JP6906217B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP6906217B2
JP6906217B2 JP2016244946A JP2016244946A JP6906217B2 JP 6906217 B2 JP6906217 B2 JP 6906217B2 JP 2016244946 A JP2016244946 A JP 2016244946A JP 2016244946 A JP2016244946 A JP 2016244946A JP 6906217 B2 JP6906217 B2 JP 6906217B2
Authority
JP
Japan
Prior art keywords
semiconductor
layer
semiconductor layer
substrate
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016244946A
Other languages
English (en)
Other versions
JP2018060992A (ja
Inventor
真也 織田
真也 織田
梨絵 徳田
梨絵 徳田
仁志 神原
仁志 神原
克明 河原
克明 河原
俊実 人羅
俊実 人羅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flosfia Inc
Original Assignee
Flosfia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flosfia Inc filed Critical Flosfia Inc
Publication of JP2018060992A publication Critical patent/JP2018060992A/ja
Application granted granted Critical
Publication of JP6906217B2 publication Critical patent/JP6906217B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Description

本発明は、特にパワーデバイスに有用な半導体装置に関する。
酸化ガリウム(Ga)は、室温において4.8−5.3eVという広いバンドギャップを持ち、可視光及び紫外光をほとんど吸収しない透明半導体である。そのため、特に、深紫外線領域で動作する光・電子デバイスや透明エレクトロニクスにおいて使用するための有望な材料であり、近年においては、酸化ガリウム(Ga)を基にした、光検知器、発光ダイオード(LED)及びトランジスタの開発が行われている(非特許文献1参照)。
また、酸化ガリウム(Ga)には、α、β、γ、σ、εの5つの結晶構造が存在し、一般的に最も安定な構造は、β−Gaである。しかしながら、β−Gaはβガリア構造であるので、一般に電子材料等で利用する結晶系とは異なり、半導体装置への利用は必ずしも好適ではない。また、β−Ga薄膜の成長は高い基板温度や高い真空度を必要とするので、製造コストも増大するといった問題もある。また、非特許文献2にも記載されているように、β−Gaでは、高濃度(例えば1×1019/cm以上)のドーパント(Si)でさえも、イオン注入後、800℃〜1100℃の高温にてアニール処理を施さなければドナーとして使えなかった。
一方、α−Gaは、既に汎用に販売されているサファイア基板と同じ結晶構造を有するため、光・電子デバイスへの利用には好適であり、さらに、β−Gaよりも広いバンドギャップをもつため、パワーデバイスに特に有用であり、そのため、α−Gaを半導体として用いた半導体装置が待ち望まれている状況である。
特許文献1および2には、β−Gaを半導体として用い、これに適合したオーミック特性が得られる電極として、Ti層およびAu層からなる2層、Ti層、Al層およびAu層からなる3層、またはTi層、Al層、Ni層およびAu層からなる4層を用いた半導体装置が記載されている。
また、特許文献3には、β−Gaを半導体として用い、これに適合したショットキー特性が得られる電極として、Au、Pt、あるいはNiおよびAuの積層体のいずれかを用いた半導体装置が記載されている。
しかしながら、特許文献1〜3の記載の電極を、α−Gaを半導体として用いた半導体装置に適用した場合、ショットキー電極やオーミック電極として機能しなかったり、電極が膜につかなかったり、半導体特性が損なわれたりするなどの問題があった。
特開2005−260101号公報 特開2009−81468号公報 特開2013−12760号公報
Jun Liang Zhao et al, "UV and Visible Electroluminescence From a Sn:Ga2O3/n+−Si Heterojunction by Metal−Organic Chemical Vapor Deposition", IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 58, NO.5 MAY 2011 Kohei Sasaki et al, "Si-Ion Implantation Doping in β−Ga2O3 and Its Application to Fabrication of Low−Resistance Ohmic Contacts", Applied Physics Express 6 (2013) 086502
本発明は、半導体特性およびショットキー特性に優れた半導体装置を提供することを目的とする。
本発明者らは、上記目的を達成すべく鋭意検討した結果、コランダム構造を有する結晶性酸化物半導体を主成分として含む半導体層と、前記半導体層上に設けられ前記半導体層とショットキー接合する金属層を含むショットキー電極とを少なくとも備える半導体装置であって、前記金属層が、周期律表第4族〜第9族から選ばれる少なくとも1種の金属であって、周期律表第4周期の遷移金属を含む半導体装置が、コランダム構造を有する結晶性酸化物半導体の半導体特性を損なうことなく、半導体特性に優れており、さらに、ショットキー特性にも優れていることを知見し、このような半導体装置が、上記した従来の問題を一挙に解決できるものであることを見出した。
また、本発明者らは、上記知見を得た後、さらに検討を重ねて本発明を完成させるに至った。
すなわち、本発明は、以下の発明に関する。
[1] コランダム構造を有する結晶性酸化物半導体を主成分として含む半導体層と、前記半導体層上に設けられ前記半導体層とショットキー接合する金属層を含むショットキー電極とを少なくとも備える半導体装置であって、前記金属層が、周期律表第4族〜第9族から選ばれる少なくとも1種の金属であって、周期律表第4周期の遷移金属を含むことを特徴とする半導体装置。
[2] 前記金属層が、周期律表第4族〜第6族から選ばれる少なくとも1種の金属を含むことを特徴とする前記[1]記載の半導体装置。
[3] 前記半導体層は、第1の半導体層と、第2の半導体層とを有し、前記金属層は第1の半導体層とショットキー接合し、第1の半導体層及び第2の半導体層が、それぞれコランダム構造を有する結晶性酸化物半導体を主成分として含み、第1の半導体層のキャリア密度が、第2の半導体層のキャリア密度よりも小さいことを特徴とする前記[1]記載の半導体装置。
[4] 前記結晶性酸化物半導体がガリウムまたはインジウムを含む前記[1]記載の半導体装置。
[5] 前記結晶性酸化物半導体が、α−Ga またはその混晶である前記[1]記載の半導体装置。
[6] さらに、オーミック電極を備えており、前記オーミック電極が、周期律表第4族または第11族の金属を含む前記[1]記載の半導体装置。
[7] コランダム構造を有する結晶性酸化物半導体を主成分として含む半導体層と、前記半導体層上にショットキー電極とを少なくとも備える半導体装置であって、前記半導体層は第1の半導体層と第2の半導体層とを有し、前記ショットキー電極は第1の半導体層とショットキー接合し、第1の半導体層のキャリア密度が、第2の半導体層のキャリア密度よりも小さく、前記半導体層の厚さが40μm以下であり、表面積が1mm 以下であり、1A以上の電流が流れる、ことを特徴とする半導体装置。
[8] 1MHzで測定したときのキャパシタンスが0Vバイアスで1000pF以下であることを特徴とする前記[7]記載の半導体装置。
[9] 前記半導体層の表面積が1mm 以下である前記[7]記載の半導体装置。
[10] パワーデバイスである前記[1]記載の半導体装置。
[11] パワーモジュール、インバータまたはコンバータである前記[1]の半導体装置。
[12] 半導体装置を備える半導体システムであって、前記半導体装置が、前記[1]記載の半導体装置である半導体システム。
本発明の半導体装置は、半導体特性およびショットキー特性に優れている。
本発明のショットキーバリアダイオード(SBD)の好適な一例を模式的に示す図である。 本発明のショットキーバリアダイオード(SBD)の好適な一例を模式的に示す図である。 本発明に用いられる第1の金属層の好適な一例を模式的に示す図である。 本発明に用いられる第2の金属層の好適な一例を模式的に示す図である。 実施例で用いたミストCVD装置の概略構成図である。 実施例で用いたミストCVD装置の概略構成図である。 実施例1のIV測定の結果を示す図である。 実施例2のIV測定の結果を示す図である。 実施例3のIV測定の結果を示す図である。 比較例のIV測定の結果を示す図である。 実施例4のスイッチング特性測定の結果を示す図である。縦軸が電流(A)であり、横軸が時間(秒)である。 電源システムの好適な一例を模式的に示す図である。 システム装置の好適な一例を模式的に示す図である。 電源装置の電源回路図の好適な一例を模式的に示す図である。 実施例6のSIPM測定の結果を示す図である。 実施例6のSIPM測定の結果を示す図である。 実施例7のSIPM測定の結果を示す図である。 実施例7のSIPM測定の結果を示す図である。
本発明の半導体装置は、コランダム構造を有する結晶性酸化物半導体を主成分として含む半導体層と、前記半導体層上に設けられ前記半導体層とショットキー接合する金属層を含むショットキー電極とを少なくとも備える半導体装置であって、前記金属層が、周期律表第4族〜第9族から選ばれる少なくとも1種の金属であって、周期律表第4周期の遷移金属を含むことを特長とする。なお、前記金属は、周期律表第4族〜第6族から選ばれる少なくとも1種の金属であるのが好ましい。このようにして前記ショットキー電極の金属材料と、前記半導体層の半導体材料とを組み合わせることにより、半導体特性に優れた半導体装置を得ることができる。従来より、β−Gaを半導体として用いる場合には、Au、Pt、Niなどの周期律表第10族以上の金属をショットキー電極に用いることが適していることが知られていたが、第10族以上の金属を用いなくても、コランダム構造の例えばα−Ga等の結晶性酸化物半導体を用いる場合には、前記ショットキー電極に、周期律表第4族〜第9族から選ばれる少なくとも1種の金属であって、周期律表第4周期の遷移金属を用いることにより、半導体特性に優れた半導体装置を得ることができる。
前記半導体層は、コランダム構造を有する結晶性酸化物半導体を主成分として含んでいれば特に限定されない。前記半導体層(以下、「結晶性酸化物半導体膜」ともいう)は、InAlGaO系半導体を主成分とするのが好ましく、ガリウムまたはインジウムを少なくとも含むのがより好ましく、ガリウムを少なくとも含むのが最も好ましい。ガリウムを少なくとも含む結晶性酸化物半導体としては、α−Gaまたはその混晶などが好適に挙げられる。なお、「主成分」とは、例えば結晶性酸化物半導体がα−Gaである場合、膜中の金属元素中のガリウムの原子比が0.5以上の割合でα−Gaが含まれていればそれでよい。本発明においては、前記膜中の金属元素中のガリウムの原子比が0.7以上であることが好ましく、0.8以上であるのがより好ましい。また、結晶性酸化物半導体膜の厚さは、特に限定されず、1μm以下であってもよいし、1μm以上であってもよいが、本発明においては、40μm以下であるのが好ましく、25μm以下であるのがより好ましく、12μm以下であるのがさらにより好ましく、8μm以下であるのが最も好ましい。結晶性酸化物半導体膜の表面積は特に限定されないが、1mm以下が好ましく、1mm角以下がより好ましい。また、本発明の半導体装置は、下記の熱抵抗算出評価の結果からも明らかなとおり、小型化しても半導体装置として優れた性能を発揮する。例えば、結晶性酸化物半導体膜の膜厚が12μm以下で、かつ表面積が1mm角以下であっても、1A以上(好ましくは10A以上)の電流が流れる半導体装置が得られる。なお、前記結晶性酸化物半導体膜は、通常、単結晶であるが、多結晶であってもよい。また、前記結晶性酸化物半導体膜は、単層膜であってもよいし、多層膜であってもよい。前記結晶性酸化物半導体膜が多層膜である場合には、前記多層膜が、膜厚40μm以下であるのが好ましく、また、少なくとも第1の半導体層と第2の半導体層とを含む多層膜であって、第1の半導体層上にショットキー電極が設けられる場合には、第1の半導体層のキャリア密度が、第2の半導体層のキャリア密度よりも小さい多層膜であるのも好ましい。なお、この場合、第2の半導体層には、通常、ドーパントが含まれており、前記結晶性酸化物半導体膜のキャリア密度は、ドーピング量を調節することにより、適宜設定することができる。
前記結晶性酸化物半導体膜は、ドーパントが含まれているのが好ましい。前記ドーパントは、特に限定されず、公知のものであってよい。前記ドーパントとしては、例えば、スズ、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウムまたはニオブ等のn型ドーパント、またはp型ドーパントなどが挙げられる。例えば、第1の半導体層に前記ドーパントが含まれる場合には、該ドーパントの含有量は、第1の半導体層の組成中、0.0000000001原子%以上であるのが好ましく、0.0000000001原子%〜20原子%であるのがより好ましく、0.0000000001原子%〜1原子%であるのが最も好ましい。また、例えば、第2の半導体層に前記ドーパントが含まれる場合には、該ドーパントの含有量は、第2の半導体層の組成中、0.0000001原子%以上であるのが好ましく、0.0000001原子%〜20原子%であるのがより好ましく、0.0000001原子%〜10原子%であるのが最も好ましい。本発明においては、前記ドーパントが、Snであるのが好ましい。Snの含有量は、前記結晶性酸化物半導体膜の組成中、0.00001原子%以上であるのが好ましく、0.00001原子%〜20原子%であるのがより好ましく、0.00001原子%〜10原子%であるのが最も好ましい。
前記結晶性酸化物半導体膜は、例えば、原料溶液を霧化または液滴化し(霧化・液滴化工程)、得られたミストまたは液滴をキャリアガスでもって基体上まで搬送し(搬送工程)、ついで、成膜室内で前記ミストまたは液滴を熱反応させることによって、基体上に結晶性酸化物半導体を主成分として含む結晶性酸化物半導体膜を積層する(成膜工程)ことにより好適に得られる。
(霧化・液滴化工程)
霧化・液滴化工程は、前記原料溶液を霧化または液滴化する。前記原料溶液の霧化手段または液滴化手段は、前記原料溶液を霧化または液滴化できさえすれば特に限定されず、公知の手段であってよいが、本発明においては、超音波を用いる霧化手段または液滴化手段が好ましい。超音波を用いて得られたミストまたは液滴は、初速度がゼロであり、空中に浮遊するので好ましく、例えば、スプレーのように吹き付けるのではなく、空間に浮遊してガスとして搬送することが可能なミストであるので衝突エネルギーによる損傷がないため、非常に好適である。液滴サイズは、特に限定されず、数mm程度の液滴であってもよいが、好ましくは50μm以下であり、より好ましくは100nm〜10μmである。
(原料溶液)
前記原料溶液は、霧化または液滴化が可能な材料を含んでおり、重水素を含有していれば特に限定されず、無機材料であっても、有機材料であってもよいが、本発明においては、金属または金属化合物であるのが好ましく、ガリウム、鉄、インジウム、アルミニウム、バナジウム、チタン、クロム、ロジウム、ニッケル、コバルト、亜鉛、マグネシウム、カルシウム、シリコン、イットリウム、ストロンチウムおよびバリウムから選ばれる1種または2種以上の金属を含むのがより好ましい。
本発明においては、前記原料溶液として、前記金属を錯体または塩の形態で有機溶媒または水に溶解または分散させたものを好適に用いることができる。錯体の形態としては、例えば、アセチルアセトナート錯体、カルボニル錯体、アンミン錯体、ヒドリド錯体などが挙げられる。塩の形態としては、例えば、有機金属塩(例えば金属酢酸塩、金属シュウ酸塩、金属クエン酸塩等)、硫化金属塩、硝化金属塩、リン酸化金属塩、ハロゲン化金属塩(例えば塩化金属塩、臭化金属塩、ヨウ化金属塩等)などが挙げられる。
また、前記原料溶液には、ハロゲン化水素酸や酸化剤等の添加剤を混合するのが好ましい。前記ハロゲン化水素酸としては、例えば、臭化水素酸、塩酸、ヨウ化水素酸などが挙げられるが、中でも、より良質な膜が得られるとの理由から、臭化水素酸またはヨウ化水素酸が好ましい。前記酸化剤としては、例えば、過酸化水素(H)、過酸化ナトリウム(Na)、過酸化バリウム(BaO)、過酸化ベンゾイル(CCO)等の過酸化物、次亜塩素酸(HClO)、過塩素酸、硝酸、オゾン水、過酢酸やニトロベンゼン等の有機過酸化物などが挙げられる。
前記原料溶液には、ドーパントが含まれていてもよい。原料溶液にドーパントを含ませることで、ドーピングを良好に行うことができる。前記ドーパントは、本発明の目的を阻害しない限り、特に限定されない。前記ドーパントとしては、例えば、スズ、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウムまたはニオブ等のn型ドーパント、またはp型ドーパントなどが挙げられる。ドーパントの濃度は、通常、約1×1016/cm〜1×1022/cmであってもよいし、また、ドーパントの濃度を例えば約1×1017/cm以下の低濃度にしてもよい。また、さらに、本発明によれば、ドーパントを約1×1020/cm以上の高濃度で含有させてもよい。
原料溶液の溶媒は、特に限定されず、水等の無機溶媒であってもよいし、アルコール等の有機溶媒であってもよいし、無機溶媒と有機溶媒との混合溶媒であってもよい。本発明においては、前記溶媒が水を含むのが好ましく、水または水とアルコールとの混合溶媒であるのがより好ましい。
(搬送工程)
搬送工程では、キャリアガスでもって前記ミストまたは前記液滴を成膜室内に搬送する。前記キャリアガスとしては、本発明の目的を阻害しない限り特に限定されず、例えば、酸素、オゾン、窒素やアルゴン等の不活性ガス、または水素ガスやフォーミングガス等の還元ガスなどが好適な例として挙げられる。また、キャリアガスの種類は1種類であってよいが、2種類以上であってもよく、流量を下げた希釈ガス(例えば10倍希釈ガス等)などを、第2のキャリアガスとしてさらに用いてもよい。また、キャリアガスの供給箇所も1箇所だけでなく、2箇所以上あってもよい。キャリアガスの流量は、特に限定されないが、0.01〜20L/分であるのが好ましく、1〜10L/分であるのがより好ましい。希釈ガスの場合には、希釈ガスの流量が、0.001〜2L/分であるのが好ましく、0.1〜1L/分であるのがより好ましい。
(成膜工程)
成膜工程では、成膜室内で前記ミストまたは液滴を熱反応させることによって、基体上に、結晶性酸化物半導体膜を成膜する。熱反応は、熱でもって前記ミストまたは液滴が反応すればそれでよく、反応条件等も本発明の目的を阻害しない限り特に限定されない。本工程においては、前記熱反応を、通常、溶媒の蒸発温度以上の温度で行うが、高すぎない温度(例えば1000℃)以下が好ましく、650℃以下がより好ましく、300℃〜650℃が最も好ましい。また、熱反応は、本発明の目的を阻害しない限り、真空下、非酸素雰囲気下、還元ガス雰囲気下および酸素雰囲気下のいずれの雰囲気下で行われてもよいが、非酸素雰囲気下または酸素雰囲気下で行われるのが好ましい。また、大気圧下、加圧下および減圧下のいずれの条件下で行われてもよいが、本発明においては、大気圧下で行われるのが好ましい。なお、膜厚は、成膜時間を調整することにより、設定することができる。
(基体)
前記基体は、前記結晶性酸化物半導体膜を支持できるものであれば特に限定されない。前記基体の材料も、本発明の目的を阻害しない限り特に限定されず、公知の基体であってよく、有機化合物であってもよいし、無機化合物であってもよい。前記基体の形状としては、どのような形状のものであってもよく、あらゆる形状に対して有効であり、例えば、平板や円板等の板状、繊維状、棒状、円柱状、角柱状、筒状、螺旋状、球状、リング状などが挙げられるが、本発明においては、基板が好ましい。基板の厚さは、本発明においては特に限定されない。
前記基板は、板状であって、前記結晶性酸化物半導体膜の支持体となるものであれば特に限定されない。絶縁体基板であってもよいし、半導体基板であってもよいし、金属基板や導電性基板であってもよいが、前記基板が、絶縁体基板であるのが好ましく、また、表面に金属膜を有する基板であるのも好ましい。なお、前記金属膜は多層膜が好ましい。前記基板としては、例えば、コランダム構造を有する基板材料を主成分として含む下地基板、またはβ−ガリア構造を有する基板材料を主成分として含む下地基板、六方晶構造を有する基板材料を主成分として含む下地基板などが挙げられる。ここで、「主成分」とは、前記特定の結晶構造を有する基板材料が、原子比で、基板材料の全成分に対し、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上含まれることを意味し、100%であってもよい。
基板材料は、本発明の目的を阻害しない限り、特に限定されず、公知のものであってよい。前記のコランダム構造を有する基板材料としては、例えば、α−Al(サファイア基板)またはα−Gaが好適に挙げられ、a面サファイア基板、m面サファイア基板、r面サファイア基板、c面サファイア基板や、α型酸化ガリウム基板(a面、m面またはr面)などがより好適な例として挙げられる。β−ガリア構造を有する基板材料を主成分とする下地基板としては、例えばβ−Ga基板、又はGaとAlとを含みAlが0wt%より多くかつ60wt%以下である混晶体基板などが挙げられる。また、六方晶構造を有する基板材料を主成分とする下地基板としては、例えば、SiC基板、ZnO基板、GaN基板などが挙げられる。基板材料に用いられる金属としては、特に限定されないが、第1の金属層または第2の金属層に用いられる金属が好ましい。
本発明においては、前記基体が、表面の一部または全部に、金属またはコランダム構造を有するのが好ましい。また、基体がコランダム構造を有する場合には、コランダム構造を有する基板材料を主成分とする下地基板であるのがより好ましく、サファイア基板またはα型酸化ガリウム基板であるのが最も好ましい。また、前記基体は、アルミニウムを含んでいてもよく、この場合、コランダム構造を有するアルミニウム含有基板材料を主成分とする下地基板であるのが好ましく、サファイア基板(好ましくはc面サファイア基板、a面サファイア基板、m面サファイア基板、r面サファイア基板)であるのがより好ましい。また、前記基体は、酸化物を含むのも好ましく、前記酸化物としては、例えば、YSZ基板、MgAl基板、ZnO基板、MgO基板、SrTiO基板、Al基板、石英基板、ガラス基板、β型酸化ガリウム基板、チタン酸バリウム基板、チタン酸ストロンチウム基板、酸化コバルト基板、酸化銅基板、酸化クロム基板、酸化鉄基板、GdGa12基板、タンタル酸カリウム基板、アルミン酸ランタン基板、ランタンストロンチウムアルミネート基板、ランタンストロンチウムガレート基板、ニオブ酸リチウム基板、タンタル酸リチウム基板、アルミニウムタンタル酸ランタンストロンチウム、酸化マンガン基板、ネオジウムガレード基板、酸化ニッケル基板、スカンジウムマグネシウムアルミネート基板、酸化ストロンチウム、チタン酸ストロンチウム基板、酸化スズ基板、酸化テルル基板、酸化チタン基板、YAG基板、イットリウム・アルミネート基板、リチウム・アルミネート基板、リチウム・ガレート基板、LAST基板、ネオジムガレート基板、イットリウム・オルトバナデイト基板などが挙げられる。
本発明においては、前記成膜工程の後、アニール処理を行ってもよい。アニールの処理温度は、本発明の目的を阻害しない限り特に限定されず、通常、300℃〜650℃であり、好ましくは350℃〜550℃である。また、アニールの処理時間は、通常、1分間〜48時間であり、好ましくは10分間〜24時間であり、より好ましくは30分間〜12時間である。なお、アニール処理は、本発明の目的を阻害しない限り、どのような雰囲気下で行われてもよいが、好ましくは非酸素雰囲気下であり、より好ましくは窒素雰囲気下である。
また、本発明においては、前記基体上に、直接、結晶性酸化物半導体膜を設けてもよいし、バッファ層(緩衝層)や応力緩和層等の他の層を介して結晶性酸化物半導体膜を設けてもよい。各層の形成手段は、特に限定されず、公知の手段であってよいが、本発明においては、ミストCVD法が好ましい。
本発明においては、前記結晶性酸化物半導体膜を、前記基体等から剥離する等の公知の手段を用いた後に、半導体層として半導体装置に用いてもよいし、そのまま半導体層として半導体装置に用いてもよい。
前記半導体装置は、前記半導体層と、前記半導体層上にショットキー電極とを少なくとも備える。前記ショットキー電極は、周期律表第4族〜第9族から選ばれる少なくとも1種の金属を含んでいれば特に限定されない。周期律表第4族の金属としては、例えば、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)などが挙げられるが、中でもTiが好ましい。周期律表第5族の金属としては、例えば、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)などが挙げられる。周期律表第6族の金属としては、例えば、クロム(Cr)、モリブデン(Mo)およびタングステン(W)等から選ばれる1種または2種以上の金属などが挙げられるが、本発明においては、よりスイッチング特性等の半導体特性を良好なものとなるのでCrが好ましい。周期律表第7族の金属としては、例えば、マンガン(Mn)、テクネチウム(Tc)、レニウム(Re)などが挙げられる。周期律表第8族の金属としては、例えば、鉄(Fe)、ルテニウム(Ru)、オスミウム(Os)などが挙げられる。周期律表第9族の金属としては、例えば、コバルト(Co)、ロジウム(Rh)、イリジウム(Ir)などが挙げられる。また、本発明においては、前記ショットキー電極が、本発明の目的を阻害しない限り、さらに周期律表第10族または第11族の金属を含んでいてもよい。周期律表第10族の金属としては、例えば、ニッケル(Ni)、パラジウム(Pd)、白金(Pt)などが挙げられるが、中でもPtが好ましい。周期律表第11族の金属としては、例えば、銅(Cu)、銀(Ag)、金(Au)などが挙げられるが、中でもAuが好ましい。
本発明においては、スイッチング特性等の半導体特性をさらにより良好なものとするため、前記ショットキー電極が周期律表第4族〜第6族から選ばれる少なくとも1種の金属または周期律表第4族〜第9族から選ばれる少なくとも1種の金属であって、周期律表第4周期の遷移金属を含むのが好ましく、周期律表第4族もしくは第6族の金属または周期律表第4族〜第6族から選ばれる少なくとも1種の金属であって、周期律表第4周期の遷移金属を含むのがより好ましい。
また、ショットキー電極は単層の金属層であってもよいし、2以上の金属膜を含んでいてもよい。前記金属層や金属膜の積層手段としては、特に限定されず、例えば、真空蒸着法、スパッタリング法などの公知の手段などが挙げられる。また、ショットキー電極を構成する金属は、合金であってもよい。本発明においては、第1の金属層が、Tiを含むのが好ましく、さらに、Auまたは/およびPtを含むのが最も好ましい。このような好ましい金属を用いることで、コランダム構造を有する半導体の半導体特性(例えば、耐久性、絶縁破壊電圧、耐圧、オン抵抗、安定性など)をより良好なものとすることができ、ショットキー特性も良好に発揮することができる。
また、本発明においては、ショットキー電極の面積が1mm以下であるのが好ましく、0.8mm以下であるのがより好ましい。
また、本発明の半導体装置は、通常、オーミック電極を備える。オーミック電極は、周期律表第4族または第11族の金属を含むのが好ましい。オーミック電極に用いられる好適な周期律表第4族または第11族の金属は、前記ショットキー電極に含まれる金属と同様であってよい。また、オーミック電極は単層の金属層であってもよいし、2以上の金属層を含んでいてもよい。金属層の積層手段としては、特に限定されず、例えば、真空蒸着法、スパッタリング法などの公知の手段などが挙げられる。また、オーミック電極を構成する金属は、合金であってもよい。本発明においては、オーミック電極が、Tiまたは/およびAuを含むのが好ましく、TiおよびAuを含むのがより好ましい。
前記半導体装置は、とりわけ、パワーデバイスに有用である。前記半導体装置としては、例えば、半導体レーザ、ダイオードまたはトランジスタ(例えば、MESFET等)などが挙げられるが、中でもダイオードが好ましく、ショットキーバリアダイオードがより好ましい。
(SBD)
図1は、本発明に係るショットキーバリアダイオード(SBD)の好適な一例を示している。図1のSBDは、n−型半導体層101a、n+型半導体層101b、ショットキー電極105aおよびオーミック電極105bを備えている。
ショットキー電極およびオーミック電極の形成は、例えば、真空蒸着法またはスパッタリング法などの公知の手段により行うことができる。より具体的に例えば、ショットキー電極を形成する場合、第1の金属層を積層させ、第1の金属層に対して、フォトリソグラフィの手法を利用したパターニングを施すことにより行うことができる。
以下、ショットキー電極105aとして第1の金属層を用い、オーミック電極105bとして、第2の金属層を用いる場合のそれぞれの態様について説明する。
図3は、本発明に用いられる好ましい第1の金属層の一例を示している。第1の金属層50aは、Au層51、Ti層52およびPt層53からなる。各層の金属膜の膜厚は特に限定されないが、Au層は、0.1nm〜10μmが好ましく、5nm〜200nmがより好ましく、10nm〜100nmが最も好ましい。周期律表第4族の金属(例えばTi等)層は1nm〜500μmが好ましく、1nm〜100μmがより好ましく、5nm〜20nmもしくは1μm〜100μmが最も好ましい。周期律表第10族の金属(例えばPt等)層は、例えば、1nm〜10μmが好ましい。なお、周期律表第11族の金属として、Agを用いる場合には、Ag膜の膜厚が、5μm〜100μmが好ましく、10μm〜80μmがより好ましく、20μm〜60μmが最も好ましい。なお、周期律表第11族の金属として、Cuを用いる場合には、Cu膜の膜厚が、1nm〜500μmが好ましく、1nm〜〜100μmがより好ましく、0.5μm〜5μmが最も好ましい。
図4は、本発明に用いられる好ましい第2の金属層の一例を示している。第2の金属層50bは、Ti層54およびAu層55からなる。各層の金属膜の膜厚は特に限定されないが、Ti層54の場合は、1nm〜500μmが好ましく、1nm〜100μmがより好ましく、5nm〜20nmもしくは1μm〜100μmが最も好ましい。Au層55の場合は、0.1nm〜10μmが好ましく、5nm〜200nmがより好ましく、10nm〜100nmが最も好ましい。
図1のSBDに逆バイアスが印加された場合には、空乏層(図示せず)がn型半導体層101aの中に広がるため、高耐圧のSBDとなる。また、順バイアスが印加された場合には、オーミック電極105bからショットキー電極105aへ電子が流れる。このようなSBDは、高耐圧・大電流用に優れており、ショットキー特性も良好で、スイッチング速度も速く、耐圧性・信頼性にも優れている。
図2は、本発明に係るショットキーバリアダイオード(SBD)の好適な他の一例を示している。図2のSBDは、図1のSBDの構成に加え、さらに絶縁体層104を備えている。より具体的には、n−型半導体層101a、n+型半導体層101b、ショットキー電極105a、オーミック電極105bおよび絶縁体層104を備えている。
絶縁体層104の材料としては、例えば、GaO、AlGaO、InAlGaO、AlInZnGaO、AlN、Hf、SiN、SiON、Al、MgO、GdO、SiOまたはSiなどが挙げられるが、本発明においては、コランダム構造を有するものであるのが好ましい。コランダム構造を有する絶縁体を絶縁体層に用いることで、界面における半導体特性の機能を良好に発現させることができる。絶縁体層104は、n−型半導体層101とショットキー電極105aとの間に設けられている。絶縁体層の形成は、例えば、スパッタリング法、真空蒸着法またはCVD法などの公知の手段により行うことができる。
その他の構成等については、上記図1のSBDの場合と同様である。
図2のSBDは、図1のSBDに比べ、さらに絶縁特性に優れており、より高い電流制御性を有する。
上記のようにして得られた半導体装置は、通常、1MHzで測定したときのキャパシタンスが0Vバイアスで1000pF以下となり、好ましくは500pF以下となり、より好ましくは150pF以下となり、このような半導体装置も本発明に含まれる。なお、単位面積あたりの前記キャパシタンスの場合には、本発明においては、1MHzで測定したときの該キャパシタンスが0Vバイアスで約10mF/m以下が好ましく、約5mF/m以下がより好ましく、約2mF/m以下が最も好ましい。
本発明の半導体装置は、上記した事項に加え、さらに公知の手段を用いて、パワーモジュール、インバータまたはコンバータとして好適に用いられ、さらには、例えば電源装置を用いた半導体システム等に好適に用いられる。前記電源装置は、公知の手段を用いて、配線パターン等に接続するなどすることにより、前記半導体装置からまたは前記半導体装置として作製することができる。図12に電源システムの例を示す。図12は、複数の前記電源装置と制御回路を用いて電源システムを構成している。前記電源システムは、図13に示すように、電子回路と組み合わせてシステム装置に用いることができる。なお、電源装置の電源回路図の一例を図14に示す。図14は、パワー回路と制御回路からなる電源装置の電源回路を示しており、インバータ(MOSFETA〜Dで構成)によりDC電圧を高周波でスイッチングしACへ変換後、トランスで絶縁及び変圧を実施し、整流MOSFET(A〜B’)で整流後、DCL(平滑用コイルL1,L2)とコンデンサにて平滑し、直流電圧を出力する。この時に電圧比較器で出力電圧を基準電圧と比較し、所望の出力電圧となるようPWM制御回路でインバータ及び整流MOSFETを制御する。
(実施例1)
1.n+型半導体層の形成
1−1.成膜装置
図5を用いて、本実施例で用いたミストCVD装置1を説明する。ミストCVD装置1は、キャリアガスを供給するキャリアガス源2aと、キャリアガス源2aから送り出されるキャリアガスの流量を調節するための流量調節弁3aと、キャリアガス(希釈)を供給するキャリアガス(希釈)源2bと、キャリアガス(希釈)源2bから送り出されるキャリアガス(希釈)の流量を調節するための流量調節弁3bと、原料溶液4aが収容されるミスト発生源4と、水5aが入れられる容器5と、容器5の底面に取り付けられた超音波振動子6と、成膜室7と、ミスト発生源4から成膜室7までをつなぐ供給管9と、成膜室7内に設置されたホットプレート8と、熱反応後のミスト、液滴および排気ガスを排出する排気口11とを備えている。なお、ホットプレート8上には、基板10が設置されている。
1−2.原料溶液の作製
0.1M臭化ガリウム水溶液に臭化スズを混合し、ガリウムに対するスズの原子比が1:0.08となるように水溶液を調整し、この際、臭化重水素酸を体積比で10%を含有させ、これを原料溶液とした。
1−3.成膜準備
上記1−2.で得られた原料溶液4aをミスト発生源4内に収容した。次に、基板10として、サファイア基板をホットプレート8上に設置し、ホットプレート8を作動させて成膜室7内の温度を470℃にまで昇温させた。次に、流量調節弁3a、3bを開いて、キャリアガス源であるキャリアガス供給手段2a、2bからキャリアガスを成膜室7内に供給し、成膜室7の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を5.0L/分に、キャリアガス(希釈)の流量を0.5L/分にそれぞれ調節した。なお、キャリアガスとして窒素を用いた。
1−4.結晶性酸化物半導体膜の形成
次に、超音波振動子6を2.4MHzで振動させ、その振動を、水5aを通じて原料溶液4aに伝播させることによって、原料溶液4aを霧化させてミスト4bを生成させた。このミスト4bが、キャリアガスによって、供給管9内を通って、成膜室7内に導入され、大気圧下、470℃にて、成膜室7内でミストが熱反応して、基板10上に膜が形成された。なお、膜厚は7.5μmであり、成膜時間は180分間であった。
1−5.評価
XRD回折装置を用いて、上記1−4.にて得られた膜の相の同定を行ったところ、得られた膜はα−Gaであった。
2.n−型半導体層の形成
2−1.成膜装置
図6を用いて、実施例で用いたミストCVD装置19を説明する。ミストCVD装置19は、基板20を載置するサセプタ21と、キャリアガスを供給するキャリアガス供給手段22aと、キャリアガス供給手段22aから送り出されるキャリアガスの流量を調節するための流量調節弁23aと、キャリアガス(希釈)を供給するキャリアガス(希釈)供給手段22bと、キャリアガス(希釈)供給手段22bから送り出されるキャリアガスの流量を調節するための流量調節弁23bと、原料溶液24aが収容されるミスト発生源24と、水25aが入れられる容器25と、容器25の底面に取り付けられた超音波振動子26と、内径40mmの石英管からなる供給管27と、供給管27の周辺部に設置されたヒーター28とを備えている。サセプタ21は、石英からなり、基板20を載置する面が水平面から傾斜している。成膜室となる供給管27とサセプタ21をどちらも石英で作製することにより、基板20上に形成される膜内に装置由来の不純物が混入することを抑制している。
2−2.原料溶液の作製
0.1M臭化ガリウム水溶液に臭化重水素酸を体積比で20%を含有させ、これを原料溶液とした。
2−3.成膜準備
上記1−2.で得られた原料溶液24aをミスト発生源24内に収容した。次に、基板20として、サファイア基板から剥離したn+型半導体膜をサセプタ21上に設置し、ヒーター28を作動させて成膜室27内の温度を510℃にまで昇温させた。次に、流量調節弁23a、23bを開いて、キャリアガス源であるキャリアガス供給手段22a、22bからキャリアガスを成膜室27内に供給し、成膜室27の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を5L/分に、キャリアガス(希釈)の流量を0.5L/分にそれぞれ調節した。なお、キャリアガスとして酸素を用いた。
2−4.半導体膜形成
次に、超音波振動子26を2.4MHzで振動させ、その振動を、水25aを通じて原料溶液24aに伝播させることによって、原料溶液24aを霧化させてミストを生成した。このミストが、キャリアガスによって成膜室27内に導入され、大気圧下、510℃にて、成膜室27内でミストが反応して、基板20上に半導体膜が形成された。なお、膜厚は3.6μmであり、成膜時間は120分間であった。
2−5.評価
XRD回折装置を用いて、上記2−4.にて得られた膜の相の同定を行ったところ、得られた膜はα−Gaであった。
3.第1の金属層(ショットキー電極)の形成
図3に示されるように、n−型半導体層上に、Pt層、Ti層およびAu層をそれぞれ電子ビーム蒸着にて積層した。なお、Pt層の厚さは10nmであり、Ti層の厚さは4nmであり、Au層の厚さは175nmであった。
4.第2の金属層(オーミック電極)の形成
図4に示されるように、n+型半導体層上に、Ti層およびAu層をそれぞれ電子ビーム蒸着にて積層した。なお、Ti層の厚さは35nmであり、Au層の厚さは175nmであった。
5.IV測定
以上のようにして得られた半導体装置につき、IV測定を実施例した。結果を図7に示す。また、耐圧を調べたところ、861Vであった。これらの結果から、実施例1の半導体装置が半導体特性およびショットキー特性に優れていることがわかる。
(実施例2)
n+型半導体層の形成において、成膜温度を525℃とし、成膜時間を20分間としたこと以外は、実施例1と同様にして半導体装置を得た。なお、n+型半導体層の厚さは、0.5μmであった。得られた半導体装置につき、IV測定を実施した。結果を図8に示す。また、オン抵抗(微分抵抗)を調べたところ、0.11mΩcmであった。
(実施例3)
(1)n−型半導体層の形成の際に、原料溶液の臭化重水素酸を体積比で15%を含有させたこと、および成膜時間を8時間としたこと、(2)n+型半導体層の形成の際に、成膜温度を500℃としたこと、および成膜時間を110分としたこと、ならびに(3)第1の金属層(ショットキー電極)の形成の際に、n−型半導体層上に、Ti層およびAu層をそれぞれ電子ビーム蒸着にて積層したこと以外は、実施例1と同様にして半導体装置を得た。得られた半導体装置につき、IV測定を実施例した。結果を図9に示す。図9からも明らかなとおり、良好な半導体特性およびショットキー特性を示していることがわかる。
(比較例1)
参考までに、ショットキー電極にPtを用いた場合のIV測定結果を図10に示す。図10からも明らかなとおり、半導体特性やショットキー特性が大幅に損なわれることがわかる。
(実施例4)
1.n−型半導体層の形成
1−1.成膜装置
図5を用いて、本実施例で用いたミストCVD装置1を説明する。ミストCVD装置1は、キャリアガスを供給するキャリアガス源2aと、キャリアガス源2aから送り出されるキャリアガスの流量を調節するための流量調節弁3aと、キャリアガス(希釈)を供給するキャリアガス(希釈)源2bと、キャリアガス(希釈)源2bから送り出されるキャリアガス(希釈)の流量を調節するための流量調節弁3bと、原料溶液4aが収容されるミスト発生源4と、水5aが入れられる容器5と、容器5の底面に取り付けられた超音波振動子6と、成膜室7と、ミスト発生源4から成膜室7までをつなぐ供給管9と、成膜室7内に設置されたホットプレート8と、熱反応後のミスト、液滴および排気ガスを排出する排気口11とを備えている。なお、ホットプレート8上には、基板10が設置されており、本実施例においては、基板10として、Snがドーピングされているα−Ga膜がバッファ層として表面に形成されているサファイア基板を用いた。なお、サファイア基板はYVO4レーザ(波長532nm、平均出力4W)のレーザ加工機を用いて、1mmのピッチ間隔で正方形格子状に溝入れ加工(溝の深さ30μm)されたものを用いた。
1−2.原料溶液の作製
0.1M臭化ガリウム水溶液に臭化水素酸を体積比で10%を含有させ、これを原料溶液とした。
1−3.成膜準備
上記1−2.で得られた原料溶液4aをミスト発生源4内に収容した。次に、基板10として、バッファ層付きサファイア基板をホットプレート8上に設置し、ホットプレート8を作動させて成膜室7内の温度を470℃にまで昇温させた。次に、流量調節弁3a、3bを開いて、キャリアガス源であるキャリアガス供給手段2a、2bからキャリアガスを成膜室7内に供給し、成膜室7の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を2.0L/分に、キャリアガス(希釈)の流量を0.5L/分にそれぞれ調節した。なお、キャリアガスとして酸素を用いた。
1−4.結晶性酸化物半導体膜の形成
次に、超音波振動子6を2.4MHzで振動させ、その振動を、水5aを通じて原料溶液4aに伝播させることによって、原料溶液4aを霧化させてミスト4bを生成させた。このミスト4bが、キャリアガスによって、供給管9内を通って、成膜室7内に導入され、大気圧下、470℃にて、成膜室7内でミストが熱反応して、基板10上に膜が形成された。なお、膜厚は約5μmであり、成膜時間は135分間であった。
1−5.評価
XRD回折装置を用いて、上記1−4.にて得られた膜の相の同定を行ったところ、得られた膜はα−Gaであった。
2.n+型半導体層の形成
2−1.成膜装置
上記1−1で用いた成膜装置と同じものを用いた。なお、基板10として、上記1−4で得られた積層体を用いて、n−型半導体層上にn+型半導体層を積層した。
2−2.原料溶液の作製
0.1M臭化ガリウム水溶液に臭化スズを混合し、ガリウムに対するスズの原子比が1:0.08となるように水溶液を調整し、この際、臭化水素酸を体積比で10%を含有させ、これを原料溶液とした。
2−3.成膜準備
上記2−2.で得られた原料溶液4aをミスト発生源4内に収容した。次に、基板10として、バッファ層付きサファイア基板をホットプレート8上に設置し、ホットプレート8を作動させて成膜室7内の温度を450℃にまで昇温させた。次に、流量調節弁3a、3bを開いて、キャリアガス源であるキャリアガス供給手段2a、2bからキャリアガスを成膜室7内に供給し、成膜室7の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を2.0L/分に、キャリアガス(希釈)の流量を0.5L/分にそれぞれ調節した。なお、キャリアガスとして窒素を用いた。
2−4.結晶性酸化物半導体膜の形成
次に、超音波振動子6を2.4MHzで振動させ、その振動を、水5aを通じて原料溶液4aに伝播させることによって、原料溶液4aを霧化させてミスト4bを生成させた。このミスト4bが、キャリアガスによって、供給管9内を通って、成膜室7内に導入され、大気圧下、450℃にて、成膜室7内でミストが熱反応して、基板10上に膜が形成された。なお、膜厚は約2.9μmであり、成膜時間は120分間であった。
2−5.評価
XRD回折装置を用いて、上記2−4.にて得られた膜の相の同定を行ったところ、得られた膜はα−Gaであった。
3.オーミック電極の形成
上記2−4.で得られた積層体のn+型半導体層上に、スパッタにより、Ti膜(厚さ70nm)及びAu膜(厚さ30nm)をそれぞれ形成し、オーミック電極とした。
4.基板除去
上記3.で得られた積層体のオーミック電極上に、仮ウエハーを一時的に接合し、ついで、CMP装置を用いて、基板10を研磨し、上記サファイア基板と上記バッファ層とを除去した。
5.ショットキー電極の形成
上記4.で得られた積層体のn−型半導体層上に、EB蒸着により、Cr膜(厚さ50nm)およびAl膜(厚さ5000nm)をそれぞれ形成し、ショットキー電極(直径300μm)とした。その後、TO220にパッケージングし、実装済みのSBDを得た。
6.半導体特性の評価
(スイッチング特性評価)
上記5.で得られたSBDのスイッチング特性を評価した。結果を図11に示す。また、SiCを半導体として用いた場合と、Siを半導体として用いた場合のスイッチング特性もあわせて図11に示す。図11から明らかなとおり、本発明品は、他のものに比べ、波形が良好であり、スイッチング特性に優れていることがわかる。
(熱抵抗特性評価)
上記5.で得られたSBDにつき、熱抵抗測定を実施した。その結果、本発明品のRjCは13.9℃/Wであり、SiCを半導体として用いたもの(RjC=12.5℃/W)と同等以上の性能であった。また、単位面積の熱抵抗を考慮すると、SiCを半導体として用いたものに比べ、チップサイズが6割程度の小さいもので同等の性能を発揮できることがわかった。
(キャパシタンス測定)
上記5.で得られたSBDにつき、CV測定(1MHz)を実施した。その結果、0Vバイアスで130pFであった。なお、単位面積あたりのキャパシタンスは1.84F/mである。このことから、SiCを半導体として用いたものよりもキャパシタンスが小さいので、本発明品はスイッチング特性が良好であることがわかる。
(熱抵抗算出評価)
上記5.で得られたSBDにつき、熱抵抗を算出したところ、15.6(K/W)であった。そして、熱抵抗が15.6(K/W)である場合であって、半導体層にβ−Gaを用いた場合(比較例2)やSiCを用いた場合(比較例3)と、本発明の場合(実施例4)とを比較評価した。結果を表1に示す。表1から明らかなとおり、本発明品は、比較例品に比べ、半導体層の表面積が小さく、かつ厚さ0.01mm以下であっても、良好な熱抵抗特性を示しており、半導体装置の小型化に適していることがわかる。
Figure 0006906217
(実施例5)
ショットキー電極を直径300μmのものに代えて直径500μmのものを用いたこと以外、実施例4と同様にして、SBDを得た。得られたSBDのスイッチング特性を評価したところ、実施例4と同様の波形が確認され、良好なスイッチング特性であることがわかった。
(実施例6)
(1)n−型半導体層の形成の際に、成膜温度を520℃としたこと、および成膜時間を25分としたこと、(2)n+型半導体層の形成の際に、原料溶液として、ガリウムアセチルアセトナート0.05モル、塩酸1.5体積%、塩化スズ(II)0.2原子%および水の混合した溶液を用いたこと、成膜温度を480℃としたこと、および成膜時間を150分としたこと、成膜装置として、図6に示されるミストCVD装置を用いたこと、ならびに(3)第1の金属層(ショットキー電極)の形成の際に、n−型半導体層上に、第1の金属層として、Ti層を電子ビーム蒸着にて積層したこと以外は、実施例1と同様にして半導体装置を得た。なお、n+型半導体層上にオーミック電極を形成し、また、ショットキー電極のカバー電極として、Ti層上に、Cu層を電子ビーム蒸着にて形成した。得られた半導体装置につき、スキャニングインターナルフォトエミッション(走査内部光電子放出顕微鏡:SIPM)測定を実施した。得られたSIPM像を図15および図16に示す。図15は、フォトイールドマップを示しており、(a)はアニール前のSIPM像を示しており、(b)は200℃アニール後のSIPM像を示しており、(c)は、300℃アニール後のSIPM像を示している。図15から、フォトイールドの面内分布が均一であり、面内分布の熱的安定性が優れていることが分かる。また、図16は、ショットキーバリアハイトマップを示しており、図16から、バリアハイトの面内分布が均一であることが分かる。
(実施例7)
第1の金属層(ショットキー電極)の形成の際に、n−型半導体層上に、第1の金属層として、Fe層を電子ビーム蒸着にて積層したこと以外は、実施例6と同様にして半導体装置を得た。なお、n+型半導体層上にオーミック電極を形成し、また、ショットキー電極のカバー電極として、Fe層上に、Ti層およびCu層をそれぞれ電子ビーム蒸着にて形成した。得られた半導体装置につき、実施例6と同様にして、スキャニングインターナルフォトエミッション(走査内部光電子放出顕微鏡:SIPM)測定を実施した。得られたSIPM像を図17および図18に示す。図17は、フォトイールドマップを示しており、(a)はアニール前のSIPM像を示しており、(b)は200℃アニール後のSIPM像を示しており、(c)は、300℃アニール後のSIPM像を示している。図17から、フォトイールドの面内分布が均一であり、面内分布の熱的安定性が優れていることが分かる。また、図18は、ショットキーバリアハイトマップを示しており、図18から、バリアハイトの面内分布が均一であることが分かる。
以上のとおり、本発明の半導体装置は、半導体特性およびショットキー特性に優れていることがわかる。
本発明の半導体装置は、半導体(例えば化合物半導体電子デバイス等)、電子部品・電気機器部品、光学・電子写真関連装置、工業部材などあらゆる分野に用いることができるが、とりわけ、パワーデバイスに有用である。
1 ミストCVD装置
2a キャリアガス源
2b キャリアガス(希釈)源
3a 流量調節弁
3b 流量調節弁
4 ミスト発生源
4a 原料溶液
4b ミスト
5 容器
5a 水
6 超音波振動子
7 成膜室
8 ホットプレート
9 供給管
10 基板
11 排気口
19 ミストCVD装置
20 基板
21 サセプタ
22a キャリアガス供給手段
22b キャリアガス(希釈)供給手段
23a 流量調節弁
23b 流量調節弁
24 ミスト発生源
24a 原料溶液
25 容器
25a 水
26 超音波振動子
27 供給管
28 ヒーター
29 排気口
50a 第1の金属層
50b 第2の金属層
51 Au層
52 Ti層
53 Pt層
54 Ti層
55 Au層
101a n−型半導体層
101b n+型半導体層
104 絶縁体層
105a ショットキー電極
105b オーミック電極

Claims (12)

  1. コランダム構造を有する結晶性酸化物半導体を主成分として含む半導体層と、前記半導体層上に設けられ前記半導体層とショットキー接合する金属層を含むショットキー電極とを少なくとも備える半導体装置であって、前記金属層が、周期律表第4族〜第9族から選ばれる少なくとも1種の金属であって、周期律表第4周期の遷移金属を含むことを特徴とする半導体装置。
  2. 前記金属層が、周期律表第4族〜第6族から選ばれる少なくとも1種の金属を含むことを特徴とする請求項1記載の半導体装置。
  3. 前記半導体層は、第1の半導体層と、第2の半導体層とを有し、前記金属層は第1の半導体層とショットキー接合し、第1の半導体層及び第2の半導体層が、それぞれコランダム構造を有する結晶性酸化物半導体を主成分として含み、第1の半導体層のキャリア密度が、第2の半導体層のキャリア密度よりも小さいことを特徴とする請求項1記載の半導体装置。
  4. 前記結晶性酸化物半導体がガリウムまたはインジウムを含む請求項1記載の半導体装置。
  5. 前記結晶性酸化物半導体が、α−Gaまたはその混晶である請求項1記載の半導体装置。
  6. さらに、オーミック電極を備えており、前記オーミック電極が、周期律表第4族または第11族の金属を含む請求項1記載の半導体装置。
  7. コランダム構造を有する結晶性酸化物半導体を主成分として含む半導体層と、前記半導体層上にショットキー電極とを少なくとも備える半導体装置であって、
    前記半導体層は第1の半導体層と第2の半導体層とを有し、前記ショットキー電極は第1の半導体層とショットキー接合し、第1の半導体層のキャリア密度が、第2の半導体層のキャリア密度よりも小さく、
    前記半導体層の厚さが40μm以下であり、
    ショットキー電極の面積が1mm 以下であり、
    1A以上の電流が流れる、
    ことを特徴とする半導体装置。
  8. 1MHzで測定したときのキャパシタンスが0Vバイアスで1000pF以下であることを特徴とする請求項記載の半導体装置。
  9. 前記半導体層の表面積が1mm以下である請求項記載の半導体装置。
  10. パワーデバイスである請求項1記載の半導体装置。
  11. パワーモジュール、インバータまたはコンバータである請求項1記載の半導体装置。
  12. 半導体装置を備える半導体システムであって、前記半導体装置が、請求項1記載の半導体装置である半導体システム。
JP2016244946A 2015-12-18 2016-12-17 半導体装置 Active JP6906217B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015248071 2015-12-18
JP2015248071 2015-12-18
JP2016196065 2016-10-03
JP2016196065 2016-10-03

Publications (2)

Publication Number Publication Date
JP2018060992A JP2018060992A (ja) 2018-04-12
JP6906217B2 true JP6906217B2 (ja) 2021-07-21

Family

ID=61908656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016244946A Active JP6906217B2 (ja) 2015-12-18 2016-12-17 半導体装置

Country Status (1)

Country Link
JP (1) JP6906217B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7385857B2 (ja) * 2019-04-03 2023-11-24 株式会社タムラ製作所 ショットキーダイオード
WO2021010428A1 (ja) * 2019-07-16 2021-01-21 株式会社Flosfia 半導体装置および半導体システム
JPWO2021010427A1 (ja) * 2019-07-16 2021-01-21
EP4089728A4 (en) 2020-01-10 2023-06-28 Flosfia Inc. Conductive metal oxide film, semiconductor element, and semiconductor device
WO2021157720A1 (ja) * 2020-02-07 2021-08-12 株式会社Flosfia 半導体素子および半導体装置
CN115053355A (zh) * 2020-02-07 2022-09-13 株式会社Flosfia 半导体元件和半导体装置
JPWO2022230830A1 (ja) * 2021-04-26 2022-11-03
TW202249277A (zh) * 2021-04-26 2022-12-16 日商Flosfia股份有限公司 半導體裝置
EP4333076A1 (en) * 2021-04-26 2024-03-06 Flosfia Inc. Semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140217471A1 (en) * 2011-09-08 2014-08-07 National Institute of Information and Communicatio ns Technology Ga2O3 SEMICONDUCTOR ELEMENT
KR102267094B1 (ko) * 2013-08-19 2021-06-18 이데미쓰 고산 가부시키가이샤 산화물 반도체 기판 및 쇼트키 배리어 다이오드
US9379190B2 (en) * 2014-05-08 2016-06-28 Flosfia, Inc. Crystalline multilayer structure and semiconductor device
EP2942804B1 (en) * 2014-05-08 2017-07-12 Flosfia Inc. Crystalline multilayer structure and semiconductor device

Also Published As

Publication number Publication date
JP2018060992A (ja) 2018-04-12

Similar Documents

Publication Publication Date Title
KR102404769B1 (ko) 반도체 장치
JP6906217B2 (ja) 半導体装置
JP2022137303A (ja) 半導体装置
CN109427867B (zh) 半导体装置
TWI783003B (zh) 半導體裝置
WO2020013244A1 (ja) 半導体装置
WO2020013242A1 (ja) 半導体装置
WO2020013262A1 (ja) 半導体装置および半導体装置を含む半導体システム
JP2017118090A (ja) 積層構造体および半導体装置
JP7065440B2 (ja) 半導体装置の製造方法および半導体装置
JP6932904B2 (ja) 半導体装置
JP6999106B2 (ja) 半導体装置
JP6999103B2 (ja) 半導体装置
WO2020235690A1 (ja) 半導体装置
WO2020235691A1 (ja) 半導体装置
WO2021010428A1 (ja) 半導体装置および半導体システム
WO2021010427A1 (ja) 積層構造体および半導体装置
JP6999104B2 (ja) 半導体装置
WO2020013243A1 (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210622

R150 Certificate of patent or registration of utility model

Ref document number: 6906217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150