JP6907150B2 - Leakage detector - Google Patents

Leakage detector Download PDF

Info

Publication number
JP6907150B2
JP6907150B2 JP2018084680A JP2018084680A JP6907150B2 JP 6907150 B2 JP6907150 B2 JP 6907150B2 JP 2018084680 A JP2018084680 A JP 2018084680A JP 2018084680 A JP2018084680 A JP 2018084680A JP 6907150 B2 JP6907150 B2 JP 6907150B2
Authority
JP
Japan
Prior art keywords
current
detection unit
leak
liquid leakage
leakage detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018084680A
Other languages
Japanese (ja)
Other versions
JP2019191019A (en
Inventor
英次 根本
英次 根本
兼三 牧野
兼三 牧野
荒木 宏
宏 荒木
淳二 堀
淳二 堀
良次 澤
良次 澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Electric Building Techno-Service Co Ltd
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Electric Building Techno-Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Electric Building Techno-Service Co Ltd filed Critical Mitsubishi Electric Corp
Priority to JP2018084680A priority Critical patent/JP6907150B2/en
Publication of JP2019191019A publication Critical patent/JP2019191019A/en
Application granted granted Critical
Publication of JP6907150B2 publication Critical patent/JP6907150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Description

本発明は、漏液検出装置の構造、特に、定電流素子を用いた漏液検出装置の構造に関する。 The present invention relates to the structure of a liquid leakage detection device, particularly the structure of a liquid leakage detection device using a constant current element.

空調機器等からの漏液発生を検知する方法として、二本の導線を非導通の状態で並列配置した漏液検出帯に電流を流し、二本の導線の間に漏液が入り込んだ際の短絡を検知することにより漏液を検知する方法が用いられている。 As a method of detecting the occurrence of liquid leakage from air conditioners, etc., when a current is passed through a liquid leakage detection band in which two conductors are arranged in parallel in a non-conducting state, and liquid leaks enter between the two conductors. A method of detecting liquid leakage by detecting a short circuit is used.

しかし、このような漏液検知方法では漏液の検知を行うことはできても漏液箇所を検出することができない。そこで、複数の抵抗素子が導線を介して直列に接続された検知センサと、検知センサと並列配置された導線とを終端抵抗で接続した検出帯を用い、漏液による検出帯の通電抵抗の変化により漏液箇所を検出する漏液位置検知器が提案されている(例えば、特許文献1参照)。 However, with such a leak detection method, although the leak can be detected, the leaked portion cannot be detected. Therefore, using a detection sensor in which a plurality of resistance elements are connected in series via a conducting wire and a detection band in which the detection sensor and a conducting wire arranged in parallel are connected by a terminating resistor, a change in the energization resistance of the detection band due to liquid leakage is used. A leak position detector that detects a leak location has been proposed (see, for example, Patent Document 1).

また、二本のセンサコードを並列に配置し、センサコードの両端にそれぞれ定電流源を接続し、センサコードの両端の電圧差に基づいて漏液箇所を検知する漏液検知器が提案されている(例えば、特許文献2参照)。 In addition, a leak detector has been proposed in which two sensor cords are arranged in parallel, constant current sources are connected to both ends of the sensor cord, and the leak location is detected based on the voltage difference between both ends of the sensor cord. (See, for example, Patent Document 2).

実開昭63−101842号公報Jikkai Sho 63-101842A 特開平3−9256号公報Japanese Unexamined Patent Publication No. 3-9256

ところで、抵抗値は、抵抗に微小な電圧を印加した際の電流値を検出することによって検出される場合が多い。特許文献1に記載された漏液検知器の検知センサは、複数の固定抵抗を直列に接続したものであり、電源に近い位置で漏液が発生した場合には検出電流値の変化が大きいが、電源から遠い位置で漏液が発生した場合には検出電流値の変化が小さくなる。漏液が発生した際の水の通電抵抗は常に一定とは限らず、通電抵抗の変化によって検出電流値も変化する。電源から遠い位置で漏液が発生した場合には、検出電流値の変化が水の通電抵抗のバラつきによる電流値の変化に埋もれてしまい、漏液箇所の検出が困難となる場合があった。このように、従来技術の漏液検知器は漏液箇所の検出信頼性に改善の余地があった。 By the way, the resistance value is often detected by detecting the current value when a minute voltage is applied to the resistance. The detection sensor of the liquid leakage detector described in Patent Document 1 is one in which a plurality of fixed resistors are connected in series, and when liquid leakage occurs at a position close to the power supply, the change in the detected current value is large. , If a liquid leak occurs at a position far from the power supply, the change in the detected current value becomes small. The energization resistance of water when a liquid leak occurs is not always constant, and the detected current value changes as the energization resistance changes. When a liquid leak occurs at a position far from the power supply, the change in the detected current value is buried in the change in the current value due to the variation in the energization resistance of water, which may make it difficult to detect the leaked part. As described above, the conventional liquid leakage detector has room for improvement in the detection reliability of the leaked portion.

また、特許文献2に記載された漏液検知器では、センサコードの両端に定電流源を接続する必要がある上、電圧差を差動アンプで検出することから構成が複雑になってしまうという問題があった。 Further, in the liquid leakage detector described in Patent Document 2, it is necessary to connect a constant current source to both ends of the sensor cord, and the voltage difference is detected by a differential amplifier, which complicates the configuration. There was a problem.

そこで、本発明は簡便な構成で漏液箇所の検出信頼性を向上させることを目的とする。 Therefore, it is an object of the present invention to improve the detection reliability of the leaked portion with a simple configuration.

本発明の漏液検出装置は、一対の導電線からなり、前記導電線の間に漏液が接触すると電流が流れる漏液検知帯と、前記漏液検知帯に接続されて前記漏液検知帯の通電電流値を制限電流値に制限する定電流素子を有するノードと、を含む漏液検知ユニットを複数直列に接続した漏液検知部と、前記漏液検知部の始端に接続されて、前記漏液検知部に電圧を印加する電源と、前記漏液検知部の通電電流値を検出する電流検出部と、前記電流検出部の検出した通電電流値から漏液の発生した前記漏液検知ユニットを判定する判定部と、を備え、各前記漏液検知ユニットの各前記定電流素子の制限電流値はそれぞれ異なっており、前記判定部は、前記電流検出部の検出した通電電流値と前記定電流素子の制限電流値とを比較して漏液の発生した前記漏液検知ユニットを特定すること、を特徴とする。 The liquid leakage detection device of the present invention is composed of a pair of conductive wires, a liquid leakage detection band in which a current flows when a leak comes into contact between the conductive wires, and a liquid leakage detection band connected to the liquid leakage detection band. A leakage detection unit in which a plurality of leakage detection units including a node having a constant current element that limits the current current value of the current to the current limit value, and a liquid leakage detection unit connected in series to the start end of the liquid leakage detection unit are connected to the above. A power supply that applies a voltage to the liquid leakage detection unit, a current detection unit that detects the energization current value of the liquid leakage detection unit, and the liquid leakage detection unit in which a liquid leak occurs from the energization current value detected by the current detection unit. Each of the constant current elements of each of the leak detection units is provided with a determination unit for determining the current value, and the determination unit is different from the energization current value detected by the current detection unit. It is characterized in that the leak detection unit in which the leak has occurred is identified by comparing with the current limit value of the current element.

このように、制限電流値が異なる定電流素子を含む漏液検知ユニットを複数直列に接続し、電流検出部の検出した通電電流値と定電流素子の制限電流値とを比較して漏液の発生した漏液検知ユニットを特定することにより、漏液箇所の検出信頼性を向上させることができる。 In this way, a plurality of leak detection units including constant current elements having different current limit values are connected in series, and the energization current value detected by the current detector is compared with the limit current value of the constant current element to compare the leak. By identifying the leak detection unit that has occurred, it is possible to improve the detection reliability of the leak location.

本発明の漏液検出装置において、前記漏液検知ユニットの前記ノードは、一対の始端側端子と、前記漏液検知帯の一対の前記導電線がそれぞれ接続される一対の末端側端子と、前記始端側端子と前記末端側端子とを並列に接続する一対の接続線と、を含み、前記定電流素子は、いずれか一方または両方の前記接続線に介在して配置されていること、としてもよい。 In the liquid leakage detection device of the present invention, the node of the liquid leakage detection unit includes a pair of start end side terminals, a pair of terminal side terminals to which the pair of conductive wires of the liquid leakage detection band are connected, and the above. Even if the constant current element includes a pair of connecting lines for connecting the start end side terminal and the end end side terminal in parallel, and the constant current element is arranged so as to be interposed between either one or both of the connection lines. good.

このように、検出対象の液体に応じてノードの定電流素子の配置を様々に変更することができるので、検出対象の液体に応じた漏液検出を行うことができる。 In this way, since the arrangement of the constant current elements of the node can be variously changed according to the liquid to be detected, it is possible to detect the leak according to the liquid to be detected.

本発明の漏液検出装置において、各前記漏液検知ユニットの前記定電流素子の制限電流値は、前記電源に接続される始端から末端に向かう接続順に従って小さくなることとしてもよい。 In the liquid leakage detection device of the present invention, the current limit value of the constant current element of each liquid leakage detection unit may decrease according to the connection order from the start end to the end connected to the power supply.

漏液検知ユニットの定電流素子の制限電流値は、電源に接続される始端から末端に向かう接続順に従って小さくなるので、漏液が発生した際に漏液検知部に流れる通電電流値は、漏液の発生した漏液検知ユニットの定電流素子の制限電流値となる。このため、電流検出部で検出した通電電流値に基づいて漏液の発生した漏液検知ユニットを特定することができる。 Since the current limit value of the constant current element of the liquid leakage detection unit decreases according to the connection order from the start end to the end connected to the power supply, the current current value flowing through the liquid leakage detection unit when a liquid leak occurs is the leakage current value. This is the current limit value of the constant current element of the leak detection unit where the liquid is generated. Therefore, the leak detection unit in which the leak has occurred can be identified based on the energization current value detected by the current detection unit.

本発明の漏液検出装置において、前記判定部は、前記電流検出部で検出した通電電流値と、一の前記漏液検知ユニットの前記定電流素子の制限電流値との差が所定の範囲内の場合に、一の前記漏液検知ユニットを漏液発生箇所と特定してもよい。 In the liquid leakage detection device of the present invention, the determination unit has a difference between the energization current value detected by the current detection unit and the current limit value of the constant current element of one liquid leakage detection unit within a predetermined range. In this case, one of the leak detection units may be specified as a leak occurrence location.

これにより、電流検出部で検出した通電電流値と一の定電流素子の制限電流値に差がある場合でも漏液箇所の特定を行うことができ、漏液箇所の検出信頼性を向上させることができる。 As a result, even if there is a difference between the energizing current value detected by the current detector and the current limit value of one constant current element, the leaked part can be specified, and the detection reliability of the leaked part can be improved. Can be done.

本発明の漏液検出装置において、前記判定部は、前記電流検出部で検出した通電電流値が所定の値以上の場合に漏液検知と判定してもよい。 In the liquid leakage detection device of the present invention, the determination unit may determine liquid leakage detection when the energization current value detected by the current detection unit is equal to or greater than a predetermined value.

これにより、何らかの要因で、電流検出部で検出した通電電流値と複数の定電流素子の制限電流値とのいずれの差も所定の範囲内にない場合でも、漏液発生を検知することができる。 As a result, the occurrence of liquid leakage can be detected even when the difference between the energizing current value detected by the current detection unit and the current limit value of the plurality of constant current elements is not within a predetermined range for some reason. ..

本発明の漏液検出装置において、前記判定部は、漏液検知と判定した場合に、前記電源の出力電圧を変化させて前記電流検出部で前記漏液検知部の通電電流値の変化量を検出し、前記変化量に基づいて、通電電流値から漏液の発生した前記漏液検知ユニットの特定が可能か判定してもよい。この際、前記判定部は、前記変化量の絶対値が所定の第1閾値未満の場合に、通電電流値から漏液の発生した前記漏液検知ユニットの特定が可能と判定してもよいし、前記電源の出力電圧の変化量と前記電流検出部で検出した通電電流値の変化量とに基づいて前記漏液検知部の電圧電流特性の傾きを算出し、前記傾きが所定の第2閾値未満の場合に、通電電流値から漏液の発生した前記漏液検知ユニットの特定が可能と判定してもよい。そして、前記電流検出部で検出した通電電流値から漏液の発生した前記漏液検知ユニットの特定が可能と判定した場合に、前記電流検出部で検出した通電電流値と、一の前記漏液検知ユニットの前記定電流素子の制限電流値との差が所定の範囲内の場合に、一の前記漏液検知ユニットを漏液発生箇所と特定してもよい。 In the liquid leakage detection device of the present invention, when the determination unit determines that the liquid leakage is detected, the determination unit changes the output voltage of the power supply, and the current detection unit determines the amount of change in the energizing current value of the liquid leakage detection unit. It may be detected and it may be determined whether or not the leak detection unit in which the leak has occurred can be identified from the energizing current value based on the change amount. At this time, the determination unit may determine that the leak detection unit in which the leak has occurred can be identified from the energized current value when the absolute value of the change amount is less than a predetermined first threshold value. , The slope of the voltage-current characteristic of the liquid leakage detection unit is calculated based on the amount of change in the output voltage of the power supply and the amount of change in the energizing current value detected by the current detection unit, and the slope is a predetermined second threshold value. If it is less than, it may be determined that the leak detection unit in which the leak has occurred can be identified from the energizing current value. Then, when it is determined from the energization current value detected by the current detection unit that the leak detection unit in which the leak has occurred can be identified, the energization current value detected by the current detection unit and one of the leaks When the difference between the detection unit and the current limit value of the constant current element is within a predetermined range, one said leak detection unit may be specified as a leak occurrence location.

このように、電源の出力電圧を変化させて電流検出部で漏液検知部の通電電流値を検出し、電流検出部で検出した通電電流値の変化量に基づいて漏液検知ユニットの定電圧素子が飽和状態となっており、通電電流値から漏液の発生した漏液検知ユニットの特定が可能と判定した後に、電流検出部で検出した通電電流値と、一の漏液検知ユニットの定電流素子の制限電流値との差が所定の範囲内の場合に、一の漏液検知ユニットを漏液発生箇所と特定するので、漏液発生箇所を誤って特定することを抑制することができる。 In this way, the output voltage of the power supply is changed, the current detection unit detects the energizing current value of the liquid leakage detection unit, and the constant voltage of the liquid leakage detection unit is based on the amount of change in the energizing current value detected by the current detection unit. After it is determined that the element is saturated and it is possible to identify the leak detection unit where the leak has occurred from the current current value, the current current value detected by the current detector and the determination of one leak detection unit. When the difference from the current limit value of the current element is within a predetermined range, one leak detection unit is specified as the leak occurrence location, so that it is possible to prevent the leakage occurrence location from being erroneously identified. ..

本発明の漏液検出装置において、前記漏液検知部の前記定電流素子の制限電流値は、前記電源に接続される始端から末端に向かう接続順に従って、等差級数的に小さくなり、前記判定部は、前記電流検出部で検出した通電電流値と、一の前記漏液検知ユニットの前記定電流素子の制限電流値との差が所定の範囲内の場合に、一の前記漏液検知ユニットを漏液発生箇所と特定してもよい。また、前記漏液検知部の前記定電流素子の制限電流値は、前記電源に接続される始端から末端に向かう接続順に従って等比級数的に小さくなってもよい。 In the liquid leakage detection device of the present invention, the current limit value of the constant current element of the liquid leakage detection unit becomes smaller in equal difference series according to the connection order from the start end to the end connected to the power supply, and the determination is made. When the difference between the energizing current value detected by the current detection unit and the current limit value of the constant current element of the liquid leakage detection unit is within a predetermined range, the unit is one of the liquid leakage detection units. May be specified as the location where the leak occurs. Further, the current limit value of the constant current element of the liquid leakage detection unit may be geometrically reduced according to the connection order from the start end to the end connected to the power supply.

このように、定電流素子の制限電流値を始端から末端に向かう接続順に従って、等差級数的に小さくすることにより、定電流素子の制限電流値に対する精度を絶対値で設定し、電流検出部で検出した通電電流値と一の定電流素子の制限電流値の差によって漏液箇所を特定する際の所定の範囲を絶対値で一定にすることができる。また、等比級数的に小さくすることにより、定電流素子の制限電流値に対する精度を相対値或いは比率で設定することができ、電流検出部で検出した通電電流値と一の定電流素子の制限電流値の差によって漏液箇所を特定する際の所定の範囲を相対値或いは比率で一定にすることができる。 In this way, by reducing the current limit value of the constant current element in an equidistant series according to the connection order from the start end to the end, the accuracy with respect to the limit current value of the constant current element is set as an absolute value, and the current detector unit. By the difference between the energizing current value detected in 1 and the current limiting current value of one constant current element, the predetermined range when specifying the leakage point can be made constant by an absolute value. Further, by making the geometric progression smaller, the accuracy of the constant current element with respect to the current limiting value can be set as a relative value or a ratio, and the current current value detected by the current detection unit is limited to one constant current element. A predetermined range for specifying the leak location by the difference in the current value can be made constant by a relative value or a ratio.

本発明の漏液検出装置において、前記漏液検知ユニットの前記定電流素子は、正方向の制限電流値と負方向の制限電流値とが異なり、前記電源が交流電源であり、前記判定部は、前記電源から出力される交流電流の正方向の通電電荷量と負方向の通電電荷量とを等しくしてもよい。 In the liquid leakage detection device of the present invention, the constant current element of the liquid leakage detection unit differs from the positive current limit value and the negative current limit value, the power source is an AC power source, and the determination unit is , The amount of current-carrying charge in the positive direction and the amount of current-carrying charge in the negative direction of the alternating current output from the power source may be equal.

これにより、漏液が発生した際に漏液検知帯の電蝕の発生を抑制することができる。 As a result, it is possible to suppress the occurrence of electrolytic corrosion in the leak detection zone when a leak occurs.

本発明の漏液検出装置において、一対の前記導電線からなり、前記導電線の間に漏液が接触すると電流が流れる始端側漏液検知帯を含み、前記電源は、前記始端側漏液検知帯を介して前記漏液検知部の始端に接続されており、前記判定部は、前記電流検出部で検出した通電電流値が前記漏液検知部の前記定電流素子の制限電流値の最大値よりも大きい場合には前記始端側漏液検知帯を漏液発生箇所と特定すること、としてもよい。 In the liquid leakage detection device of the present invention, the liquid leakage detection device is composed of a pair of the conductive wires, includes a start-end side leak detection band through which a current flows when a leak comes into contact between the conductive wires, and the power source is the start-end side leak detection. It is connected to the start end of the liquid leakage detection unit via a band, and in the determination unit, the energizing current value detected by the current detection unit is the maximum value of the current limit value of the constant current element of the liquid leakage detection unit. If it is larger than the above, the leakage detection zone on the starting end side may be specified as the leakage occurrence location.

この構成により、漏液検知部と電源との間での漏液を検知することができる。 With this configuration, it is possible to detect liquid leakage between the liquid leakage detection unit and the power supply.

本発明の漏液検出装置は、一対の導電線からなり、前記導電線の間に漏液が接触すると電流が流れる始端側漏液検知帯と、一対の前記導電線からなり、前記導電線の間に漏液が接触すると電流が流れる末端側漏液検知帯と、前記始端側漏液検知帯と前記末端側漏液検知帯の間に接続されて前記末端側漏液検知帯の通電電流値を制限電流値に制限する定電流素子を有するノードと、を含む漏液検知部と、前記始端側漏液検知帯に接続されて、前記漏液検知部に電圧を印加する電源と、前記漏液検知部の通電電流値を検出する電流検出部と、前記電流検出部の検出した通電電流値から前記始端側漏液検知帯または前記末端側漏液検知帯のいずれで漏液が発生したかを判定する判定部と、を備える漏液検出装置であって、前記判定部は、前記電流検出部で検出した通電電流値が前記漏液検知部の前記定電流素子の制限電流値よりも大きい場合には前記始端側漏液検知帯を漏液発生箇所と特定し、前記電流検出部で検出した通電電流値が前記漏液検知部の前記定電流素子の制限電流値以下の場合には、前記末端側漏液検知帯を漏液発生箇所と特定することを特徴とする。 The liquid leakage detection device of the present invention is composed of a pair of conductive wires, a start-end side leak detection band through which a current flows when a leak comes into contact between the conductive wires, and a pair of the conductive wires of the conductive wire. The current value of the terminal-side leak detection band, which is connected between the terminal-side leak detection band and the terminal-side leak detection band, and the terminal-side leak detection band, through which a current flows when a leak comes into contact with the terminal. A leakage detection unit including a node having a constant current element that limits the current to a limit current value, a power supply connected to the start end side leakage detection band and applying a voltage to the leakage detection unit, and the leakage. Whether the current detection unit that detects the energization current value of the liquid detection unit or the end side leakage detection band or the end side leakage detection band has leaked from the energization current value detected by the current detection unit. A liquid leakage detection device including a determination unit for determining the above, wherein the current current value detected by the current detection unit is larger than the current limit value of the constant current element of the liquid leakage detection unit. In this case, the leakage detection band on the starting end side is specified as the leakage occurrence location, and when the energizing current value detected by the current detection unit is equal to or less than the current limit value of the constant current element of the leakage detection unit, It is characterized in that the terminal side leakage detection band is specified as a leakage occurrence location.

これにより、簡便な構成で漏液発生箇所が始端側漏液検知帯と末端側漏液検知帯のいずれで漏液が発生したかを特定することができる。 Thereby, with a simple configuration, it is possible to identify whether the leak occurrence location is in the start side leak detection band or the end side leak detection band.

本発明の漏液検出装置において、前記漏液検知部の前記ノードは、前記始端側漏液検知帯の一対の前記導電線がそれぞれ接続される一対の始端側端子と、前記末端側漏液検知帯の一対の前記導電線がそれぞれ接続される一対の末端側端子と、前記始端側端子と前記末端側端子とを並列に接続する一対の接続線と、を含み、前記定電流素子は、いずれか一方または両方の前記接続線に介在して配置されていてもよい。 In the liquid leakage detection device of the present invention, the node of the liquid leakage detection unit has a pair of start end side terminals to which the pair of conductive wires of the start end side liquid leakage detection band are connected, and the end side leak detection. The constant current element includes a pair of end-side terminals to which the pair of conductive wires of the band are connected, and a pair of connection wires for connecting the start-end side terminal and the end-side terminal in parallel. It may be arranged so as to intervene in one or both of the connecting lines.

このように、検出対象の液体に応じてノードの定電流素子の配置を様々に変更することができるので、検出対象の液体に応じた漏液検出を行うことができる。 In this way, since the arrangement of the constant current elements of the node can be variously changed according to the liquid to be detected, it is possible to detect the leak according to the liquid to be detected.

本発明は、簡便な構成で漏液箇所の検出信頼性を向上させることができる。 INDUSTRIAL APPLICABILITY The present invention can improve the detection reliability of a leaked portion with a simple configuration.

実施形態の漏液検出装置の構成を示す系統図である。It is a system diagram which shows the structure of the liquid leakage detection apparatus of embodiment. 図1に示す漏液検出装置の漏液検知ユニットの構成を示す系統図である。It is a system diagram which shows the structure of the liquid leakage detection unit of the liquid leakage detection apparatus shown in FIG. 理想的な定電流ダイオードの端子間電圧に対する端子間電流と端子間抵抗の変化を示すグラフである。It is a graph which shows the change of the terminal current and the terminal resistance with respect to the terminal voltage of an ideal constant current diode. 図3に示す定電流ダイオードを逆直列に接続した定電流素子の電圧に対する電流の特性を示すグラフである。It is a graph which shows the characteristic of the current with respect to the voltage of the constant current element which connected the constant current diode shown in FIG. 3 in anti-series. 図3に示す定電流ダイオードを逆直列に接続した制限電流値が異なる定電流素子の電圧に対する電流の特性を示すグラフである。It is a graph which shows the characteristic of the current with respect to the voltage of the constant current element which connected the constant current diode shown in FIG. 3 in anti-series and has a different current limit value. 図1に示す漏液検出装置で漏液を検出した場合の電流の流れと電圧の変化を示す系統図である。It is a system diagram which shows the change of the current flow and voltage when the leakage is detected by the leakage detection apparatus shown in FIG. 図1に示す漏液検出装置で漏液を検出した場合の各定電流素子の動作点を示すグラフである。It is a graph which shows the operating point of each constant current element when the leakage is detected by the leakage detection apparatus shown in FIG. 図1に示す漏液検出装置で漏液を検出した場合の漏液検知ユニット番号に対する電圧の変化を示すグラフである。It is a graph which shows the change of the voltage with respect to the leakage detection unit number when the leakage is detected by the leakage detection apparatus shown in FIG. 図1に示す漏液検出装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the liquid leakage detection apparatus shown in FIG. 図1に示す漏液検出装置で漏液を検出した際の検出電流と始端電圧との時間変化を示すグラフである。It is a graph which shows the time change of the detection current and the start voltage at the time of detecting the leakage by the leakage detection apparatus shown in FIG. 図10に示す時刻t3における電流の流れと電圧の変化を示す系統図である。It is a system diagram which shows the change of the current flow and voltage at the time t3 shown in FIG. 図10に示す時刻t3における検知ユニット番号に対する電圧の変化を示すグラフである。It is a graph which shows the change of the voltage with respect to the detection unit number at time t3 shown in FIG. 図10に示す時刻t3における各定電流素子の動作点を示すグラフである。It is a graph which shows the operating point of each constant current element at time t3 shown in FIG. すべての定電流素子が非飽和状態において、電源の出力電圧を変化させた際の通電電流値の変化を示すグラフである。It is a graph which shows the change of the energizing current value when the output voltage of a power source is changed in the non-saturated state of all constant current elements. いずれか一つの定電流素子が飽和状態において、電源の出力電圧を変化させた際の通電電流値の変化を示すグラフである。It is a graph which shows the change of the energizing current value when the output voltage of a power source is changed in the saturated state of any one constant current element. 図1に示す実施形態の漏液検出装置に適用されるノードの例を示す図である。It is a figure which shows the example of the node applied to the liquid leakage detection apparatus of the embodiment shown in FIG. 正方向の制限電流値と負方向の制限電流値が異なる定電流素子の電圧に対する電流の特性を示すグラフである。It is a graph which shows the characteristic of the current with respect to the voltage of the constant current element which the limit current value in a positive direction and the limit current value in a negative direction are different. 図17に示す電圧電流特性の定電圧素子を用いて他の実施形態の漏液検出装置を構成した場合の電源の出力電流の波形を示す図である。It is a figure which shows the waveform of the output current of the power source when the liquid leakage detection apparatus of another embodiment is configured by using the constant voltage element of the voltage-current characteristic shown in FIG. 定電流素子の制限電流値が等差級数的に変化する場合の検知ユニット番号に対する制限電流値の変化を示す図である。It is a figure which shows the change of the limit current value with respect to the detection unit number when the limit current value of a constant current element changes arithmetic progression. 定電流素子の制限電流値が等比級数的に変化する場合の検知ユニット番号に対する制限電流値の変化を示す図である。It is a figure which shows the change of the limit current value with respect to the detection unit number when the limit current value of a constant current element changes geometrically. 他の実施形態の漏液検出装置の構成を示す系統図である。It is a system diagram which shows the structure of the liquid leakage detection apparatus of another embodiment. 他の実施形態の漏液検出装置の構成を示す系統図である。It is a system diagram which shows the structure of the liquid leakage detection apparatus of another embodiment. 図22に示す漏液検出装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the liquid leakage detection apparatus shown in FIG. 他の実施形態の漏液検出装置の構成を示す系統図である。It is a system diagram which shows the structure of the liquid leakage detection apparatus of another embodiment. 図24に示す漏液検出装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the liquid leakage detection apparatus shown in FIG. 他の実施形態の漏液検出装置の構成を示す系統図である。It is a system diagram which shows the structure of the liquid leakage detection apparatus of another embodiment. 図26に示す実施形態の漏液検出装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the liquid leakage detection apparatus of embodiment shown in FIG.

<漏液検出装置の構成>
以下、図面を参照しながら実施形態の漏液検出装置100について説明する。図1に示すように、漏液検出装置100は、漏液検知部70と、漏液検知部70の始端71に接続された電源81と、漏液検知部70の通電電流値を検出する電流検出部である電流センサ82と、電流センサ82によって検出した通電電流値に基づいて漏液の判定を行う判定部90とで構成される。
<Configuration of leak detection device>
Hereinafter, the liquid leakage detection device 100 of the embodiment will be described with reference to the drawings. As shown in FIG. 1, the liquid leakage detection device 100 includes a liquid leakage detection unit 70, a power supply 81 connected to a start end 71 of the liquid leakage detection unit 70, and a current for detecting the energization current value of the liquid leakage detection unit 70. It is composed of a current sensor 82 which is a detection unit and a determination unit 90 which determines a leak based on the energization current value detected by the current sensor 82.

図1に示すように、漏液検知部70は、複数の漏液検知ユニットU〜Uを直列に接続したものである。図2を参照しながら、漏液検知ユニットU〜Uの漏液検知部70の始端71からの接続順を示す検知ユニット番号Nがm(N=m)、つまり、始端71からm番目の漏液検知ユニットUの構成について説明する。 As shown in FIG. 1, the liquid leakage detection unit 70 is formed by connecting a plurality of liquid leakage detection units U 1 to U 5 in series. With reference to FIG. 2, the detection unit number N indicating the connection order from the start end 71 of the leak detection units 70 of the leak detection units U 1 to U 5 is m (N = m), that is, the mth from the start end 71. description will be given of a configuration of the leak detection unit U m.

図2に示すように、漏液検知ユニットUは、定電流素子Dを含むノードNDと、一対の導電線61、62からなる漏液検知帯60とを有している。ノードNDは、一対の始端側端子13,15と、一対の末端側端子14,16と、始端側端子13,15と末端側端子14,16とを並列に接続する一対の接続線12を含んでいる。図2に示すように、一方の始端側端子13と末端側端子14とを接続する接続線12の中間には、定電流素子Dが介在して配置されるように接続されている。また、他方の始端側端子15と末端側端子16とは接続線12で接続されており、定電流素子Dは接続されていない。一対の末端側端子14,16には漏液検知帯60の一対の導電線61,62がそれぞれ接続されており、一対の導電線61,62の各末端側の端部61e,62eは漏液検知ユニットUの末端側の端部となる。また、一対の始端側端子13,15は、漏液検知ユニットUの始端側の端部となる。このように、漏液検知部70は、導電線61の側の接続線12の間に定電流素子Dを配置したノードNDを含む漏液検知ユニットUを始端71から末端72に向かって直列に接続したものである。 As shown in FIG. 2, the liquid leakage detection unit U m has a node ND m including a constant current element D m and a liquid leakage detection band 60 including a pair of conductive wires 61 and 62. The node ND m connects a pair of start end side terminals 13, 15 and a pair of end side terminals 14, 16 and a pair of connection lines 12 connecting the start end side terminals 13, 15 and the end end side terminals 14, 16 in parallel. Includes. As shown in FIG. 2, a constant current element D m is interposed between the connection lines 12 connecting one of the start end side terminals 13 and the end end side terminals 14. Further, the other start end side terminal 15 and the end end side terminal 16 are connected by a connection line 12, and the constant current element D m is not connected. A pair of conductive wires 61 and 62 of the liquid leakage detection band 60 are connected to the pair of terminal terminals 14 and 16, respectively, and the end portions 61e and 62e of the pair of conductive wires 61 and 62 on the terminal side are leaking liquid. the distal end of the sensing unit U m. Further, the pair of the starting side terminals 13 and 15, the starting end of the leak detection unit U m. In this way, the liquid leakage detection unit 70 directs the liquid leakage detection unit U m including the node ND m in which the constant current element D m is arranged between the connection lines 12 on the side of the conductive wire 61 from the start end 71 to the end end 72. It is connected in series.

定電流素子Dは、漏液検知ユニットUの漏液検知帯60の通電電流値を制限電流値に制限する素子である。定電流素子Dの制限電流値Ipは、それぞれ異なっており、電源81に接続される漏液検知部70の始端71から末端72に向かう接続順に従って小さくなるように構成されている。つまり、漏液検知ユニットU〜Uの漏液検知部70の始端71からの接続順を示す検知ユニット番号Nが大きくなるに従って制限電流値Ipは小さくなる(Ip>Ipm+1)。本実施形態の漏液検出装置100では、定電流素子Dは、アノードを向かい合わせて定電流ダイオード11a,11bを逆直列に接続して構成している。定電流素子Dの構成については、後で詳細に説明する。 Constant current element D m is an element that limits the energizing current value of the leak detection zone 60 of the leak detection unit U m to limit current value. Limit current value Ip m of constant current element D m are different, it is configured to be smaller in accordance with the connection order directed from the starting end 71 of the leak detection unit 70 connected to the power supply 81 to the terminal 72. In other words, small limit current value Ip m according detecting unit number N indicating the connection order from a start end 71 of the leak detection part 70 of the leak detection unit U 1 ~U 5 increases (Ip m> Ip m + 1 ). In the liquid leakage detection device 100 of the present embodiment, the constant current element D m is configured by connecting the constant current diodes 11a and 11b in anti-series with the anodes facing each other. The configuration of the constant current element D m will be described in detail later.

導電線61、62は、漏液がない場合には非導通で、漏液が発生した際に漏液によって相互に導通するものである。導電線61、62は、例えば、吸湿性の絶縁皮膜等で覆った銅線を撚り合わせたもので構成してもよい。 The conductive wires 61 and 62 are non-conducting when there is no liquid leakage, and are mutually conductive due to the liquid leakage when the liquid leakage occurs. The conductive wires 61 and 62 may be made of, for example, twisted copper wires covered with a hygroscopic insulating film or the like.

図1、図2に示すように、漏液検知部70は、漏液検知ユニットUの末端側の端部である導電線61,62の末端側の端部61e,62eを漏液検知ユニットUm+1の始端側の端部である始端側端子13,15に順次接続することにより構成されている。そして、漏液検知部70の始端71から1番目の漏液検知ユニットUの始端側端子13,15は、漏液検知部70の始端71を構成し、漏液検知部70の始端71から5番目の漏液検知ユニットUの導電線61,62の末端側の端部61e,62eは漏液検知部70の末端72を構成する。漏液検知部70の始端71を構成する漏液検知ユニットUの始端側端子13,15は、絶縁被覆線63を介して電源81に接続されている。電源81と漏液検知ユニットUの一方の始端側端子13との間には、電流センサ82が接続されている。また、漏液検知部70の末端72は開放されている。 As shown in FIGS. 1 and 2, leak detection unit 70, leak detection unit U m of the distal end portion at which the end portion of the distal side of the conductive wires 61, 62 61e, leak detection units 62e It is configured by sequentially connecting to the start end side terminals 13 and 15 which are the end ends on the start end side of U m + 1. Then, the start end side terminals 13 and 15 of the leak detection unit U 1 first from the start end 71 of the liquid leakage detection unit 70 constitute the start end 71 of the liquid leakage detection unit 70, and start from the start end 71 of the liquid leakage detection unit 70. The terminal ends 61e and 62e of the conductive wires 61 and 62 of the fifth liquid leakage detection unit U5 form the terminal 72 of the liquid leakage detection unit 70. The start end side terminals 13 and 15 of the liquid leak detection unit U 1 constituting the start end 71 of the liquid leak detection unit 70 are connected to the power supply 81 via an insulating coated wire 63. A current sensor 82 is connected between the power supply 81 and one of the start end side terminals 13 of the liquid leakage detection unit U1. Further, the end 72 of the liquid leakage detection unit 70 is open.

電源81は、所定の電圧値V0を出力する交流の定電圧電源である。電源81は、例えば、交流100Hz、出力電圧10V程度のものでもよい。電流センサ82は、交流の電流値を検出する交流の電流検出器である。判定部90は、内部にCPU91とメモリ92と、電源81と電流センサ82とが接続される入力インターフェース93と、CPU91の演算結果を出力する出力インターフェース94とを備えるコンピュータである。CPU91と、メモリ92と、入力インターフェース93と、出力インターフェース94とはデータバス95で接続されている。メモリ92には、後で説明する各定電流素子(D〜D)の各ピンチオフ電流値(Ip〜Ip)が格納されている。電源81は判定部90の指令によって動作する。 The power supply 81 is an AC constant voltage power supply that outputs a predetermined voltage value V0. The power supply 81 may be, for example, an AC 100 Hz and an output voltage of about 10 V. The current sensor 82 is an alternating current detector that detects an alternating current value. The determination unit 90 is a computer including a CPU 91, a memory 92, an input interface 93 to which the power supply 81 and the current sensor 82 are connected, and an output interface 94 that outputs the calculation result of the CPU 91. The CPU 91, the memory 92, the input interface 93, and the output interface 94 are connected by a data bus 95. The memory 92, which stores the constant current element which will be described later (D 1 ~D 5) each pinch current value (Ip 1 ~Ip 5). The power supply 81 operates according to a command from the determination unit 90.

<定電流ダイオードの特性>
先に説明したように、図1に示す漏液検出装置100の定電流素子Dは、2つの定電流ダイオード11a,11bを逆直列に接続したものである。以下、図3を参照しながら理想的な定電流ダイオードCRD(Current Regulative Diode)の端子間電圧に対する端子間電流、端子間抵抗の特性について説明する。
<Characteristics of constant current diode>
As described above, the constant current element D m of leakage detection device 100 shown in FIG. 1 is obtained by connecting two constant current diode 11a, and 11b to the anti-series. Hereinafter, the characteristics of the inter-terminal current and the inter-terminal resistance with respect to the inter-terminal voltage of the ideal constant current diode CRD (Current Regulative Diode) will be described with reference to FIG.

定電流ダイオードCRDは、カソード側端子とアノード側端子との間の端子間の電圧値(以下、端子間電圧値という)が変化しても常に端子間に一定の電流を流すことができる半導体素子である。図3に示すように、カソード側端子とアノード側端子との間に正方向の電圧を掛け、端子間電圧値をゼロから上昇させていくと、図2中に実線で示すように、ピンチオフ電圧値Vpに達するまでの間、端子間の電流値(以下、端子間電流値という)は端子間電圧値に比例して上昇していく。ピンチオフ電圧値Vpは、端子間電流値が後で説明するピンチオフ電流値Ipとなる電圧値である。端子間電圧値がゼロからピンチオフ電圧値Vpまでの領域を非飽和領域、という。非飽和領域では、図3中に一点鎖線で示すように、端子間抵抗値は小さく、大きさが一定の低抵抗値RLとなっている。 The constant current diode CRD is a semiconductor element that can always pass a constant current between terminals even if the voltage value between the terminals between the cathode side terminal and the anode side terminal (hereinafter referred to as the voltage value between terminals) changes. Is. As shown in FIG. 3, when a positive voltage is applied between the cathode side terminal and the anode side terminal and the voltage value between the terminals is increased from zero, the pinch-off voltage is shown by the solid line in FIG. until it reaches a value Vp m, the current value between the terminals (hereinafter, referred to as inter-terminal current value) rises in proportion to the voltage value between the terminals. Pinch-off voltage Vp m is a voltage value between terminals current value becomes the pinch-off current value Ip m explaining later. Non-saturation region an area of up to pinch-off voltage value Vp m inter-terminal voltage value from zero, that. In the non-saturated region, as shown by the alternate long and short dash line in FIG. 3, the resistance value between terminals is small, and the resistance value RL is constant in magnitude.

図3中に実線で示すように、端子間電圧値がある電圧値に到達すると端子間電流値は一定の電流値になる。この電流値をピンチオフ電流値Ipという。また、ピンチオフ電流値Ipとなる端子間電圧値をピンチオフ電圧値Vpという。 As shown by the solid line in FIG. 3, when the voltage value between terminals reaches a certain voltage value, the current value between terminals becomes a constant current value. The current value of the pinch-off current value Ip m. Further, the inter-terminal voltage value as a pinch-off current value Ip m that pinch-off voltage value Vp m.

図3中に実線で示すように、端子間電圧値がピンチオフ電圧値Vpを超えると端子間電流値は一定のピンチオフ電流値Ipに保持される。この領域を飽和領域という。図3中に一点鎖線で示すように、飽和領域では、端子間抵抗値は端子間電圧値に略比例して増加するので、端子間電流値は端子間電圧値が増加しても一定のピンチオフ電流値Ipに保たれる。 As shown by the solid line in FIG. 3, the voltage across the terminals between the current value exceeds the pinch-off voltage Vp m is held constant pinch-off current value Ip m. This region is called the saturation region. As shown by the alternate long and short dash line in FIG. 3, in the saturation region, the inter-terminal resistance value increases in substantially proportional to the inter-terminal voltage value, so that the inter-terminal current value is pinched off even if the inter-terminal voltage value increases. It is maintained at a current value Ip m.

また、カソード側端子とアノード側端子との間に負方向の電圧を掛けると、端子間電圧値の絶対値に比例して大きな電流が流れる。 Further, when a voltage in the negative direction is applied between the cathode side terminal and the anode side terminal, a large current flows in proportion to the absolute value of the voltage value between the terminals.

以上説明したように、定電流ダイオードCRDは、正方向に端子間電圧が掛かると端子間電流がピンチオフ電流値Ipに制限され、逆方向に端子間電圧が掛かると、逆方向に電流が流れる特性を持っている。このため、交流電源を用いた回路において、正負両方向に端子間電流値をピンチオフ電流値Ipに制限する定電流素子を構成するには、図1に示すように、同一のピンチオフ電流値Ipの定電流ダイオードCRDを逆直列に接続することが必要となる。定電流ダイオードCRDを逆直列に接続した定電流素子は、図4に示すように正負両方向の端子間電流値を制限することができる。 As described above, the constant current diode CRD, the positive direction between the inter-terminal voltage is applied terminal current is limited to pinch-off current value Ip m, the inter-terminal voltage in the reverse direction is applied, current flows in opposite directions Has characteristics. Therefore, in the circuit using an AC power source, to constitute a constant current element which limits the positive and negative directions of the inter-terminal current value to pinch off current value Ip m, as shown in FIG. 1, the same pinch-off current value Ip m It is necessary to connect the constant current diode CRD of the above in anti-series. A constant current element in which a constant current diode CRD is connected in anti-series can limit the current value between terminals in both positive and negative directions as shown in FIG.

<定電流素子の構成>
先に説明したように、定電流素子Dの制限電流値Ipは、それぞれ異なっており、漏液検知ユニットU〜Uの検知ユニット番号Nが大きくなるに従って小さくなる(Ip>Ipm+1)ように構成される。したがって漏液検知ユニットU〜Uの定電流素子D〜Dのピンチオフ電流値Ip〜Ipは、図5に示すように、Ip>Ip>Ip>Ip>Ipの順に小さくなっている。同様に、ピンチオフ電圧値Vp〜Vpは、Vp>Vp>Vp>Vp>Vpの順に小さくなっている。
<Constant current element configuration>
As described above, the limit current value Ip m of constant current element D m are different, it decreases as the detection unit number N of leak detection units U 1 ~U 5 increases (Ip m> Ip It is configured as m + 1). Therefore pinch off current value Ip 1 ~Ip 5 of the constant-current element D 1 to D 5 of leak detection units U 1 ~U 5, as shown in FIG. 5, Ip 1> Ip 2> Ip 3> Ip 4> Ip It becomes smaller in the order of 5. Similarly, pinch-off voltage value Vp 1 ~Vp 5 is smaller in the order of Vp 1> Vp 2> Vp 3 > Vp 4> Vp 5.

<漏液検出装置の動作原理>
次に、図6から図8を参照しながら漏液が発生した際の漏液検出装置100の動作原理について説明する。以下の説明では、検知ユニット番号N=mの漏液検知ユニットUで漏液が発生したものとして説明する。漏液が発生するまでの間は、漏液検知ユニットU〜Uの導電線61、62の間は絶縁されているので電源81と導電線61、62との間には閉回路が形成されず、電流は流れていない。この場合、漏液検知部70の始端71を構成する漏液検知ユニットUの始端側端子13、15の間の電圧値(以下、始端電圧値という)は、電源81の出力電圧値であるV0となっている。
<Operating principle of leak detection device>
Next, the operating principle of the liquid leakage detection device 100 when a liquid leakage occurs will be described with reference to FIGS. 6 to 8. In the following description, it is assumed that a leak has occurred in the leak detection unit U m having the detection unit number N = m. Until liquid leakage occurs, the conductive wires 61 and 62 of the liquid leakage detection units U 1 to U 5 are insulated, so a closed circuit is formed between the power supply 81 and the conductive wires 61 and 62. No current is flowing. In this case, the voltage value between the start end side terminals 13 and 15 of the liquid leakage detection unit U 1 constituting the start end 71 of the liquid leakage detection unit 70 (hereinafter, referred to as the start end voltage value) is the output voltage value of the power supply 81. It is V0.

図6に示すように、漏液検知ユニットUの導電線61,62の間に漏液によって漏液部分65が形成されると、漏液部分65を介して導電線61、62が導通する。これにより、電源81、漏液検知ユニットUから漏液検知ユニットUの定電流素子D1〜と導電線61、漏液部分65、漏液検知ユニットUから漏液検知ユニットUの接続線12と導電線62、電源81の閉回路が形成され、この閉回路に電流が流れ始める。閉回路に流れる電流値は、漏液検知ユニットU〜Uの各定電流素子D〜Dの各ピンチオフ電流値Ip〜Ipの内で一番小さいIpに制限される。漏液部分65の抵抗値をRWとすると、Ipのピンチオフ電流が流れると、漏液部分65の電圧降下ΔVWは、下記の式(1)のようになる。

Figure 0006907150
As shown in FIG. 6, the leak portion 65 by leakage between the conductive wires 61, 62 of the leak detection unit U m is formed, the conductive lines 61 and 62 are electrically connected to each other through the leak portion 65 .. Accordingly, the power source 81, leak detection unit U 1 constant current element from the leak detection unit U m D. 1 to D m and the conductive wire 61, leakage portion 65, leak detection unit U m from leak detection unit U A closed circuit of the connecting wire 12 of 1 and the conductive wire 62 and the power supply 81 is formed, and a current starts to flow in this closed circuit. Current flowing through the closed circuit is limited to the smallest Ip m among the pinch-off current value Ip 1 ~Ip m of each constant current element D 1 to D m of the leak detection unit U 1 ~U m. When the resistance value of the leak portion 65 and RW, flows pinch-off current of Ip m, the voltage drop ΔVW the leak portion 65 is as shown in the following equation (1).
Figure 0006907150

また、漏液検知ユニットU〜Um−1の各定電流素子D〜Dm−1にもIpのピンチオフ電流が流れる。図7の点Pに示すように、この際の各定電流素子DからDm−1の各端子間電圧値はVpからVpm−1よりも低い電圧値となっているので、各定電流素子D〜Dm−1は、端子間電流値と端子間電圧値とが比例関係にある非飽和領域で動作している。非飽和領域では、各定電流素子DからDm−1の抵抗値は大きさが一定の低抵抗値RL〜RLm−1となっている。このため、漏液検知ユニットU〜Um−1の定電流素子DからDm−1の電圧降下ΔV1は、下記の式(2)のようになる。ここで、Nは、検知ユニット番号である。

Figure 0006907150
Moreover, it flows pinch-off current Ip m in leak detection unit U 1 each constant current element of ~U m-1 D 1 ~D m -1. As shown at point P in FIG. 7, the voltage value between the terminals of the constant current elements D 1 to D m-1 at this time is lower than that of Vp 1 to Vp m-1. The constant current elements D 1 to D m-1 operate in an unsaturated region in which the inter-terminal current value and the inter-terminal voltage value are in a proportional relationship. In the non-saturated region, the resistance values of the constant current elements D 1 to D m-1 are low resistance values RL 1 to RL m-1 having a constant magnitude. Therefore, the voltage drop ΔV1 of the constant current elements D 1 to D m-1 of the liquid leakage detection units U 1 to U m-1 is as shown in the following equation (2). Here, N is a detection unit number.
Figure 0006907150

図7に示すように、漏液検知ユニットUの定電流素子Dは、端子間電流値をピンチオフ電流値Ipに制限する飽和領域にある点Qで動作している。この飽和領域では、定電流素子Dの抵抗値は、端子間電圧値によって変化するRH(V)となっている。漏液検知ユニットUの始端側端子13、15には、定電圧源である電源81により電圧値V0の一定の始端電圧が印加されているので、漏液検知ユニットUの定電流素子Dは、端子間電圧値ΔVが(V0−ΔV1-ΔVW)となるように抵抗値RHが変化して端子間電流値をIpに保持する。

Figure 0006907150
であるから、RHは、
Figure 0006907150
となる。 As shown in FIG. 7, the constant current element D m of leak detection unit U m are operating in point Q in the saturation region limits the inter-terminal current value to pinch off current value Ip m. In this saturation region, the resistance value of the constant current element D m is RH (V) which changes depending on the voltage value between terminals. Since a constant starting voltage of a voltage value V0 is applied to the starting end side terminals 13 and 15 of the liquid leakage detection unit U 1 by the power supply 81 which is a constant voltage source, the constant current element D of the liquid leakage detecting unit U m m holds the voltage value [Delta] V m between the terminals (V0-ΔV1-ΔVW) become as the resistance value RH m varies a current value between the terminals Ip m.
Figure 0006907150
Therefore, RH m is
Figure 0006907150
Will be.

この結果、図8に示すように、始端電圧の電圧値V0は、漏液検知ユニットU〜Um−1の間の電圧降下ΔV1と、漏液検知ユニットUの端子間電圧値ΔVと、漏液部分65の電圧降下ΔVWのように分圧され、閉回路に流れる電流値は、一定のIpとなる。従って、電流センサ82で検出した電流値がIpの場合、定電流素子Dを含む漏液検知ユニットUを漏液発生箇所と特定することができる。 As a result, as shown in FIG. 8, the voltage value V0 of the starting voltage, the voltage drop ΔV1 between the leak detection unit U 1 ~U m-1, the inter-terminal voltage value of the leak detection unit U m [Delta] V m If, divided as voltage drop ΔVW the leakage portion 65, a current value flowing through the closed circuit, a constant Ip m. Therefore, the current value detected by the current sensor 82 is the case of Ip m, the leak detection unit U m including a constant current device D m can be identified as leakage occurrence point.

<漏液検出装置の動作>
次に図9から図15を参照して漏液検出装置100の動作について説明する。漏液検出装置100は、図9のステップS101から104に示す漏液検知動作の後、図9のステップS105、S106に示す定電流素子の飽和判定動作を行い、定電流素子が飽和となっている場合に図9のステップS107で漏液の発生した漏液検知ユニットの特定動作を行う。先に説明したように、漏液検出装置100は、漏液検知ユニットUの定電流素子Dが飽和領域で動作した際のピンチオフ電流値Ipにもとづいて漏液の発生した漏液検知ユニットを特定するものである。しかし、漏液が発生しても通電電流値は一気にピンチオフ電流値Ipに上昇するのではなく、ゼロからピンチオフ電流値Ipまでゆっくりと上昇していく。この際、通電電流値はIpよりも小さいIpm+1、Ipm+2・・・を通過してくる。このため、飽和の判定を行わずに漏液箇所の特定を行うと、実際に漏液の発生した漏液検知ユニットUよりも末端側の漏液検知ユニットUm+1、Um+2を漏液発生箇所として誤特定してしまう場合がある。そこで、漏液検出装置100では、定電流素子の飽和判定動作を行い、定電流素子が飽和となっている場合に漏液の発生した漏液検知ユニットの特定が可能と判定して漏液検知ユニットの特定動作を行う。以下、各動作の詳細について説明する。
<Operation of leak detection device>
Next, the operation of the leak detection device 100 will be described with reference to FIGS. 9 to 15. After the liquid leakage detection operation shown in steps S101 to 104 of FIG. 9, the liquid leakage detection device 100 performs the saturation determination operation of the constant current element shown in steps S105 and S106 of FIG. 9, and the constant current element becomes saturated. If this is the case, the leak detection unit in which the leak has occurred is specified in step S107 of FIG. As described above, leakage detection device 100, leak detection where the constant current element D m of leak detection unit U m occurs for leakage based on the pinch-off current value Ip m when operated in the saturation region It identifies the unit. However, applied current value solution is generated leakage is not to rise suddenly pinch current value Ip m, rises slowly from zero to the pinch-off current value Ip m. In this case, the energization current value coming through a smaller Ip m + 1, Ip m + 2 ··· than Ip m. Therefore, if the leak location is specified without determining saturation, the leak detection units U m + 1 and U m + 2 on the terminal side of the leak detection unit U m where the leak actually occurred will be leaked. It may be misidentified as a location. Therefore, the liquid leakage detection device 100 performs a saturation determination operation of the constant current element, determines that it is possible to identify the liquid leakage detection unit in which the liquid leakage has occurred when the constant current element is saturated, and detects the liquid leakage. Performs a specific operation of the unit. The details of each operation will be described below.

先に説明したように、漏液が発生するまでの間は、漏液検知ユニットU〜Uの導電線61,62の間は絶縁されているので閉回路が形成されず電流は流れていない。このため、導電線61,62の間の電圧値は、電源81の出力電圧値であるV0となっている。図10に示すように、漏液が発生する時刻t1以前の電流センサ82の検出する通電電流値はゼロ、始端電圧値は電源81の電圧値であるV0となっている。 As described above, until the leakage occurs, the conductive wires 61 and 62 of the leakage detection units U 1 to U 5 are insulated from each other, so that a closed circuit is not formed and a current flows. do not have. Therefore, the voltage value between the conductive wires 61 and 62 is V0, which is the output voltage value of the power supply 81. As shown in FIG. 10, the energizing current value detected by the current sensor 82 before the time t1 when the liquid leakage occurs is zero, and the starting voltage value is V0, which is the voltage value of the power supply 81.

図9のステップS101に示すように、判定部90は、電流センサ82で漏液検知部70の通電電流値を検出し、図9のステップS102に進んで検出した通電電圧値と所定値Ip以上かどうか判断する。ここで、所定値Ipは、漏液が発生しているかどうかを判定する閾値である。所定値Ipは、ピンチオフ電流値が最小となる末端(N=5)の漏液検知ユニットUの定電流素子Dのピンチオフ電流値Ipよりも小さく、ゼロよりも大きい値であればよく、例えば、所定値IpはIpの半分の電流値としてもよい。図10に示す時刻ゼロでは、電流は流れていないので、判定部90は、ステップS102でNOと判断して図9のステップS103で漏液未検出として図9のステップS101に戻り、漏液検知部70の通電電流値の監視を継続する。 As shown in step S101 of FIG. 9, the determination unit 90 detects the electric current value of the leakage detection unit 70 by the current sensor 82, the energization voltage detected proceeds to step S102 in FIG. 9 and the predetermined value Ip s Judge whether it is above. Here, the predetermined value Ip s, a threshold determining whether leakage has occurred. If the predetermined value Ip s is smaller than the pinch-off current value Ip 5 of the constant current element D 5 of the liquid leakage detection unit U 5 at the end (N = 5) where the pinch-off current value is the minimum and larger than zero. well, for example, a predetermined value Ip s may be a current value of the half of Ip 5. Since no current is flowing at the time zero shown in FIG. 10, the determination unit 90 determines NO in step S102, returns to step S101 in FIG. 9 as no leak detected in step S103 of FIG. 9, and detects the leak. The monitoring of the energizing current value of the unit 70 is continued.

図10に示す時刻t1に漏液が発生すると、漏液が導電線61,62の吸湿性の絶縁皮膜の中に浸み込んでくる。これにより、漏液検知ユニットUの導電線61,62の間が導通し、電流センサ82で検出する漏液検知部70の通電電流値が上昇する。漏液の導電線61,62への浸み込みはゆっくりと進むので、最初は導通抵抗が大きく、漏液検知ユニットUの導電線61,62の間の通電電流値は非常に小さい値となる。このため、図10の時刻t2までの間は、電流センサ82で検出する漏液検知部70の通電電流値は所定値Ip以上とならず、判定部90は、ステップS102でNOと判断し、図9のステップS101からS103を繰り返して実行している。 When a liquid leak occurs at time t1 shown in FIG. 10, the leaked liquid permeates into the hygroscopic insulating film of the conductive wires 61 and 62. Thus, conduction between the conductive wires 61, 62 of the leak detection unit U m, energizing current value of the leak detection unit 70 for detecting the current sensor 82 is increased. Since immersion included only to conductive wires 61, 62 of the leak proceeds slowly at first large conduction resistance, and a very small value flowing current value between the conductive wires 61, 62 of the leak detection unit U m Become. Therefore, until time t2 in FIG. 10, the energization current value of the leak detection unit 70 for detecting the current sensor 82 does not become larger than a predetermined value Ip s, determination unit 90 determines NO in step S102 , Steps S101 to S103 of FIG. 9 are repeatedly executed.

図10の時刻t1からt2の間、漏液の導電線61,62への浸み込み量が増加するにつれて導電線61,62の間の通電抵抗が小さくなり、導電線61,62の間の通電電流値が次第に大きくなってくる。そして、図10の時刻t2に電流センサ82で検出した通電電流値が所定値Ipに達すると、判定部90は、図9のステップS102でYESと判断して図9のステップS104に進み、漏液を検知する。そして、判定部90は、図9のステップS105に進み、漏液検知ユニットUの定電流素子Dが飽和になっているかどうかの判定動作を行う。 From time t1 to t2 in FIG. 10, as the amount of leakage liquid permeating into the conductive wires 61 and 62 increases, the current-carrying resistance between the conductive wires 61 and 62 decreases, and between the conductive wires 61 and 62. The energizing current value gradually increases. When the electric current value detected by the current sensor 82 at time t2 in FIG. 10 reaches a predetermined value Ip s, the determination unit 90 proceeds to step S104 in FIG. 9 determines YES in step S102 of FIG. 9, Detect leaks. Then, the determination unit 90 proceeds to step S105 in FIG. 9 performs one of the determining operation if the constant current element D m of leak detection unit U m is in saturation.

以下、判定部90が図10の時刻t3に定電流素子Dの飽和判定動作を行う場合について説明する。図10に示す時刻t3では、漏液によって漏液検知ユニットUの導電線61,62の間に形成された漏液部分65の抵抗値RWは、まだ非常に大きく、式(1)で計算される漏液部分65の電圧降下ΔVWが非常に大きい。このため、図12の電圧分布に示すように、漏液検知ユニットUの定電流素子Dの端子間電圧はピンチオフ電圧値Ipに達せず定電流素子Dは非飽和状態となっており、抵抗値は大きさが一定の低抵抗値RLとなっている。ピンチオフ電圧値がIpよりも小さい漏液検知ユニットU〜Um−1の定電流素子D〜Dm−1も同様に非飽和状態で、その抵抗値は大きさが一定の低抵抗値RL〜RLm−1となっている。 Hereinafter, the determination unit 90 will be described to perform the saturation determination operation of the constant-current element D m at time t3 in FIG. 10. At time t3 shown in FIG. 10, the resistance value of the leakage portion 65 formed between the leak detection unit U m of conductive lines 61 and 62 by leakage RW is still very large, calculated by Equation (1) The voltage drop ΔVW of the leaked portion 65 is very large. Therefore, as shown in the voltage distribution of FIG. 12, the constant current element D m does not reach the terminal voltage of the constant current element D m is the pinch-off voltage value Ip m of leak detection unit U m is a non-saturation state The resistance value is a low resistance value RL m having a constant magnitude. A constant current element D 1 ~D m-1 similarly desaturate small leak detection unit pinch-off voltage value than Ip m U 1 ~U m-1 , the resistance value of the constant magnitude lower resistance The values are RL 1 to RL m-1 .

従って、図10に示す時刻t3では、図11に示す漏液部分65によって形成される閉回路は下記の式(5)に示す抵抗値を持つものとなる。

Figure 0006907150
Therefore, at time t3 shown in FIG. 10, the closed circuit formed by the leaked portion 65 shown in FIG. 11 has the resistance value shown in the following equation (5).
Figure 0006907150

始端電圧値をV0とすると、定電流素子D〜D、漏液部分65に流れる電流値は下記の式(6)に示すようになる。

Figure 0006907150
Assuming that the starting voltage value is V0 , the current values flowing through the constant current elements D 1 to D m and the leaking portion 65 are as shown in the following equation (6).
Figure 0006907150

この際、定電流素子D〜Dは、図13の示す点Rで動作しており、漏液検知部70の電圧電流特性は図13の実線aに示すようになる。従って、漏液検知部70への印加電圧を変化させると、通電電流値は図13の実線a沿って変化する。つまり、漏液検知ユニットU〜Uの定電流素子D〜Dが全て非飽和状態の場合には、漏液検知部70への印加電圧を変化させると通電電流値は変化する。一方、いずれか一つの漏液検知ユニットUの定電流素子Dが飽和状態になると、定電流素子Dが図7に示すQ点で動作して通電電流値をIpに制限するので漏液検知部70への印加電圧を変化させても通電電流値は変化しなくなる。 At this time, the constant current elements D 1 to D m are operating at the point R shown in FIG. 13, and the voltage-current characteristics of the liquid leakage detection unit 70 are shown in the solid line a in FIG. Therefore, when the voltage applied to the liquid leakage detection unit 70 is changed, the energizing current value changes along the solid line a in FIG. That is, when all the constant current elements D 1 to D m of the liquid leakage detection units U 1 to U m are in an unsaturated state, the energizing current value changes when the voltage applied to the liquid leakage detection unit 70 is changed. On the other hand, when the constant current element D m of any one of the leak detection unit U m becomes saturated, so the constant current element D m to limit the energizing current operating point Q shown in FIG. 7 to Ip m Even if the voltage applied to the liquid leakage detection unit 70 is changed, the energizing current value does not change.

従って、全ての定電流素子Dが非飽和状態の場合には、図14に示すように、印加電圧をΔVだけ変化させると通電電流値の変化量ΔIが、ある大きさの値となる。一方、いずれか一つの定電流素子Dが飽和状態の場合には、図15に示すように、漏液検知部70への印加電圧をΔVだけ変化させても通電電流値の変化量ΔIはゼロとなる。 Therefore, when all the constant current elements D m are in the unsaturated state, as shown in FIG. 14, when the applied voltage is changed by ΔV, the amount of change ΔI of the energizing current value becomes a value of a certain magnitude. On the other hand, when any one of the constant current elements D m is saturated, as shown in FIG. 15, even if the voltage applied to the liquid leakage detection unit 70 is changed by ΔV, the amount of change ΔI of the energizing current value is It becomes zero.

そこで、判定部90は、電源81の出力電圧を変化させて漏液検知部70への印加電圧をΔVだけ変化させ、電流センサ82によってその際の漏液検知部70の通電電流値を検出し、通電電流値の変化量ΔIに基づいて、いずれか一つの定電流素子Dが飽和状態になっているかどうかを判定する。 Therefore, the determination unit 90 changes the output voltage of the power supply 81 to change the voltage applied to the liquid leakage detection unit 70 by ΔV, and detects the energization current value of the liquid leakage detection unit 70 at that time by the current sensor 82. Based on the amount of change ΔI of the energizing current value, it is determined whether or not any one of the constant current elements D m is saturated.

判定部90は、電源81の出力電圧を変化させて漏液検知部70への印加電圧をΔVだけ変化させた際の通電電流値の変化量ΔIの絶対値が第1閾値未満の場合にいずれか一つの定電流素子Dが飽和状態にあると判定し、第1閾値以上の場合には全ての定電流素子Dが非飽和状態と判定する。第1の閾値は、例えば、ピンチオフ電流値Ipの5〜10%程度としてもよいし、ピンチオフ電流値Ipが最小となる末端側の漏液検知ユニットUの定電流素子Dのピンチオフ電流値Ipの10%程度としてもよい。 When the absolute value of the change amount ΔI of the energizing current value when the output voltage of the power supply 81 is changed and the voltage applied to the liquid leakage detection unit 70 is changed by ΔV, the determination unit 90 will eventually It is determined that one constant current element D m is in a saturated state, and if it is equal to or higher than the first threshold value, it is determined that all the constant current elements D m are in an unsaturated state. The first threshold value may be, for example, as about 5 to 10% of the pinch-off current Ip m, pinch-off current of the constant current element D 5 distal of leak detection unit U 5 to pinch-off current Ip is minimized It may be about 10% of the value Ip 5.

また、判定部90は、漏液検知部70への印加電圧の変化量ΔVと、通電電流値の変化量ΔIに基づいて、漏液検知部70の電圧電流特性の傾き=ΔI/ΔVを計算し、この傾きが第2閾値未満の場合にいずれか一つの定電流素子Dが飽和状態にあると判定し、第2閾値以上の場合には全ての定電流素子Dが非飽和状態と判定してもよい。 Further, the determination unit 90 calculates the gradient of the voltage-current characteristic of the liquid leakage detection unit 70 = ΔI / ΔV based on the change amount ΔV of the voltage applied to the liquid leakage detection unit 70 and the change amount ΔI of the energization current value. However, when this inclination is less than the second threshold value, it is determined that any one of the constant current elements D m is in the saturated state, and when it is equal to or more than the second threshold value, all the constant current elements D m are in the unsaturated state. You may judge.

また、判定部90は、ΔI/ΔVに代えて、逆数のΔV/ΔIを算出して定電流素子Dの飽和の判定を行ってもよい。 Further, the determination unit 90 may calculate the reciprocal ΔV / ΔI instead of ΔI / ΔV to determine the saturation of the constant current element D m.

図10の時刻t3では、漏液検知部70の電圧電流特性は、図13に示す実線aの状態であり、漏液検知部70への印加電圧を変化させると通電電流値が変化する。従って、図3の時刻t3では、判定部90は、図9のステップS106でNOと判断してステップS109に進み、漏液箇所判定中として図9のステップS101に戻って電流センサ82によって通電電流値の監視を続ける。 At time t3 in FIG. 10, the voltage-current characteristic of the liquid leakage detection unit 70 is the state of the solid line a shown in FIG. 13, and the energizing current value changes when the voltage applied to the liquid leakage detection unit 70 is changed. Therefore, at the time t3 of FIG. 3, the determination unit 90 determines NO in step S106 of FIG. 9, proceeds to step S109, returns to step S101 of FIG. 9 while determining the leak location, and energizes the current by the current sensor 82. Continue to monitor the value.

時間が経過すると、漏液の導電線61,62への浸み込み量が増加し、導電線61,62の間の通電抵抗が小さくなってくる。すると、図12に示す漏液部分65の電圧降下ΔVWが次第に小さくなり、定電流素子Dの端子間電圧ΔVmが次第に大きくなってくる。そして、定電流素子Dの端子間電圧ΔVmがピンチオフ電圧値Vpに達すると、定電流素子Dは飽和状態となり、通電電流値はピンチオフ電流値Ipに制限される。定電流素子Dが飽和状態となった以降、導電線61,62の間の通電抵抗が更に小さくなっても、定電流素子Dの抵抗値RHが変化して通電電流値はIpに保持される。そして、図10の時刻t4以降は、図6から図8に示す状態となり、定電流素子Dは、図7に示すQ点で動作し、定電流素子D〜Dm−1は、図7に示す点Pで動作する。 As time passes, the amount of the leaked liquid permeating into the conductive wires 61 and 62 increases, and the energization resistance between the conductive wires 61 and 62 decreases. Then, the voltage drop ΔVW of the liquid leakage portion 65 shown in FIG. 12 gradually decreases, and the voltage between terminals ΔVm of the constant current element D m gradually increases. When the inter-terminal voltage ΔVm of the constant current element D m reaches the pinch-off voltage value Vp m, constant current element D m becomes saturated, supply current value is limited to pinch-off current value Ip m. After the constant current element D m is saturated, even if the energization resistance between the conductive wires 61 and 62 becomes smaller, the resistance value RH m of the constant current element D m changes and the energization current value is Ip m. Is held in. Then, after the time t4 in FIG. 10, the state shown in FIGS. 6 to 8 is reached, the constant current element D m operates at the Q point shown in FIG. 7, and the constant current elements D 1 to D m-1 are shown in FIG. It operates at the point P shown in 7.

したがって、図10に示す時刻t2からt4までの間は、判定部90は、図9のステップS106でNOと判断して図9のステップS101、S102、S104〜S106、S109を繰り返し実行する。そして、判定部90は、図10の時刻t4において図9のステップS106でYESと判断し、漏液の発生した漏液検知ユニットUの特定が可能と判定して図9のステップS107に進み、漏液の発生した漏液検知ユニットを特定する。 Therefore, during the time from t2 to t4 shown in FIG. 10, the determination unit 90 determines NO in step S106 of FIG. 9 and repeatedly executes steps S101, S102, S104 to S106, and S109 of FIG. Then, the determination unit 90 determines YES in step S106 in FIG. 9 at time t4 in FIG. 10, the process proceeds to step S107 of FIG. 9 was determined to be the specific leak detection unit U m generated in leakage , Identify the leak detection unit where the leak has occurred.

図9のステップS107において、判定部90は電流センサ82によって取得した通電電流値とメモリ92に格納している各定電流素子D〜Dの各ピンチオフ電流値Ip〜Ipとを比較し、通電電流値といずれかのピンチオフ電流値Ip〜Ipとの差が±ΔIsとなっているかどうかを判断する。ΔIsは、所定の範囲であり、例えば、ピンチオフ電流値Ipの5〜10%程度としてもよいし、ピンチオフ電流値Ipが最小となる末端側の漏液検知ユニットUの定電流素子Dのピンチオフ電流値Ipの10%程度としてもよい。 In step S107 of FIG. 9, the determination unit 90 compares the respective pinch-off current value Ip 1 ~Ip 5 of the constant current element D 1 to D 5 are stored in the energizing current value and the memory 92 obtained by the current sensor 82 Then, it is determined whether or not the difference between the energizing current value and one of the pinch-off current values Ip 1 to Ip 5 is ± ΔIs. ΔIs is a predetermined range, for example, it may be about 5 to 10% of the pinch-off current Ip m, constant current element D 5 of leak detection unit U 5 distal to the pinch-off current Ip is minimized The pinch-off current value of Ip 5 may be about 10%.

そして、判定部90は、電流センサ82で検出した通電電流値との差が±ΔIsの範囲にあるピンチオフ電流値Ipを含む漏液検知ユニットUを漏液の発生した漏液検知ユニットと特定する。 The determining unit 90 includes a leak detection unit difference is leakage detection unit U m generates the leakage including pinch-off current value Ip m in the range of ± .DELTA.Is the energizing current value detected by the current sensor 82 Identify.

判定部90は、図9に示すステップS108に進んで、出力インターフェース94を介して漏液発生信号と漏液箇所信号とを外部に出力する。出力インターフェース94を介して接続された表示装置(図示せず)には、「漏液発生、漏液箇所:検知ユニット番号3」のように表示される。また、出力インターフェース94を介して接続された漏液警告ランプ(図示せず)が点灯される。 The determination unit 90 proceeds to step S108 shown in FIG. 9 and outputs a liquid leakage generation signal and a liquid leakage location signal to the outside via the output interface 94. On a display device (not shown) connected via the output interface 94, a display such as "leakage occurrence, liquid leakage location: detection unit number 3" is displayed. Further, a liquid leakage warning lamp (not shown) connected via the output interface 94 is turned on.

以上説明したように、実施形態の漏液検出装置100は、制限電流値が異なる定電流素子D〜Dを含む漏液検知ユニットU〜Uを定電流素子D〜Dの制限電流値が始端から末端に向かう接続順に従って小さくなるように複数直列に接続し、電流センサ82の検出した通電電流値と定電流素子D〜Dの制限電流値Ip〜Ipとを比較して漏液の発生した漏液検知ユニットを特定するので、簡便な構成で漏液箇所の検出信頼性を向上させることができる。 As described above, in the liquid leakage detection device 100 of the embodiment, the liquid leakage detection units U 1 to U 5 including the constant current elements D 1 to D 5 having different current limit values are combined with the constant current elements D 1 to D 5 . connected to a plurality series so limited current value decreases as the connection sequence toward the end from the beginning, the limiting current value Ip 1 ~Ip 5 energization current value and the constant current element D 1 to D 5 detected by the current sensor 82 Since the leak detection unit in which the leak has occurred is identified by comparing the above, it is possible to improve the detection reliability of the leak location with a simple configuration.

<実施形態の補足>
以上説明した実施形態の漏液検出装置100では、図2を参照して説明したように、ノードNDの定電流素子Dは、アノードを向かい合わせてピンチオフ電流値Ipが同一の定電流ダイオード11a、11bを逆直列に接続したものとして説明したが、定電流素子Dの構成はこれに限らず、図16(a)に示すように、定電流ダイオード11a,11bの接続方向を図2に示す状態と反対にカソードを向かい合わせて逆直列に接続してもよい。また、図16(b)、図16(c)に示すように、2本の接続線12にそれぞれ1つずつ定電流ダイオード11a,11bを同一方向に配置し、漏液が発生した際の電流の流れに対して2つの定電流ダイオードが逆直列となるようにしてもよい。更に、図16(d)に示すように、どちらか一方の接続線12にのみ定電流ダイオード11aを介在して配置してもよい。この場合、電源81は、直流定電圧電源を用いて構成してもよい。更に、定電流ダイオード11a,11bを用いず、図4に示すような電圧電流特性を有する電気回路をIC等で構成した定電流素子回路22を用いてもよい。
<Supplement to the embodiment>
Or the leakage detection device 100 of the embodiment described, as described with reference to FIG. 2, the node constant current element D m of ND m is a constant pinch current value Ip m is the same and facing the anode current diodes 11a, has been described as connected to 11b to anti-series configuration of the constant current element D m is not limited to this, as shown in FIG. 16 (a), a constant current diode 11a, 11b of the connection direction Figure Contrary to the state shown in 2, the cathodes may be opposed to each other and connected in anti-series. Further, as shown in FIGS. 16 (b) and 16 (c), one constant current diode 11a and one 11b are arranged on each of the two connecting lines 12 in the same direction, and the current when a liquid leak occurs. The two constant current diodes may be in anti-series with respect to the flow of. Further, as shown in FIG. 16D, the constant current diode 11a may be interposed only in one of the connection lines 12. In this case, the power supply 81 may be configured by using a DC constant voltage power supply. Further, instead of using the constant current diodes 11a and 11b, a constant current element circuit 22 in which an electric circuit having a voltage-current characteristic as shown in FIG. 4 is composed of an IC or the like may be used.

このように、検出対象の液体に応じてノードNの定電流素子Dの配置を様々に変更することにより、検出対象の液体に応じた漏液検出を行うことができる。 In this way, by variously changing the arrangement of the constant current element D m of the node N m according to the liquid to be detected, it is possible to detect the leak according to the liquid to be detected.

また、実施形態の漏液検出装置100では、定電流素子Dは、正方向の制限電流値の絶対値と負方向の制限電流値の絶対値とが同一であることとして説明したが、これに限らず、図17に示すように正方向の制限電流値の絶対値と負方向の制限電流の絶対値とが異なる定電流素子を用いてもよい。 Further, in the liquid leakage detection device 100 of the embodiment, it has been described that the constant current element D m has the same absolute value of the positive current limit value and the absolute value of the negative current limit value. However, as shown in FIG. 17, a constant current element in which the absolute value of the positive current limiting current and the absolute value of the negative current limiting current are different may be used.

この場合、正方向の通電電流値と負方向の通電電流値とが異なるので、導電線61、62に電蝕が発生する場合がある。そこで、電源81からの正方向の電流を出力する時間と負方向の電流を出力する時間を異なる長さとし、図18に示すプラス領域の面積(左下がりハッチングで示す)とマイナス領域の面積(右下がりハッチングで示す)とを同一とする。これにより、電源81から出力される交流電流の導電線61,62の正方向の通電電荷量と負方向の通電電荷量とが等しくなり、導電線61,62での電蝕の発生を抑制することができる。 In this case, since the energizing current value in the positive direction and the energizing current value in the negative direction are different, electrolytic corrosion may occur in the conductive wires 61 and 62. Therefore, the time for outputting the positive current from the power supply 81 and the time for outputting the current in the negative direction are set to different lengths, and the area of the positive region (shown by the downward-sloping hatching) and the area of the negative region (right) shown in FIG. (Indicated by downward hatching) is the same. As a result, the amount of electric charge in the positive direction and the amount of electric charge in the negative direction of the alternating current conductive wires 61 and 62 output from the power supply 81 become equal, and the occurrence of electrolytic corrosion in the conductive wires 61 and 62 is suppressed. be able to.

また、図19に示すように、定電流素子Dの制限電流値は、始端から末端に向かう接続順に従って検知ユニット番号Nが増加するにつれて等差級数的に小さくなることとしてもよい。例えば、Ip〜Ipを、5.0(mA)、4.5(mA)、4.0(mA)・・・のように、検知ユニット番号Nが1増加するにつれてピンチオフ電流値Ipが0.5mAずつ小さくなるようにしてもよい。 Further, as shown in FIG. 19, the current limiting value of the constant current element D m may be arithmetically reduced as the detection unit number N increases according to the connection order from the start end to the end. For example, Ip 1 to Ip 5 are pinched-off current value Ip m as the detection unit number N increases by 1, such as 5.0 (mA), 4.5 (mA), 4.0 (mA), and so on. May be reduced by 0.5 mA.

この場合、定電流素子Dの制限電流値の誤差を絶対値、例えば、±0.2(mA)のように設定することにより、電流センサ82によって検出した通電電流値と定電流素子Dの制限電流値によって漏液が発生した漏液検知ユニットUを特定する場合の所定の範囲を、例えば、±0.3(mA)のように絶対値として規定することができる。このため、各定電流素子D〜Dで上記の所定の範囲を絶対値で一定にすることができる。 In this case, by setting the error of the current limit value of the constant current element D m to an absolute value, for example, ± 0.2 (mA), the energization current value detected by the current sensor 82 and the constant current element D m the predetermined range when liquid leakage by the limit current value to identify the leak detection unit U m generated, for example, can be defined as an absolute value as ± 0.3 (mA). Therefore, the above-mentioned predetermined range can be made constant by an absolute value in each constant current element D 1 to D 5.

また、図20に示すように、定電流素子Dの制限電流値は、始端から末端に向かう接続順に従って検知ユニット番号Nが増加するにつれて等比級数的に小さくなるようにしてもよい。例えば、Ip〜Ipを、5.0(mA)、5.0×0.9=4.5(mA)、5.0×0.9=4.05(mA)・・・のように、検知ユニット番号Nが1増加するにつれてピンチオフ電流値Ipを0.9倍にしてもよい。 Further, as shown in FIG. 20, the current limiting value of the constant current element D m may be geometrically reduced as the detection unit number N increases according to the connection order from the start end to the end. For example, Ip 1 to Ip 5 are 5.0 (mA), 5.0 × 0.9 = 4.5 (mA), 5.0 × 0.9 2 = 4.05 (mA), and so on. as such, the detection unit number N may be 0.9 times the pinch-off current value Ip m with increasing 1.

この場合、定電流素子Dの制限電流値の誤差を相対値、例えば、Ip×4%のようにIpに対する相対値或いは比率として設定することにより、電流センサ82によって検出した通電電流値と定電流素子Dの制限電流値によって漏液が発生した漏液検知ユニットUを特定する場合の所定の範囲を、例えば、Ip×10%のように相対値或いは比率として規定することができる。このため、各定電流素子D〜Dで上記の所定の範囲を相対値或いは比率で一定にすることができる。 In this case, the relative value of the error limit current value of the constant current element D m, for example, by setting as a relative value or ratio Ip m as Ip m × 4%, electric current value detected by the current sensor 82 and the predetermined range when liquid leakage by limiting current value of the constant current element D m to identify the leak detection unit U m generated, for example, be defined as a relative value or proportion as Ip m × 10% Can be done. Therefore, the above-mentioned predetermined range can be made constant by a relative value or a ratio in each of the constant current elements D 1 to D 5.

<他の実施形態の漏液検出装置>
次に、図21から図27を参照しながら他の実施形態の漏液検出装置200,300,400,500について説明する。先に図1から図15を参照して説明した実施形態の漏液検出装置100と同様の部分には同様の符号を付して説明は省略する。
<Leakage detection device of other embodiments>
Next, the leak detection devices 200, 300, 400, and 500 of other embodiments will be described with reference to FIGS. 21 to 27. The same parts as those of the liquid leakage detection device 100 of the embodiment described above with reference to FIGS. 1 to 15 are designated by the same reference numerals, and the description thereof will be omitted.

図21に示す漏液検出装置200は、導電線61の側の接続線12の間に定電流素子Dを配置したノードNDを含む漏液検知ユニットUと、導電線62の側の接続線12の間に定電流素子Dm+1を配置したノードNDm+1を含む漏液検知ユニットUm+1を始端71から末端72に向かって交互に直列に接続して漏液検知部70を構成したものである。 The liquid leakage detection device 200 shown in FIG. 21 includes a liquid leakage detection unit U m including a node ND m in which a constant current element D m is arranged between the connection lines 12 on the side of the conductive wire 61, and a liquid leakage detection unit U m on the side of the conductive wire 62. The liquid leakage detection unit 70 is configured by alternately connecting the liquid leakage detection unit U m + 1 including the node ND m + 1 in which the constant current element D m + 1 is arranged between the connection lines 12 from the start end 71 to the end end 72 in series. It was done.

本実施形態の漏液検出装置200は、漏液検出装置100と同様の動作により同様の効果を奏するものである。 The liquid leakage detection device 200 of the present embodiment exerts the same effect by the same operation as the liquid leakage detection device 100.

図22に示す漏液検出装置300は、一対の導電線61,62からなり、漏液が接触すると電流が流れる始端側漏液検知帯66を含み、電源81は、始端側漏液検知帯66を介して漏液検知部70の始端71に接続されている。 The liquid leakage detection device 300 shown in FIG. 22 is composed of a pair of conductive wires 61 and 62, includes a start-end side leak detection band 66 through which a current flows when a leak comes into contact, and the power supply 81 is a start-end side leak detection band 66. It is connected to the start end 71 of the liquid leakage detection unit 70 via.

始端側漏液検知帯66の領域において漏液が発生した場合、通電電流は、電源81、始端側漏液検知帯66の導電線61、漏液部分65、始端側漏液検知帯66の導電線62、電源81の閉回路を流れるので、電流センサ82によって検出する通電電流値は、定電流素子D〜Dの制限電流値に制限されない。したがって、判定部90は、図23のステップS201、S202に示すように、電流センサ82で検出した通電電流値が、制限電流値の最大値である始端71側(検知ユニット番号N=1)の漏液検知ユニットUの定電流素子Dのピンチオフ電流値Ipを超えた場合に、始端側漏液検知帯66を漏液発生箇所と特定する。なお、電流センサ82で検出した通電電流値が、Ip以下の場合には、判定部90は、図9を参照して説明したと同様、図23のステップS101からS104に示す漏液検知動作の後、図23のステップS105、S106に示す定電流素子の飽和判定動作を行い、定電流素子が飽和となっている場合に図23のステップS107で漏液の発生した漏液検知ユニットの特定動作を行う。 When a liquid leak occurs in the region of the start-end side leak detection band 66, the energizing current is the power supply 81, the conductive wire 61 of the start-end side leak detection band 66, the liquid leakage portion 65, and the conductivity of the start-end side leak detection band 66. Since the current flows through the closed circuit of the wire 62 and the power supply 81, the energizing current value detected by the current sensor 82 is not limited to the current limiting value of the constant current elements D 1 to D 5. Therefore, as shown in steps S201 and S202 of FIG. 23, the determination unit 90 is on the starting end 71 side (detection unit number N = 1) where the energizing current value detected by the current sensor 82 is the maximum value of the limiting current value. if it exceeds the leak detection unit pinch current Ip 1 of the constant current element D 1 of the U 1, the starting end side leak detection zone 66 identifies the leakage occurrence point. When the energizing current value detected by the current sensor 82 is Ip 1 or less, the determination unit 90 performs the liquid leakage detection operation shown in steps S101 to S104 of FIG. 23, as described with reference to FIG. After that, the saturation determination operation of the constant current element shown in steps S105 and S106 of FIG. 23 is performed, and when the constant current element is saturated, the leakage detection unit in which the leakage has occurred is specified in step S107 of FIG. Do the action.

本実施形態の漏液検出装置300は、漏液検知部70と電源81との間で漏液が発生した場合でも漏液箇所の特定を行うことができる。 The leak detection device 300 of the present embodiment can identify the leak location even when a leak occurs between the leak detection unit 70 and the power supply 81.

図24に示す漏液検出装置400は、漏液検知部75と、電源81と、電流センサ82と、判定部90とを備えている。漏液検知部75は、一対の導電線61,62からなり、導電線61,62の間に漏液が接触すると電流が流れる始端側漏液検知帯66と、一対の導電線61,62からなり、導電線61,62の間に漏液が接触すると電流が流れる末端側漏液検知帯67と、始端側漏液検知帯66と末端側漏液検知帯67の間に接続されて末端側漏液検知帯67の通電電流値を制限電流値に制限する定電流素子Dを有するノードNDとで構成されている。電源81は、漏液検知部75の始端79を構成する始端側漏液検知帯66の始端側の端部66a,66bに接続されている。また、漏液検知部75の末端72は開放されている。電流センサ82は漏液検知部75の通電電流値を検出する。ノードND、定電流素子Dの構成は、図2を参照して説明した漏液検出装置100のノードNDm、定電流素子Dと同様の構成である。 The liquid leakage detection device 400 shown in FIG. 24 includes a liquid leakage detection unit 75, a power supply 81, a current sensor 82, and a determination unit 90. The liquid leakage detection unit 75 is composed of a pair of conductive wires 61 and 62, and from the starting end side liquid leakage detection band 66 in which a current flows when a leak comes into contact between the conductive wires 61 and 62 and the pair of conductive wires 61 and 62. Therefore, it is connected between the terminal side leak detection band 67, in which a current flows when a leak comes into contact between the conductive wires 61 and 62, the start end side leak detection band 66, and the terminal side leak detection band 67, and is connected to the terminal side. It is composed of a node ND having a constant current element D that limits the energizing current value of the liquid leakage detection band 67 to the limiting current value. The power supply 81 is connected to the end ends 66a and 66b of the start end side liquid leakage detection band 66 constituting the start end 79 of the liquid leakage detection unit 75. Further, the end 72 of the liquid leakage detection unit 75 is open. The current sensor 82 detects the energizing current value of the liquid leakage detection unit 75. The configuration of the node ND and the constant current element D is the same as that of the node ND m and the constant current element D m of the liquid leakage detection device 100 described with reference to FIG.

漏液検出装置400では、定電流素子Dは、末端側漏液検知帯67の通電電流値のみを制限電流値に制限するので、判定部90は、図25のステップS201からS203に示すように、電流センサ82で検出した通電電流値が、定電流素子Dのピンチオフ電流値Ipを超えた場合に、始端側漏液検知帯66を漏液発生箇所と特定し、定電流素子Dのピンチオフ電流値Ip以下の場合に、末端側漏液検知帯67を漏液発生箇所と特定する。 In the liquid leakage detection device 400, the constant current element D limits only the energizing current value of the terminal side liquid leakage detection band 67 to the current limit value, so that the determination unit 90 is as shown in steps S201 to S203 of FIG. When the energizing current value detected by the current sensor 82 exceeds the pinch-off current value Ip of the constant current element D, the starting end side liquid leakage detection band 66 is specified as the leakage occurrence location, and the pinch-off current of the constant current element D is specified. When the value is Ip or less, the terminal-side leakage detection band 67 is specified as the leakage occurrence location.

本実施形態の漏液検出装置400は、簡便な構成で始端側漏液検知帯66または末端側漏液検知帯67のいずれで漏液が発生したかを特定することができる。 The leak detection device 400 of the present embodiment can identify whether the leak has occurred in the start end side leak detection band 66 or the end side leak detection band 67 with a simple configuration.

図26に示す漏液検出装置500は、図1から図15を参照して説明した漏液検出装置100の漏液検知部70の末端72である導電線61,62の各末端側の端部61e,62eの間に終端抵抗68を接続したものである。 The liquid leakage detection device 500 shown in FIG. 26 is a terminal end side of each of the conductive wires 61 and 62, which is the terminal 72 of the liquid leakage detection unit 70 of the liquid leakage detection device 100 described with reference to FIGS. 1 to 15. A terminating resistor 68 is connected between 61e and 62e.

本実施形態の漏液検出装置500は、漏液の発生していない状態でも、電源81、漏液検知ユニットU〜Uの定電流素子D1〜と導電線61、終端抵抗68、漏液検知ユニットUから漏液検知ユニットUの接続線12と導電線62、電源81の閉回路が形成される。この閉回路には、漏液検知部70の最小のピンチオフ電流値である定電流素子Dのピンチオフ電流値Ip未満の電流を常時流すことができる。 The liquid leakage detection device 500 of the present embodiment has a power supply 81, constant current elements D 1 to D 5 of the liquid leakage detection units U 1 to U 5, a conductive wire 61, and a terminating resistor 68 even in a state where no liquid leakage has occurred. A closed circuit is formed from the liquid leakage detection unit U 5 to the connection wire 12 of the liquid leakage detection unit U 1 , the conductive wire 62, and the power supply 81. A current less than the pinch-off current value Ip 5 of the constant current element D 5 , which is the minimum pinch-off current value of the liquid leakage detection unit 70, can always flow through this closed circuit.

そこで、判定部90は、図27のステップS301、S302に示すように、電流センサ82で検出した通電電流値が断線検知閾値未満の場合に漏液検知部70の断線を検出することができる。ここで、断線検知閾値は、最小のピンチオフ電流値である定電流素子Dのピンチオフ電流値Ip未満でゼロ以上の値であればよいが、例えば、Ipの50%程度の値としてもよい。 Therefore, as shown in steps S301 and S302 of FIG. 27, the determination unit 90 can detect the disconnection of the liquid leakage detection unit 70 when the energization current value detected by the current sensor 82 is less than the disconnection detection threshold value. Here, the disconnection detection threshold value may be a value less than the pinch-off current value Ip 5 of the constant current element D 5 , which is the minimum pinch-off current value, and zero or more, but may be, for example, a value of about 50% of Ip 5. good.

また、終端抵抗68に代えて終端定電流ダイオードを接続してもよい。この際、終端定電流ダイオードのピンチオフ電流値は、漏液検知部70の最小のピンチオフ電流値である定電流素子Dのピンチオフ電流値Ip未満とする。 Further, a terminating constant current diode may be connected instead of the terminating resistor 68. At this time, the pinch-off current value of the terminating constant current diode is set to be less than the pinch-off current value Ip 5 of the constant current element D 5, which is the minimum pinch-off current value of the liquid leakage detection unit 70.

本実施形態の漏液検出装置500は、漏液検出装置100の作用、効果に加え、漏液検知部70の断線を検出することができる。 The liquid leakage detection device 500 of the present embodiment can detect disconnection of the liquid leakage detection unit 70 in addition to the actions and effects of the liquid leakage detection device 100.

11a,11b 定電流ダイオード、12 接続線、13,15 始端側端子、14,16 末端側端子、22 定電流素子回路、60 漏液検知帯、61,62 導電線、61e,62e,66a,66b 端部、63 絶縁被覆線、65 漏液部分、66 始端側漏液検知帯、67 末端側漏液検知帯、68 終端抵抗、70,75 漏液検知部、71,76 始端、72,77 末端、81 電源、82 電流センサ、90 判定部、91 CPU、92 メモリ、93 入力インターフェース、94 出力インターフェース、95 データバス、100,200,300,400,500 漏液検出装置、CRD 定電流ダイオード、D,D-D,D 定電流素子、Ip〜Ip,Ip ピンチオフ電流値(制限電流値)、Ip 所定値、N 検知ユニット番号、ND,ND〜ND,ND ノード、P,Q,R 点、RH,RW 抵抗値、RL〜RL 低抵抗値、U〜U,U 漏液検知ユニット、Vp〜Vp,Vp ピンチオフ電圧値。
11a, 11b constant current diode, 12 connection wire, 13,15 start end side terminal, 14,16 end side terminal, 22 constant current element circuit, 60 leakage detection band, 61,62 conductive line, 61e, 62e, 66a, 66b End, 63 Insulated coated wire, 65 Leakage part, 66 Start side leak detection band, 67 End side leak detection band, 68 End resistance, 70,75 Leakage detection part, 71,76 Start end, 72,77 End , 81 power supply, 82 current sensor, 90 judgment unit, 91 CPU, 92 memory, 93 input interface, 94 output interface, 95 data bus, 100, 200, 300, 400, 500 liquid leakage detector, CRD constant current diode, D , D 1 -D 5 , D m constant current element, Ip 1 to Ip 5 , I p m pinch-off current value (current limit value), Ip s predetermined value, N detection unit number, ND, ND 1 to ND 5 , ND m Node, P, Q, R point, RH m , RW resistance value, RL 1 to RL m low resistance value, U 1 to U 5 , U m leak detection unit, Vp 1 to Vp 5 , Vp m pinch-off voltage value.

Claims (15)

一対の導電線からなり、前記導電線の間に漏液が接触すると電流が流れる漏液検知帯と、前記漏液検知帯に接続されて前記漏液検知帯の通電電流値を制限電流値に制限する定電流素子を有するノードと、を含む漏液検知ユニットを複数直列に接続した漏液検知部と、
前記漏液検知部の始端に接続されて、前記漏液検知部に電圧を印加する電源と、
前記漏液検知部の通電電流値を検出する電流検出部と、
前記電流検出部の検出した通電電流値から漏液の発生した前記漏液検知ユニットを判定する判定部と、を備える漏液検出装置であって、
各前記漏液検知ユニットの各前記定電流素子の制限電流値はそれぞれ異なっており、
前記判定部は、前記電流検出部の検出した通電電流値と前記定電流素子の制限電流値とを比較して漏液の発生した前記漏液検知ユニットを特定すること、
を特徴とする漏液検出装置。
It consists of a pair of conductive wires, a leak detection band in which current flows when a leak comes into contact between the conductive wires, and a current limiting current value connected to the leak detection band. A leak detection unit in which a plurality of leak detection units including a node having a constant current element for limiting are connected in series, and a leak detection unit.
A power supply that is connected to the start end of the liquid leakage detection unit and applies a voltage to the liquid leakage detection unit.
A current detection unit that detects the energizing current value of the liquid leakage detection unit, and
A liquid leakage detection device including a determination unit for determining a liquid leakage detection unit in which a liquid has leaked from the energization current value detected by the current detection unit.
The current limit value of each constant current element of each leak detection unit is different.
The determination unit compares the energization current value detected by the current detection unit with the current limit value of the constant current element to identify the leak detection unit in which the leak has occurred.
A leak detection device characterized by.
請求項1に記載の漏液検出装置であって、
前記漏液検知ユニットの前記ノードは、
一対の始端側端子と、
前記漏液検知帯の一対の前記導電線がそれぞれ接続される一対の末端側端子と、
前記始端側端子と前記末端側端子とを並列に接続する一対の接続線と、を含み、
前記定電流素子は、いずれか一方または両方の前記接続線に介在して配置されていること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to claim 1.
The node of the leak detection unit
A pair of start end terminals and
A pair of terminal terminals to which the pair of conductive wires of the liquid leakage detection band are connected, respectively.
Includes a pair of connecting wires that connect the start-end terminal and the end-end terminal in parallel.
The constant current element is arranged so as to be interposed in either one or both of the connecting lines.
A leak detection device characterized by.
請求項1または2に記載の漏液検出装置であって、
各前記漏液検知ユニットの前記定電流素子の制限電流値は、前記電源に接続される始端から末端に向かう接続順に従って小さくなること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to claim 1 or 2.
The current limit value of the constant current element of each leak detection unit decreases according to the connection order from the start end to the end connected to the power supply.
A leak detection device characterized by.
請求項1から3のいずれか1項に記載の漏液検出装置であって、
前記判定部は、前記電流検出部で検出した通電電流値と、一の前記漏液検知ユニットの前記定電流素子の制限電流値との差が所定の範囲内の場合に、一の前記漏液検知ユニットを漏液発生箇所と特定すること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to any one of claims 1 to 3.
When the difference between the energizing current value detected by the current detection unit and the current limit value of the constant current element of the leak detection unit is within a predetermined range, the determination unit is one of the leaks. Identifying the detection unit as the location of the leak,
A leak detection device characterized by.
請求項1から4のいずれか1項に記載の漏液検出装置であって、
前記判定部は、前記電流検出部で検出した通電電流値が所定の値以上の場合に漏液検知と判定すること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to any one of claims 1 to 4.
The determination unit determines that liquid leakage is detected when the energization current value detected by the current detection unit is equal to or greater than a predetermined value.
A leak detection device characterized by.
請求項5に記載の漏液検出装置であって、
前記判定部は、漏液検知と判定した場合に、前記電源の出力電圧を変化させて前記電流検出部で前記漏液検知部の通電電流値の変化量を検出し、
前記変化量に基づいて、通電電流値から漏液の発生した前記漏液検知ユニットの特定が可能か判定すること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to claim 5.
When the determination unit determines that the liquid leakage is detected, the output voltage of the power supply is changed, and the current detection unit detects the amount of change in the energizing current value of the liquid leakage detection unit.
Based on the amount of change, it is determined from the energizing current value whether or not the leak detection unit in which the leak has occurred can be identified.
A leak detection device characterized by.
請求項6に記載の漏液検出装置であって、
前記判定部は、前記変化量の絶対値が所定の第1閾値未満の場合に、通電電流値から漏液の発生した前記漏液検知ユニットの特定が可能と判定すること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to claim 6.
When the absolute value of the change amount is less than a predetermined first threshold value, the determination unit determines that the leak detection unit in which the leak has occurred can be identified from the energizing current value.
A leak detection device characterized by.
請求項6に記載の漏液検出装置であって、
前記判定部は、
前記電源の出力電圧の変化量と前記電流検出部で検出した通電電流値の変化量とに基づいて前記漏液検知部の電圧電流特性の傾きを算出し、
前記傾きが所定の第2閾値未満の場合に、通電電流値から漏液の発生した前記漏液検知ユニットの特定が可能と判定すること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to claim 6.
The determination unit
The slope of the voltage-current characteristic of the liquid leakage detection unit is calculated based on the amount of change in the output voltage of the power supply and the amount of change in the energization current value detected by the current detection unit.
When the inclination is less than a predetermined second threshold value, it is determined that the leak detection unit in which the leak has occurred can be identified from the energizing current value.
A leak detection device characterized by.
請求項6から8のいずれか1項に記載の漏液検出装置であって、
前記判定部は、
前記電流検出部で検出した通電電流値から漏液の発生した前記漏液検知ユニットの特定が可能と判定した場合に、
前記電流検出部で検出した通電電流値と、一の前記漏液検知ユニットの前記定電流素子の制限電流値との差が所定の範囲内の場合に、一の前記漏液検知ユニットを漏液発生箇所と特定すること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to any one of claims 6 to 8.
The determination unit
When it is determined from the energizing current value detected by the current detection unit that the leak detection unit in which the leak has occurred can be identified,
When the difference between the energizing current value detected by the current detection unit and the current limit value of the constant current element of the leak detection unit is within a predetermined range, the leak detection unit is leaked. Identifying the location of occurrence,
A leak detection device characterized by.
請求項3に記載の漏液検出装置であって、
前記漏液検知部の前記定電流素子の制限電流値は、前記電源に接続される始端から末端に向かう接続順に従って、等差級数的に小さくなり、
前記判定部は、前記電流検出部で検出した通電電流値と、一の前記漏液検知ユニットの前記定電流素子の制限電流値との差が所定の範囲内の場合に、一の前記漏液検知ユニットを漏液発生箇所と特定すること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to claim 3.
The current limit value of the constant current element of the liquid leakage detection unit becomes smaller in arithmetic progression according to the connection order from the start end to the end connected to the power supply.
When the difference between the energizing current value detected by the current detection unit and the current limit value of the constant current element of the leak detection unit is within a predetermined range, the determination unit is one of the leaks. Identifying the detection unit as the location of the leak,
A leak detection device characterized by.
請求項3に記載の漏液検出装置であって、
前記漏液検知部の前記定電流素子の制限電流値は、前記電源に接続される始端から末端に向かう接続順に従って等比級数的に小さくなり、
前記判定部は、前記電流検出部で検出した通電電流値と、一の前記漏液検知ユニットの前記定電流素子の制限電流値との差が所定の範囲内の場合に、一の前記漏液検知ユニットを漏液発生箇所と特定すること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to claim 3.
The current limit value of the constant current element of the liquid leakage detection unit becomes geometrically smaller according to the connection order from the start end to the end connected to the power supply.
When the difference between the energizing current value detected by the current detection unit and the current limit value of the constant current element of the leak detection unit is within a predetermined range, the determination unit is one of the leaks. Identifying the detection unit as the location of the leak,
A leak detection device characterized by.
請求項4または5に記載の漏液検出装置であって、
前記漏液検知ユニットの前記定電流素子は、正方向の制限電流値と負方向の制限電流値とが異なり、
前記電源が交流電源であり、
前記判定部は、前記電源から出力される交流電流の正方向の通電電荷量と負方向の通電電荷量とを等しくすること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to claim 4 or 5.
The constant current element of the liquid leakage detection unit differs in the positive current limiting value and the negative current limiting value.
The power supply is an AC power supply,
The determination unit equalizes the amount of current-carrying charge in the positive direction and the amount of current-carrying charge in the negative direction of the alternating current output from the power supply.
A leak detection device characterized by.
請求項4または5に記載の漏液検出装置であって、
一対の前記導電線からなり、前記導電線の間に漏液が接触すると電流が流れる始端側漏液検知帯を含み、
前記電源は、前記始端側漏液検知帯を介して前記漏液検知部の始端に接続されており、
前記判定部は、前記電流検出部で検出した通電電流値が前記漏液検知部の前記定電流素子の制限電流値の最大値よりも大きい場合には前記始端側漏液検知帯を漏液発生箇所と特定すること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to claim 4 or 5.
It is composed of a pair of the conductive wires, and includes a leak detection band on the starting end side through which a current flows when a leak comes into contact between the conductive wires.
The power supply is connected to the start end of the liquid leakage detection unit via the liquid leakage detection band on the start end side.
When the energizing current value detected by the current detection unit is larger than the maximum value of the current limit value of the constant current element of the liquid leakage detection unit, the determination unit causes a liquid leakage in the starting end side liquid leakage detection band. Identifying the location,
A leak detection device characterized by.
一対の導電線からなり、前記導電線の間に漏液が接触すると電流が流れる始端側漏液検知帯と、一対の前記導電線からなり、前記導電線の間に漏液が接触すると電流が流れる末端側漏液検知帯と、前記始端側漏液検知帯と前記末端側漏液検知帯の間に接続されて前記末端側漏液検知帯の通電電流値を制限電流値に制限する定電流素子を有するノードと、を含む漏液検知部と、
前記始端側漏液検知帯に接続されて、前記漏液検知部に電圧を印加する電源と、
前記漏液検知部の通電電流値を検出する電流検出部と、
前記電流検出部の検出した通電電流値から前記始端側漏液検知帯または前記末端側漏液検知帯のいずれで漏液が発生したかを判定する判定部と、を備える漏液検出装置であって、
前記判定部は、前記電流検出部で検出した通電電流値が前記漏液検知部の前記定電流素子の制限電流値よりも大きい場合には前記始端側漏液検知帯を漏液発生箇所と特定し、前記電流検出部で検出した通電電流値が前記漏液検知部の前記定電流素子の制限電流値以下の場合には、前記末端側漏液検知帯を漏液発生箇所と特定すること、
を特徴とする漏液検出装置。
It consists of a pair of conductive wires, a leakage detection band on the starting end side where a current flows when a leak comes into contact between the conductive wires, and a pair of the conductive wires, and a current flows when the leak contacts between the conductive wires. A constant current that is connected between the flowing end-side leakage detection band, the start-end leakage detection band, and the terminal-side leakage detection band, and limits the energizing current value of the end-side leakage detection band to the limiting current value. A leakage detector including a node having an element,
A power supply that is connected to the leak detection band on the starting end side and applies a voltage to the leak detection unit.
A current detection unit that detects the energizing current value of the liquid leakage detection unit, and
A leak detection device including a determination unit for determining whether a leak has occurred in the start end side leak detection band or the end side leak detection band from the energization current value detected by the current detection unit. hand,
When the energizing current value detected by the current detection unit is larger than the current limit value of the constant current element of the liquid leakage detection unit, the determination unit identifies the start end side leakage detection band as a leakage occurrence location. Then, when the energizing current value detected by the current detection unit is equal to or less than the current limit value of the constant current element of the liquid leakage detection unit, the terminal side leakage detection band shall be specified as the leakage occurrence location.
A leak detection device characterized by.
請求項14に記載の漏液検出装置であって、
前記漏液検知部の前記ノードは、
前記始端側漏液検知帯の一対の前記導電線がそれぞれ接続される一対の始端側端子と、
前記末端側漏液検知帯の一対の前記導電線がそれぞれ接続される一対の末端側端子と、
前記始端側端子と前記末端側端子とを並列に接続する一対の接続線と、を含み、
前記定電流素子は、いずれか一方または両方の前記接続線に介在して配置されていること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to claim 14.
The node of the liquid leakage detection unit is
A pair of start-side terminals to which the pair of conductive wires of the start-end side liquid leakage detection band are connected, respectively.
A pair of terminal terminals to which the pair of conductive wires of the terminal leak detection band are connected, respectively.
Includes a pair of connecting wires that connect the start-end terminal and the end-end terminal in parallel.
The constant current element is arranged so as to be interposed in either one or both of the connecting lines.
A leak detection device characterized by.
JP2018084680A 2018-04-26 2018-04-26 Leakage detector Active JP6907150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018084680A JP6907150B2 (en) 2018-04-26 2018-04-26 Leakage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018084680A JP6907150B2 (en) 2018-04-26 2018-04-26 Leakage detector

Publications (2)

Publication Number Publication Date
JP2019191019A JP2019191019A (en) 2019-10-31
JP6907150B2 true JP6907150B2 (en) 2021-07-21

Family

ID=68389863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018084680A Active JP6907150B2 (en) 2018-04-26 2018-04-26 Leakage detector

Country Status (1)

Country Link
JP (1) JP6907150B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020085750A (en) * 2018-11-29 2020-06-04 三菱電機ビルテクノサービス株式会社 Liquid leakage detection device
JP2020091133A (en) * 2018-12-04 2020-06-11 三菱電機ビルテクノサービス株式会社 Leakage detection device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879132A (en) * 1981-11-05 1983-05-12 Toshiba Corp Water leakage detecting device
JPH0544761Y2 (en) * 1988-12-15 1993-11-15
JP3210116B2 (en) * 1992-12-29 2001-09-17 タツタ電線株式会社 Liquid leak detection line

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020085750A (en) * 2018-11-29 2020-06-04 三菱電機ビルテクノサービス株式会社 Liquid leakage detection device
JP7004634B2 (en) 2018-11-29 2022-02-04 三菱電機ビルテクノサービス株式会社 Leakage detector
JP2020091133A (en) * 2018-12-04 2020-06-11 三菱電機ビルテクノサービス株式会社 Leakage detection device
JP7004635B2 (en) 2018-12-04 2022-02-04 三菱電機ビルテクノサービス株式会社 Leakage detector

Also Published As

Publication number Publication date
JP2019191019A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
JP5452902B2 (en) Liquid leakage detection system and liquid leakage detection method
JP6494392B2 (en) Accurate measurement of voltage drop in semiconductor switching devices.
JP6907150B2 (en) Leakage detector
US20150115974A1 (en) Method for determining maintenance time for contacts, and testing apparatus
CN111006820B (en) Liquid leakage detection device
JP7004634B2 (en) Leakage detector
CN110631782B (en) Liquid leakage detection device
JP2008139224A (en) Measuring apparatus
CN110927465B (en) Direct current resistance measuring circuit and device
JP7004635B2 (en) Leakage detector
JP6357384B2 (en) Impedance measuring method and measuring apparatus
JP2020052005A5 (en)
JP2009188225A (en) Evaluating method and measuring circuit for insulating film
KR102086975B1 (en) Chemical leak detection device using cable type sensor
CN113677882B (en) Method for diagnosing an exhaust gas sensor
CN113820544A (en) Earth impedance measuring circuit and earth impedance measuring method
JP2010190574A (en) Liquid leak detector
KR102549765B1 (en) Apparatus for detecting occurrence and location of pinhole
JP3019128B2 (en) Fluid leak detection device
JP6038529B2 (en) measuring device
JP2012225791A (en) Resistance measuring device
JP2007155567A (en) Method and apparatus for measuring electric resistance
JP4681391B2 (en) Degradation diagnosis method for low-voltage cables
KR20220167250A (en) Apparatus of measuring hot-line insulation resistance
JP2006340477A (en) Apparatus and method for determining degradation of compressive connecting pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201117

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210630

R150 Certificate of patent or registration of utility model

Ref document number: 6907150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350