JP7004634B2 - Leakage detector - Google Patents

Leakage detector Download PDF

Info

Publication number
JP7004634B2
JP7004634B2 JP2018222948A JP2018222948A JP7004634B2 JP 7004634 B2 JP7004634 B2 JP 7004634B2 JP 2018222948 A JP2018222948 A JP 2018222948A JP 2018222948 A JP2018222948 A JP 2018222948A JP 7004634 B2 JP7004634 B2 JP 7004634B2
Authority
JP
Japan
Prior art keywords
detection unit
current
value
liquid leakage
leak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018222948A
Other languages
Japanese (ja)
Other versions
JP2020085750A (en
Inventor
英次 根本
兼三 牧野
宏 荒木
淳二 堀
良次 澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Electric Building Techno-Service Co Ltd
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Electric Building Techno-Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Electric Building Techno-Service Co Ltd filed Critical Mitsubishi Electric Corp
Priority to JP2018222948A priority Critical patent/JP7004634B2/en
Publication of JP2020085750A publication Critical patent/JP2020085750A/en
Application granted granted Critical
Publication of JP7004634B2 publication Critical patent/JP7004634B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、漏液検出装置の構造、特に、定電圧素子または定電流素子を用いた漏液検出装置の構造に関する。 The present invention relates to the structure of a liquid leakage detection device, particularly a structure of a liquid leakage detection device using a constant voltage element or a constant current element.

空調機器等からの漏液発生を検知する方法として、二本の導線を非導通の状態で並列配置した漏液検出帯に電流を流し、二本の導線の間に漏液が入り込んだ際の短絡を検知することにより漏液を検知する方法が用いられている。 As a method of detecting the occurrence of liquid leakage from air conditioning equipment, etc., when a current is passed through a liquid leakage detection band in which two conductors are arranged in parallel in a non-conducting state, and liquid leaks enter between the two conductors. A method of detecting liquid leakage by detecting a short circuit is used.

しかし、このような漏液検知方法では漏液の検知を行うことはできても漏液発生箇所を検出することができない。そこで、通液可能に絶縁した3本の電極線を平行配置し、2本の電極線の単位長さ当たりの抵抗値が異なる構成とした漏液センサを用いて漏液箇所の特定を行う方法が提案されている(例えば、特許文献1,2参照)。 However, with such a leak detection method, although the leak can be detected, the location where the leak occurs cannot be detected. Therefore, a method of identifying the leak location by using a leak sensor in which three electrode wires insulated so as to allow liquid to pass through are arranged in parallel and the resistance values per unit length of the two electrode wires are different. Have been proposed (see, for example, Patent Documents 1 and 2).

一方、漏液監視は、サーバ室の床下等のような区画された平面のみでなく、空調配管のように空間的に多数の分岐がある複雑な形状を対象とする場合がある。特許文献1,2に記載されたような従来技術の漏液検知方法は、電極線の単位長さ当たりの抵抗値に基づいて漏液箇所の特定を行うので、並列配置された機器や配管の配置に合わせて漏液センサを並列配置させることが難しい。このため、各電極線と検出器とをそれぞれ切換えスイッチを介して電線で接続し、切換えスイッチで検出器と各電極線との接続を切換えて漏液を検出する方法が提案されている(例えば、特許文献3参照)。 On the other hand, liquid leakage monitoring may target not only a partitioned plane such as under the floor of a server room but also a complicated shape having a large number of spatial branches such as an air conditioning pipe. In the conventional liquid leakage detection method as described in Patent Documents 1 and 2, the leakage location is specified based on the resistance value per unit length of the electrode wire, so that the equipment and piping arranged in parallel are used. It is difficult to arrange the leak sensors in parallel according to the arrangement. Therefore, a method has been proposed in which each electrode wire and the detector are connected by an electric wire via a changeover switch, and the connection between the detector and each electrode wire is switched by the changeover switch to detect a leak (for example). , Patent Document 3).

特開平8-271461号公報Japanese Unexamined Patent Publication No. 8-271461 特公平2-43130号公報Special Fair 2-43130 Gazette 特公平7-119664号公報Special Fair 7-119664 Gazette

しかし、特許文献3に記載されたような従来技術で並列配置の漏液検出装置を構成すると、切換えスイッチの数が多くなってしまい、構造が複雑になってしまうという問題があった。 However, if a leak detection device arranged in parallel is configured by the conventional technique as described in Patent Document 3, there is a problem that the number of changeover switches becomes large and the structure becomes complicated.

そこで、本発明は、簡便な構成で並列配置された機器の漏液監視を可能とすることを目的とする。 Therefore, an object of the present invention is to enable leakage monitoring of devices arranged in parallel with a simple configuration.

本発明の漏液監視装置は、一対の導電線からなり、前記導電線の間に漏液が接触すると電流が流れる漏液検知帯と、前記漏液検知帯に接続されて印加電圧が所定の導通電圧値に達すると導通する定電圧素子を有するノードと、を含む漏液検知ユニットを並列接続線で複数並列に接続した漏液検知部と、前記漏液検知部の前記並列接続線に接続される電源と、前記漏液検知部の前記並列接続線の入力電流値を検出する電流検出部と、前記電流検出部で検出した前記入力電流値から漏液の発生を判定する判定部と、を備え、前記漏液検知部は、各前記漏液検知ユニットが入力電圧値に応じて導通する特性を有し、各前記漏液検知ユニットの各前記定電圧素子の各前記導通電圧値がそれぞれ異なっていること、を特徴とする。 The liquid leakage monitoring device of the present invention is composed of a pair of conductive wires, and is connected to a liquid leakage detection band in which a current flows when a leak comes into contact between the conductive wires and a liquid leakage detection band, and an applied voltage is predetermined. A node having a constant voltage element that conducts when the conduction voltage value is reached, a liquid leakage detection unit in which a plurality of liquid leakage detection units including the liquid leakage detection unit are connected in parallel by a parallel connection line, and a liquid leakage detection unit connected to the parallel connection line of the liquid leakage detection unit. A power supply, a current detection unit that detects the input current value of the parallel connection line of the liquid leakage detection unit, and a determination unit that determines the occurrence of liquid leakage from the input current value detected by the current detection unit. The leak detection unit has a characteristic that each leak detection unit conducts according to an input voltage value, and each current conduction voltage value of each constant voltage element of each leak detection unit has its own. It is characterized by being different.

これにより、簡便な構成で並列配置された機器の漏液監視を行うことが可能となる。 This makes it possible to monitor leaks from devices arranged in parallel with a simple configuration.

本発明の漏液検出装置において、前記漏液検知ユニットの前記ノードは、前記並列接続線が接続される一対の始端側端子と、前記漏液検知部の一対の前記導電線がそれぞれ接続される一対の末端側端子と、前記始端側端子と前記末端側端子とを並列に接続する一対の接続線と、を含み、前記定電圧素子は、いずれか一方または両方の接続線に介在して配置されていること、としてもよい。 In the liquid leakage detection device of the present invention, the node of the liquid leakage detection unit is connected to a pair of start end side terminals to which the parallel connection lines are connected and a pair of conductive wires of the liquid leakage detection unit. The constant voltage element includes a pair of end-side terminals and a pair of connection lines connecting the start-end side terminal and the end-side terminal in parallel, and the constant voltage element is arranged so as to be interposed between any one or both connection lines. It may be done.

このように、検出対象の液体に応じてノードの定電圧素子の配置を様々に変更することができるので、検出対象の液体に応じた漏液検出を行うことができる。 In this way, since the arrangement of the constant voltage element of the node can be variously changed according to the liquid to be detected, it is possible to detect the leak according to the liquid to be detected.

本発明の漏液検出装置において、前記電源は、前記漏液検知部の前記並列接続線に所定の電圧値の待機電圧を印加し、前記判定部は、前記電流検出部で検出した前記入力電流値と、所定の閾値とを比較することで、少なくとも1つの前記漏液検知ユニットでの漏液の発生を判定してもよい。 In the liquid leakage detection device of the present invention, the power supply applies a standby voltage of a predetermined voltage value to the parallel connection line of the liquid leakage detection unit, and the determination unit uses the input current detected by the current detection unit. By comparing the value with a predetermined threshold value, the occurrence of liquid leakage in at least one liquid leakage detection unit may be determined.

このように、待機電圧値を所定の電圧値とする簡便な構成で、短時間で漏液の発生の判定を行うことができる。 As described above, with a simple configuration in which the standby voltage value is set to a predetermined voltage value, it is possible to determine the occurrence of liquid leakage in a short time.

本発明の漏液検出装置において、前記電源は、前記判定部から入力される電圧指令値に応じた電圧を出力し、前記判定部は、前記電源に出力する前記電圧指令値を待機電圧値の前後で変動させて前記漏液検知部の前記入力電圧値を前記待機電圧値の前後で変動させ、前記電圧指令値または前記入力電圧値と前記電流検出部で検出した前記入力電流値とから計算されるコンダクタンスまたは抵抗値と、所定の閾値とを比較することで、少なくとも1つの前記漏液検知ユニットで漏液が発生したことを判定してもよい。 In the liquid leakage detection device of the present invention, the power supply outputs a voltage corresponding to the voltage command value input from the determination unit, and the determination unit outputs the voltage command value to the power supply as the standby voltage value. The input voltage value of the leak detection unit is varied before and after the standby voltage value, and calculated from the voltage command value or the input voltage value and the input current value detected by the current detection unit. By comparing the conducted conduction or resistance value with a predetermined threshold value, it may be determined that a leak has occurred in at least one of the leak detection units.

このように、漏液検知部の入力電圧値を待機電圧値の前後で変動させることによってコンダクタンスまたは抵抗値を算出し、これにより漏液の判定を行うので、入力電流値と異なる物理量によって漏液の判定を行うことができる。 In this way, the conductance or resistance value is calculated by fluctuating the input voltage value of the liquid leakage detection unit before and after the standby voltage value, and the leakage is determined by this. Therefore, the leakage is determined by a physical quantity different from the input current value. Can be determined.

本発明の漏液検出装置において、前記電源は、前記判定部から入力される電圧指令値に応じた電圧を出力し、前記判定部は、前記電源に出力する前記電圧指令値を掃引して前記漏液検知部の前記入力電圧値を掃引して、各前記漏液検知ユニットを前記導通電圧値が小さい順に導通させ、前記電圧指令値または前記入力電圧値と前記電流検出部で検出した前記入力電流値から計算されるコンダクタンスまたは抵抗値と所定の閾値とを比較することで、導通状態の前記漏液検知ユニットの内、少なくとも1つの前記漏液検知ユニットで漏液が発生したことを判定してもよい。 In the liquid leakage detection device of the present invention, the power supply outputs a voltage corresponding to the voltage command value input from the determination unit, and the determination unit sweeps the voltage command value output to the power supply. The input voltage value of the leak detection unit is swept, and each of the leakage detection units is made conductive in ascending order of the conduction voltage value, and the voltage command value or the input voltage value and the input detected by the current detection unit are performed. By comparing the conductance or resistance value calculated from the current value with a predetermined threshold value, it is determined that a leak has occurred in at least one of the leak detecting units in a conducting state. You may.

このように、漏液検知部の入力電圧値を掃引することによってコンダクタンスまたは抵抗値を算出し、これにより漏液の判定を行うので、入力電流値と異なる物理量によって漏液の判定を行うことができる。 In this way, the conductance or resistance value is calculated by sweeping the input voltage value of the liquid leakage detection unit, and the leakage is determined by this. Therefore, the leakage can be determined by a physical quantity different from the input current value. can.

本発明の漏液検出装置において、前記電源は、前記判定部から入力される電圧指令値に応じた電圧を出力し、前記判定部は、前記電源に出力する前記電圧指令値を掃引して前記漏液検知部の前記入力電圧値を掃引して、各前記漏液検知ユニットを前記導通電圧値が小さい順に導通させ、前記漏液検知部の一の前記漏液検知ユニットまでの範囲を導通状態にした場合に前記電流検出部で検出した前記入力電流値と、一の前記漏液検知ユニットの次に前記導通電圧値が高い他の前記漏液検知ユニットまでの範囲を導通状態にした場合に前記電流検出部で検出した前記入力電流値と、を用いて、一の前記漏液検知ユニットのコンダクタンスを算出し、算出した前記コンダクタンスを所定の閾値と比較することで、漏液の発生した前記漏液検知ユニットを特定してもよい。 In the liquid leakage detection device of the present invention, the power supply outputs a voltage corresponding to the voltage command value input from the determination unit, and the determination unit sweeps the voltage command value output to the power supply. The input voltage value of the liquid leakage detection unit is swept, and each of the liquid leakage detection units is made conductive in ascending order of the conduction voltage value, and the range up to the liquid leakage detection unit of one of the liquid leakage detection units is in a conductive state. When the range from the input current value detected by the current detection unit to the other leak detection unit having the next highest conduction voltage value after the one leak detection unit is set to the conduction state. By using the input current value detected by the current detection unit to calculate the conductance of one of the leak detection units and comparing the calculated conductance with a predetermined threshold value, the leaked liquid is generated. The leak detection unit may be specified.

このように、漏液検知部の入力電圧値を掃引し、漏液検知ユニットを導通電圧値が小さい順に導通させて、各漏液検知ユニットのコンダクタンスを算出し、計算したコンダクタンスを所定の閾値と比較するので、漏液の発生した漏液検知ユニットを特定することができる。これにより、簡便な構成によって漏液箇所の検出信頼性を向上させることができる。 In this way, the input voltage value of the leak detection unit is swept, the leak detection units are conducted in ascending order of conduction voltage value, the conductance of each leak detection unit is calculated, and the calculated conductance is set as a predetermined threshold value. By comparing, it is possible to identify the leak detection unit in which the leak has occurred. This makes it possible to improve the detection reliability of the leaked portion with a simple configuration.

本発明の漏液検出装置は、一対の導電線からなり、前記導電線の間に漏液が接触すると電流が流れる漏液検知帯と、前記漏液検知帯に接続されて印加電圧が所定の導通電圧値に達すると導通する定電圧素子を有するノードと、を含む漏液検知ユニットを並列接続線で複数並列に接続し、末端の前記導電線の間に抵抗器を接続した漏液検知部と、前記漏液検知部の前記並列接続線に接続される電源と、前記漏液検知部の前記並列接続線の入力電圧値を検出する電圧検出部と、前記電圧検出部で検出した前記入力電圧値から漏液の発生を判定する判定部と、を備え、前記漏液検知部は、各前記漏液検知ユニットが前記入力電圧値に応じて導通する特性を有し、各前記漏液検知ユニットの各前記定電圧素子の各前記導通電圧値がそれぞれ異なっていること、を特徴とする。 The liquid leakage detection device of the present invention is composed of a pair of conductive wires, and is connected to a liquid leakage detection band in which a current flows when a leak comes into contact between the conductive wires and a liquid leakage detection band, and an applied voltage is predetermined. A leak detection unit in which a node having a constant voltage element that conducts when the conduction voltage value is reached and a plurality of leak detection units including the leakage detection unit are connected in parallel by a parallel connection line, and a resistor is connected between the conductive wires at the ends. The power supply connected to the parallel connection line of the liquid leakage detection unit, the voltage detection unit that detects the input voltage value of the parallel connection line of the liquid leakage detection unit, and the input detected by the voltage detection unit. A determination unit for determining the occurrence of liquid leakage from a voltage value is provided, and the liquid leakage detection unit has a characteristic that each liquid leakage detection unit conducts according to the input voltage value, and each liquid leakage detection unit is provided. It is characterized in that the conduction voltage value of each of the constant voltage elements of the unit is different.

これにより、簡便な構成で並列配置された機器の漏液監視を行うことが可能となる。 This makes it possible to monitor leaks from devices arranged in parallel with a simple configuration.

本発明の漏液検出装置において、前記電源は、所定の電流値の待機電流を前記漏液検知部に入力し、前記判定部は、前記電圧検出部で検出した前記入力電圧値を所定の閾値と比較することで漏液の発生を判定してもよい。 In the liquid leakage detection device of the present invention, the power supply inputs a standby current of a predetermined current value to the liquid leakage detection unit, and the determination unit inputs the input voltage value detected by the voltage detection unit to a predetermined threshold value. The occurrence of leakage may be determined by comparison with.

このように、待機電流値を所定の電流値とする簡便な構成で、短時間で漏液の発生の判定を行うことができる。 As described above, with a simple configuration in which the standby current value is set to a predetermined current value, it is possible to determine the occurrence of liquid leakage in a short time.

本発明の漏液検出装置は、一対の導電線からなり、前記導電線の間に漏液が接触すると電流が流れる漏液検知帯と、前記漏液検知帯に接続されて前記漏液検知帯の通電電流値を制限電流値に制限する定電流素子を有するノードと、を含む漏液検知ユニットを並列接続線で複数並列に接続した漏液検知部と、前記漏液検知部の前記並列接続線に接続されて、前記漏液検知部に電圧を印加する電源と、前記漏液検知部の前記並列接続線の通電電流値を検出する電流検出部と、前記電流検出部の検出した通電電流値から漏液の発生した前記漏液検知ユニットを判定する判定部と、を備える漏液検出装置であって、各前記漏液検知ユニットの各前記定電流素子の制限電流値はそれぞれ異なっており、前記判定部は、前記電流検出部の検出した通電電流値と前記定電流素子の制限電流値とを比較して漏液の発生した前記漏液検知ユニットを特定すること、を特徴とする。 The liquid leakage detection device of the present invention is composed of a pair of conductive wires, a liquid leakage detection band in which a current flows when a leak comes into contact between the conductive wires, and a liquid leakage detection band connected to the liquid leakage detection band. A liquid leakage detection unit in which a plurality of liquid leakage detection units including a node having a constant current element that limits the current current value of the current current value to the current limit value are connected in parallel by a parallel connection line, and the parallel connection of the liquid leakage detection unit. A power supply that is connected to a wire and applies a voltage to the leak detection unit, a current detection unit that detects the energization current value of the parallel connection line of the liquid leakage detection unit, and an energization current detected by the current detection unit. It is a leak detection device including a determination unit for determining the leak detection unit in which a leak has occurred from the value, and the current limit value of each constant current element of each leak detection unit is different. The determination unit is characterized in that the leakage detection unit in which the leakage has occurred is specified by comparing the energization current value detected by the current detection unit with the current limiting current value of the constant current element.

これにより、簡便な構成で並列配置された機器の漏液監視を行うことが可能となる。 This makes it possible to monitor leaks from devices arranged in parallel with a simple configuration.

本発明の漏液検出装置において、前記漏液検知ユニットの前記ノードは、前記並列接続線が接続される一対の始端側端子と、前記漏液検知帯の一対の前記導電線がそれぞれ接続される一対の末端側端子と、前記始端側端子と前記末端側端子とを並列に接続する一対の接続線と、を含み、前記定電流素子は、いずれか一方または両方の前記接続線に介在して配置されてもよい。 In the liquid leakage detection device of the present invention, the node of the liquid leakage detection unit is connected to a pair of start end side terminals to which the parallel connection lines are connected and a pair of conductive lines of the liquid leakage detection band. A pair of end-side terminals and a pair of connection lines connecting the start-end side terminal and the end-side terminal in parallel are included, and the constant current element is interposed in either one or both of the connection lines. It may be arranged.

このように、検出対象の液体に応じてノードの定電流素子の配置を様々に変更することができるので、検出対象の液体に応じた漏液検出を行うことができる。 In this way, since the arrangement of the constant current element of the node can be variously changed according to the liquid to be detected, it is possible to detect the leak according to the liquid to be detected.

本発明の漏液検出装置において、前記判定部は、前記電流検出部で検出した通電電流値と、一の前記漏液検知ユニットの前記定電流素子の制限電流値との差が所定の範囲内の場合に、一の前記漏液検知ユニットを漏液発生箇所と特定してもよい。 In the liquid leakage detection device of the present invention, the determination unit has a difference between the energization current value detected by the current detection unit and the current limit value of the constant current element of one liquid leakage detection unit within a predetermined range. In this case, one said leak detection unit may be specified as a leak occurrence location.

これにより、電流検出部で検出した通電電流値と一の定電流素子の制限電流値に差がある場合でも漏液箇所の特定を行うことができ、漏液箇所の検出信頼性を向上させることができる。 As a result, even if there is a difference between the energizing current value detected by the current detector and the current limit value of one constant current element, the leaked part can be identified, and the detection reliability of the leaked part can be improved. Can be done.

本発明の漏液検出装置において、前記判定部は、前記電流検出部で検出した通電電流値が所定の値以上の場合に漏液検知と判定してもよい。 In the liquid leakage detection device of the present invention, the determination unit may determine that liquid leakage is detected when the energization current value detected by the current detection unit is equal to or greater than a predetermined value.

これにより、何らかの要因で、電流検出部で検出した通電電流値と複数の定電流素子の制限電流値とのいずれの差も所定の範囲内にない場合でも、漏液発生を検知することができる。 As a result, it is possible to detect the occurrence of liquid leakage even when the difference between the energization current value detected by the current detection unit and the current limit value of the plurality of constant current elements is not within a predetermined range for some reason. ..

本発明の漏液検出装置において、前記判定部は、漏液検知と判定した場合に、前記電源の出力電圧を変化させて前記電流検出部で前記漏液検知部の通電電流値の変化量を検出し、通電電流値の変化量に基づいて、通電電流値から漏液の発生した前記漏液検知ユニットの特定が可能か判定してもよい。この際、前記判定部は、通電電流値の変化量の絶対値が所定の第1閾値未満の場合に、通電電流値から漏液の発生した前記漏液検知ユニットの特定が可能と判定してもよいし、前記電源の出力電圧の変化量と前記電流検出部で検出した通電電流値の変化量とに基づいて前記漏液検知部の電圧電流特性の傾きを算出し、前記傾きが所定の第2閾値未満の場合に、通電電流値から漏液の発生した前記漏液検知ユニットの特定が可能と判定してもよい。また、前記判定部は、前記電流検出部で検出した通電電流値から漏液の発生した前記漏液検知ユニットの特定が可能と判定した場合に、前記電流検出部で検出した通電電流値と、一の前記漏液検知ユニットの前記定電流素子の制限電流値との差が所定の範囲内の場合に、一の前記漏液検知ユニットを漏液発生箇所と特定してもよい。 In the liquid leakage detection device of the present invention, when the determination unit determines that the liquid leakage is detected, the determination unit changes the output voltage of the power supply, and the current detection unit determines the amount of change in the energization current value of the liquid leakage detection unit. It may be detected and it may be determined whether it is possible to identify the leak detection unit in which the leak has occurred from the current current value based on the amount of change in the current current value. At this time, the determination unit determines that when the absolute value of the change amount of the energization current value is less than a predetermined first threshold value, it is possible to identify the leak detection unit in which the leakage has occurred from the energization current value. Alternatively, the slope of the voltage-current characteristic of the liquid leakage detection unit is calculated based on the amount of change in the output voltage of the power supply and the amount of change in the energization current value detected by the current detection unit, and the slope is predetermined. If it is less than the second threshold value, it may be determined that the leak detection unit in which the leak has occurred can be identified from the energization current value. Further, when the determination unit determines that the leak detection unit in which the leak has occurred can be identified from the energization current value detected by the current detection unit, the energization current value detected by the current detection unit is used. When the difference between the leakage detection unit and the current limit value of the constant current element is within a predetermined range, the leakage detection unit may be specified as a leakage occurrence location.

このように、電源の出力電圧を変化させて電流検出部で漏液検知部の通電電流値を検出し、電流検出部で検出した通電電流値の変化量に基づいて漏液検知ユニットの定電流素子が飽和状態となっており、通電電流値から漏液の発生した漏液検知ユニットの特定が可能と判定した後に、電流検出部で検出した通電電流値と、一の漏液検知ユニットの定電流素子の制限電流値との差が所定の範囲内の場合に、一の漏液検知ユニットを漏液発生箇所と特定するので、漏液発生箇所を誤って特定することを抑制することができる。 In this way, the output voltage of the power supply is changed, the current detection unit detects the energization current value of the liquid leakage detection unit, and the constant current of the liquid leakage detection unit is based on the amount of change in the energization current value detected by the current detection unit. After it is determined that the element is saturated and it is possible to identify the leak detection unit where the leak has occurred from the current current value, the current current value detected by the current detector and the determination of one leak detection unit. When the difference from the current limit value of the current element is within a predetermined range, one leak detection unit is specified as the leak occurrence location, so that it is possible to prevent the leakage occurrence location from being erroneously identified. ..

本発明は、簡便な構成で並列配置された機器の漏液監視を可能とすることができる。 The present invention can enable leakage monitoring of devices arranged in parallel with a simple configuration.

定電圧素子を用いた実施形態の漏液検出装置の構成を示す系統図である。It is a system diagram which shows the structure of the liquid leakage detection apparatus of embodiment which used the constant voltage element. 図1に示す漏液検出装置の漏液検知ユニットの構成を示す系統図である。It is a system diagram which shows the structure of the liquid leakage detection unit of the liquid leakage detection apparatus shown in FIG. 理想的なツェナーダイオードを逆直列に接続した定電圧素子の電圧に対する電流の特性を示すグラフである。It is a graph which shows the characteristic of the current with respect to the voltage of the constant voltage element which connected the ideal Zener diode in anti-series. 図1に示す漏液検出装置の漏液検知ユニットUで漏液が発生した場合の電流の流れを示す系統図である。It is a system diagram which shows the flow of the electric | current when the leakage occurs in the leakage detection unit Um of the leakage detection apparatus shown in FIG. 図1に示す漏液検出装置において、入力電圧値を上昇させた際の各漏液検知ユニットに印加される電圧値を示すグラフである。It is a graph which shows the voltage value applied to each liquid leakage detection unit when the input voltage value is raised in the liquid leakage detection apparatus shown in FIG. 1. 図1に示す漏液検出装置に入力される3種類の入力電圧値の時間変化を示すグラフである。It is a graph which shows the time change of three kinds of input voltage values input to the leakage detection apparatus shown in FIG. 図1に示す漏液検出装置における漏液の発生した場合と漏液の発生がない場合の入力電圧値の変化に対する入力電流値の変化特性(VI特性)と、漏液の発生による入力電流値の変化とを示すグラフである。The change characteristic (VI characteristic) of the input current value with respect to the change of the input voltage value when the leak occurs and when the leak does not occur in the leak detection device shown in FIG. 1, and the input current value due to the occurrence of the leak. It is a graph which shows the change of. 図1に示す漏液検出装置における漏液の発生した場合と漏液の発生がない場合の入力電圧値の変化に対する入力電流値の変化特性(VI特性)と、漏液が発生した際に入力電圧を待機電圧値の前後で変動させた際の入力電流値の変化を示すグラフである。The change characteristic (VI characteristic) of the input current value with respect to the change of the input voltage value when the leak occurs and when the leak does not occur in the leak detection device shown in FIG. 1, and the input when the leak occurs. It is a graph which shows the change of the input current value when the voltage is changed before and after the standby voltage value. 図1に示す漏液検出装置における漏液の発生した場合と漏液の発生がない場合の入力電圧値の変化に対するコンダクタンスの変化特性(VG特性)と、漏液の発生によるコンダクタンスの変化とを示すグラフである。The change characteristic (VG characteristic) of the conductance with respect to the change of the input voltage value when the leak occurs and the case where the leak does not occur in the leak detection device shown in FIG. 1 and the change of the conductance due to the occurrence of the leak are shown. It is a graph which shows. 図1に示す漏液検出装置の漏液検知ユニットUで漏液が発生した場合と漏液の発生がない場合の入力電圧値の変化に対する入力電流値の変化特性(VI特性)と、入力電圧値を掃引した際の各漏液検知ユニットにおける入力電圧値の変化に対する入力電流値の変化と、導通範囲の変化とを示すグラフである。The change characteristic (VI characteristic) of the input current value with respect to the change of the input voltage value when the leak occurs in the leak detection unit Um of the leak detection device shown in FIG. 1 and when there is no leak, and the input. It is a graph which shows the change of the input current value with respect to the change of the input voltage value in each leak detection unit when the voltage value is swept, and the change of the conduction range. 図10に示すVI特性に基づいて計算した入力電圧値に対するコンダクタンスの変化(VG特性)を示すグラフである。It is a graph which shows the change (VG characteristic) of conductance with respect to the input voltage value calculated based on the VI characteristic shown in FIG. 図11に示す特性から求めた各漏液検知ユニットのコンダクタンスを示すグラフである。It is a graph which shows the conductance of each leak detection unit obtained from the characteristic shown in FIG. 定電圧素子を用いた他の実施形態の漏液検出装置の構成を示す系統図である。It is a system diagram which shows the structure of the liquid leakage detection apparatus of another Embodiment using a constant voltage element. 図13に示す漏液検出装置の漏液検知ユニットUで漏液が発生した場合の電流の流れを示す系統図である。It is a system diagram which shows the flow of the electric | current when the leakage occurs in the leakage detection unit Um of the leakage detection apparatus shown in FIG. 図13に示す漏液検出装置の漏液検知ユニットUで漏液が発生した場合と漏液の発生がない場合の入力電流値の変化に対する入力電圧値の変化特性(IV特性)と、漏液の発生による入力電圧値の変化とを示すグラフである。The change characteristic (IV characteristic) of the input voltage value with respect to the change of the input current value when the leak occurs in the leak detection unit Um of the leak detection device shown in FIG. 13 and when there is no leak, and the leak. It is a graph which shows the change of the input voltage value by the generation of a liquid. 電圧センサで検出した入力電圧値と漏液の発生した漏液検知ユニット番号との比較表の例である。This is an example of a comparison table between the input voltage value detected by the voltage sensor and the leak detection unit number where the leak occurred. 図1,13に示す漏液検出装置に適用されるノードの他の例を示す説明図である。It is explanatory drawing which shows the other example of the node applied to the leakage detection apparatus shown in FIGS. 定電流素子を用いた実施形態の漏液検出装置の構成を示す系統図である。It is a system diagram which shows the structure of the liquid leakage detection apparatus of embodiment which used the constant current element. 図18に示す漏液検出装置の漏液検知ユニットの構成を示す系統図である。It is a system diagram which shows the structure of the liquid leakage detection unit of the liquid leakage detection apparatus shown in FIG. 理想的な定電流ダイオードの端子間電圧に対する端子間電流と端子間抵抗の変化を示すグラフである。It is a graph which shows the change of the terminal current and the terminal resistance with respect to the terminal voltage of an ideal constant current diode. 図20に示す定電流ダイオードを逆直列に接続した定電流素子の電圧に対する電流の特性を示すグラフである。It is a graph which shows the characteristic of the current with respect to the voltage of the constant current element which connected the constant current diode shown in FIG. 20 in anti-series. 図20に示す定電流ダイオードを逆直列に接続した制限電流値が異なる定電流素子の電圧に対する電流の特性を示すグラフである。It is a graph which shows the characteristic of the current with respect to the voltage of the constant current element which connected the constant current diode shown in FIG. 20 in anti-series, and has different current limit values. 図18に示す漏液検出装置で漏液を検出した場合の電流の流れと電圧の変化を示す系統図である。It is a system diagram which shows the change of the current flow and voltage when the leakage is detected by the leakage detection apparatus shown in FIG. 図18に示す漏液検出装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the liquid leakage detection apparatus shown in FIG. 図18に示す漏液検出装置で漏液を検出した際の検出電流と入力電圧との時間変化を示すグラフである。It is a graph which shows the time change of the detection current and the input voltage when the leakage is detected by the leakage detection apparatus shown in FIG. 図25に示す時刻t3における電流の流れと電圧の変化を示す系統図である。It is a system diagram which shows the change of the current flow and voltage at the time t3 shown in FIG. 図25に示す時刻t3における各定電流素子の動作点を示すグラフである。It is a graph which shows the operating point of each constant current element at time t3 shown in FIG. 定電流素子が非飽和状態において、電源の出力電圧を変化させた際の通電電流値の変化を示すグラフである。It is a graph which shows the change of the energization current value when the output voltage of a power source is changed in a constant current element in an unsaturated state. 定電流素子が飽和状態において、電源の出力電圧を変化させた際の通電電流値の変化を示すグラフである。It is a graph which shows the change of the energization current value when the output voltage of a power source is changed in the saturated state of a constant current element. 図18に示す実施形態の漏液検出装置に適用されるノードの例を示す図である。It is a figure which shows the example of the node applied to the leakage detection apparatus of the embodiment shown in FIG.

<第1実施形態の漏液検出装置100の構成>
以下、図面を参照しながら実施形態の漏液検出装置100について説明する。図1に示すように、漏液検出装置100は、複数の漏液検知ユニットU~Uを並列接続線64で並列に接続した漏液検知部70と、漏液検知部70の並列接続線64に接続された電源81と、漏液検知部70の並列接続線64の通電電流値を検出する電流検出部である電流センサ82と、電流センサ82によって検出した入力電流値に基づいて漏液の判定を行う判定部90とで構成される。
<Structure of the leak detection device 100 of the first embodiment>
Hereinafter, the leak detection device 100 of the embodiment will be described with reference to the drawings. As shown in FIG. 1, in the liquid leakage detection device 100, a liquid leakage detection unit 70 in which a plurality of liquid leakage detection units U 1 to U 3 are connected in parallel by a parallel connection line 64 and a liquid leakage detection unit 70 are connected in parallel. Leakage based on the power supply 81 connected to the wire 64, the current sensor 82 which is a current detection unit for detecting the energization current value of the parallel connection wire 64 of the liquid leakage detection unit 70, and the input current value detected by the current sensor 82. It is composed of a determination unit 90 that determines the liquid.

図2を参照しながら、漏液検知ユニットU~Uの漏液検知ユニット番号Nがm(N=m)の漏液検知ユニットUの構成について説明する。なお、漏液検知部70を構成する漏液検知ユニットUの数は3つに限定されず、いくつでもよく、1つでもよいし、4つ以上で構成されていてもよい。 With reference to FIG. 2, the configuration of the liquid leakage detection unit U m in which the liquid leakage detection unit numbers N of the liquid leakage detection units U 1 to U 3 are m (N = m) will be described. The number of leak detection units U constituting the leak detection unit 70 is not limited to three, and may be any number, one, or four or more.

図2に示すように、漏液検知ユニットUは、定電圧素子Dを含むノードNDと、一対の導電線61,62からなる漏液検知帯60とを有している。ノードNDは、一対の始端側端子13,15と、一対の末端側端子14,16と、始端側端子13,15と末端側端子14,16とを並列に接続する一対の接続線12を含んでいる。図2に示すように、一方の始端側端子13と末端側端子14とを接続する接続線12の中間には、定電圧素子Dが介在して配置されるように接続されている。また、他方の始端側端子15と末端側端子16とは接続線12で接続されており、定電圧素子Dは接続されていない。一対の末端側端子14,16には漏液検知帯60の一対の導電線61,62がそれぞれ接続されており、一対の導電線61,62の各末端側の端部61e,62eは漏液検知ユニットUの末端側の端部となる。また、一対の始端側端子13,15は、漏液検知ユニットUの始端側の端部となる。 As shown in FIG. 2, the liquid leakage detection unit U m has a node ND m including a constant voltage element D m and a liquid leakage detection band 60 including a pair of conductive wires 61 and 62. The node ND m has a pair of connection lines 12 connecting the pair of start end side terminals 13, 15 and the pair of end side terminals 14, 16 and the start end side terminals 13, 15 and the end side terminals 14, 16 in parallel. Includes. As shown in FIG. 2, a constant voltage element D m is connected so as to be interposed in the middle of the connection line 12 connecting one of the start end side terminals 13 and the end side terminal 14. Further, the other start end side terminal 15 and the end end side terminal 16 are connected by a connection line 12, and the constant voltage element Dm is not connected. A pair of conductive wires 61 and 62 of the liquid leakage detection band 60 are connected to the pair of terminal terminals 14 and 16, respectively, and the end portions 61e and 62e of the pair of conductive wires 61 and 62 on the terminal side are leaking liquid. It is the end of the detection unit Um on the terminal side. Further, the pair of start end side terminals 13 and 15 are end portions on the start end side of the liquid leakage detection unit Um .

定電圧素子Dは、図3に示す様に、印加電圧の絶対値が所定の立ち上がり電圧値Vfに達すると導通し、印加電圧の絶対値が立ち上がり電圧値Vfに達しない場合には、非導通となる素子である。立ち上がり電圧値Vfは導通電圧値に対応する。本実施形態の漏液検出装置100では、定電圧素子Dは、立ち上がり電圧値Vfのツェナーダイオード11a,11bを逆直列に接続して図3に示すような特性の定電圧素子Dを構成している。本実施形態の漏液検出装置100では、各定電圧素子D~Dの立ち上がり電圧値は全て異なっており、それぞれ、Vf、2Vf、3Vfである。なお、定電圧素子Dの構成はこれに限定されない。この点については、後で説明する。 As shown in FIG. 3, the constant voltage element D m conducts when the absolute value of the applied voltage reaches a predetermined rising voltage value Vf, and does not reach the rising voltage value Vf when the absolute value of the applied voltage does not reach the rising voltage value Vf. It is an element that becomes conductive. The rising voltage value Vf corresponds to the conduction voltage value. In the liquid leakage detection device 100 of the present embodiment, the constant voltage element D m is configured by connecting the Zener diodes 11a and 11b having a rising voltage value Vf in anti-series to form a constant voltage element D m having the characteristics shown in FIG. is doing. In the liquid leakage detection device 100 of the present embodiment, the rising voltage values of the constant voltage elements D 1 to D 3 are all different, and are Vf, 2Vf, and 3Vf, respectively. The configuration of the constant voltage element D m is not limited to this. This point will be described later.

導電線61,62は、漏液がない場合には非導通で、漏液が発生した際に漏液が接触すると相互に導通するものである。導電線61,62は、例えば、吸湿性の絶縁皮膜等で覆った銅線を撚り合わせたもので構成してもよい。 The conductive wires 61 and 62 are non-conducting when there is no leakage, and are mutually conductive when the leakage comes into contact with the leakage. The conductive wires 61 and 62 may be made of, for example, twisted copper wires covered with a hygroscopic insulating film or the like.

図1に示すように、漏液検知部70の始端71を構成する漏液検知ユニットUの始端側端子13,15は、それぞれ並列接続線64に接続されている。並列接続線64は絶縁被覆線63を介して電源81に接続されている。電源81と並列接続線64との間には、電流センサ82が接続されている。また、漏液検知部70の末端72は開放されている。 As shown in FIG. 1, the start end side terminals 13 and 15 of the leak detection unit U 1 constituting the start end 71 of the leak detection unit 70 are connected to the parallel connection line 64, respectively. The parallel connection line 64 is connected to the power supply 81 via the insulating coated wire 63. A current sensor 82 is connected between the power supply 81 and the parallel connection line 64. Further, the end 72 of the liquid leakage detection unit 70 is open.

電源81は交流電源である。電源81は、例えば、交流100Hz、出力電圧10V程度のものでもよい。電流センサ82は、交流の電流値を検出する交流の電流検出器である。判定部90は、内部にCPU91とメモリ92と、電源81と電流センサ82とが接続される入力インターフェース93と、CPU91の演算結果を出力する出力インターフェース94とを備えるコンピュータである。CPU91と、メモリ92と、入力インターフェース93と、出力インターフェース94とはデータバス95で接続されている。電源81は判定部90の判定部90から入力される電圧指令値に応じた電圧を出力する。なお、判定部90の構成はこれに限定されず、例えば、アナログ回路で構成してもよい。 The power supply 81 is an AC power supply. The power supply 81 may be, for example, an AC 100 Hz and an output voltage of about 10 V. The current sensor 82 is an alternating current detector that detects an alternating current value. The determination unit 90 is a computer including a CPU 91, a memory 92, an input interface 93 to which the power supply 81 and the current sensor 82 are connected, and an output interface 94 for outputting the calculation result of the CPU 91. The CPU 91, the memory 92, the input interface 93, and the output interface 94 are connected by a data bus 95. The power supply 81 outputs a voltage corresponding to the voltage command value input from the determination unit 90 of the determination unit 90. The configuration of the determination unit 90 is not limited to this, and may be configured by, for example, an analog circuit.

<漏液検出装置100の漏液判定動作>
以下、図4から図9を参照しながら、漏液検出装置100の漏液判定動作について説明するが、最初に図5を参照しながら、入力電圧値と各漏液検知ユニットUの印加電圧と導通範囲Aについて説明する。図4は、漏液検出装置100の漏液判定動作の説明のために、図1に示した系統図の符号を一般化したものである。図4では判定部90の記載は省略している。各定電圧素子D~D~DNendの立ち上がり電圧値は全て異なっている。本実施形態では、各定電圧素子D~D~DNendの立ち上がり電圧値は、漏液検知ユニット番号Nが1つ大きくなる毎にVfずつ大きくなる。従って、定電圧素子Dの立ち上がり電圧値はm×Vfとなっている。また、Nendは、漏液検知ユニットUの全数を示し、漏液検知ユニットUNendの立ち上がり電圧値はNend×Vfとなっている。
<Leakage determination operation of the leak detection device 100>
Hereinafter, the liquid leakage determination operation of the liquid leakage detection device 100 will be described with reference to FIGS. 4 to 9, but the input voltage value and the applied voltage of each liquid leakage detection unit U will be described first with reference to FIG. The conduction range A will be described. FIG. 4 is a generalization of the reference numerals of the system diagram shown in FIG. 1 for the purpose of explaining the liquid leakage determination operation of the liquid leakage detection device 100. In FIG. 4, the description of the determination unit 90 is omitted. The rising voltage values of the constant voltage elements D 1 to D m to D Nend are all different. In the present embodiment, the rising voltage values of the constant voltage elements D 1 to D m to D Nend increase by Vf each time the liquid leakage detection unit number N increases by one. Therefore, the rising voltage value of the constant voltage element D m is m × Vf. Further, Nend indicates the total number of leak detection units U, and the rising voltage value of the leak detection unit U Nend is Nend × Vf.

<入力電圧値と導通範囲>
入力電圧値がゼロの場合には、各定電圧素子Dは全てオフで非導通となっている。図5に示すように、並列接続線64の入力電圧値をゼロから漏液検知ユニットUの定電圧素子Dの立ち上がり電圧値Vfまで上昇させると漏液検知ユニットUの定電圧素子DにVfの電圧が印加される。すると、定電圧素子Dが導通領域、すなわちオンになる。定電圧素子Dの電圧降下はVfなので、入力電圧がVfを超えると漏液検知ユニットUの導電線61,62間に電圧が掛かり始める。これにより、漏液検知ユニットUでの漏液検知が可能となる。その後、入力電圧を上昇させていくと、導電線61,62間の電圧は、ゼロから次第に大きくなる。この際の導通範囲Aは、漏液検知ユニットUのみである。
<Input voltage value and continuity range>
When the input voltage value is zero, all the constant voltage elements D are off and non-conducting. As shown in FIG. 5, when the input voltage value of the parallel connection line 64 is increased from zero to the rising voltage value Vf of the constant voltage element D 1 of the liquid leakage detection unit U 1 , the constant voltage element D of the liquid leakage detection unit U 1 D. A voltage of Vf is applied to 1 . Then, the constant voltage element D 1 is turned on in the conduction region, that is, on. Since the voltage drop of the constant voltage element D 1 is Vf, when the input voltage exceeds Vf, a voltage starts to be applied between the conductive lines 61 and 62 of the liquid leakage detection unit U1. This enables the leak detection unit U 1 to detect the leak. After that, as the input voltage is increased, the voltage between the conductive wires 61 and 62 gradually increases from zero. At this time, the conduction range A 1 is only the liquid leakage detection unit U 1 .

図5に示すように、入力電圧値を漏液検知ユニットUの定電圧素子Dの立ち上がり電圧値2Vfまで上昇させると、漏液検知ユニットUの定電圧素子Dに立ち上がり電圧値2Vfが印加される。これにより、定電圧素子Dがオンになり、漏液検知ユニットUの導電線61,62間に電圧が掛かり始め、漏液検知ユニットUの漏液検知が可能となる。この際の導通範囲Aは、漏液検知ユニットU、Uである。 As shown in FIG. 5, when the input voltage value is raised to the rising voltage value 2Vf of the constant voltage element D 2 of the liquid leakage detection unit U 2 , the rising voltage value 2Vf is applied to the constant voltage element D 2 of the liquid leakage detection unit U 2 . Is applied. As a result, the constant voltage element D 2 is turned on, voltage starts to be applied between the conductive wires 61 and 62 of the liquid leakage detection unit U 2 , and the liquid leakage detection unit U 2 can detect the liquid leakage. The continuity range A 2 at this time is the liquid leakage detection units U 1 and U 2 .

同様に、入力電圧値をV=mVfまで上昇させると、漏液検知ユニットUの定電圧素子Dがオンになり、漏液検知ユニットUから漏液検知ユニットUまでの各漏液検知ユニットUが導通する。この際の導通範囲はAである。このように、入力電圧値を上昇させていくと、各漏液検知ユニットUは、立ち上がり電圧値の小さい順に順次導通していく。 Similarly, when the input voltage value is raised to V m = mVf, the constant voltage element D m of the leak detection unit U m is turned on, and each leak from the leak detection unit U 1 to the leak detection unit U m is turned on. The liquid detection unit U conducts. The conduction range at this time is Am . As the input voltage value is increased in this way, each leak detection unit U is sequentially conducted in ascending order of rising voltage value.

そして、入力電圧値をVNend=Nend×Vfまで上昇させると、漏液検知ユニットUから漏液検知ユニットUNendまでのすべての漏液検知ユニットUが導通し、全ての漏液検知ユニットUで漏液の検知が可能となる。従って、入力電圧値をVNendよりも高い待機電圧値Vとすることにより、全ての漏液検知ユニットUで漏液の検知を行うことができる。 Then, when the input voltage value is raised to V Nend = Nend × Vf, all the leak detection units U from the leak detection unit U 1 to the leak detection unit U Nend become conductive, and all the leak detection units U Can detect leaks. Therefore, by setting the input voltage value to a standby voltage value V 0 higher than that of V Nend , all the leak detection units U can detect the leak.

以下、入力電圧値をVNendよりも高い待機電圧値Vとして漏液の検知を行う場合の動作について説明する。この場合、図6の線aに示すように、入力電圧値を待機電圧値V一定にする方法(第1判定動作)と、図6の線bに示すように、入力電圧値を待機電圧値Vの前後で変動させる方法(第2判定動作)と、図6の線cに示すように入力電圧値をゼロと待機電圧値Vとの間で掃引する方法(第3判定動作)とがある。以下、最初に第1判定動作について説明し、次に第2、第3判定動作について説明する。 Hereinafter, the operation when the leakage is detected by setting the input voltage value to the standby voltage value V 0 higher than that of V Nend will be described. In this case, as shown by line a in FIG. 6, the input voltage value is set to a constant standby voltage value V 0 (first determination operation), and as shown in line b in FIG. 6, the input voltage value is set to standby voltage. A method of varying before and after the value V 0 (second judgment operation) and a method of sweeping the input voltage value between zero and the standby voltage value V 0 as shown by line c in FIG. 6 (third judgment operation). There is. Hereinafter, the first determination operation will be described first, and then the second and third determination operations will be described.

<第1判定動作>
判定部90は、電源81に出力電圧を待機電圧値V一定とする電圧指令値を出力する。これにより、電源81は、並列接続線64に待機電圧値V一定の電圧を印加する。
<First judgment operation>
The determination unit 90 outputs a voltage command value that keeps the output voltage constant at the standby voltage value V 0 to the power supply 81. As a result, the power supply 81 applies a voltage having a constant standby voltage value of V0 to the parallel connection line 64.

図7に示すように、漏液が発生していない場合には、各漏液検知ユニットUの導電線61,62間には電流が流れないので、電流センサ82で検出した入力電流値はゼロとなっている。 As shown in FIG. 7, when no liquid leakage has occurred, no current flows between the conductive wires 61 and 62 of each liquid leakage detection unit U, so that the input current value detected by the current sensor 82 is zero. It has become.

一方、図4に示すように、m番目の漏液検知ユニットUで漏液が発生すると、漏液検知ユニットUの導電線61,62の間には、I=G(V-V)の電流が流れる。ここで、Gは、漏液検知ユニットUの導電線61,62の間のコンダクタンスである。 On the other hand, as shown in FIG. 4, when a leak occurs in the m-th leak detection unit U m , Im = G m (V 0 ) between the conductive wires 61 and 62 of the leak detection unit U m . -Vm ) current flows. Here, G m is the conductance between the conductive wires 61 and 62 of the liquid leakage detection unit U m .

そこで、判定部90は、電流センサ82で検出した入力電流値と所定の閾値とを比較して、入力電流値が所定の閾値よりも大きくなった場合に、漏液が発生したものと判定する。判定部90は、漏液が発生したと判定した場合には、出力インターフェース94を介して外部装置に漏液発生の警報を発報する。 Therefore, the determination unit 90 compares the input current value detected by the current sensor 82 with a predetermined threshold value, and determines that leakage has occurred when the input current value becomes larger than the predetermined threshold value. .. When the determination unit 90 determines that a leak has occurred, the determination unit 90 issues an alarm for the occurrence of the leak to the external device via the output interface 94.

ここで、所定の閾値は自由に設定可能であるが、液体の種類等に応じて試験等によって決めてもよい。 Here, the predetermined threshold value can be freely set, but it may be determined by a test or the like according to the type of the liquid or the like.

<第2判定動作>
先に説明したように、入力電圧値をV=m×Vfまで上昇させると、漏液検知ユニットUの定電圧素子Dがオンになり、漏液検知ユニットUから漏液検知ユニットUまでの各漏液検知ユニットUが導通する。この場合、m番目の漏液検知ユニットUで漏液が発生していると、漏液検知ユニットUの導電線61,62の間に電流が流れ始める。この際、漏液部分65のコンダクタンスはGである。その後、入力電圧値を上昇させると、漏液検知ユニットUの導電線61,62の間の電圧が大きくなり、入力電流値は次第に大きくなっていく。従って、漏液検知ユニットUで漏液が発生すると、入力電圧値の変化に対する入力電流値の変化特性(以下、VI特性という)は、図8に破線で示すように、入力電圧値がVまでは入力電流値はゼロで、入力電圧値がVを超えるとある傾きで入力電流値が上昇していく。また、入力電圧値の変化に対するコンダクタンスの変化特性(以下、VG特性という)は、図9に破線で示すように、入力電圧値がVまではコンダクタンスGはゼロで、入力電圧値がVを超えるコンダクタンスGは漏液部分65のコンダクタンスはGとなる。
<Second judgment operation>
As described above, when the input voltage value is increased to V m = m × Vf, the constant voltage element D m of the liquid leakage detection unit U m is turned on, and the liquid leakage detection unit U 1 to the liquid leakage detection unit U 1 turns on. Each leak detection unit U up to U m conducts. In this case, if a leak has occurred in the m -th leak detection unit Um, a current starts to flow between the conductive wires 61 and 62 of the leak detection unit Um . At this time, the conductance of the leaked portion 65 is G m . After that, when the input voltage value is increased, the voltage between the conductive lines 61 and 62 of the liquid leakage detection unit Um increases, and the input current value gradually increases. Therefore, when a leak occurs in the leak detection unit Um , the change characteristic of the input current value (hereinafter referred to as VI characteristic) with respect to the change of the input voltage value has an input voltage value of V as shown by a broken line in FIG. The input current value is zero up to m , and when the input voltage value exceeds V m , the input current value increases with a certain inclination. As shown by the broken line in FIG. 9, the conductance change characteristic (hereinafter referred to as VG characteristic) with respect to the change of the input voltage value is that the conductance G is zero and the input voltage value is V m until the input voltage value is V m . If the conductance G exceeds, the conductance of the leaked portion 65 is G m .

そこで、第2判定動作では、図8に示すように入力電圧値を待機電圧値Vの前後でΔVだけ変動させ、電流センサ82で検出した入力電流値の変化から入力電流値の変化量ΔIを計算し、コンダクタンスG=ΔI/ΔVを算出し、算出したコンダクタンスGを所定の閾値と比較して漏液の判定を行うものである。 Therefore, in the second determination operation, as shown in FIG. 8, the input voltage value is fluctuated by ΔV before and after the standby voltage value V 0 , and the change amount ΔI of the input current value is changed from the change of the input current value detected by the current sensor 82. , The conductance G = ΔI / ΔV is calculated, and the calculated conductance G is compared with a predetermined threshold value to determine the leakage.

判定部90は、電源81に出力する電圧指令値を待機電圧値Vの前後でΔVだけ変動させる。電源81は、電圧指令値に従って始端71に印加する入力電圧値を待機電圧値Vの前後でΔVだけ変動させる。判定部90は、電流センサ82によって入力電流値を検出する。判定部90は、異なる2つの電圧指令値に対応する2つの入力電流値から入力電流値の変化量ΔIを算出する。そして、判定部90は、コンダクタンスG=ΔI/ΔVを算出し、所定の閾値と比較する。そして、図9に示すように、算出したコンダクタンスGが所定の閾値よりも大きい場合に、漏液が発生したと判定する。 The determination unit 90 fluctuates the voltage command value output to the power supply 81 by ΔV before and after the standby voltage value V 0 . The power supply 81 fluctuates the input voltage value applied to the start end 71 according to the voltage command value by ΔV before and after the standby voltage value V0. The determination unit 90 detects the input current value by the current sensor 82. The determination unit 90 calculates the amount of change ΔI of the input current value from the two input current values corresponding to the two different voltage command values. Then, the determination unit 90 calculates conductance G = ΔI / ΔV and compares it with a predetermined threshold value. Then, as shown in FIG. 9, when the calculated conductance G is larger than a predetermined threshold value, it is determined that the liquid leakage has occurred.

なお、入力電流値の変化量ΔIの算出は、異なる2つの電圧指令値に対応する2つの入力電流値を用いることに限定されず、3つあるいはそれよりも多い電圧指令値に対応する入力電流値を用いて算出してもよい。また、第2判定動作において、コンダクタンスGに代えて抵抗値R=ΔV/ΔIを算出し、抵抗値が所定の閾値よりも小さい場合に漏液が発生すると判定してもよい。 The calculation of the change amount ΔI of the input current value is not limited to using two input current values corresponding to two different voltage command values, and the input current corresponding to three or more voltage command values. It may be calculated using a value. Further, in the second determination operation, the resistance value R = ΔV / ΔI may be calculated instead of the conductance G, and it may be determined that leakage occurs when the resistance value is smaller than a predetermined threshold value.

また、以上の説明では、異なる2つの電圧指令値に対応する2つの入力電流値から入力電流値の変化量ΔIを算出することとして説明したが、始端71の入力電圧値を検出する電圧センサ83を設けて入力電圧値を検出し、電圧指令値に代えて電圧センサ83で検出した入力電圧値を用いてもよい。この場合、入力電流値の変化量ΔIは、異なる2つの入力電圧値に対応する2つの入力電流値から計算される。 Further, in the above description, the change amount ΔI of the input current value is calculated from the two input current values corresponding to the two different voltage command values, but the voltage sensor 83 for detecting the input voltage value of the start end 71 is described. May be provided to detect the input voltage value, and the input voltage value detected by the voltage sensor 83 may be used instead of the voltage command value. In this case, the amount of change ΔI of the input current value is calculated from the two input current values corresponding to the two different input voltage values.

<第3判定動作>
第3判定動作では、判定部90は、図6の線cのように電圧指令値をゼロと待機電圧値Vとの間で掃引し、掃引により変化する2つの電圧指令値に対応する2つの入力電流値から入力電流値の変化量ΔIを算出する。そして、第2判定動作と同様、コンダクタンスG=ΔI/ΔVを算出し、算出したコンダクタンスGが所定の閾値よりも大きい場合に、漏液が発生したと判定する。この場合、最小電圧値の際の入力電流値と最大電圧値の際の入力電流値とを用いてコンダクタンスGを算出してもよい。
<Third judgment operation>
In the third determination operation, the determination unit 90 sweeps the voltage command value between zero and the standby voltage value V 0 as shown by line c in FIG. 6, and corresponds to the two voltage command values changed by the sweep. The amount of change ΔI of the input current value is calculated from the two input current values. Then, as in the second determination operation, conductance G = ΔI / ΔV is calculated, and when the calculated conductance G is larger than a predetermined threshold value, it is determined that a liquid leak has occurred. In this case, the conductance G may be calculated using the input current value at the minimum voltage value and the input current value at the maximum voltage value.

また、第2判定動作と同様、入力電流値の変化量ΔIの算出は、2つの電圧指令値に対応する2つの入力電流値を用いることに限定されず、3つあるいはそれよりも多い電圧指令値に対応する入力電流値を用いて算出してもよい。また、コンダクタンスGに代えて抵抗値R=ΔV/ΔIを算出し、抵抗値が所定の閾値よりも小さい場合に漏液が発生すると判定してもよい。また、先に説明した第2判定動作と同様、電圧指令値に代えて電圧センサ83で検出した入力電圧値を用いて入力電流値の変化量ΔIを算出してもよい。 Further, as in the second determination operation, the calculation of the change amount ΔI of the input current value is not limited to using the two input current values corresponding to the two voltage command values, and the voltage command is three or more. It may be calculated using the input current value corresponding to the value. Further, the resistance value R = ΔV / ΔI may be calculated instead of the conductance G, and it may be determined that leakage occurs when the resistance value is smaller than a predetermined threshold value. Further, as in the second determination operation described above, the change amount ΔI of the input current value may be calculated using the input voltage value detected by the voltage sensor 83 instead of the voltage command value.

また、本動作の説明では、電圧指令値をゼロと待機電圧値Vとの間で掃引することとして説明したが、電圧指令値の最大値は、VNend=Nend×Vfより大きければ待機電圧値Vより小さくてもよいし、待機電圧値Vよりも大きくてもよい。 Further, in the explanation of this operation, the voltage command value is swept between zero and the standby voltage value V 0 , but if the maximum value of the voltage command value is larger than V Nend = Nend × Vf, the standby voltage. It may be smaller than the value V 0 or larger than the standby voltage value V 0 .

以上説明したように、第1判定動作では、待機電圧値Vを所定の電圧値一定とする簡便な構成で、短時間で漏液の発生の判定を行うことができる。また、第2、第3判定動作は、入力電圧値を待機電圧値Vの前後で変動させたり、入力電圧値を掃引したりすることによってコンダクタンスまたは抵抗値を算出し、これにより漏液の判定を行うので、入力電流値と異なる物理量によって漏液の判定を行うことができる。 As described above, in the first determination operation, it is possible to determine the occurrence of liquid leakage in a short time with a simple configuration in which the standby voltage value V 0 is constant at a predetermined voltage value. Further, in the second and third determination operations, the conductance or resistance value is calculated by fluctuating the input voltage value before and after the standby voltage value V 0 or sweeping the input voltage value, whereby the leakage of liquid is calculated. Since the determination is made, the leakage can be determined by the physical quantity different from the input current value.

<漏液の発生した漏液検知ユニットの特定動作>
以下、図10から図12を参照しながら漏液の発生した漏液検知ユニットUの特定動作について説明する。
<Specific operation of the leak detection unit where leak has occurred>
Hereinafter, the specific operation of the leak detection unit U in which the leak has occurred will be described with reference to FIGS. 10 to 12.

漏液の発生した漏液検知ユニットの特定動作は、図6の線cのように電圧指令値をゼロと待機電圧値Vとの間で掃引し、漏液検知ユニットUを立ち上がり電圧値の小さい順に導通させ、漏液検知ユニットU~Um-1を導通状態とした状態での合計コンダクタンス[G+・・+Gm-1]と、漏液検知ユニットU~Uを導通状態とした状態での合計コンダクタンス[G+・・+G]との差から漏液検知ユニットUのコンダクタンスGを算出し、算出したコンダクタンスGを所定の閾値と比較して漏液の発生した漏液検知ユニットUを特定するものである。 In the specific operation of the leak detection unit in which the leak has occurred, the voltage command value is swept between zero and the standby voltage value V 0 as shown by line c in FIG. 6, and the leak detection unit U is raised to the voltage value. Conducts in ascending order, and conducts the total conductance [G 1 + ... + G m-1 ] with the liquid leakage detection units U 1 to U m -1 in the conductive state, and the liquid leakage detection units U 1 to U m. The conductance G m of the liquid leakage detection unit U m is calculated from the difference from the total conductance [G 1 + ... + G m ] in the state, and the calculated conductance G m is compared with a predetermined threshold value to leak liquid. The leak detection unit U in which the above is generated is specified.

<入力電圧値とコンダクタンス及び導通範囲>
図6の線cのように入力電圧値をゼロから待機電圧値Vまで上昇させていくと、先に図5を参照して説明したように、各漏液検知ユニットUは、立ち上がり電圧値の小さい順に順次導通していく。図10は、入力電圧値を掃引した際の各漏液検知ユニットにおける入力電圧値の変化に対する入力電流値の変化を示すVI特性と、導通範囲の変化とを重ね合わせたグラフである。図10の実線は漏液が発生していない場合のVI特性を示し、破線は漏液検知ユニットUで漏液が発生した場合のVI特性を示す。
<Input voltage value, conductance and conduction range>
When the input voltage value is increased from zero to the standby voltage value V 0 as shown by the line c in FIG. 6, each leak detection unit U has a rising voltage value as described above with reference to FIG. Conducts in ascending order. FIG. 10 is a graph in which the VI characteristic showing the change in the input current value with respect to the change in the input voltage value in each leak detection unit when the input voltage value is swept and the change in the conduction range are superimposed. The solid line in FIG. 10 shows the VI characteristics when no liquid leakage occurs, and the broken line shows the VI characteristics when liquid leakage occurs in the liquid leakage detection unit Um .

図10に示すように、入力電圧値をVとVm+1の間まで上昇させると漏液検知ユニットU~Uが導通状態となる。この状態で入力電圧値をΔVだけ変動させ、電流センサ82で検出した入力電流値から入力電流値の変化量ΔIを算出した場合、図11に示すように、ΔI/ΔVで計算されるコンダクタンスGは、下記の式(1)に示すように、導通状態となっている漏液検知ユニットU~Uの各コンダクタンスG~Gの合計コンダクタンスとなる。

Figure 0007004634000001
As shown in FIG. 10, when the input voltage value is raised to between V m and V m + 1 , the liquid leakage detection units U 1 to U m become conductive. When the input voltage value is fluctuated by ΔV in this state and the change amount ΔI of the input current value is calculated from the input current value detected by the current sensor 82, the conductance G calculated by ΔI / ΔV is shown in FIG. Is the total conductance of the conductances G1 to Gm of the leak detection units U1 to Um in the conductive state, as shown in the following equation ( 1 ).
Figure 0007004634000001

同様に、入力電圧値をVm-1とVの間まで上昇させると漏液検知ユニットU~Um-1が導通状態となるので、ΔI/ΔVで計算されるコンダクタンスGは下記の式(2)に示すように、導通状態となっている漏液検知ユニットU~Um-1の各コンダクタンスG~Gm-1の合計コンダクタンスとなる。

Figure 0007004634000002
Similarly, when the input voltage value is raised to between V m-1 and V m , the leak detection units U 1 to U m-1 become conductive, so the conductance G calculated by ΔI / ΔV is as follows. As shown in the equation (2), it is the total conductance of the conductances G1 to Gm -1 of the leak detection units U1 to Um- 1 in the conductive state.
Figure 0007004634000002

従って、式(1)から式(2)を引くことによって図12に示すように、漏液検知ユニットUのコンダクタンスGを算出することができる。そして、このコンダクタンスGと所定の閾値とを比較することにより、漏液検知ユニットUでの漏液の発生の有無を判定することができる。 Therefore, as shown in FIG. 12, the conductance Gm of the leak detection unit Um can be calculated by subtracting the equation (2) from the equation (1). Then, by comparing the conductance Gm with a predetermined threshold value, it is possible to determine whether or not the leakage is generated in the leakage detection unit Um .

<漏液の発生した漏液検知ユニットの特定動作の詳細>
以下、図10から図12を参照しながら、漏液の発生した漏液検知ユニットの特定動作の詳細について説明する。以下の説明では、漏液検知ユニットUで漏液が発生したものとして説明する。
<Details of specific operation of the leak detection unit where leak has occurred>
Hereinafter, the details of the specific operation of the leak detection unit in which the leak has occurred will be described with reference to FIGS. 10 to 12. In the following description, it is assumed that a leak has occurred in the leak detection unit Um .

判定部90は、図6の線cに沿って電圧指令値をゼロから待機電圧値Vまで掃引していく。これにより、電源81は、電圧指令値に従って並列接続線64に印加する入力電圧値をゼロから待機電圧値Vまで掃引する。先に説明したように、入力電圧値がVfに達すると漏液検知ユニットUで漏液検知が可能となる。 The determination unit 90 sweeps the voltage command value from zero to the standby voltage value V 0 along the line c in FIG. As a result, the power supply 81 sweeps the input voltage value applied to the parallel connection line 64 from zero to the standby voltage value V0 according to the voltage command value. As described above, when the input voltage value reaches Vf, the leak detection unit U1 can detect the leak.

判定部90は、電圧指令値をVfから2×Vfより僅かに小さい値まで掃引して入力電圧値をVfから2×Vfより僅かに小さい値まで掃引する。この間では、漏液検知ユニットUのみが導通範囲(導通範囲A)となっている。この間で判定部90は、電圧指令値の差がΔVとなる2つの電圧指令値に対応する2つの入力電流値を電流センサ82で検出する。そして、検出した入力電流値から入力電流値の変化量ΔIを算出し、コンダクタンスG=ΔI/ΔVを計算する。漏液検知ユニットUでは漏液は発生しておらず、図12に示すように、入力電圧値がVfから2×Vfの間、入力電流値はゼロのままであるから、コンダクタンスG=ΔI/ΔV=0となる。 The determination unit 90 sweeps the voltage command value from Vf to a value slightly smaller than 2 × Vf, and sweeps the input voltage value from Vf to a value slightly smaller than 2 × Vf. During this period, only the liquid leakage detection unit U 1 is in the conduction range (conduction range A 1 ). During this period, the determination unit 90 detects with the current sensor 82 two input current values corresponding to the two voltage command values in which the difference between the voltage command values is ΔV. Then, the change amount ΔI of the input current value is calculated from the detected input current value, and the conductance G 1 = ΔI / ΔV is calculated. No leak has occurred in the leak detection unit U 1 , and as shown in FIG. 12, the input current value remains zero while the input voltage value is between Vf and 2 × Vf. Therefore, conductance G 1 = ΔI / ΔV = 0.

次に判定部90は、電圧指令値を2×Vfから3×Vfより僅かに小さい値まで掃引して入力電圧値を2×Vfから3×Vfより僅かに小さい値まで掃引する。この間では、漏液検知ユニットUとUとが導通範囲(導通範囲A)となっている。この間で、判定部90は、電圧指令値の差がΔVとなる2つの電圧指令値に対応する2つの入力電流値を電流センサ82で検出する。そして検出した入力電流値から入力電流値の変化量ΔIを算出し、導通範囲である漏液検知ユニットU,Uのコンダクタンスの合計値[G+G]=ΔI/ΔVを算出する。 Next, the determination unit 90 sweeps the voltage command value from 2 × Vf to a value slightly smaller than 3 × Vf, and sweeps the input voltage value from 2 × Vf to a value slightly smaller than 3 × Vf. During this period, the liquid leakage detection units U 1 and U 2 are in the conduction range (conduction range A 2 ). During this time, the determination unit 90 detects with the current sensor 82 two input current values corresponding to the two voltage command values in which the difference between the voltage command values is ΔV. Then, the change amount ΔI of the input current value is calculated from the detected input current value, and the total value [G 1 + G 2 ] = ΔI / ΔV of the conductances of the leak detection units U 1 and U 2 which are the conduction range is calculated.

漏液検知ユニットU、Uでは漏液は発生しておらず、図10に示すように、入力電圧値が2×Vfから3×Vfの間入力電流値はゼロのままであるからΔI=0で、コンダクタンスの合計値[G+G]=ΔI/ΔV=0となる。判定部90は、[G+G]から先に計算したGを引いてG=0の結果を得る。 No leak has occurred in the leak detection units U 1 and U 2 , and as shown in FIG. 10, the input current value remains zero while the input voltage value is between 2 × Vf and 3 × Vf. At = 0, the total value of conductance [G 1 + G 2 ] = ΔI / ΔV = 0. The determination unit 90 subtracts the previously calculated G 1 from [G 1 + G 2 ] to obtain the result of G 2 = 0.

同様に、判定部90は、電圧指令値を掃引し、導通範囲が拡大する毎に導通範囲の漏液検知ユニットUのコンダクタンスの合計値ΣGを計算し、一つ前の導通範囲で計算したコンダクタンスの合計値との差から各漏液検知ユニットUの各コンダクタンスGを算出していく。漏液検知ユニットU~Um-1では漏液は発生していないので、図10に示すように、入力電圧値がVに達するまでは、入力電流値はゼロであり、図11に示すように計算される各漏液検知ユニットUの各コンダクタンスGは全てゼロとなっている。 Similarly, the determination unit 90 sweeps the voltage command value, calculates the total value ΣG of the conductance of the liquid leakage detection unit U in the conduction range every time the conduction range expands, and calculates the conductance in the previous conduction range. The conductance G of each leak detection unit U is calculated from the difference from the total value of. Since no liquid leakage has occurred in the liquid leakage detection units U 1 to U m-1 , as shown in FIG. 10, the input current value is zero until the input voltage value reaches V m , and FIG. 11 shows. Each conductance G of each leak detection unit U calculated as shown is zero.

判定部90が電圧指令値をm×Vfから(m+1)×Vfより僅かに小さい値まで掃引して入力電圧値をm×Vfから(m+1)×Vfより僅かに小さい値まで掃引する。この間では、漏液検知ユニットU~Uが導通範囲(導通範囲A)となっている。この間で、判定部90は、電圧指令値の差がΔVとなる2つの電圧指令値に対応する2つの入力電流値を電流センサ82で検出する。そして検出した入力電流値から入力電流値の変化量ΔIを算出し、導通範囲である漏液検知ユニットU~Uのコンダクタンスの合計値[G・・・+G]=ΔI/ΔVを算出する。 The determination unit 90 sweeps the voltage command value from m × Vf to a value slightly smaller than (m + 1) × Vf, and sweeps the input voltage value from m × Vf to a value slightly smaller than (m + 1) × Vf. During this period, the liquid leakage detection units U 1 to U m are in the conduction range (conduction range Am ). During this time, the determination unit 90 detects with the current sensor 82 two input current values corresponding to the two voltage command values in which the difference between the voltage command values is ΔV. Then, the amount of change ΔI of the input current value is calculated from the detected input current value, and the total value of the conductance of the leak detection units U 1 to U m , which is the conduction range [G 1 + ... + G m ] = ΔI / ΔV. Is calculated.

漏液検知ユニットUで漏液が発生しているので、図10に示すように、入力電圧値がΔV変化する間の入力電流値の変化はゼロではないので、[G・・・+G]=ΔI/ΔVは、0ではない値となる。判定部90は、[G・・・+G]から先に計算した[G・・・+Gm-1]を引いてGの値を得る。 Since liquid leakage has occurred in the liquid leakage detection unit Um , as shown in FIG. 10, the change in the input current value while the input voltage value changes by ΔV is not zero. Therefore, [G 1 + ... + G m ] = ΔI / ΔV is a non-zero value. The determination unit 90 obtains the value of G m by subtracting the previously calculated [G 1 + ... + G m -1 ] from [G 1 + ... + G m].

判定部90が電圧指令値を(m+1)×Vfから(m+2)×Vfより僅かに小さい値まで掃引して入力電圧値を(m+1)×Vfから(m+2)×Vfより僅かに小さい値まで掃引する。この間では、漏液検知ユニットU~Um+1が導通範囲(導通範囲Am+1)となっている。この間で、判定部90は、電圧指令値の差がΔVとなる2つの電圧指令値に対応する2つの入力電流値を電流センサ82で検出する。そして検出した入力電流値から入力電流値の変化量ΔIを算出し、導通範囲である漏液検知ユニットU~Um+1のコンダクタンスの合計値[G・・・+Gm+1]=ΔI/ΔVを算出する。 The determination unit 90 sweeps the voltage command value from (m + 1) × Vf to a value slightly smaller than (m + 2) × Vf, and sweeps the input voltage value from (m + 1) × Vf to a value slightly smaller than (m + 2) × Vf. do. During this period, the liquid leakage detection units U 1 to U m + 1 are in the conduction range (conduction range Am + 1 ). During this time, the determination unit 90 detects with the current sensor 82 two input current values corresponding to the two voltage command values in which the difference between the voltage command values is ΔV. Then, the amount of change ΔI of the input current value is calculated from the detected input current value, and the total value of the conductance of the leak detection units U 1 to U m + 1 which is the conduction range [G 1 + ... + G m + 1 ] = ΔI / ΔV. Is calculated.

漏液検知ユニットUm+1では漏液が発生していないので、図10に示すように、入力電圧値がΔV変化する間の入力電流値の変化は、漏液検知ユニットU~Uが導通範囲(導通範囲A)となっている場合と同一であり、VI特性の傾きも同一である。従って、[G・・・+Gm+1]=ΔI/ΔVはGと同一の値となる。判定部90は、[G・・・+Gm+1]=Gから先に計算した[G・・・+G]=Gを引いてGm+1=0との値を得る。 Since no liquid leakage has occurred in the liquid leakage detection unit U m + 1 , as shown in FIG. 10, the change in the input current value while the input voltage value changes by ΔV is conducted by the liquid leakage detection units U 1 to U m . It is the same as the case where it is in the range (conduction range Am ), and the slope of the VI characteristic is also the same. Therefore, [G 1 + ... + G m + 1 ] = ΔI / ΔV has the same value as G m . The determination unit 90 subtracts [G 1 + ... + G m ] = G m calculated earlier from [G 1 + ... + G m + 1 ] = G m to obtain a value of G m + 1 = 0.

漏液検知ユニットU以降には漏液が発生していないので、図10に示すVI特性の傾きは変化せず、[G・・・+Gm+1]~[G・・・+GNend]までのΔI/ΔVは全てGとなり、図12に示すように、各コンダクタンスGm+1~GNendは全てゼロとなる。 Since no leak has occurred after the leak detection unit U m , the slope of the VI characteristic shown in FIG. 10 does not change, and [G 1 + ... + G m + 1 ] to [G 1 + ... + G. All ΔI / ΔV up to [ Nend ] are G m , and as shown in FIG. 12, each conductance G m + 1 to G Nend is all zero.

以上のようにして算出した各漏液検知ユニットU~UNendの各コンダクタンスG~GNendは、図12に示すように、漏液の発生した漏液検知ユニットUのみが0ではない値のGとなり、他の漏液検知ユニットUの各コンダクタンスGは全てゼロとなる。 As shown in FIG. 12 , in the conductances G1 to GNend of the leak detection units U1 to UNend calculated as described above , only the leak detection unit Um in which the leak has occurred is not 0. The value is G m , and each conductance G of the other leak detection unit U is zero.

判定部90は、計算した各漏液検知ユニットU~UNendの各コンダクタンスG~GNendと所定の閾値とを比較し、コンダクタンスGが所定の閾値よりも大きい漏液検知ユニットUを漏液の発生した漏液検知ユニットUとして特定する。 The determination unit 90 compares the calculated conductances G1 to GNend of each of the leak detection units U1 to UNend with a predetermined threshold value, and determines the leak detection unit Um having a conductance G larger than the predetermined threshold value. It is specified as the leak detection unit U in which the leak has occurred.

<第2実施形態の漏液検出装置200の構成>
次に図13から図15を参照して第2実施形態の漏液検出装置200について説明する。先に図1から図12を参照して説明した漏液検出装置100と同様の部分には、同様の符号を付して説明は省略する。
<Structure of the leak detection device 200 of the second embodiment>
Next, the leak detection device 200 of the second embodiment will be described with reference to FIGS. 13 to 15. The same parts as those of the leak detection device 100 described above with reference to FIGS. 1 to 12 are designated by the same reference numerals, and the description thereof will be omitted.

図13に示すように、漏液検出装置200は、先に説明した漏液検出装置100の電流センサ82に代わり、電圧検出部である電圧センサ83を設けたものである。また、電源81は、判定部90から入力される電流指令値に応じた電流を出力する。また、漏液検知部70のうち、導通電圧が最も大きいN=Nendである漏液検知ユニットUの末端72は開放されておらず、末端72を構成する漏液検知ユニットUの導電線61,62の末端側の端部61e,62eは、抵抗器である末端抵抗79で接続されている。末端抵抗79の抵抗値は、漏液の検知を行う液体の抵抗値よりも大きな抵抗値である。 As shown in FIG. 13, the liquid leakage detection device 200 is provided with a voltage sensor 83, which is a voltage detection unit, in place of the current sensor 82 of the liquid leakage detection device 100 described above. Further, the power supply 81 outputs a current corresponding to the current command value input from the determination unit 90. Further, among the liquid leakage detection units 70, the terminal 72 of the liquid leakage detection unit U 3 having the largest conduction voltage N = Nend is not open, and the conductive wire of the liquid leakage detection unit U 3 constituting the terminal 72 is not opened. The end portions 61e and 62e on the terminal side of 61 and 62 are connected by a terminal resistor 79 which is a resistor. The resistance value of the terminal resistance 79 is a resistance value larger than the resistance value of the liquid that detects the leakage.

<漏液検出装置200の漏液判定動作>
以下、図14から16を参照しながら、漏液検出装置200の漏液判定動作について説明する。判定動作は、入力電流値を待機電流値I一定として行う。
<Leakage determination operation of the leak detection device 200>
Hereinafter, the liquid leakage determination operation of the liquid leakage detection device 200 will be described with reference to FIGS. 14 to 16. The determination operation is performed with the input current value as the standby current value I 0 constant.

<入力電圧値と導通範囲>
漏液の発生が無い場合、先に、図5を参照して説明したように、入力電圧値をゼロから上昇させていくと、各漏液検知ユニットUは、入力電圧値がVfだけ上昇する毎に立ち上がり電圧値が小さい漏液検知ユニットU~UNendの順に順次導通していく。そして、入力電圧値がVNend=(Nend)×Vfに達すると、漏液検知ユニットUから漏液検知ユニットUNendまでのすべての漏液検知ユニットUが導通し、全ての漏液検知ユニットUで漏液の検知が可能となる。
<Input voltage value and continuity range>
When there is no leakage, as described above with reference to FIG. 5, when the input voltage value is increased from zero, each leakage detection unit U increases the input voltage value by Vf. Each time, the leakage detection units U 1 to UN End , which have smaller rising voltage values, are sequentially conducted in this order. Then, when the input voltage value reaches V End = ( Nend ) × Vf, all the leak detection units U from the leak detection unit U 1 to the leak detection unit UN End become conductive, and all the leak detection units U are detected. Leakage can be detected by the unit U.

入力電圧値がVNendを超えると末端抵抗79に電流が流れ始める。入力電流値を大きさが一定の待機電流値Iに保持した場合、末端抵抗79に流れる電流値Iは待機電流値Iとなり、この際の末端抵抗79の電圧降下ΔVは、末端抵抗79のコンダクタンスをGとしてΔV=I/Gとなる。そして、入力電圧値は、VNend+ΔVとなる。 When the input voltage value exceeds V Nend , a current starts to flow in the terminal resistance 79. When the input current value is held at the standby current value I 0 having a constant magnitude, the current value IE flowing through the terminal resistance 79 becomes the standby current value I 0 , and the voltage drop ΔVE of the terminal resistance 79 at this time is the terminal. With the conductance of the resistance 79 as GE , ΔVE = I 0 / GE . Then, the input voltage value becomes V Nend + ΔVE .

この際の入力電流値の変化に対する入力電圧値の変化特性(以下、IV特性という)を図15の実線に示す。図15の実線に示すように、入力電圧値がVNendに達するまでは入力電流値はゼロであり漏液検知部70に流れる電流値はゼロである。入力電流値がVNendを超えると、入力電流値が大きくなるに従って入力電流値も大きくなり、入力電圧値がVNend+ΔVに達すると、入力電流値は待機電流値Iに達する。 The change characteristic of the input voltage value (hereinafter referred to as IV characteristic) with respect to the change of the input current value at this time is shown by the solid line in FIG. As shown by the solid line in FIG. 15, the input current value is zero and the current value flowing through the leak detection unit 70 is zero until the input voltage value reaches V Nend . When the input current value exceeds V Nend , the input current value also increases as the input current value increases, and when the input voltage value reaches V Nend + ΔVE , the input current value reaches the standby current value I 0 .

図14に示すように、入力電流値を待機電流値Iに保った状態で、漏液検知ユニットUで漏液が発生した場合、漏液検知ユニットUのコンダクタンスGがゼロから大きくなり、漏液検知ユニットUに電流I0が流れる。これにより、図15に示すように、漏液検知ユニットUの電圧は、漏液部分65の電圧降下をΔVW0としてV+ΔVW0まで低下する。ここで、漏液部分65の電圧降下ΔVW0は、漏液部分65のコンダクタンスをGとしてΔVW0=I/Gとなり、待機電流値Iを小さく設定すれば、ΔVW0<Vfとできる。 As shown in FIG. 14, when a leak occurs in the leak detection unit U m while the input current value is kept at the standby current value I 0 , the conductance G m of the leak detection unit U m increases from zero. Then, a current I 0 flows through the leak detection unit Um . As a result, as shown in FIG. 15, the voltage of the liquid leakage detection unit Um drops to V m + ΔV W0 with the voltage drop of the liquid leakage portion 65 as ΔV W0 . Here, the voltage drop ΔV W0 of the leaked portion 65 is ΔV W0 = I 0 / G m with the conductance of the leaked portion 65 as G m , and if the standby current value I 0 is set small, ΔV W0 <Vf. can.

また、漏液検知ユニットUm+1~UNendでは入力電圧がV+ΔVW0<Vm+1に低下するため、定電圧素子Dm+1~DNendは非導通となっている。 Further, in the liquid leakage detection units U m + 1 to UN End , the input voltage drops to V m + ΔV W0 <V m + 1 , so that the constant voltage elements D m + 1 to D Nend are non-conducting.

以上のことから、入力電流値を待機電流値I一定に保った場合、図15に示すように、漏液の無い場合に電圧センサ83で検出する入力電圧値は、VNend+ΔVから、漏液の発生により、V+ΔVW0に低下する。 From the above, when the input current value is kept constant at the standby current value I 0 , as shown in FIG. 15, the input voltage value detected by the voltage sensor 83 when there is no leakage is from V Nend + ΔVE . Due to the occurrence of liquid leakage, the voltage drops to Vm + ΔV W0 .

<判定動作>
判定部90は、電源81に出力電流を待機電流値I一定とする電流指令値を出力する。この際、入力電圧値は末端抵抗79に待機電流が流れるようにVNend+ΔVとする。これにより、電源81は待機電流値I一定の電流を出力し、末端抵抗79に流れる電流値は待機電流値Iとなる。
<Judgment operation>
The determination unit 90 outputs a current command value that makes the output current constant at the standby current value I 0 to the power supply 81. At this time, the input voltage value is set to V Nend + ΔVE so that the standby current flows through the terminal resistance 79. As a result, the power supply 81 outputs a constant current with a standby current value of I 0 , and the current value flowing through the terminal resistor 79 becomes a standby current value of I 0 .

先に説明したように、漏液が発生していない場合には、電圧センサ83の検出する入力電圧値は、VNend+ΔVとなる。 As described above, when no liquid leakage has occurred, the input voltage value detected by the voltage sensor 83 is V Nend + ΔVE .

漏液検知ユニットUで漏液が発生すると、電圧センサ83の検出する入力電圧値は、VNend+ΔVからV+ΔVW0に低下する。判定部90は、電圧センサ83で検出した入力電圧値と所定の閾値とを比較して漏液発生の判定を行う。例えば、判定部90は、待機状態における入力電圧値から所定の電圧値だけ入力電圧値が低下した際に漏液が発生したと判定してもよい。 When a leak occurs in the leak detection unit Um, the input voltage value detected by the voltage sensor 83 drops from V Nend + ΔVE to V m + ΔV W0 . The determination unit 90 determines the occurrence of liquid leakage by comparing the input voltage value detected by the voltage sensor 83 with a predetermined threshold value. For example, the determination unit 90 may determine that leakage has occurred when the input voltage value drops by a predetermined voltage value from the input voltage value in the standby state.

また、漏液が発生した場合、電圧センサ83の検出する入力電圧値はV+ΔVW0に低下する。ここで、V=(m)×Vfであるから、電圧センサ83の検出する入力電圧値は(m)×Vf+ΔVW0となる。このように、入力電圧値は漏液の発生した漏液検知ユニットUの番号によって異なった値となる。例えば、漏液の発生した漏液検知ユニットがUの場合、入力電圧値は、Vf+ΔVW0となる。そして、ΔVW0がVfを超えないようにVf、待機電流値Iを選定することにより、漏液検知ユニットUで漏液が発生した場合の入力電圧値(m)×Vf+ΔVW0を(m)×Vfと(m+1)×Vfの間になるようにすることができる。 Further, when liquid leakage occurs, the input voltage value detected by the voltage sensor 83 drops to Vm + ΔV W0 . Here, since V m = (m) × Vf, the input voltage value detected by the voltage sensor 83 is (m) × Vf + ΔV W0 . In this way, the input voltage value becomes a different value depending on the number of the leak detection unit U in which the leak has occurred. For example, when the leak detection unit in which the leak has occurred is U 1 , the input voltage value is Vf + ΔV W 0 . Then, by selecting Vf and the standby current value I 0 so that ΔV W0 does not exceed Vf, the input voltage value (m) × Vf + ΔV W0 when a leak occurs in the leak detection unit Um is set to ( m ). ) × Vf and (m + 1) × Vf.

この場合、図16に示すような電圧センサ83で検出した入力電圧値と漏液の発生した漏液検知ユニット番号Nの比較表をメモリ92の中に格納しておき、判定部90は、電圧センサ83で検出した入力電圧値と比較表の入力電圧値の範囲とを比較することにより、漏液の発生の判定と共に、漏液の発生した漏液検知ユニットUを特定することができる。 In this case, a comparison table of the input voltage value detected by the voltage sensor 83 as shown in FIG. 16 and the leak detection unit number N in which the leak has occurred is stored in the memory 92, and the determination unit 90 determines the voltage. By comparing the input voltage value detected by the sensor 83 with the range of the input voltage value in the comparison table, it is possible to determine the occurrence of leak and identify the leak detection unit U in which the leak has occurred.

以上説明した実施形態の漏液検出装置100,200では、各定電圧素子D~D~DNendの立ち上がり電圧値は、漏液検知ユニット番号Nが1つ大きくなる毎にVfずつ大きくなることとして説明したが、各定電圧素子D~D~DNendの立ち上がり電圧値がそれぞれ異なっていれば、上記に限らず、任意の順番でよく、例えば、漏液検知ユニット番号Nが1つ小さくなる毎に各定電圧素子D~D~DNendの立ち上がり電圧値がVfずつ大きくなるようにしてもよい。 In the liquid leakage detection devices 100 and 200 of the above-described embodiment, the rising voltage values of the constant voltage elements D 1 to D m to D Nend increase by Vf each time the liquid leakage detection unit number N increases by one. However, as long as the rising voltage values of the constant voltage elements D 1 to D m to D Nend are different, the order is not limited to the above, and any order may be used. For example, the liquid leakage detection unit number N is 1. The rising voltage value of each constant voltage element D 1 to D m to D Nend may be increased by Vf each time the voltage becomes smaller.

<定電圧素子のバリエーション>
図17を参照しながら定電圧素子Dのバリエーションについて説明する。図1~16を参照して説明した漏液検出装置100,200では、定電圧素子Dは、ツェナーダイオード11a,11bを逆直列に接続し、一方の接続線12に介在するように配置されていることとして説明したが、これに限らず図17(a)から図17(f)のように構成してもよい。
<Variations of constant voltage elements>
A variation of the constant voltage element D m will be described with reference to FIG. In the liquid leakage detection devices 100 and 200 described with reference to FIGS. 1 to 16, the constant voltage element Dm is arranged so as to connect the Zener diodes 11a and 11b in anti-series series and to intervene in one of the connection lines 12. However, the present invention is not limited to this, and may be configured as shown in FIGS. 17 (a) to 17 (f).

図17(a)に示すように、ツェナーダイオード11a,11bの接続方向を図2に示す状態と反対に逆直列に接続してもよい。また、図17(b)に示すように、図2に示す側と反対側の接続線12に配置するようにしてもよい。更に、図17(c)、図17(d)に示すように、両方の接続線12にそれぞれ1つずつツェナーダイオード11a,11bを同一方向に配置し、漏液が発生した際の電流の流れに対して2つのツェナーダイオード11a,11bが逆直列となるようにしてもよい。更に、図17(e)に示すように、どちらか一方の接続線12にのみツェナーダイオード11aを介在して配置してもよい。この場合、電源81は、直流電源を用いて構成してもよい。更に、ツェナーダイオード11a,11bを用いず、図17(f)に示すように、図3に示すような電圧電流特性を有する電気回路をIC等で構成した定電圧素子回路18を用いてもよい。 As shown in FIG. 17A, the Zener diodes 11a and 11b may be connected in anti-series in the opposite direction to the state shown in FIG. Further, as shown in FIG. 17B, the connection line 12 may be arranged on the side opposite to the side shown in FIG. Further, as shown in FIGS. 17 (c) and 17 (d), one Zener diode 11a and 11b are arranged in the same direction on both connection lines 12, respectively, and a current flow when a liquid leak occurs. The two Zener diodes 11a and 11b may be in anti-series with respect to the above. Further, as shown in FIG. 17 (e), the Zener diode 11a may be interposed only in one of the connection lines 12. In this case, the power supply 81 may be configured by using a DC power supply. Further, instead of using the Zener diodes 11a and 11b, as shown in FIG. 17 (f), a constant voltage element circuit 18 in which an electric circuit having a voltage-current characteristic as shown in FIG. 3 is composed of an IC or the like may be used. ..

このように、検出対象の液体に応じてノードNDの定電圧素子Dの配置を様々に変更することにより、検出対象の液体に応じた漏液検出を行うことができる。 In this way, by variously changing the arrangement of the constant voltage element D m of the node ND m according to the liquid to be detected, it is possible to detect the leak according to the liquid to be detected.

<第3実施形態の漏液検出装置300の構成>
以下、図面を参照しながら第3実施形態の漏液検出装置300について説明する。先に図1から図12を参照して説明した漏液検出装置100と同様の部位には同様の符号を付して説明は省略する。図18、19に示すように、漏液検出装置300は、図1,2を参照して説明した漏液検出装置100の漏液検知ユニットUの定電圧素子Dを定電流素子Eとしたものである。また、電源81を所定の電圧値V0を出力する交流の電源としたものである。その他の構成は、漏液検出装置100と同様である。
<Structure of the leak detection device 300 of the third embodiment>
Hereinafter, the leak detection device 300 of the third embodiment will be described with reference to the drawings. The same parts as those of the leak detection device 100 described above with reference to FIGS. 1 to 12 are designated by the same reference numerals, and the description thereof will be omitted. As shown in FIGS. 18 and 19, in the liquid leakage detection device 300, the constant voltage element D m of the liquid leakage detection unit Um of the liquid leakage detection device 100 described with reference to FIGS. 1 and 2 is replaced with the constant current element Em . It was. Further, the power supply 81 is used as an AC power supply that outputs a predetermined voltage value V0. Other configurations are the same as those of the leak detection device 100.

定電流素子Eは、漏液検知ユニットUの通電電流値を制限電流値に制限する素子である。定電流素子Eの制限電流値Ipは、それぞれ異なっており、漏液検知ユニットU~Uの制限電流値は、それぞれIp,Ip,Ip(Ip>Ip>Ip)である。本実施形態の漏液検出装置100では、定電流素子Eは、定電流ダイオード17a,17bのアノードを向かい合わせて逆直列に接続して構成している。 The constant current element Em is an element that limits the energizing current value of the liquid leakage detection unit Um to the limiting current value. The current limit value Ip m of the constant current element Em is different from each other, and the current limit values of the liquid leakage detection units U 1 to U 3 are Ip 1 , Ip 2 , and Ip 3 (Ip 1 > Ip 2 > Ip, respectively. 3 ). In the liquid leakage detection device 100 of the present embodiment, the constant current element Em is configured by connecting the anodes of the constant current diodes 17a and 17b facing each other in anti-series.

<定電流ダイオードの特性>
先に説明したように、図18に示す漏液検出装置300の定電流素子Eは、2つの定電流ダイオード17a,17bを逆直列に接続したものである。以下、図20を参照しながら理想的な定電流ダイオードCRD(Current Regulative Diode)の端子間電圧に対する端子間電流、端子間抵抗の特性について説明する。
<Characteristics of constant current diode>
As described above, the constant current element Em of the liquid leakage detection device 300 shown in FIG. 18 has two constant current diodes 17a and 17b connected in anti-series. Hereinafter, the characteristics of the terminal current and the terminal resistance with respect to the terminal voltage of the ideal constant current diode CRD (Current Regulative Diode) will be described with reference to FIG.

定電流ダイオードCRDは、カソード側端子とアノード側端子との間の端子間の電圧値(以下、端子間電圧値という)が変化しても常に端子間に一定の電流を流すことができる半導体素子である。図20に示すように、アノード側端子とカソード側端子との間に順方向の電圧を掛け、端子間電圧値をゼロから上昇させていくと、図20中に実線で示すように、ピンチオフ電圧値Vpに達するまでの間、端子間の電流値(以下、端子間電流値という)は端子間電圧値に比例して上昇していく。ピンチオフ電圧値Vpは、端子間電流値が後で説明するピンチオフ電流値Ipとなる電圧値である。端子間電圧値がゼロからピンチオフ電圧値Vpまでの領域を非飽和領域という。非飽和領域では、図20中に一点鎖線で示すように、端子間抵抗値は小さく、大きさが一定の低抵抗値RLとなっている。 The constant current diode CRD is a semiconductor element that can always pass a constant current between the terminals even if the voltage value between the terminals between the cathode side terminal and the anode side terminal (hereinafter referred to as the voltage value between terminals) changes. Is. As shown in FIG. 20, when a forward voltage is applied between the anode side terminal and the cathode side terminal and the voltage value between the terminals is increased from zero, the pinch-off voltage is shown by the solid line in FIG. Until the value Vpm is reached, the current value between terminals (hereinafter referred to as the current value between terminals) increases in proportion to the voltage value between terminals. The pinch-off voltage value Vpm is a voltage value at which the inter-terminal current value becomes the pinch-off current value Ipm described later. The region where the voltage value between terminals is from zero to the pinch-off voltage value Vpm is called the unsaturated region. In the non-saturated region, as shown by the alternate long and short dash line in FIG. 20, the resistance value between terminals is small, and the resistance value RL is constant in magnitude.

図20中に実線で示すように、端子間電圧値がある電圧値に到達すると端子間電流値は一定の電流値になる。この電流値をピンチオフ電流値Ipという。また、端子間電流値がピンチオフ電流値Ipとなる端子間電圧値をピンチオフ電圧値Vpという。 As shown by the solid line in FIG. 20, when the voltage value between terminals reaches a certain voltage value, the current value between terminals becomes a constant current value. This current value is called a pinch-off current value Ipm . Further, the voltage value between terminals at which the current value between terminals is the pinch-off current value Ipm is referred to as the pinch-off voltage value Vpm .

図20中に実線で示すように、端子間電圧値がピンチオフ電圧値Vpを超えると端子間電流値は一定のピンチオフ電流値Ipに保持される。この領域を飽和領域という。図20中に一点鎖線で示すように、飽和領域では、端子間抵抗値は端子間電圧値に略比例して増加するので、端子間電流値は端子間電圧値が増加しても一定のピンチオフ電流値Ipに保たれる。 As shown by the solid line in FIG. 20, when the pinch-off voltage value exceeds the pinch-off voltage value Vpm , the terminal-to-terminal current value is maintained at a constant pinch-off current value Ipm . This region is called the saturation region. As shown by the alternate long and short dash line in FIG. 20, in the saturation region, the resistance value between terminals increases in substantially proportional to the voltage value between terminals, so that the current value between terminals is constantly pinched off even if the voltage value between terminals increases. The current value is kept at Ipm .

また、カソード側端子とアノード側端子との間に逆方向の電圧を掛けると、端子間電圧値の絶対値に比例して電流が流れる。 Further, when a voltage in the opposite direction is applied between the cathode side terminal and the anode side terminal, a current flows in proportion to the absolute value of the voltage value between the terminals.

以上説明したように、定電流ダイオードCRDは、順方向に端子間電圧が掛かると端子間電流がピンチオフ電流値Ipに制限され、逆方向に端子間電圧が掛かると、逆方向に電流が流れる特性を持っている。このため、交流電源を用いた回路において、双方向に端子間電流値をピンチオフ電流値Ipに制限する定電流素子Eを構成するには、図18,19に示すように、同一のピンチオフ電流値Ipの定電流ダイオードCRDを逆直列に接続することが必要となる。定電流ダイオードCRDを逆直列に接続した定電流素子は、図21に示すように双方向の端子間電流値を制限することができる。 As described above, in the constant current diode CRD, when the terminal voltage is applied in the forward direction, the terminal current is limited to the pinch-off current value Ipm , and when the terminal voltage is applied in the reverse direction, the current flows in the reverse direction. Has characteristics. Therefore, in a circuit using an AC power supply, in order to configure a constant current element Em that limits the pinch-off current value between terminals to the pinch-off current value Ipm in both directions, the same pinch-off is performed as shown in FIGS. It is necessary to connect a constant current diode CRD with a current value of Ipm in anti-series. As shown in FIG. 21, the constant current element in which the constant current diode CRD is connected in anti-series can limit the current value between the terminals in both directions.

<定電流素子の構成>
先に説明したように、定電流素子Eの制限電流値Ipは、それぞれ異なっており、漏液検知ユニットU~Uの検知ユニット番号Nが大きくなるに従って小さくなる(Ip>Ipm+1)ように構成される。したがって漏液検知ユニットU~Uの定電流素子E~Eのピンチオフ電流値Ip~Ipは、図22に示すように、Ip>Ip>Ipの順に小さくなっている。同様に、ピンチオフ電圧値Vp~Vpは、Vp>Vp>Vpの順に小さくなっている。また、全部でNendの漏液検知ユニットUが接続されている場合には、漏液検知ユニットU~UNendの定電流素子E~ENendのピンチオフ電流値Ip~IpNendは、図22に示すように、Ip>・・・>IpNendとなり、ピンチオフ電圧値Vp~VpNendは、Vp>・・・>VpNendとなる。
<Constituent current element configuration>
As described above, the limit current value Ipm of the constant current element Em is different from each other, and becomes smaller as the detection unit numbers N of the liquid leakage detection units U1 to U3 increase ( Ipm > Ip ) . It is configured as m + 1 ). Therefore, as shown in FIG. 22, the pinch-off current values Ip 1 to Ip 3 of the constant current elements E 1 to E 3 of the liquid leakage detection units U 1 to U 3 decrease in the order of Ip 1 > Ip 2 > Ip 3 . There is. Similarly, the pinch-off voltage values Vp 1 to Vp 3 decrease in the order of Vp 1 > Vp 2 > Vp 3 . When all the leak detection units Um of Nend are connected, the pinch-off current values Ip 1 to Ip Nend of the constant current elements E 1 to E Nend of the leak detection units U 1 to UN Nend are As shown in FIG. 22, Ip 1 >>...> Ip Nend , and the pinch-off voltage values Vp 1 to Vp Nend are Vp 1 >>...> Vp Nend .

<漏液検出装置の動作原理>
次に、図23を参照しながら漏液が発生した際の漏液検出装置300の動作原理について説明する。図23は、漏液検出装置300の漏液判定動作の説明のために、図18に示した系統図の符号を一般化したものである。図23では判定部90の記載は省略している。以下の説明では、検知ユニット番号N=mの漏液検知ユニットUで漏液が発生したものとして説明する。漏液が発生するまでの間は、漏液検知ユニットU~UNendの導電線61、62の間は絶縁されているので電源81と導電線61、62との間には閉回路が形成されず、電流は流れない。この場合、並列接続線64の入力電圧値は、電源81の出力電圧値であるV0となっている。
<Operating principle of the leak detection device>
Next, the operating principle of the liquid leakage detection device 300 when a liquid leakage occurs will be described with reference to FIG. 23. FIG. 23 is a generalization of the reference numerals of the system diagram shown in FIG. 18 for the purpose of explaining the liquid leakage determination operation of the liquid leakage detection device 300. In FIG. 23, the description of the determination unit 90 is omitted. In the following description, it is assumed that the leak has occurred in the leak detection unit Um having the detection unit number N = m . Until the leakage occurs, the conductive wires 61 and 62 of the leakage detection unit U 1 to UN End are insulated from each other, so that a closed circuit is formed between the power supply 81 and the conductive wires 61 and 62. No current flows. In this case, the input voltage value of the parallel connection line 64 is V0, which is the output voltage value of the power supply 81.

図23に示すように、漏液検知ユニットUの導電線61,62の間に漏液が接触することによって漏液部分65が形成されると、漏液部分65を介して導電線61、62が導通する。これにより、電源81、並列接続線64、漏液検知ユニットUの定電流素子Eと導電線61、漏液部分65、漏液検知ユニットUから並列接続線64、電源81の閉回路が形成され、この閉回路に電流が流れ始める。ただし、閉回路に流れる電流値は、漏液検知ユニットUの定電流素子Eのピンチオフ電流値Ipに制限される。先に図22を参照して説明したように、各ピンチオフ電流値はそれぞれ異なっており、Ip>・・・>IpNendとなっている。従って、電流センサ82で検出した電流値がIpの場合、定電流素子Eを含む漏液検知ユニットUを漏液発生箇所と特定することができる。 As shown in FIG. 23, when the leaked liquid portion 65 is formed by the contact of the leaked liquid between the conductive wires 61 and 62 of the liquid leak detecting unit Um , the conductive wire 61 through the liquid leaked portion 65, 62 conducts. As a result, the power supply 81, the parallel connection line 64, the constant current element Em and the conductive line 61 of the liquid leakage detection unit Um , the liquid leakage portion 65, the parallel connection line 64 from the liquid leakage detection unit Um , and the closed circuit of the power supply 81. Is formed and current begins to flow in this closed circuit. However, the current value flowing through the closed circuit is limited to the pinch -off current value Ipm of the constant current element Em of the liquid leakage detection unit Um. As described above with reference to FIG. 22, each pinch-off current value is different, and Ip 1 >>...> Ip Nend . Therefore, when the current value detected by the current sensor 82 is Ipm , the leak detection unit Um including the constant current element Em can be specified as the leak generation location.

<漏液検出装置の動作>
次に図24から図29を参照して漏液検出装置300の動作について説明する。漏液検出装置300は、図24のステップS101から104に示す漏液検知動作の後、図24のステップS105、S106に示す定電流素子Eの飽和判定動作を行い、定電流素子が飽和している場合に図24のステップS107で漏液の発生した漏液検知ユニットの特定動作を行う。先に説明したように、漏液検出装置300は、漏液検知ユニットUの定電流素子Eが飽和領域で動作した際のピンチオフ電流値Ipにもとづいて漏液の発生した漏液検知ユニットを特定するものである。しかし、漏液が発生しても通電電流値はただちにピンチオフ電流値Ipに上昇するのではなく、ゼロからピンチオフ電流値Ipまでゆっくりと上昇していく。この際、通電電流値はIpよりも小さいIpm+1、Ipm+2・・・を経て上昇する。このため、飽和の判定を行わずに漏液箇所の特定を行うと、実際に漏液の発生した漏液検知ユニットUよりもピンチオフ電流値の小さい他の漏液検知ユニットUm+1、Um+2を漏液発生箇所として誤って特定してしまう可能性がある。そこで、漏液検出装置300では、定電流素子Eの飽和判定動作を行い、定電流素子Eが飽和している場合に漏液の発生した漏液検知ユニットの特定が可能と判定して漏液検知ユニットの特定動作を行う。以下、各動作の詳細について説明する。
<Operation of leak detection device>
Next, the operation of the leak detection device 300 will be described with reference to FIGS. 24 to 29. After the liquid leakage detection operation shown in steps S101 to 104 of FIG. 24, the liquid leakage detecting device 300 performs a saturation determination operation of the constant current element Em shown in steps S105 and S106 of FIG. 24 to saturate the constant current element. If this is the case, the leak detection unit in which the leak has occurred is specified in step S107 of FIG. 24. As described above, the liquid leakage detection device 300 detects the leakage of liquid based on the pinch -off current value Ipm when the constant current element Em of the liquid leakage detection unit Um operates in the saturation region. It identifies the unit. However, even if a liquid leak occurs, the energizing current value does not immediately rise to the pinch-off current value Ipm , but slowly rises from zero to the pinch-off current value Ipm . At this time, the energizing current value rises through Ipm + 1 , Ip m + 2 , etc., which are smaller than Ipm. Therefore, if the leak location is specified without determining saturation, other leak detection units U m + 1 and U m + 2 having a pinch-off current value smaller than that of the leak detection unit U m where the leak actually occurred. May be mistakenly identified as the location of the leak. Therefore, the liquid leakage detection device 300 performs a saturation determination operation of the constant current element Em , and determines that it is possible to identify the liquid leakage detection unit in which the liquid leakage has occurred when the constant current element Em is saturated. Performs specific operation of the leak detection unit. The details of each operation will be described below.

先に説明したように、漏液が発生するまでの間は、漏液検知ユニットU~UNendの導電線61,62の間は絶縁されているので閉回路が形成されず電流は流れていない。このため、導電線61,62の間の電圧値は、電源81の出力電圧値であるV0となっている。図25に示すように、漏液が発生する時刻t1以前の電流センサ82の検出する通電電流値はゼロ、入力電圧値は電源81の電圧値であるV0となっている。 As described above, until the leakage occurs, the conductive wires 61 and 62 of the leakage detection unit U1 to UNend are insulated from each other, so that a closed circuit is not formed and a current flows. do not have. Therefore, the voltage value between the conductive wires 61 and 62 is V0, which is the output voltage value of the power supply 81. As shown in FIG. 25, the energization current value detected by the current sensor 82 before the time t1 when the liquid leakage occurs is zero, and the input voltage value is V0, which is the voltage value of the power supply 81.

図24のステップS101に示すように、判定部90は、電流センサ82で並列接続線64の通電電流値を検出し、図24のステップS102に進んで検出した通電電流値が所定値I以上かどうか判断する。ここで、所定値Iは、漏液が発生しているかどうかを判定する閾値である。所定値Iは、ピンチオフ電流値が最小の漏液検知ユニットUNendの定電流素子ENendのピンチオフ電流値IpNendよりも小さく、ゼロよりも大きい値であればよく、例えば、所定値IはIpNendの半分の電流値としてもよい。図25に示す時刻ゼロでは、電流は流れていないので、判定部90は、ステップS102でNOと判断して図24のステップS103で漏液未検出として図24のステップS101に戻り、通電電流値の監視を継続する。 As shown in step S101 of FIG. 24, the determination unit 90 detects the energization current value of the parallel connection line 64 with the current sensor 82, and proceeds to step S102 of FIG. 24 to detect the energization current value of a predetermined value Is or more. Determine if. Here, the predetermined value Is is a threshold value for determining whether or not a liquid leak has occurred. The predetermined value Is may be a value smaller than the pinch-off current value Ip Nend of the constant current element E Nend of the liquid leakage detection unit UN End having the minimum pinch-off current value and larger than zero, for example, the predetermined value Is . May be a current value that is half that of Ip Nend . Since no current is flowing at the time zero shown in FIG. 25, the determination unit 90 determines NO in step S102 and returns to step S101 in FIG. 24 as no leak is detected in step S103 of FIG. 24, and the energization current value. Continue to monitor.

図25に示す時刻t1に漏液が発生すると、漏液が導電線61,62の吸湿性の絶縁皮膜の中に浸み込む。これにより、漏液検知ユニットUの導電線61,62の間が導通し、電流センサ82で検出する並列接続線64の通電電流値が上昇する。漏液の導電線61,62への浸み込みはゆっくりと進むので、最初はコンダクタンスGが小さく、漏液検知ユニットUの導電線61,62の間の通電電流値は小さい値となる。このため、図25の時刻t2までの間は、電流センサ82で検出する並列接続線64の通電電流値は所定値I以上とならず、判定部90は、ステップS102でNOと判断し、図24のステップS101からS103を繰り返して実行している。 When a leak occurs at time t1 shown in FIG. 25, the leak penetrates into the hygroscopic insulating film of the conductive wires 61 and 62. As a result, the conductive lines 61 and 62 of the liquid leakage detection unit Um become conductive, and the energization current value of the parallel connection line 64 detected by the current sensor 82 increases. Since the infiltration of the leaked liquid into the conductive wires 61 and 62 progresses slowly, the conductance Gm is initially small, and the energization current value between the conductive wires 61 and 62 of the liquid leakage detection unit Um is small. .. Therefore, until the time t2 in FIG. 25, the energization current value of the parallel connection line 64 detected by the current sensor 82 does not exceed the predetermined value Is, and the determination unit 90 determines NO in step S102. Steps S101 to S103 of FIG. 24 are repeatedly executed.

図25の時刻t1からt2の間、漏液の導電線61,62への浸み込み量が増加するにつれて導電線61,62の間のコンダクタンスGが大きくなり、導電線61,62の間の通電電流値が次第に大きくなる。そして、図25の時刻t2に電流センサ82で検出した並列接続線64の通電電流値が所定値Iに達すると、判定部90は、図24のステップS102でYESと判断して図24のステップS104に進み、漏液を検知する。そして、判定部90は、図24のステップS105に進み、漏液検知ユニットUの定電流素子Eが飽和になっているかどうかの判定動作を行う。 From time t1 to t2 in FIG. 25, the conductance Gm between the conductive wires 61 and 62 increases as the amount of the leaked liquid permeating into the conductive wires 61 and 62 increases, and between the conductive wires 61 and 62. The energizing current value of is gradually increased. Then, when the energization current value of the parallel connection line 64 detected by the current sensor 82 reaches the predetermined value Is at the time t2 in FIG. 25, the determination unit 90 determines YES in step S102 in FIG. 24 and shows FIG. 24. The process proceeds to step S104, and the leakage is detected. Then, the determination unit 90 proceeds to step S105 in FIG. 24 and performs an operation of determining whether or not the constant current element Em of the liquid leakage detection unit Um is saturated.

以下、判定部90が図25の時刻t3に定電流素子Eの飽和判定動作を行う場合について説明する。図25に示す時刻t3では、漏液によって漏液検知ユニットUの導電線61,62の間に形成された漏液部分65のコンダクタンスGはまだ小さく、漏液部分65の電圧降下が大きい。そのため、漏液検知ユニットUの定電流素子Eの通電電流はピンチオフ電流値Ipに達せず定電流素子Eは非飽和状態となり、漏液部分65に流れる電流値Iは定電流素子Eのピンチオフ電流値Ipより小さい(I<Ip)。 Hereinafter, a case where the determination unit 90 performs the saturation determination operation of the constant current element Em at the time t3 in FIG. 25 will be described. At time t3 shown in FIG. 25, the conductance Gm of the leaked portion 65 formed between the conductive wires 61 and 62 of the leak detection unit Um due to the leak is still small, and the voltage drop of the leaked portion 65 is large. .. Therefore, the energizing current of the constant current element Em of the liquid leakage detection unit U m does not reach the pinch-off current value Ipm , the constant current element Em becomes unsaturated, and the current value I W flowing through the liquid leakage portion 65 is a constant current. The pinch-off current value of the element Em is smaller than Ip m (I W <Ip m ).

この際、定電流素子Eは、図27に示す点Rで動作しており、漏液検知部70のVI特性は図27の実線aに示すようになる。従って、漏液検知部70への印加電圧を変化させると、並列接続線64の通電電流値は図27の実線a沿って変化する。つまり、漏液検知ユニットUの定電流素子Eが非飽和状態の場合には、漏液検知部70の並列接続線64への入力電圧を変化させると通電電流値は変化する。一方、漏液検知ユニットUの定電流素子Eが飽和状態になると、定電流素子Eが通電電流値をIpに制限するので漏液検知部70への入力電圧を変化させても並列接続線64の通電電流値は変化しなくなる。 At this time, the constant current element Em operates at the point R shown in FIG. 27, and the VI characteristic of the liquid leakage detecting unit 70 is shown by the solid line a in FIG. 27. Therefore, when the voltage applied to the liquid leakage detection unit 70 is changed, the energization current value of the parallel connection line 64 changes along the solid line a in FIG. 27. That is, when the constant current element Em of the liquid leakage detection unit Um is in an unsaturated state, the energization current value changes when the input voltage to the parallel connection line 64 of the liquid leakage detection unit 70 is changed. On the other hand, when the constant current element Em of the liquid leakage detection unit Um becomes saturated, the constant current element Em limits the energization current value to Ipm , so that even if the input voltage to the liquid leakage detection unit 70 is changed. The energization current value of the parallel connection line 64 does not change.

従って、定電流素子Eが非飽和状態の場合には、図28に示すように、印加電圧をΔVだけ変化させると並列接続線64の通電電流値の変化量ΔIが、ある大きさの値となる。一方、定電流素子Eが飽和状態の場合には、図29に示すように、漏液検知部70への印加電圧をΔVだけ変化させても並列接続線64の通電電流値の変化量ΔIはゼロとなる。 Therefore, when the constant current element Em is in an unsaturated state, as shown in FIG. 28, when the applied voltage is changed by ΔV, the amount of change ΔI of the energization current value of the parallel connection line 64 becomes a value of a certain magnitude. It becomes. On the other hand, when the constant current element Em is saturated, as shown in FIG. 29, even if the voltage applied to the leak detection unit 70 is changed by ΔV, the amount of change in the energization current value of the parallel connection line 64 is ΔI. Is zero.

そこで、判定部90は、電源81の出力電圧を変化させて漏液検知部70への印加電圧をΔVだけ変化させ、電流センサ82によってその際の並列接続線64の通電電流値を検出し、並列接続線64の通電電流値の変化量ΔIに基づいて、漏液の発生した漏液検知ユニットUの定電流素子Eが飽和状態になっているかどうかを判定する。 Therefore, the determination unit 90 changes the output voltage of the power supply 81 to change the voltage applied to the liquid leakage detection unit 70 by ΔV, and detects the energization current value of the parallel connection line 64 at that time by the current sensor 82. Based on the change amount ΔI of the energization current value of the parallel connection line 64, it is determined whether or not the constant current element Em of the leak detection unit Um in which the leak has occurred is saturated.

判定部90は、電源81の出力電圧を変化させて漏液検知部70への印加電圧をΔVだけ変化させた際の並列接続線64の通電電流値の変化量ΔIの絶対値が第1閾値未満の場合に定電流素子Eが飽和状態にあると判定し、第1閾値以上の場合には定電流素子Eが非飽和状態と判定する。第1の閾値は、例えば、ピンチオフ電流値Ipの5~10%程度としてもよいし、ピンチオフ電流値Ipが最小となる漏液検知ユニットUNendの定電流素子ENendのピンチオフ電流値IpNendの10%程度としてもよい。 In the determination unit 90, the absolute value of the change amount ΔI of the energization current value of the parallel connection line 64 when the output voltage of the power supply 81 is changed and the voltage applied to the liquid leakage detection unit 70 is changed by ΔV is the first threshold value. If it is less than, it is determined that the constant current element Em is in a saturated state, and if it is equal to or more than the first threshold value, it is determined that the constant current element Em is in an unsaturated state. The first threshold value may be, for example, about 5 to 10% of the pinch-off current value Ip m , or the pinch-off current value Ip Nend of the constant current element E Nend of the liquid leakage detection unit U Nend that minimizes the pinch-off current value Ip. It may be about 10% of.

また、判定部90は、漏液検知部70への印加電圧の変化量ΔVと、並列接続線64の通電電流値の変化量ΔIに基づいて、漏液検知部70の電圧電流特性の傾き=ΔI/ΔVを計算し、この傾きが第2閾値未満の場合に定電流素子Eが飽和状態にあると判定し、第2閾値以上の場合には定電流素子Eが非飽和状態と判定してもよい。 Further, the determination unit 90 has an inclination of the voltage-current characteristic of the liquid leakage detection unit 70 based on the change amount ΔV of the voltage applied to the liquid leakage detection unit 70 and the change amount ΔI of the energization current value of the parallel connection line 64. ΔI / ΔV is calculated, and when this inclination is less than the second threshold value, it is determined that the constant current element Em is in the saturated state, and when it is equal to or more than the second threshold value, it is determined that the constant current element Em is in the unsaturated state. You may.

また、判定部90は、ΔI/ΔVに代えて、逆数のΔV/ΔIを算出して定電流素子Eの飽和の判定を行ってもよい。 Further, the determination unit 90 may calculate the reciprocal ΔV / ΔI instead of ΔI / ΔV to determine the saturation of the constant current element Em .

図25の時刻t3では、漏液検知部70のVI特性は、図27に示す実線aの状態であり、漏液検知部70への印加電圧を変化させると並列接続線64の通電電流値が変化する。従って、図25の時刻t3では、判定部90は、図24のステップS106でNOと判断してステップS109に進み、漏液箇所判定中として図24のステップS101に戻って電流センサ82によって並列接続線64の通電電流値の監視を続ける。 At time t3 in FIG. 25, the VI characteristic of the liquid leakage detection unit 70 is the state of the solid line a shown in FIG. 27, and when the voltage applied to the liquid leakage detection unit 70 is changed, the energization current value of the parallel connection line 64 changes. Change. Therefore, at time t3 in FIG. 25, the determination unit 90 determines NO in step S106 of FIG. 24, proceeds to step S109, returns to step S101 of FIG. 24 while determining the leak location, and is connected in parallel by the current sensor 82. Continue monitoring the energization current value of wire 64.

時間が経過すると、漏液の導電線61,62への浸み込み量が増加し、導電線61,62の間のコンダクタンスGが大きくなる。すると、図26に示す定電流素子Eの通電電流Iが次第に大きくなる。そして、定電流素子Eの通電電流Iがピンチオフ電流値Ipに達すると、定電流素子Eが飽和状態となり、並列接続線64の通電電流値はピンチオフ電流値Ipに制限される。定電流素子Eが飽和状態となった以降、導電線61,62の間のコンダクタンスGが更に大きくなっても、定電流素子Eの抵抗値RHが変化して通電電流値はIpに保持される。そして、図25の時刻t4以降は、定電流素子Eは、飽和領域で動作する。 As time passes, the amount of the leaked liquid permeating into the conductive wires 61 and 62 increases, and the conductance Gm between the conductive wires 61 and 62 increases. Then, the energization current I W of the constant current element Em shown in FIG. 26 gradually increases. When the energization current I W of the constant current element Em reaches the pinch-off current value Ipm , the constant current element Em becomes saturated, and the energization current value of the parallel connection line 64 is limited to the pinch-off current value Ipm . .. After the constant current element Em is saturated, even if the conductance Gm between the conductive wires 61 and 62 becomes larger, the resistance value RH m of the constant current element Em changes and the energization current value is Ip. It is held at m . Then, after the time t4 in FIG. 25, the constant current element Em operates in the saturation region.

したがって、図25に示す時刻t2からt4までの間は、判定部90は、図24のステップS106でNOと判断して図24のステップS101、S102、S104~S106、S109を繰り返し実行する。そして、判定部90は、図25の時刻t4において図24のステップS106でYESと判断し、漏液の発生した漏液検知ユニットUの特定が可能と判定して図24のステップS107に進み、漏液の発生した漏液検知ユニットを特定する。 Therefore, during the time from t2 to t4 shown in FIG. 25, the determination unit 90 determines NO in step S106 of FIG. 24 and repeatedly executes steps S101, S102, S104 to S106, and S109 of FIG. 24. Then, the determination unit 90 determines YES in step S106 of FIG. 24 at time t4 of FIG. 25, determines that it is possible to identify the leak detection unit Um in which the leak has occurred, and proceeds to step S107 of FIG. , Identify the leak detection unit where the leak occurred.

図24のステップS107において、判定部90は電流センサ82によって取得した並列接続線64の通電電流値とメモリ92に格納している各定電流素子E~ENendの各ピンチオフ電流値Ip~IpNendとを比較し、並列接続線64の通電電流値といずれかのピンチオフ電流値Ip~IpNendとの差が±ΔIpsとなっているかどうかを判断する。ΔIpsは、所定の範囲であり、例えば、ピンチオフ電流値Ipの5~10%程度としてもよいし、ピンチオフ電流値Ipが最小となる漏液検知ユニットUNendの定電流素子ENendのピンチオフ電流値IpNendの10%程度としてもよい。 In step S107 of FIG. 24, the determination unit 90 uses the energization current value of the parallel connection line 64 acquired by the current sensor 82 and the pinch-off current values Ip 1 to each of the constant current elements E 1 to E Nend stored in the memory 92. It is compared with Ip Nend , and it is determined whether or not the difference between the energization current value of the parallel connection line 64 and one of the pinch-off current values Ip 1 to Ip Nend is ± ΔIp s . ΔIp s is a predetermined range, and may be, for example, about 5 to 10% of the pinch-off current value Ip m , or pinch-off of the constant current element E Nend of the liquid leakage detection unit UN End that minimizes the pinch-off current value Ip. The current value may be about 10% of Ip Nend .

そして、判定部90は、電流センサ82で検出した並列接続線64の通電電流値との差が±ΔIpsの範囲にあるピンチオフ電流値Ipを含む漏液検知ユニットUを漏液の発生した漏液検知ユニットと特定する。 Then, the determination unit 90 generates a leak in the leak detection unit U m including the pinch-off current value Ipm whose difference from the energization current value of the parallel connection line 64 detected by the current sensor 82 is in the range of ± ΔIps . Identify it as a leak detection unit.

判定部90は、図24に示すステップS108に進んで、出力インターフェース94を介して漏液発生信号と漏液箇所信号とを外部に出力する。出力インターフェース94を介して接続された表示装置(図示せず)には、「漏液発生、漏液箇所:検知ユニット番号3」のように表示される。また、出力インターフェース94を介して接続された漏液警告ランプ(図示せず)が点灯される。 The determination unit 90 proceeds to step S108 shown in FIG. 24, and outputs the liquid leakage generation signal and the liquid leakage location signal to the outside via the output interface 94. On a display device (not shown) connected via the output interface 94, a display such as "leakage generation, leak location: detection unit number 3" is displayed. Further, a liquid leakage warning lamp (not shown) connected via the output interface 94 is turned on.

以上説明したように、実施形態の漏液検出装置300は、制限電流値が異なる定電流素子E~ENendを含む漏液検知ユニットU~UNendを複数並列に接続し、電流センサ82の検出した並列接続線64の通電電流値と定電流素子E~ENendの制限電流値Ip~IpNendとを比較して漏液の発生した漏液検知ユニットを特定するので、簡便な構成で漏液箇所の検出信頼性を向上させることができる。 As described above, in the liquid leakage detection device 300 of the embodiment, a plurality of liquid leakage detection units U 1 to UN End including constant current elements E 1 to E Nend having different current limiting values are connected in parallel, and a current sensor 82 is connected. The current value of the parallel connection line 64 detected in the above is compared with the current limiting current values of the constant current elements E 1 to E Nend , Ip 1 to Ip Nend , to identify the leak detection unit in which the leak occurred, which is convenient. The configuration can improve the detection reliability of the leaked part.

<定電流素子のバリエーション>
以上説明した実施形態の漏液検出装置300では、図19を参照して説明したように、ノードNDの定電流素子Eは、アノードを向かい合わせてピンチオフ電流値Ipが同一の定電流ダイオード17a、17bを逆直列に接続したものとして説明したが、定電流素子Eの構成はこれに限らず、図30(a)に示すように、定電流ダイオード17,17bの接続方向を図19に示す状態と反対にカソードを向かい合わせて逆直列に接続してもよい。また、図30(b)に示すように、図19に示す側と反対側の接続線12に配置するようにしてもよい。また、図30(c)、図30(d)に示すように、2本の接続線12にそれぞれ1つずつ定電流ダイオード17a,17bを同一方向に配置し、漏液が発生した際の電流の流れに対して2つの定電流ダイオードCRDが逆直列となるようにしてもよい。更に、図30(e)に示すように、どちらか一方の接続線12にのみ定電流ダイオード17aを介在して配置してもよい。この場合、電源81は、直流定電圧電源を用いて構成してもよい。更に、定電流ダイオード17a,17bを用いず、図30(f)示すように、図21に示すような電圧電流特性を有する電気回路をIC等で構成した定電流素子回路19を用いてもよい。
<Variations of constant current elements>
In the liquid leakage detection device 300 of the above-described embodiment, as described with reference to FIG. 19, the constant current element Em of the node ND m faces the anodes and the pinch-off current value Ipm is the same constant current. Although the description has been made assuming that the diodes 17a and 17b are connected in anti-series, the configuration of the constant current element Em is not limited to this, and as shown in FIG. 30A , the connection directions of the constant current diodes 17 and 17b are shown. Contrary to the state shown in 19, the cathodes may be faced to each other and connected in anti-series. Further, as shown in FIG. 30 (b), the connection line 12 may be arranged on the side opposite to the side shown in FIG. Further, as shown in FIGS. 30 (c) and 30 (d), one constant current diode 17a and one 17b are arranged in the same direction on each of the two connection lines 12, and the current when liquid leakage occurs. The two constant current diodes CRD may be in anti-series with respect to the flow of. Further, as shown in FIG. 30 (e), the constant current diode 17a may be interposed only in one of the connection lines 12. In this case, the power supply 81 may be configured by using a DC constant voltage power supply. Further, instead of using the constant current diodes 17a and 17b, as shown in FIG. 30 (f), a constant current element circuit 19 in which an electric circuit having voltage-current characteristics as shown in FIG. 21 is composed of an IC or the like may be used. ..

このように、検出対象の液体に応じてノードNDの定電流素子Eの配置を様々に変更することにより、検出対象の液体に応じた漏液検出を行うことができる。 In this way, by variously changing the arrangement of the constant current element Em of the node ND m according to the liquid to be detected, it is possible to detect the leak according to the liquid to be detected.

なお、本実施形態の漏液検出装置300では、定電流素子Eの制限電流値Ipは、検知ユニット番号Nが大きくなるに従って小さくなるように構成されていることとして説明したが、定電流素子Eの制限電流値Ipは、それぞれ異なっていればよく、例えば、上記と逆に検知ユニット番号Nが小さくなるに従って制限電流値が小さくなるように構成してもよい。 Although the leak detection device 300 of the present embodiment has been described as being configured such that the limit current value Ipm of the constant current element Em becomes smaller as the detection unit number N becomes larger, the constant current is described. The limiting current value Ipm of the element Em may be different from each other. For example, conversely, the limiting current value may be configured to decrease as the detection unit number N decreases.

11a,11b ツェナーダイオード、12 接続線、13,15 始端側端子、14,16 末端側端子、17a,17b 定電流ダイオード、18 定電圧素子回路、19 定電流素子回路、60 漏液検知帯、61,62 導電線、61e,62e 端部、63 絶縁被覆線、64 並列接続線、65 漏液部分、70 漏液検知部、71 始端、72 末端、79 末端抵抗、81 電源、82 電流センサ、83 電圧センサ、90 判定部、91 CPU、92 メモリ、93 入力インターフェース、94 出力インターフェース、95 データバス、100,200,300 漏液検出装置、CRD 定電流ダイオード、D,D~D,D 定電圧素子、E,E~ENend,E 定電流素子、Ip~IpNend,Ip ピンチオフ電流値(制限電流値)、I 所定値、N 漏液検知ユニット番号(検知ユニット番号)、ND,ND~NDNend,ND ノード、U,U~UNend,U 漏液検知ユニット、Vp~VpNend,Vp ピンチオフ電圧値。 11a, 11b Zener diode, 12 connection line, 13,15 start end side terminal, 14,16 end side terminal, 17a, 17b constant current diode, 18 constant voltage element circuit, 19 constant current element circuit, 60 leak detection band, 61 , 62 Conductive wire, 61e, 62e end, 63 Insulated coated wire, 64 Parallel connection line, 65 Leakage part, 70 Leakage detector, 71 Start end, 72 end, 79 end resistance, 81 power supply, 82 current sensor, 83 Voltage sensor, 90 Judgment unit, 91 CPU, 92 memory, 93 input interface, 94 output interface, 95 data bus, 100, 200, 300 leak detector, CRD constant current diode, D, D 1 to D 5 , D m Constant voltage element, E, E 1 to E Nend , Em constant current element, Ip 1 to Ip Nend , Ip m Pinch-off current value (current limit value ) , Is predetermined value, N Leakage detection unit number (detection unit number) ), ND, ND 1 to ND Nend , ND m node, U, U 1 to U Nend , U m leak detection unit, Vp 1 to Vp Nend , Vp m pinch-off voltage value.

Claims (17)

一対の導電線からなり、前記導電線の間に漏液が接触すると電流が流れる漏液検知帯と、前記漏液検知帯に接続されて印加電圧が所定の導通電圧値に達すると導通する定電圧素子を有するノードと、を含む漏液検知ユニットを並列接続線で複数並列に接続した漏液検知部と、
前記漏液検知部の前記並列接続線に接続される電源と、
前記漏液検知部の前記並列接続線の入力電流値を検出する電流検出部と、
前記電流検出部で検出した前記入力電流値から漏液の発生を判定する判定部と、を備え、
前記漏液検知部は、
各前記漏液検知ユニットが入力電圧値に応じて導通する特性を有し、
各前記漏液検知ユニットの各前記定電圧素子の各前記導通電圧値がそれぞれ異なっていること、
を特徴とする漏液検出装置。
It consists of a pair of conductive wires, a leak detection band in which a current flows when a leak comes into contact between the conductive wires, and a constant that conducts when the applied voltage reaches a predetermined conduction voltage value connected to the leak detection band. A leakage detection unit in which a node having a voltage element and a plurality of leakage detection units including the leakage detection unit are connected in parallel by a parallel connection line, and a leakage detection unit.
A power supply connected to the parallel connection line of the liquid leakage detection unit, and
A current detection unit that detects the input current value of the parallel connection line of the liquid leakage detection unit, and a current detection unit.
A determination unit for determining the occurrence of liquid leakage from the input current value detected by the current detection unit is provided.
The leak detection unit is
Each of the leak detection units has the characteristic of conducting conduction according to the input voltage value.
The conduction voltage value of each constant voltage element of each leak detection unit is different.
A leak detection device characterized by.
請求項1に記載の漏液検出装置であって、
前記漏液検知ユニットの前記ノードは、
前記並列接続線が接続される一対の始端側端子と、
前記漏液検知部の一対の前記導電線がそれぞれ接続される一対の末端側端子と、
前記始端側端子と前記末端側端子とを並列に接続する一対の接続線と、を含み、
前記定電圧素子は、いずれか一方または両方の接続線に介在して配置されていること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to claim 1.
The node of the leak detection unit
A pair of start end side terminals to which the parallel connection lines are connected,
A pair of terminal terminals to which the pair of conductive wires of the liquid leakage detection unit are connected, respectively.
Includes a pair of connecting wires that connect the start end side terminal and the end end side terminal in parallel.
The constant voltage element is arranged so as to be interposed between one or both connection lines.
A leak detection device characterized by.
請求項1または2に記載の漏液検出装置であって、
前記電源は、前記漏液検知部の前記並列接続線に所定の電圧値の待機電圧を印加し、
前記判定部は、前記電流検出部で検出した前記入力電流値と、所定の閾値とを比較することで、少なくとも1つの前記漏液検知ユニットでの漏液の発生を判定すること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to claim 1 or 2.
The power supply applies a standby voltage having a predetermined voltage value to the parallel connection line of the liquid leakage detection unit.
The determination unit determines the occurrence of liquid leakage in at least one liquid leakage detection unit by comparing the input current value detected by the current detection unit with a predetermined threshold value.
A leak detection device characterized by.
請求項1または2に記載の漏液検出装置であって、
前記電源は、前記判定部から入力される電圧指令値に応じた電圧を出力し、
前記判定部は、前記電源に出力する前記電圧指令値を待機電圧値の前後で変動させて前記漏液検知部の前記入力電圧値を前記待機電圧値の前後で変動させ、
前記電圧指令値または前記入力電圧値と前記電流検出部で検出した前記入力電流値とから計算されるコンダクタンスまたは抵抗値と、所定の閾値とを比較することで、少なくとも1つの前記漏液検知ユニットで漏液が発生したことを判定すること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to claim 1 or 2.
The power supply outputs a voltage corresponding to the voltage command value input from the determination unit.
The determination unit fluctuates the voltage command value output to the power supply before and after the standby voltage value, and fluctuates the input voltage value of the liquid leakage detection unit before and after the standby voltage value.
At least one leak detection unit by comparing a conductance or resistance value calculated from the voltage command value or the input voltage value and the input current value detected by the current detector with a predetermined threshold value. To determine that a leak has occurred in
A leak detection device characterized by.
請求項1または2に記載の漏液検出装置であって、
前記電源は、前記判定部から入力される電圧指令値に応じた電圧を出力し、
前記判定部は、前記電源に出力する前記電圧指令値を掃引して前記漏液検知部の前記入力電圧値を掃引して、各前記漏液検知ユニットを前記導通電圧値が小さい順に導通させ、
前記電圧指令値または前記入力電圧値と前記電流検出部で検出した前記入力電流値から計算されるコンダクタンスまたは抵抗値と所定の閾値とを比較することで、導通状態の前記漏液検知ユニットの内、少なくとも1つの前記漏液検知ユニットで漏液が発生したことを判定すること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to claim 1 or 2.
The power supply outputs a voltage corresponding to the voltage command value input from the determination unit.
The determination unit sweeps the voltage command value output to the power supply, sweeps the input voltage value of the leak detection unit, and conducts each of the leak detection units in ascending order of the conduction voltage value.
By comparing the conductance or resistance value calculated from the voltage command value or the input voltage value with the input current value detected by the current detection unit and a predetermined threshold value, the liquid leakage detection unit in the conductive state is included. , Determining that a leak has occurred in at least one of the leak detection units.
A leak detection device characterized by.
請求項1または2に記載の漏液検出装置であって、
前記電源は、前記判定部から入力される電圧指令値に応じた電圧を出力し、
前記判定部は、前記電源に出力する前記電圧指令値を掃引して前記漏液検知部の前記入力電圧値を掃引して、各前記漏液検知ユニットを前記導通電圧値が小さい順に導通させ、
前記漏液検知部の一の前記漏液検知ユニットまでの範囲を導通状態にした場合に前記電流検出部で検出した前記入力電流値と、一の前記漏液検知ユニットの次に前記導通電圧値が高い他の前記漏液検知ユニットまでの範囲を導通状態にした場合に前記電流検出部で検出した前記入力電流値とを用いて、一の前記漏液検知ユニットのコンダクタンスを算出し、
算出した前記コンダクタンスを所定の閾値と比較することで、漏液の発生した前記漏液検知ユニットを特定すること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to claim 1 or 2.
The power supply outputs a voltage corresponding to the voltage command value input from the determination unit.
The determination unit sweeps the voltage command value output to the power supply, sweeps the input voltage value of the leak detection unit, and conducts each of the leak detection units in ascending order of the conduction voltage value.
The input current value detected by the current detection unit when the range up to the liquid leakage detection unit of the liquid leakage detection unit is set to the conduction state, and the conduction voltage value next to the liquid leakage detection unit. The conductance of one of the leak detection units is calculated by using the input current value detected by the current detection unit when the range up to the other leak detection unit is made conductive.
By comparing the calculated conductance with a predetermined threshold value, the leak detection unit in which the leak has occurred can be identified.
A leak detection device characterized by.
一対の導電線からなり、前記導電線の間に漏液が接触すると電流が流れる漏液検知帯と、前記漏液検知帯に接続されて印加電圧が所定の導通電圧値に達すると導通する定電圧素子を有するノードと、を含む漏液検知ユニットを並列接続線で複数並列に接続し、末端の前記導電線の間に抵抗器を接続した漏液検知部と、
前記漏液検知部の前記並列接続線に接続される電源と、
前記漏液検知部の前記並列接続線の入力電圧値を検出する電圧検出部と、
前記電圧検出部で検出した前記入力電圧値から漏液の発生を判定する判定部と、を備え、
前記漏液検知部は、
各前記漏液検知ユニットが前記入力電圧値に応じて導通する特性を有し、
各前記漏液検知ユニットの各前記定電圧素子の各前記導通電圧値がそれぞれ異なっていること、
を特徴とする漏液検出装置。
It consists of a pair of conductive wires, a leak detection band in which a current flows when a leak comes into contact between the conductive wires, and a constant that conducts when the applied voltage reaches a predetermined conduction voltage value connected to the leak detection band. A liquid leakage detection unit in which a node having a voltage element and a liquid leakage detection unit including the liquid leakage detection unit are connected in parallel by a parallel connection line and a resistor is connected between the conductive lines at the ends.
A power supply connected to the parallel connection line of the liquid leakage detection unit, and
A voltage detection unit that detects the input voltage value of the parallel connection line of the liquid leakage detection unit, and a voltage detection unit.
A determination unit for determining the occurrence of liquid leakage from the input voltage value detected by the voltage detection unit is provided.
The leak detection unit is
Each of the leak detection units has a characteristic of conducting conduction according to the input voltage value.
The conduction voltage value of each constant voltage element of each leak detection unit is different.
A leak detection device characterized by.
請求項7に記載の漏液検出装置であって、
前記漏液検知ユニットの前記ノードは、
前記並列接続線が接続される一対の始端側端子と、
前記漏液検知部の一対の前記導電線がそれぞれ接続される一対の末端側端子と、
前記始端側端子と前記末端側端子とを並列に接続する一対の接続線と、を含み、
前記定電圧素子は、いずれか一方または両方の接続線に介在して配置されていること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to claim 7.
The node of the leak detection unit
A pair of start end side terminals to which the parallel connection lines are connected,
A pair of terminal terminals to which the pair of conductive wires of the liquid leakage detection unit are connected, respectively.
Includes a pair of connecting wires that connect the start end side terminal and the end end side terminal in parallel.
The constant voltage element is arranged so as to be interposed between one or both connection lines.
A leak detection device characterized by.
請求項7または8に記載の漏液検出装置であって、
前記電源は、所定の電流値の待機電流を前記漏液検知部に入力し、
前記判定部は、前記電圧検出部で検出した前記入力電圧値を所定の閾値と比較することで漏液の発生を判定すること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to claim 7 or 8.
The power supply inputs a standby current having a predetermined current value to the liquid leakage detection unit, and receives the standby current.
The determination unit determines the occurrence of liquid leakage by comparing the input voltage value detected by the voltage detection unit with a predetermined threshold value.
A leak detection device characterized by.
一対の導電線からなり、前記導電線の間に漏液が接触すると電流が流れる漏液検知帯と、前記漏液検知帯に接続されて前記漏液検知帯の通電電流値を制限電流値に制限する定電流素子を有するノードと、を含む漏液検知ユニットを並列接続線で複数並列に接続した漏液検知部と、
前記漏液検知部の前記並列接続線に接続されて、前記漏液検知部に電圧を印加する電源と、
前記漏液検知部の前記並列接続線の通電電流値を検出する電流検出部と、
前記電流検出部の検出した通電電流値から漏液の発生した前記漏液検知ユニットを判定する判定部と、を備える漏液検出装置であって、
各前記漏液検知ユニットの各前記定電流素子の制限電流値はそれぞれ異なっており、
前記判定部は、前記電流検出部の検出した通電電流値と前記定電流素子の制限電流値とを比較して漏液の発生した前記漏液検知ユニットを特定すること、
を特徴とする漏液検出装置。
It consists of a pair of conductive wires, a leak detection band in which current flows when a leak comes into contact between the conductive wires, and a current limiting current value connected to the leak detection band. A node having a constant current element to limit, a leak detection unit in which a plurality of leak detection units including the leak detection unit are connected in parallel by a parallel connection line, and a leak detection unit.
A power supply that is connected to the parallel connection line of the liquid leakage detection unit and applies a voltage to the liquid leakage detection unit.
A current detection unit that detects the energization current value of the parallel connection line of the liquid leakage detection unit, and a current detection unit.
A liquid leakage detection device including a determination unit for determining the leak detection unit in which a leak has occurred from the energization current value detected by the current detection unit.
The current limit value of each constant current element of each leak detection unit is different.
The determination unit compares the energization current value detected by the current detection unit with the current limit value of the constant current element to identify the leak detection unit in which the leak has occurred.
A leak detection device characterized by.
請求項10に記載の漏液検出装置であって、
前記漏液検知ユニットの前記ノードは、
前記並列接続線が接続される一対の始端側端子と、
前記漏液検知帯の一対の前記導電線がそれぞれ接続される一対の末端側端子と、
前記始端側端子と前記末端側端子とを並列に接続する一対の接続線と、を含み、
前記定電流素子は、いずれか一方または両方の前記接続線に介在して配置されていること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to claim 10.
The node of the leak detection unit
A pair of start end side terminals to which the parallel connection lines are connected,
A pair of terminal terminals to which the pair of conductive wires of the leak detection band are connected, respectively.
Includes a pair of connecting wires that connect the start end side terminal and the end end side terminal in parallel.
The constant current element is arranged so as to be interposed between the connection line of either one or both.
A leak detection device characterized by.
請求項10または11に記載の漏液検出装置であって、
前記判定部は、前記電流検出部で検出した通電電流値と、一の前記漏液検知ユニットの前記定電流素子の制限電流値との差が所定の範囲内の場合に、一の前記漏液検知ユニットを漏液発生箇所と特定すること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to claim 10 or 11.
When the difference between the energization current value detected by the current detection unit and the current limiting current value of the constant current element of the leak detection unit is within a predetermined range, the determination unit is one of the leaks. Identifying the detection unit as the location of the leak,
A leak detection device characterized by.
請求項10から12のいずれか1項に記載の漏液検出装置であって、
前記判定部は、前記電流検出部で検出した通電電流値が所定の値以上の場合に漏液検知と判定すること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to any one of claims 10 to 12.
The determination unit determines that liquid leakage is detected when the energization current value detected by the current detection unit is equal to or higher than a predetermined value.
A leak detection device characterized by.
請求項13に記載の漏液検出装置であって、
前記判定部は、漏液検知と判定した場合に、前記電源の出力電圧を変化させて前記電流検出部で前記漏液検知部の通電電流値の変化量を検出し、
通電電流値の変化量に基づいて、通電電流値から漏液の発生した前記漏液検知ユニットの特定が可能か判定すること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to claim 13.
When the determination unit determines that the liquid leakage has been detected, the determination unit changes the output voltage of the power supply, and the current detection unit detects the amount of change in the energization current value of the liquid leakage detection unit.
Judging whether it is possible to identify the leak detection unit in which the leak has occurred from the current current value based on the amount of change in the current current value.
A leak detection device characterized by.
請求項14に記載の漏液検出装置であって、
前記判定部は、通電電流値の変化量の絶対値が所定の第1閾値未満の場合に、通電電流値から漏液の発生した前記漏液検知ユニットの特定が可能と判定すること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to claim 14.
When the absolute value of the amount of change in the energization current value is less than a predetermined first threshold value, the determination unit determines that the leak detection unit in which the leak has occurred can be identified from the energization current value.
A leak detection device characterized by.
請求項14に記載の漏液検出装置であって、
前記判定部は、
前記電源の出力電圧の変化量と前記電流検出部で検出した通電電流値の変化量とに基づいて前記漏液検知部の電圧電流特性の傾きを算出し、
前記傾きが所定の第2閾値未満の場合に、通電電流値から漏液の発生した前記漏液検知ユニットの特定が可能と判定すること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to claim 14.
The determination unit
The slope of the voltage-current characteristic of the liquid leakage detection unit is calculated based on the change amount of the output voltage of the power supply and the change amount of the energization current value detected by the current detection unit.
When the inclination is less than a predetermined second threshold value, it is determined that the leak detection unit in which the leak has occurred can be identified from the energization current value.
A leak detection device characterized by.
請求項14から16のいずれか1項に記載の漏液検出装置であって、
前記判定部は、
前記電流検出部で検出した通電電流値から漏液の発生した前記漏液検知ユニットの特定が可能と判定した場合に、
前記電流検出部で検出した通電電流値と、一の前記漏液検知ユニットの前記定電流素子の制限電流値との差が所定の範囲内の場合に、一の前記漏液検知ユニットを漏液発生箇所と特定すること、
を特徴とする漏液検出装置。
The liquid leakage detection device according to any one of claims 14 to 16.
The determination unit
When it is determined that the leak detection unit in which the leak has occurred can be identified from the energization current value detected by the current detection unit.
When the difference between the energization current value detected by the current detection unit and the current limit value of the constant current element of the leak detection unit is within a predetermined range, the leak detection unit is leaked. Identifying the location of occurrence,
A leak detection device characterized by.
JP2018222948A 2018-11-29 2018-11-29 Leakage detector Active JP7004634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018222948A JP7004634B2 (en) 2018-11-29 2018-11-29 Leakage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018222948A JP7004634B2 (en) 2018-11-29 2018-11-29 Leakage detector

Publications (2)

Publication Number Publication Date
JP2020085750A JP2020085750A (en) 2020-06-04
JP7004634B2 true JP7004634B2 (en) 2022-02-04

Family

ID=70907652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018222948A Active JP7004634B2 (en) 2018-11-29 2018-11-29 Leakage detector

Country Status (1)

Country Link
JP (1) JP7004634B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115046694B (en) * 2022-05-30 2024-01-16 苏州浪潮智能科技有限公司 Liquid leakage processing method and system based on liquid cooling server

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000339572A (en) 1999-05-26 2000-12-08 Matsushita Electric Works Ltd Method for discriminating disconnection and short-circuit of regional acoustic wiring and device for detecting disconnection and short-circuit using the method
JP6907150B2 (en) 2018-04-26 2021-07-21 三菱電機ビルテクノサービス株式会社 Leakage detector
JP6971948B2 (en) 2018-10-05 2021-11-24 三菱電機ビルテクノサービス株式会社 Leakage detector
JP6971920B2 (en) 2018-06-22 2021-11-24 三菱電機ビルテクノサービス株式会社 Leakage detector

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54138483A (en) * 1978-04-19 1979-10-26 Hitachi Ltd Leakage detector
JPH06167411A (en) * 1992-11-30 1994-06-14 Tatsuta Electric Wire & Cable Co Ltd Liquid leakage detection wire
JP3210116B2 (en) * 1992-12-29 2001-09-17 タツタ電線株式会社 Liquid leak detection line
EP0558057B1 (en) * 1992-02-28 1997-05-02 Tatsuta Electric Wire & Cable Co., Ltd Liquid leakage detector line
JP3375710B2 (en) * 1993-03-30 2003-02-10 タツタ電線株式会社 Liquid leak detection device
JPH0727811A (en) * 1993-07-14 1995-01-31 Tatsuta Electric Wire & Cable Co Ltd Contact/disconnection detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000339572A (en) 1999-05-26 2000-12-08 Matsushita Electric Works Ltd Method for discriminating disconnection and short-circuit of regional acoustic wiring and device for detecting disconnection and short-circuit using the method
JP6907150B2 (en) 2018-04-26 2021-07-21 三菱電機ビルテクノサービス株式会社 Leakage detector
JP6971920B2 (en) 2018-06-22 2021-11-24 三菱電機ビルテクノサービス株式会社 Leakage detector
JP6971948B2 (en) 2018-10-05 2021-11-24 三菱電機ビルテクノサービス株式会社 Leakage detector

Also Published As

Publication number Publication date
JP2020085750A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
JP5452902B2 (en) Liquid leakage detection system and liquid leakage detection method
US10261122B2 (en) Aging determination of power semiconductor device in electric drive system
US8766661B2 (en) Malfunction detecting device for solar cell panel
JP6494392B2 (en) Accurate measurement of voltage drop in semiconductor switching devices.
TWI649575B (en) Resistance measuring device, substrate inspection device, inspection method, and inspection Fixture maintenance method
KR102216324B1 (en) Maintenance method for contactor and inspecting apparatus
KR20200102466A (en) Sensor fault detection using paired sample correlation
JP7004634B2 (en) Leakage detector
JP6907150B2 (en) Leakage detector
CN110631782B (en) Liquid leakage detection device
CN111006820B (en) Liquid leakage detection device
JP6420957B2 (en) Test apparatus and method
JP7004635B2 (en) Leakage detector
JP6851955B2 (en) Leakage detection system
JP6836659B2 (en) Anomaly detection device and abnormality detection method
WO2023073866A1 (en) Motor control device
JP6189199B2 (en) Contact inspection apparatus, contact inspection method, and electronic component
US11979016B1 (en) LCDI power cord circuit having a power cord fault circuit for monitoring a neutral wire shield and a line wire shield integrity
JP6240802B1 (en) Wire inspection device
JP6038529B2 (en) measuring device
CN115667949A (en) Switching device for a direct current network and operating method for a switching device
KR20220167250A (en) Apparatus of measuring hot-line insulation resistance
JP2007155567A (en) Method and apparatus for measuring electric resistance
JPH07113719A (en) Liquid leakage detecting device
CN115032561A (en) Heater condition monitoring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220104

R150 Certificate of patent or registration of utility model

Ref document number: 7004634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350