像データに基づいて、本明細書で記載されているように、H&E染色組織画像に関する局所的空間的統計を定量化するように構成された定量化コンポーネント208と、本明細書に記載されているように、局所的空間的統計に基づいて、H&E染色組織画像内で組織学的構造を特定するように構成された特定コンポーネント210と、受け取った画像データ及び特定した組織学的構造を使用して、セグメント化H&E染色組織画像を生成するように構成されており、次いで、画像をディスプレイ204に提供してもよいセグメント化組織画像生成コンポーネント212とを含んでいる。定量化コンポーネント208は、H&E画像データにおける隣接ピクセル間の統計的関連性を示す相互情報量データの決定によって局所的空間的統計を定量化するように構成された1つ以上のコンポーネントを含んでよく、特定コンポーネント210は、本明細書に記載された、相互情報量データ及びグラフに基づくスペクトル・セグメント化アルゴリズムを使用して組織学的構造を特定するように構成された1つ以上のコンポーネントを含んでもよい。或いは、定量化コンポーネント208は、RGBデータから推定核位置をスーパーピクセル形式で特定し、各スーパーピクセルと複数のそれに最も近い隣接ものとの間の点別距離(pointwise distance)に基づいてスーパーピクセル・グラフを作成して、スーパーピクセルを標識セグメントにクラスター化する1つ以上のコンポーネントを含んでもよく、特定コンポーネント210は、本明細書に記載されているように、標識セグメントを組織学的構造にマージして特定するように構成された1つ以上のコンポーネントを含んでもよい。
図19は、本明細書で記載する空間的腫瘍内不均一性を定量化する手順を実施してもよい代表的なデジタル・パソロジー・システム300の概略図である。図19で示すように、システム300は、本明細書に記載されているように、蛍光組織画像を表すデジタル画像データを受け取り、これらの画像を処理するように構成されたコンピューティング・デバイスである。システム300は、例えば、PC、ラップトップ・コンピュータ、タブレット・コンピュータ、スマートフォン、又は任意の他の本明細書で記載する機能性を行うように構成された適切なデバイスであってもよく、これらに限定されない。システム300は、入力装置302(例えば、キーボード)、ディスプレイ304(例えば、LCD)、及び処理装置306を含む。ユーザは、入力装置302を使用して処理装置106に入力することができ、処理装置306は、出力信号をディスプレイ304に提供し、本明細書で詳細に記載されているように、ディスプレイ304にユーザに対して情報(例えば、空間依存画像及びPMIマップ)を表示するようにする。処理装置306はプロセッサとメモリとを含む。プロセッサは、例えば、マイクロプロセッサ(μP)、マイクロコントローラ、又はメモリとインターフェイスで接続する他の適切なプロセッシング・デバイスでもよく、これらに限定されない。メモリは、限定ではないが、コンピュータの内部記憶領域の形をしたデータ記憶のためのRAM、ROM、EPROM(複数を含む)、EEPROM(複数を含む)、FLASH、記憶レジスタをもたらすものような、種々のタイプの内部及び/又は外部記憶媒体の任意の1種又は複数であってよく、例えば、機械読み取り可能媒体であり、揮発性メモリ又は不揮発性メモリであってもよい。メモリは、本明細書に記載された開示概念を実施するためのルーチンを含む、プロセッサによって実行可能な数多くのルーチンをそこに格納している。具体的には、処理装置306は、幾つかの蛍光組織画像を表す画像データで細胞セグメント化を行い、該幾つかの蛍光組織画像の幾つかの細胞を特定するように構成された細胞セグメント化コンポーネント308と、細胞の各々を複数の所定のバイオマーカー強度パターンの1つに割り当てるように構成された割当てコンポーネント310と、割り当てられた所定のバイオマーカー強度パターンに基づいて、蛍光組織画像の空間的統計を定量化する定量化コンポーネント312と、細胞空間依存画像165又はPMIマップ170のような、定量化された空間的統計の視覚表示を作成する視覚表示作成コンポーネント314とを含む。定量化コンポーネント312は、空間ネットワークを構築して空間的統計を定量化し、幾つかの蛍光組織画像における所定のバイオマーカー強度パターンの構成を記述し、所定のバイオマーカー強度パターンのペア毎に自己相互情報量をコンピュータで計算して幾つかの蛍光組織画像の不均一性を定量化するように構成された1つ以上のコンポーネントを含んでもよい。
請求項において、括弧の間に置かれている符号は、請求項を限定するように解釈されるべきではない。用語「備える」又は「含む」は、特許請求の範囲に挙げているもの以外の要素や工程の存在を排除しない。幾つかの手段を列挙する装置の請求項において、これら手段の幾つかは、ハードウェアの1つ及び同じアイテムによって具体化されてよい。要素の前にある用語「1つ」は、そのような要素が複数あることを排除しない。幾つかの手段を列挙する装置の任意の請求項において、これら手段の幾つかは、ハードウェアの1つ及び同じアイテムによって具体化されてよい。ある要素が互いに異なる従属請求項において列挙されるという単なる事実は、これらの要素を組み合わせて使用できないことを示してはいない。
説明の目的で、現在、最も実用的で好ましい実施形態であると考えられることに基づいて本発明を詳細に記載してきたが、そのような詳細は、単に、その目的のためだけであって、本発明は、開示した実施形態に限定されることなく、逆に、添付の請求項の精神及び範囲内にある変更及び等価な構成を含むものと理解される。例えば、本発明は、可能な範囲で、任意の実施形態の1以上の特徴を任意の別の実施形態の1以上の特徴と組み合わせることができることを意図しているものと理解される。

Claims (24)

  1. 染色組織画像において関心領域を特定する方法において、
    前記染色組織画像を表す画像データを受け取る工程であって、前記画像データが、染色された組織画像を表すRGB空間内のRGBデータを反対色空間に変換して反対色空間データを生成して、前記反対色空間データを正規化することにより得られた、前記反対色空間における正規化画像データである、工程と、
    受け取った画像データに基づいて、前記画像データにおける隣接ピクセル間の統計的関連性を示す相互情報量データを決定することによって前記染色組織画像について局所的空間的統計を定量化する工程と、
    定量化された局所的空間的統計に基づいて、決定された相互情報量データ及びグラフに基づくスペクトル・セグメント化アルゴリズムを使用して、前記染色組織画像内の組織学的構造を特定し、境界を検出する工程と、
    前記染色された組織画像を表す、受け取った画像データと、特定した前記組織学的構造の前記検出された境界とを使用して、特定した前記組織学的構造がセグメント化された、セグメント化染色組織画像を生成する工程と、
    を含む方法。
  2. 前記染色された組織画像は、ヘマトキシリン・エオシン(H&E)染色組織画像であり、
    前記RGBデータを反対色空間に変換することは、紫及びピンクのピクセルの色相値が複素色面において最大限に分離されるようにピンク及び紫の色が反対に配置される、選択されたピンク及び紫のピクセルの集まりに基づく直交射影行列を利用することを含む、請求項1に記載の方法。
  3. 前記染色された組織画像は、ヘマトキシリン・エオシン(H&E)染色組織画像であり、
    前記RGBデータを反対色空間に変換することは、前記RGBデータをH&E−色相チャネル、H&E−彩度チャネル、及びH&E−明度チャネルに変換することを含み、
    前記反対色空間データを正規化することは、前記反対色空間データにおけるピンク、紫、及び白のクラスのピクセルを特定し、前記ピンク、紫、及び白のクラスのピクセルの各々について統計量をマッチングすることを含み、前記ピンク、紫、及び白のクラスのピクセルを特定することは、一変量フォン・ミーゼス分布の混合を用いたH&E−色相チャネルを使用して色相値をモデル化することを含む、請求項1に記載の方法。
  4. 前記画像データは、前記反対色空間における正規化色相データを含み、前記相互情報量データを決定することは、前記正規化色相データにおける隣接ピクセル間の色相角の同時分布を推定すること、及び前記同時分布の自己相互情報量(PMI)を計算することを含み、前記PMIは前記相互情報量データである、請求項1に記載の方法。
  5. 特定する工程は、前記PMIから親和性関数を作ることと、スペクトラルクラスタリングを使用して、親和性関数に基づいて前記境界を検出することとを含む、請求項4に記載の方法。
  6. 前記染色された組織画像は、ヘマトキシリン・エオシン(H&E)染色組織画像であり、前記セグメント化染色組織画像は、セグメント化H&E染色組織画像である、請求項1、4又は5のいずれかに記載の方法。
  7. 命令を含む1以上のプログラムを格納する非一時的なコンピュータ可読媒体であって、コンピュータによって実行されると、コンピュータに請求項1に記載の方法を実行させる、非一時的なコンピュータ可読媒体。
  8. 染色組織画像において関心領域を特定するコンピュータシステムであって、
    処理装置を備えており、当該処理装置は、
    前記染色組織画像を表す受け取った画像データに基づいて、前記染色組織画像について局所的空間的統計を定量化する工程であって、前記画像データが、染色された組織画像を表すRGB空間内のRGBデータを反対色空間に変換して反対色空間データを生成して、前記反対色空間データを正規化することにより得られた、前記反対色空間における正規化画像データである工程を行うように構成された定量化コンポーネントであって、前記画像データにおける隣接ピクセル間の統計的関連性を示す相互情報量データを決定することによって前記局所的空間的統計を定量化するように構成された定量化コンポーネントと、
    定量化された局所的空間的統計に基づいて、決定された相互情報量データ及びグラフに基づくスペクトル・セグメント化アルゴリズムを使用して、前記染色組織画像内で組織学的構造を特定し、境界を検出する工程を行うように構成された特定コンポーネントと、
    前記染色された組織画像を表す、受け取った画像データと、特定した前記組織学的構造の前記検出された境界とを使用して、特定した前記組織学的構造がセグメント化された、セグメント化染色組織画像を生成する工程を行うように構成されたセグメント化組織画像生成コンポーネントと、
    を含む、システム。
  9. 前記染色された組織画像は、ヘマトキシリン・エオシン(H&E)染色組織画像であり、
    前記RGBデータを反対色空間に変換することは、紫及びピンクのピクセルの色相値が複素色面において最大限に分離されるようにピンク及び紫の色が反対に配置される、選択されたピンク及び紫のピクセルの集まりに基づく直交射影行列を利用することを含む、請求項8に記載のシステム。
  10. 前記染色された組織画像は、ヘマトキシリン・エオシン(H&E)染色組織画像であり、
    前記RGBデータを反対色空間に変換することは、前記RGBデータをH&E−色相チャネル、H&E−彩度チャネル、及びH&E−明度チャネルに変換することを含み、
    前記反対色空間データを正規化することは、前記反対色空間データにおけるピンク、紫、及び白のクラスのピクセルを特定し、前記ピンク、紫、及び白のクラスのピクセルの各々について統計量をマッチングすることを含み、前記ピンク、紫、及び白のクラスのピクセルを特定することは、一変量フォン・ミーゼス分布の混合を用いたH&E−色相チャネルを使用して色相値をモデル化することを含む、請求項8に記載のシステム。
  11. 前記画像データは、前記反対色空間における正規化色相データを含み、前記相互情報量データを決定することは、前記正規化色相データにおける隣接ピクセル間の色相角の同時分布を推定すること、及び前記同時分布の自己相互情報量(PMI)を計算する工程を含み、前記PMIは前記相互情報量データである、請求項8に記載のシステム。
  12. 特定する工程は、前記PMIから親和性関数を作ることと、スペクトラルクラスタリングを使用して、親和性関数に基づいて前記境界を検出することとを含む、請求項11に記載のシステム。
  13. 前記染色された組織画像は、ヘマトキシリン・エオシン(H&E)染色組織画像であり、前記セグメント化染色組織画像は、セグメント化H&E染色組織画像である、請求項8、11又は12のいずれかに記載のシステム。
  14. 染色組織画像において関心領域を特定する方法において、
    前記染色組織画像を表す画像データを受け取る工程であって、前記画像データが正規化RGBデータであり、前記正規化RGBデータが、染色された組織画像を表すRGB空間内のRGBデータを反対色空間に変換して反対色空間データを生成して、前記反対色空間データを正規化して、正規化反対色空間データを生成して、前記正規化反対色空間データをRGB空間に変換することにより得られた、正規化データである、工程と、
    前記正規化RGBデータから決定された核間距離分布に基づいて、前記染色組織画像について局所的空間的統計を定量化する工程と、
    定量化された局所的空間的統計に基づいて、前記染色組織画像内の組織学的構造を特定し、境界を検出する工程と、
    前記染色された組織画像を表す、受け取った画像データと、特定した前記組織学的構造の前記検出された境界を使用して、特定した前記組織学的構造がセグメント化された、セグメント化染色組織画像を生成する工程と、
    を含む方法。
  15. 定量化する工程は、前記正規化RGBデータから推定核位置をスーパーピクセル形式で特定することと、各スーパーピクセルとそれに最も近い幾つかの隣接したものとの間の点別距離に基づいてスーパーピクセル・グラフを作ることと、前記スーパーピクセルを標識セグメントへとクラスター化することとを含み、
    特定する工程は、前記標識セグメントを前記組織学的構造にマージすることを含む、請求項14に記載の方法。
  16. 前記染色された組織画像は、ヘマトキシリン・エオシン(H&E)染色組織画像であり、前記セグメント化染色組織画像は、セグメント化H&E染色組織画像である、請求項14又は15に記載の方法。
  17. 前記染色された組織画像は、ヘマトキシリン・エオシン(H&E)染色組織画像であり、
    前記RGBデータを反対色空間に変換することは、紫及びピンクのピクセルの色相値が複素色面において最大限に分離されるようにピンク及び紫の色が反対に配置される、選択されたピンク及び紫のピクセルの集まりに基づく直交射影行列を利用することを含む、請求項14に記載の方法。
  18. 前記染色された組織画像は、ヘマトキシリン・エオシン(H&E)染色組織画像であり、
    前記RGBデータを反対色空間に変換することは、前記RGBデータをH&E−色相チャネル、H&E−彩度チャネル、及びH&E−明度チャネルに変換することを含み、
    前記反対色空間データを正規化することは、前記反対色空間データにおけるピンク、紫、及び白のクラスのピクセルを特定し、前記ピンク、紫、及び白のクラスのピクセルの各々について統計量をマッチングすることを含み、前記ピンク、紫、及び白のクラスのピクセルを特定することは、一変量フォン・ミーゼス分布の混合を用いたH&E−色相チャネルを使用して色相値をモデル化することを含む、請求項14に記載の方法。
  19. 命令を含む1以上のプログラムを格納する非一時的なコンピュータ可読媒体であって、コンピュータによって実行されると、コンピュータに請求項14に記載の方法を実行させる、非一時的なコンピュータ可読媒体。
  20. 染色組織画像において関心領域を特定するコンピュータシステムであって、
    処理装置を備えており、当該処理装置は、
    前記染色組織画像を表す受け取った画像データに基づいて、前記染色組織画像について局所的空間的統計を定量化する工程であって、前記画像データが正規化RGBデータであり、前記正規化RGBデータが、染色された組織画像を表すRGB空間内のRGBデータを反対色空間に変換して反対色空間データを生成して、前記反対色空間データを正規化して、正規化反対色空間データを生成して、前記正規化反対色空間データをRGB空間に変換することにより得られた、正規化データである工程を行うように構成された定量化コンポーネントであって、前記正規化RGBデータから決定された核間距離分布に基づいて、前記局所的空間的統計を定量化するように構成された定量化コンポーネントと、
    定量化された局所的空間的統計に基づいて、前記染色組織画像内の組織学的構造を特定し、境界を検出する工程を行うように構成された特定コンポーネントと、
    前記染色された組織画像を表す、受け取った画像データと、特定した前記組織学的構造の前記検出された境界を使用して、特定した前記組織学的構造がセグメント化された、セグメント化染色組織画像を生成する工程を行うように構成されたセグメント化組織画像生成コンポーネントと、
    を含む、システム。
  21. 定量化する工程は、前記正規化RGBデータから推定核位置をスーパーピクセル形式で特定することと、各スーパーピクセルとそれに最も近い幾つかの隣接したものとの間の点別距離に基づいてスーパーピクセル・グラフを作ることと、前記スーパーピクセルを標識セグメントへとクラスター化することとを含み、
    前記特定コンポーネントは、前記標識セグメントを前記組織学的構造にマージすることにより特定するように構成されている、請求項20に記載のシステム。
  22. 前記染色された組織画像は、ヘマトキシリン・エオシン(H&E)染色組織画像であり、前記セグメント化染色組織画像は、セグメント化H&E染色組織画像である、請求項20又は21に記載のシステム。
  23. 前記染色された組織画像は、ヘマトキシリン・エオシン(H&E)染色組織画像であり、
    前記RGBデータを反対色空間に変換することは、紫及びピンクのピクセルの色相値が複素色面において最大限に分離されるようにピンク及び紫の色が反対に配置される、選択されたピンク及び紫のピクセルの集まりに基づく直交射影行列を利用することを含む、請求項20に記載のシステム。
  24. 前記染色された組織画像は、ヘマトキシリン・エオシン(H&E)染色組織画像であり、
    前記RGBデータを反対色空間に変換することは、前記RGBデータをH&E−色相チャネル、H&E−彩度チャネル、及びH&E−明度チャネルに変換することを含み、
    前記反対色空間データを正規化することは、前記反対色空間データにおけるピンク、紫、及び白のクラスのピクセルを特定し、前記ピンク、紫、及び白のクラスのピクセルの各々について統計量をマッチングすることを含み、前記ピンク、紫、及び白のクラスのピクセルを特定することは、一変量フォン・ミーゼス分布の混合を用いたH&E−色相チャネルを使用して色相値をモデル化することを含む、請求項20に記載のシステム。
JP2017563619A 2015-06-11 2016-06-10 ヘマトキシリン・エオシン(h&e)染色組織画像における関心領域を調べて、多重化/高多重化蛍光組織画像で腫瘍内細胞空間的不均一性を定量化するシステム及び方法 Active JP6910068B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562174197P 2015-06-11 2015-06-11
US62/174,187 2015-06-11
PCT/US2016/036825 WO2016201186A1 (en) 2015-06-11 2016-06-10 Systems and methods for finding regions of interest in hematoxylin and eosin (h&e) stained tissue images and quantifying intratumor cellular spatial heterogeneity in multiplexed/hyperplexed fluorescence tissue images

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020186755A Division JP7168237B2 (ja) 2015-06-11 2020-11-09 ヘマトキシリン・エオシン(h&e)染色組織画像における関心領域を調べて、多重化/高多重化蛍光組織画像で腫瘍内細胞空間的不均一性を定量化するシステム及び方法

Publications (2)

Publication Number Publication Date
JP2018525707A JP2018525707A (ja) 2018-09-06
JP6910068B2 true JP6910068B2 (ja) 2021-07-28

Family

ID=78414789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017563619A Active JP6910068B2 (ja) 2015-06-11 2016-06-10 ヘマトキシリン・エオシン(h&e)染色組織画像における関心領域を調べて、多重化/高多重化蛍光組織画像で腫瘍内細胞空間的不均一性を定量化するシステム及び方法

Country Status (7)

Country Link
US (3) US10755138B2 (ja)
EP (1) EP3308327A4 (ja)
JP (1) JP6910068B2 (ja)
CN (2) CN107924457B (ja)
CA (2) CA3021538C (ja)
HK (1) HK1254322A1 (ja)
WO (1) WO2016201186A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20153912A1 (it) * 2015-09-25 2017-03-25 Sisvel Tech S R L Metodi e apparati per codificare e decodificare immagini digitali mediante superpixel
US10692194B2 (en) * 2016-09-30 2020-06-23 Huawei Technologies Co., Ltd. Method and terminal for displaying edge of rectangular frame
EP3410394B1 (en) * 2017-06-01 2020-01-15 Leica Instruments (Singapore) Pte. Ltd. Method, image processor and device for observing an object containing a bolus of a fluorophore
JP7278224B2 (ja) * 2017-06-02 2023-05-19 コーニンクレッカ フィリップス エヌ ヴェ 医用画像の病変の定量化される態様
CN107273858B (zh) * 2017-06-19 2018-07-31 潘浩天 一种数据处理方法及系统
CN111448584B (zh) 2017-12-05 2023-09-26 文塔纳医疗系统公司 计算肿瘤空间和标记间异质性的方法
WO2019219651A1 (en) * 2018-05-15 2019-11-21 Ventana Medical Systems, Inc. Quantitation of signal in stain aggregates
FR3083633B1 (fr) * 2018-07-05 2020-05-29 Thales Procede et dispositif d'affichage de donnees sonar ou radar a haute dynamique
BR112020026363A2 (pt) * 2018-07-06 2021-03-30 Enzyvant Therapeutics Gmbh Determinação de potência de tecido através de análise histomorfológica quantitativa
EP3591574A3 (en) * 2018-07-06 2020-01-15 Universität Zürich Method and computer program for clustering large multiplexed spatially resolved data of a biological sample
US20220044401A1 (en) 2018-12-19 2022-02-10 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Computational systems pathology spatial analysis platform for in situ or in vitro multi-parameter cellular and subcellular imaging data
EP3914911A1 (en) * 2019-01-22 2021-12-01 Imabiotech Method for evaluating molecular changes related to a molecule effect in a biological sample
WO2020166469A1 (ja) * 2019-02-15 2020-08-20 コニカミノルタ株式会社 情報提供方法、情報提供装置及びプログラム
WO2020232094A1 (en) * 2019-05-14 2020-11-19 University Of Pittsburgh-Of The Commonwealth System Of Higher Education System and method for chaftacterizing cellular phenotypic diversity from multi-parameter cellular. and sub-cellular imaging data
CN110222745B (zh) * 2019-05-24 2021-04-30 中南大学 一种基于相似性学习及其增强的细胞类型鉴定方法
CN110378885B (zh) * 2019-07-19 2023-07-04 王晓骁 一种基于机器学习的wsi病灶区域自动标注方法及系统
CN111161234B (zh) * 2019-12-25 2023-02-28 北京航天控制仪器研究所 一种离散余弦变换测量基排序方法
EP4121893A4 (en) * 2020-03-16 2024-04-24 Univ Pittsburgh Commonwealth Sys Higher Education SCALABLE AND HIGHLY PRECISE CONTEXT-GUIDED SEGMENTATION OF HISTOLOGICAL STRUCTURES WITH DUCTS/GLAND AND LUMEN
JP7322800B2 (ja) 2020-05-11 2023-08-08 株式会社豊田自動織機 認識装置
DE102020130444A1 (de) * 2020-11-18 2022-05-19 Koenig & Bauer Ag Vorrichtung zum Erzeugen einer digitalen Kennung von einem mindestens ein Druckbild aufweisenden Exemplar eines Druckerzeugnisses
WO2022226327A1 (en) * 2021-04-23 2022-10-27 Genentech, Inc. High dimensional spatial analysis
WO2023096969A1 (en) * 2021-11-23 2023-06-01 H. Lee Moffitt Cancer Center And Research Institute, Inc. Artificial intelligence-based methods for grading, segmenting, and/or analyzing lung adenocarcinoma pathology slides
CN114565919A (zh) * 2022-01-19 2022-05-31 深圳先进技术研究院 基于数字病理图像的肿瘤微环境空间关系建模系统与方法
WO2023137627A1 (zh) * 2022-01-19 2023-07-27 深圳先进技术研究院 基于数字病理图像的肿瘤微环境空间关系建模系统与方法
TWI809682B (zh) * 2022-01-25 2023-07-21 國立成功大學 免疫組織化學染色影像的分析方法與電腦程式產品
CN115048617B (zh) * 2022-03-28 2024-04-12 山西大学 一种基于信息论的空间因子空间分层异质性强弱的评价方法
CN115035952B (zh) * 2022-05-20 2023-04-18 深圳赛陆医疗科技有限公司 碱基识别方法和装置、电子设备及存储介质
CN115880262B (zh) * 2022-12-20 2023-09-05 桂林电子科技大学 基于在线噪声抑制策略的弱监督病理图像组织分割方法
CN116797613B (zh) * 2023-08-24 2023-12-19 摩尔线程智能科技(北京)有限责任公司 多模态细胞分割、模型训练方法、装置、设备、存储介质

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496943B2 (ja) * 2004-11-30 2010-07-07 日本電気株式会社 病理診断支援装置、病理診断支援プログラム、病理診断支援装置の作動方法、及び病理診断支援システム
KR101185870B1 (ko) * 2005-10-12 2012-09-25 삼성전자주식회사 3d 입체 영상 처리 장치 및 방법
US8014569B2 (en) * 2006-10-30 2011-09-06 The Regents Of The University Of California Method and apparatus for performing qualitative and quantitative analysis of produce (fruit, vegetables) using spatially structured illumination
CA2704796A1 (en) * 2007-10-11 2009-04-16 British Columbia Cancer Agency Branch Systems and methods for automated characterization of genetic heterogeneity in tissue samples
US8116551B2 (en) * 2007-12-04 2012-02-14 University College, Dublin, National University of Ireland Method and system for image analysis
US20110286654A1 (en) * 2010-05-21 2011-11-24 Siemens Medical Solutions Usa, Inc. Segmentation of Biological Image Data
WO2013022688A1 (en) 2011-08-05 2013-02-14 Siemens Healthcare Diagnostics Inc. Automated detection of diagnostically relevant regions in pathology images
US8873827B2 (en) * 2012-06-29 2014-10-28 General Electric Company Determination of spatial proximity between features of interest in biological tissue
GB201212090D0 (en) * 2012-07-06 2012-08-22 Univ Warwick Method and apparatus
US20150227687A1 (en) * 2012-10-05 2015-08-13 Edmund A. Mroz System and method for using genetic data to determine intra-tumor heterogeneity
CN103020585B (zh) * 2012-11-06 2015-08-26 华南师范大学 一种免疫组织阳性细胞和阴性细胞识别方法
US20160307305A1 (en) * 2013-10-23 2016-10-20 Rutgers, The State University Of New Jersey Color standardization for digitized histological images
JP2015087167A (ja) * 2013-10-29 2015-05-07 キヤノン株式会社 画像処理方法、画像処理システム
TW201520906A (zh) * 2013-11-29 2015-06-01 Univ Nat Taiwan Science Tech 影像註冊方法
CN103593853B (zh) * 2013-11-29 2016-05-11 武汉大学 基于联合稀疏表达的遥感影像多尺度面向对象分类方法
EP3175389A1 (en) * 2014-07-28 2017-06-07 Ventana Medical Systems, Inc. Automatic glandular and tubule detection in histological grading of breast cancer

Also Published As

Publication number Publication date
CN107924457B (zh) 2022-03-18
CN107924457A (zh) 2018-04-17
CN114463748A (zh) 2022-05-10
WO2016201186A1 (en) 2016-12-15
EP3308327A1 (en) 2018-04-18
CA3182538A1 (en) 2016-12-15
US20200279125A1 (en) 2020-09-03
US20220323776A1 (en) 2022-10-13
EP3308327A4 (en) 2019-01-23
JP2018525707A (ja) 2018-09-06
US20180204085A1 (en) 2018-07-19
CN107924457A8 (zh) 2018-05-18
CA3021538C (en) 2023-09-26
HK1254322A1 (zh) 2019-07-19
US10755138B2 (en) 2020-08-25
US11376441B2 (en) 2022-07-05
CA3021538A1 (en) 2016-12-15

Similar Documents

Publication Publication Date Title
JP6910068B2 (ja) ヘマトキシリン・エオシン(h&e)染色組織画像における関心領域を調べて、多重化/高多重化蛍光組織画像で腫瘍内細胞空間的不均一性を定量化するシステム及び方法
JP7168237B2 (ja) ヘマトキシリン・エオシン(h&e)染色組織画像における関心領域を調べて、多重化/高多重化蛍光組織画像で腫瘍内細胞空間的不均一性を定量化するシステム及び方法
CN111448584B (zh) 计算肿瘤空间和标记间异质性的方法
Veta et al. Breast cancer histopathology image analysis: A review
CN111512383B (zh) 用于图像处理的自动测定评估和归一化
US20190042826A1 (en) Automatic nuclei segmentation in histopathology images
Basavanhally et al. Multi-field-of-view strategy for image-based outcome prediction of multi-parametric estrogen receptor-positive breast cancer histopathology: Comparison to Oncotype DX
CN111448569B (zh) 存储和检索数字病理学分析结果的方法
EP2391887B1 (en) Image-based risk score-a prognostic predictor of survival and outcome from digital histopathology
Nguyen et al. Spatial statistics for segmenting histological structures in H&E stained tissue images
Brieu et al. Slide-specific models for segmentation of differently stained digital histopathology whole slide images
Xu et al. Using transfer learning on whole slide images to predict tumor mutational burden in bladder cancer patients
Hoque et al. Retinex model based stain normalization technique for whole slide image analysis
Spagnolo et al. Pointwise mutual information quantifies intratumor heterogeneity in tissue sections labeled with multiple fluorescent biomarkers
Qu et al. Two-step segmentation of Hematoxylin-Eosin stained histopathological images for prognosis of breast cancer
WO2014006421A1 (en) Identification of mitotic cells within a tumor region
JP2023517703A (ja) 空間マルチパラメータ細胞・細胞内撮像プラットフォームからの組織サンプルの全スライド画像における管/腺及び内腔、管/腺のクラスタ、並びに個々の核を含む組織学的構造のスケーラブルで高精度なコンテクストガイドセグメンテーション
Orlov et al. Automatic detection of melanoma progression by histological analysis of secondary sites
Sarnecki et al. A robust nonlinear tissue-component discrimination method for computational pathology
Yuan et al. Self-organizing maps for cellular in silico staining and cell substate classification
US20140372450A1 (en) Methods of viewing and analyzing high content biological data
Guo et al. Towards More Reliable Unsupervised Tissue Segmentation Via Integrating Mass Spectrometry Imaging and Hematoxylin-Erosin Stained Histopathological Image
Apou et al. Fast segmentation for texture-based cartography of whole slide images
CN113226157A (zh) 用于原位或体外多参数细胞和亚细胞成像数据的计算系统病理学空间分析平台
Allen Bayesian Models for High Throughput Spatial Transcriptomics

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180322

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180323

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180703

A59 Written plea

Free format text: JAPANESE INTERMEDIATE CODE: A59

Effective date: 20181009

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210629

R150 Certificate of patent or registration of utility model

Ref document number: 6910068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150