JP6903910B2 - Fuel cell manufacturing method, membrane / electrode assembly, fuel cell - Google Patents

Fuel cell manufacturing method, membrane / electrode assembly, fuel cell Download PDF

Info

Publication number
JP6903910B2
JP6903910B2 JP2016248157A JP2016248157A JP6903910B2 JP 6903910 B2 JP6903910 B2 JP 6903910B2 JP 2016248157 A JP2016248157 A JP 2016248157A JP 2016248157 A JP2016248157 A JP 2016248157A JP 6903910 B2 JP6903910 B2 JP 6903910B2
Authority
JP
Japan
Prior art keywords
electrode
film
fuel cell
electrolyte membrane
ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016248157A
Other languages
Japanese (ja)
Other versions
JP2018101580A (en
JP2018101580A5 (en
Inventor
松永 正文
正文 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mtek Smart Corp
Original Assignee
Mtek Smart Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mtek Smart Corp filed Critical Mtek Smart Corp
Priority to JP2016248157A priority Critical patent/JP6903910B2/en
Priority to PCT/JP2017/044287 priority patent/WO2018116875A1/en
Priority to CN201780078210.4A priority patent/CN110100341B/en
Publication of JP2018101580A publication Critical patent/JP2018101580A/en
Publication of JP2018101580A5 publication Critical patent/JP2018101580A5/ja
Application granted granted Critical
Publication of JP6903910B2 publication Critical patent/JP6903910B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Inert Electrodes (AREA)

Description

本発明はPEFC(Polymer Electrolyte membrane Fuel Cell)型燃料電池の電極形成方法、及びその方法により製造された燃料電池に関する。
更に詳細にはCCM( Catalyst coated membrane)式電解質膜・電極形成方法に係る。本発明による塗布とは特に限定しないが、ロールコート、ダイコート、スクリーンプリンティング、カーテンコート、ディスペンス、インクジェット、スプレイを含む霧化(含む繊維化)施与、静電霧化(含む繊維化)施与等の粒子や繊維を被塗物に塗布する工法を含み、マイクロカーテン施与も含む。
マイクロカーテンとは広角パターンのエアレススプレイノズル等で液体などを0.3MPa前後の比較的低圧でスプレイする際、霧になる前の液膜の部分を使用して被塗物とスプレイノズルをトラバースして塗布する方法であって塗面にオーバースプレイ粒子は発生しない。被塗物を通り過ぎて距離が離れると霧状に変化する。
また霧化(繊維化)施与とはスプレイによる粒子化以外に、液体や溶融体などを超音波、エレクトロスピニングなどのスピン、回転体による遠心力、メルトブローン方式などで粒子や繊維をつくりだす方法により必要により圧縮エアの力を借りて(air assist)対象物にそれらを付着あるいは塗布する工法を指す。
The present invention relates to a method for forming electrodes of a PEFC (Polymer Electrolyte membrane Fuel Cell) type fuel cell, and a fuel cell manufactured by the method.
More specifically, the present invention relates to a CCM (Catalyst coated membrane) type electrolyte membrane / electrode forming method. The coating according to the present invention is not particularly limited, but roll coating, die coating, screen printing, curtain coating, dispense, inkjet, atomization (including fibrosis) including spray, and electrostatic atomization (including fibrosis) are applied. It includes a method of applying particles and fibers such as, etc. to an object to be coated, and also includes the application of micro curtains.
What is a micro curtain? When spraying liquid etc. at a relatively low pressure of around 0.3 MPa with a wide-angle pattern airless spray nozzle etc., traverse the object to be coated and the spray nozzle using the part of the liquid film before becoming mist. Overspray particles are not generated on the coated surface. It changes into a mist as it passes the object to be coated and the distance increases.
In addition to atomization by spraying, atomization (fiberization) is a method of creating particles and fibers by spinning liquids and melts such as ultrasonic waves and electrospinning, centrifugal force by rotating bodies, and melt blown method. It refers to a method of attaching or applying them to an object with the help of compressed air (air assist) if necessary.

従来、電解質膜にアイオノマーの一種である電解質溶液と、カーボン粒子やカーボン繊維に担持した白金等とからなる微粉を混合し電極触媒インクとしてGDL(Gas diffusion layer)に塗布して電解質膜に圧着したり、PTFEなどの離形フィルムに塗布して電解質膜に転写したりしていた。前記圧着方法や転写方式は液体が介在しないため電解質膜と電極の間抵抗が生じ燃料電池の性能を落としていた。それを解決する為CCM方式の電極触媒インクを電解質膜に直接塗布する方法が提案されている。 Conventionally, an electrolyte solution, which is a kind of ionomer, and fine powder consisting of carbon particles and platinum supported on carbon fibers are mixed with an electrolyte membrane, applied to GDL (Gas diffusion layer) as an electrode catalyst ink, and pressure-bonded to the electrolyte membrane. Or, it was applied to a release film such as PTFE and transferred to an electrolyte membrane. Since the crimping method and the transfer method do not involve liquid, resistance occurs between the electrolyte membrane and the electrodes, which deteriorates the performance of the fuel cell. In order to solve this problem, a method of directly applying the CCM type electrode catalyst ink to the electrolyte membrane has been proposed.

特許文献1は本発明者により発明された方法であって、ロール・ツー・ロール(Roll to Roll)用の電解質膜を巻き出して加熱した吸着ドラムや吸着ベルトに吸着した状態で電極インクをスプレイ等により積層塗布し乾燥させる方法が提案されている。吸着ドラムなどの加熱により電解質膜が吸着加熱された状態でスプレイ等により薄膜で積層されるのでスプレイ粒子は電解質膜に塗着しレベリングした瞬間に溶媒が瞬時に揮発する。そのため電解質にダメージを与えずまた密着性がたかまるので電極と電解質膜の界面抵抗が極限まで低くできるので理想的なCCMが形成できる。また吸着ドラムと電解質の間に電解質膜より幅の広い通気性の紙やフィルムを介在させて電解質膜を吸引するので吸着ドラムなどの多孔体の吸着痕を残さないようにして電解質膜面全体を均一に吸引する提案もなされている。 Patent Document 1 is a method invented by the present inventor, in which an electrode ink is sprayed in a state where an electrolyte film for roll to roll is unwound and adsorbed on a heated adsorption drum or adsorption belt. A method of laminating and coating and drying has been proposed. Since the electrolyte membrane is adsorbed and heated by heating of an adsorption drum or the like and laminated as a thin film by spraying or the like, the spray particles are instantly volatilized at the moment when they are applied to the electrolyte membrane and leveled. Therefore, since the electrolyte is not damaged and the adhesion is increased, the interfacial resistance between the electrode and the electrolyte membrane can be reduced to the utmost limit, so that an ideal CCM can be formed. In addition, since the electrolyte membrane is sucked by interposing a breathable paper or film wider than the electrolyte membrane between the adsorption drum and the electrolyte, the entire surface of the electrolyte membrane is covered without leaving adsorption marks of the porous body such as the adsorption drum. Proposals have also been made for uniform suction.

特許文献2も本発明者により発明された方法であってロール・ツー・ロール(Roll to Roll)用の電解質膜の両面に電極形状のマスクとしてのフィルムを貼り合わせたて電極形状の凹部を形成し、それを巻き出して加熱した吸着ロールや吸着ベルトで吸着しながら電極インクを積層塗布して巻き取る方法が提案されている。またマスクと電解質膜間で形成された電極形状の凹部に触媒微粉を充填して電極形成を行う方法も提案されている。この方法においても電極インクを塗布する際は通気性基材を介して電解質膜を加熱した吸着ドラムなどで吸引しながら電極インクを塗布することを推奨している。 Patent Document 2 is also a method invented by the present inventor, in which a film as an electrode-shaped mask is bonded to both sides of an electrolyte membrane for roll-to-roll to form an electrode-shaped recess. Then, a method has been proposed in which the electrode ink is laminated and applied while being unwound and adsorbed by a heated adsorption roll or adsorption belt and wound up. A method of forming an electrode by filling an electrode-shaped recess formed between the mask and the electrolyte membrane with fine catalyst powder has also been proposed. Also in this method, when applying the electrode ink, it is recommended to apply the electrode ink while sucking the electrolyte membrane with a heated adsorption drum or the like via a breathable base material.

CCM方式は理想的であるが、電解質膜は湿気などに敏感であり電極触媒インクを塗布すると一瞬にして変形する為、前述のように加熱吸着ベルトや加熱吸着ロールなどに電解質膜を吸着させて変形しないようにして移動しながらスプレイノズルやスロットノズルなどで塗布する試みがなされている。しかし室温で真円度を数ミクロン以下に研磨装置で研磨した吸着ロールであっても加熱すると複雑な構造故ロールは大きくたわみ変形して真円度が極めて悪かった。そのため液膜を介して接触するスリットやスロットノズルと呼ばれる方法で行うとノズル先端と電解質膜との距離が変化し距離が離れ過ぎる箇所が発生する。そのような現象が起きると電極インクの塗布量は極めて少ないため、溶媒量の多い粘度の低い電極インクを薄膜で塗布する関係からポーラス状の塗布面になり均一な塗布を得ることは極めて困難であった。その課題を解決するために本発明者等によりその発明された特開2010−149257ではアプリケーション温度に加熱した状態で吸着ロール表面を研磨し真円度を5ミクロン以下にできる方法が提案されている。また常温で吸着ロールを研磨したと推定さる特開2015−15258では電解質膜を吸着するロールを冷却して電極インクを電解質膜にスリットノズルで塗布し、ロールを回転移動して冷却ロールに吸着された電解質膜上の電極インクを熱風や赤外線で加熱する方法が提案されている。しかしこの方法では触媒の乾燥後の塗布量はアノードで平方センチ当たり例えば0.1ミリグラム、カソードで0.3ミリグラムと薄膜であるためロールの真円度を3ミクロンとしても電解質膜とノズル先端との距離に影響されないようなウェット膜を厚くする必要が要求される。そのため電解質溶液と触媒を合した固形分を例えば15パーセント以下にする必要があることが予想できる。そうすると乾燥ゾーンまでの間、溶媒(水とアルコール系の混合溶媒)による電解質膜の湿潤と変形を抑えるための強力な真空ポンプによる吸着があっても電解質膜の界面では溶媒によるダメージがあることは想像に難くない。 The CCM method is ideal, but the electrolyte membrane is sensitive to moisture and deforms in an instant when the electrode catalyst ink is applied. Therefore, as described above, the electrolyte membrane is adsorbed on a heat adsorption belt or a heat adsorption roll. Attempts have been made to apply with a spray nozzle or slot nozzle while moving without deforming. However, even if the adsorption roll is polished to a roundness of several microns or less at room temperature by a polishing device, the roll is greatly flexed and deformed due to its complicated structure when heated, and the roundness is extremely poor. Therefore, if a method called a slit or a slot nozzle that contacts through the liquid film is used, the distance between the tip of the nozzle and the electrolyte membrane changes, and there are places where the distance is too large. When such a phenomenon occurs, the coating amount of the electrode ink is extremely small, and since the electrode ink having a large amount of solvent and low viscosity is coated with a thin film, the coating surface becomes porous and it is extremely difficult to obtain a uniform coating. there were. In order to solve this problem, Japanese Patent Application Laid-Open No. 2010-149257, which was invented by the present inventors, proposes a method capable of polishing the surface of an adsorption roll while heated to an application temperature to reduce the roundness to 5 microns or less. .. Further, in Japanese Patent Application Laid-Open No. 2015-15258, which is presumed to have polished the adsorption roll at room temperature, the roll that adsorbs the electrolyte membrane is cooled, electrode ink is applied to the electrolyte membrane with a slit nozzle, and the roll is rotated and adsorbed on the cooling roll. A method of heating the electrode ink on the electrolyte film with hot air or infrared rays has been proposed. However, in this method, the amount of coating after drying of the catalyst is as thin as 0.1 mg per square centimeter at the anode and 0.3 mg at the cathode, so even if the roundness of the roll is 3 microns, the electrolyte membrane and the tip of the nozzle It is required to make the wet film thick so that it is not affected by the distance. Therefore, it can be expected that the solid content of the electrolyte solution and the catalyst must be reduced to, for example, 15% or less. Then, until the drying zone, even if there is adsorption by a powerful vacuum pump to suppress the wetting and deformation of the electrolyte membrane by the solvent (mixed solvent of water and alcohol), there is damage by the solvent at the interface of the electrolyte membrane. It's not hard to imagine.

特開2004−351413JP-A-2004-351413 特開2005−63780JP-A-2005-63780

電解質膜は通常キャスティング工法で製造されるため支持基材のバックシートがあるため片方の電極形成のための塗布は電解質膜を変形させることなくスプレイでもスロットノズルでも塗布できる。しかし電解質膜は25ミクロン以下更には15ミクロン以下と薄くまた引っ張ると伸びがあり、上記のごとく空気中の水分で簡単に変形する極めてデリケートな基材のため反対面の電極形成は極めて難しくまた電解質膜の両サイドに電極形成された電解質膜を巻き取ることは極めて難しかった。 Since the electrolyte membrane is usually manufactured by the casting method and has a back sheet as a supporting base material, the coating for forming one of the electrodes can be applied by either a spray or a slot nozzle without deforming the electrolyte membrane. However, the electrolyte membrane is as thin as 25 microns or less and even 15 microns or less, and stretches when pulled, and as described above, it is extremely difficult to form electrodes on the opposite surface because it is an extremely delicate substrate that easily deforms due to moisture in the air, and the electrolyte. It was extremely difficult to wind up the electrolyte membrane having electrodes formed on both sides of the membrane.

本発明は前述の課題を解決するためになされたもので、本発明の目的は高品質で耐久性のあるPEFC型燃料電池用膜電極アッセンブリー(MEA)の製造方法とMEAを提供することである。
より具体的にはロール・ツー・ロール(Roll to Roll)の電解質膜に直接電極インクを塗布し高性能の膜・電極アッセンブリーを製造し、ひいては高性能の燃料電池を製造することにある。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing a high quality and durable membrane electrode assembly (MEA) for a PEFC type fuel cell and MEA. ..
More specifically, the present invention is to directly apply electrode ink to a roll-to-roll electrolyte membrane to manufacture a high-performance film / electrode assembly, and eventually to manufacture a high-performance fuel cell.

本発明はバックシートで支持された長尺の電解質膜を連続的または間欠的に移動して電極インクを塗布し電解質膜の片側に電極を形成する方法であって、前記バックシート面の反対側の電解質膜面の両サイドに補強テープを貼りつける第一の工程と、前記補強テープを貼り付けた面の電解質膜に第一の電極インクを塗布する第二の工程と、第一の電極インクを乾燥させて第一の電極を形成する第三の工程と、少なくとも片側の電極が形成された両サイドの縦断面が補強テープ、電解質膜、バックシートの層からなる複合シートであって該複合シートを使用して電解質膜・電極アッセンブリーを製造することを特徴とする燃料電池の膜・電極アッセンブリーの製造方法を提供する。 The present invention is a method in which a long electrolyte film supported by a back sheet is continuously or intermittently moved to apply electrode ink to form an electrode on one side of the electrolyte film, and the opposite side of the back sheet surface. The first step of attaching reinforcing tapes to both sides of the electrolyte film surface, the second step of applying the first electrode ink to the electrolyte film of the surface to which the reinforcing tape is attached, and the first electrode ink. A third step of drying to form the first electrode, and a composite sheet in which the vertical cross sections of both sides on which at least one electrode is formed are composed of a reinforcing tape, an electrolyte film, and a back sheet layer. Provided is a method for manufacturing a membrane / electrode assembly of a fuel cell, which comprises manufacturing an electrolyte membrane / electrode assembly using a sheet.

本発明はバックシートで支持された長尺の電解質膜を連続的または間欠的に移動して電極インクを塗布し電解質の片側に電極を形成する方法であって、前記バックシート面の反対側に第一の電極インクを塗布する工程と、第一の電極インクを乾燥して第一の電極を形成する工程と、第一の電極を支持する通気性基材を準備する工程と、前記電解質膜の第一の電極インクの塗布面の両サイドの電極非塗布部と前記通気性基材を接着剤または粘着剤を介在させて貼り合わせる工程と、前記両サイド以外の中央部よりの縦断面が通気性基材、電極インク、電解質膜、バックシート層として密着した複合シートにする工程とからなり該複合シートを使用して電解質膜・電極アッセンブリーを製造することを特徴とする燃料電池の膜・電極アッセンブリーの製造方法を提供する。 The present invention is a method of continuously or intermittently moving a long electrolyte film supported by a back sheet to apply electrode ink to form an electrode on one side of the electrolyte, on the opposite side of the back sheet surface. A step of applying the first electrode ink, a step of drying the first electrode ink to form the first electrode, a step of preparing a breathable base material for supporting the first electrode, and the electrolyte film. The step of adhering the non-coated portions of the electrodes on both sides of the coated surface of the first electrode ink and the breathable base material with an adhesive or an adhesive, and the vertical cross section from the central portion other than both sides. A fuel cell membrane characterized in that an electrolyte membrane / electrode assembly is manufactured using the composite sheet, which comprises a step of forming a composite sheet in close contact as a breathable base material, an electrode ink, an electrolyte membrane, and a back sheet layer. A method for manufacturing an electrode assembly is provided.

本発明は加熱吸着ロールまたは加熱吸着ベルトに前記複合シートの通気性基材側を吸着する工程と、前記バックシートを剥離する工程と、前記電解質膜を前記通気性基材を介して加熱吸引しながら前記第一の電極の反対面の電解質膜上に第二の電極インクを塗布する工程と、前記第二の電極インクを乾燥させて第二の電極を形成する工程ととからなることを特徴とする燃料電池の膜・電極アッセンブリーの製造方法を提供する。 The present invention includes a step of adsorbing the breathable base material side of the composite sheet on a heat suction roll or a heat suction belt, a step of peeling off the back sheet, and heating and sucking the electrolyte film through the breathable base material. However, it is characterized by comprising a step of applying the second electrode ink on the electrolyte film on the opposite surface of the first electrode and a step of drying the second electrode ink to form the second electrode. Provided is a method for manufacturing a membrane / electrode assembly of a fuel cell.

本発明は前記膜・電極アッセンブリーを巻き取るにあたり前記第二の電極を支持するための離形処理された基材を前記第二の電極に積層して、または前記通気性基材があらかじめ離形処理されていることを特徴とする燃料電池の膜・電極アッセンブリーの製造方法を提供する。 In the present invention, when winding the membrane / electrode assembly, a demolding-treated base material for supporting the second electrode is laminated on the second electrode, or the breathable base material is preliminarily demolded. Provided is a method for manufacturing a membrane / electrode assembly of a fuel cell, which is characterized by being processed.

本発明は前記補強テープを貼り付け第一の電極を形成させた面に通気性基材を重ねて吸着ロールまたは吸着ベルトで吸引する工程と、バックシートを前記電解質面から剥離する工程と、前記第一の電極の反対面の電解質膜を加熱吸着しながら第二の電極インクを塗布する工程と、前記第二の電極インクを乾燥させて第二の電極を形成する工程とからなることを特徴とする燃料電池の膜・電極アッセンブリーの製造方法を提供する。 The present invention comprises a step of superimposing a breathable base material on a surface on which the reinforcing tape is attached and forming a first electrode, and sucking the back sheet with a suction roll or a suction belt, and a step of peeling the back sheet from the electrolyte surface. It is characterized by comprising a step of applying a second electrode ink while heating and adsorbing an electrolyte film on the opposite surface of the first electrode, and a step of drying the second electrode ink to form a second electrode. Provided is a method for manufacturing a membrane / electrode assembly of a fuel cell.

本発明は前記通気性基材の両サイドに介在した接着剤または粘着剤は通気性基材にポーラス状に塗布されていることを特徴とする膜・電極アッセンブリーの製造方法。 The present invention is a method for producing a membrane / electrode assembly, characterized in that an adhesive or an adhesive interposed on both sides of the breathable base material is applied to the breathable base material in a porous shape.

本発明では接着剤または粘着剤は微粘着剤も含み少なくとも耐溶剤性があることを特徴とする膜・電極アッセンブリーの製造方法を提供する。 The present invention provides a method for producing a film / electrode assembly, wherein the adhesive or the pressure-sensitive adhesive includes a slight pressure-sensitive adhesive and has at least solvent resistance.

本発明はロール・ツー・ロール(Roll to Roll)で移動する燃料電池用電解質膜の片側にアノード極を、アノード極の反対側にカソード極の触媒を含む電極を形成した膜・電極アッセンブリーを用いてなる燃料電池であって,バックシートを備えた電解質膜の両端に補強用フィルムを施与する第一の工程と、加熱吸着ロールまたは加熱吸着ベルトでバックシートを吸着して前記補強用フィルムが施与された面に触媒を塗布する第二の工程と、触媒を乾燥または圧着する第三の工程と、
吸着機構を備え回転移動するロールまたはベルトに前記第一の電極面を通気性シートを介して吸着する第四の工程と、前記電解質膜の電極形成の反対面のバックシートを剥離する第五の工程と、前記第一の電極の反対面の電解質膜を前記通気性基材を介して加熱吸引しながら触媒を塗布して第二の電極を形成する第六の工程と、電極を乾燥または圧着する第七の工程と、両極の電極が形成された電解質膜を最終的に巻取ることを特徴とする膜・電極アッセンブリーを用いてなる燃料電池を提供する。
The present invention uses a film / electrode assembly in which an anode electrode is formed on one side of an electrolyte membrane for a fuel cell that moves on a roll-to-roll basis, and an electrode containing a catalyst of the cathode electrode is formed on the opposite side of the anode electrode. In the fuel cell, the first step of applying reinforcing films to both ends of the electrolyte membrane provided with the back sheet and the reinforcing film by adsorbing the back sheet with a heating adsorption roll or a heating adsorption belt A second step of applying the catalyst to the applied surface and a third step of drying or crimping the catalyst.
A fourth step of adsorbing the first electrode surface to a rotating roll or belt provided with an adsorption mechanism via a breathable sheet, and a fifth step of peeling off the back sheet on the opposite surface of the electrode formation of the electrolyte membrane. The step and the sixth step of applying a catalyst while heating and sucking the electrolyte film on the opposite surface of the first electrode through the breathable base material to form the second electrode, and drying or crimping the electrode. The present invention provides a fuel cell using a film / electrode assembly, which comprises a seventh step of the process and finally winding an electrolyte film on which electrodes of both electrodes are formed.

本発明はロール・ツー・ロール(Roll to Roll)で移動する燃料電池用電解質膜の片側にアノード極を、片側にカソード極の触媒を含む電極を形成した膜・電極アッセンブリーを用いてなる燃料電池であって、バックシートを備えた電解質膜の両サイドの一部を除いて触媒を塗布して第一の電極を形成する工程と、前記触媒を乾燥または圧着する工程と、予め両サイドに粘着加工を施与した通気性基材を準備する工程と、前記通気性基材の両サイドの粘着加工した位置と前記第一電極形成面の両サイドの未塗布部を重ねて吸着ロールまたは吸着ベルトで吸引する工程と、バックシートを剥離する工程と、前記吸着ロールまたは吸着ベルトを加熱し、または吸着加熱ロールまたは吸着加熱ベルトに移動して前記通気性基材を介して前記電解質膜を吸着する工程と、前記第一の電極の反対面に触媒を塗布して第二の電極を形成する工程と、電極を乾燥または圧着する工程と、両極の電極が形成された電解質膜を最終的に巻取ることを特徴とする膜・電極アッセンブリーを用いてなる燃料電池を提供する。
本発明では前記触媒が白金であって担体がメソポーラスを有するカーボンであること。
The present invention is a fuel cell using a film / electrode assembly in which an anode electrode is formed on one side and an electrode containing a cathode electrode catalyst is formed on one side of an electrolyte membrane for a fuel cell that moves on a roll-to-roll basis. The step of applying the catalyst to form the first electrode by removing a part of both sides of the electrolyte membrane provided with the back sheet, the step of drying or crimping the catalyst, and the step of adhering to both sides in advance. The step of preparing the processed breathable base material, the adhesively processed positions on both sides of the breathable base material, and the uncoated parts on both sides of the first electrode forming surface are overlapped with each other to superimpose the suction roll or the suction belt. The step of sucking with, the step of peeling off the back sheet, and the step of heating the suction roll or the suction belt, or moving to the suction heating roll or the suction heating belt to suck the electrolyte film through the breathable base material. The step, the step of applying a catalyst to the opposite surface of the first electrode to form the second electrode, the step of drying or crimping the electrode, and the step of finally winding the electrolyte film on which the electrodes of both electrodes are formed. Provided is a fuel cell using a film / electrode assembly characterized by taking.
In the present invention, the catalyst is platinum and the carrier is carbon having mesoporous.

本発明の燃料電池の膜・電極アッセンブリーの製造方法によればデリケートで例えば15ミクロン以下と極薄の電解質膜であっても直接電解質膜にそれぞれの面に電極インクを塗布できる。更に電解質膜の負荷を低減するため加熱吸引して電解質膜に塗布された電極インクが電解質膜を濡らした後瞬時に、例えば3秒以内に溶媒量の99パーセント以上を揮発することができるので、膜と電極の密着性を高め、界面抵抗を最大に低くできるので理想的である。 According to the method for manufacturing a fuel cell membrane / electrode assembly of the present invention, electrode ink can be directly applied to each surface of a delicate electrolyte membrane, for example, an ultrathin electrolyte membrane of 15 microns or less. Further, in order to reduce the load on the electrolyte membrane, the electrode ink applied to the electrolyte membrane by heating and suction can volatilize 99% or more of the solvent amount instantly after wetting the electrolyte membrane, for example, within 3 seconds. It is ideal because it can improve the adhesion between the film and the electrode and minimize the interfacial resistance.

また本発明ではスプレイ法に属するパルス的スプレイであってスプレイ粒子に更にスピードを付加した工法でありエムテックスマート株式会社の商標登録であるインパクトパルス工法を採用すれば電解質膜への触媒の密着性は更に高まる。 Further, in the present invention, if the impact pulse method, which is a pulse-like spray belonging to the spray method and is a method of adding speed to the spray particles and is registered as a trademark of M-Tech Smart Co., Ltd., is adopted, the adhesion of the catalyst to the electrolyte membrane can be improved. Further increase.

更に本発明ではスプレイ法、特にインパクトパルス工法により平方センチメートル当たりの1層の電極量を0.001〜0.3ミリグラムに調整できるので例えば2〜30層の電極インクの薄膜積層ができる。インパクトパルスによるスプレイ法と加熱吸着ドラムなどとの組み合わせで1層当たりの塗布量を少なくできるが、更に1層当たりの塗布量を少なくするには例えば白金触媒担持のカーボンと、電解質溶液と、水とアルコールからなる電極インクの固形分量を重量比で10%以下例えば3%以下にすることさえできる。 Further, in the present invention, the amount of one layer of electrodes per square centimeter can be adjusted to 0.001 to 0.3 mg by the spray method, particularly the impact pulse method, so that, for example, 2 to 30 layers of electrode ink can be laminated as a thin film. The coating amount per layer can be reduced by combining the spray method using an impact pulse and a heating adsorption drum, etc., but to further reduce the coating amount per layer, for example, carbon supporting a platinum catalyst, an electrolyte solution, and water The solid content of the electrode ink composed of platinum and alcohol can be reduced to 10% or less by weight, for example, 3% or less.

固形分濃度を上記のようにするメリットはより薄膜にして積層すればするほど電解質膜の負荷が少なく単位面積当たりの塗布量がより均一になるので燃料電池の性能アップにつながる。 The merit of setting the solid content concentration as described above is that the thinner the film is and the more the layer is laminated, the less the load on the electrolyte membrane is and the more uniform the coating amount per unit area is, which leads to an improvement in the performance of the fuel cell.

さらに本発明ではマイクロポーラスの通気性基材、例えば無塵紙を介して例えば50乃至120℃で加熱し、例えば市販の安価な60KPa以上の真空度の真空ポンプで吸引できるので電解質膜にダメージを与えないばかりか欠陥のない膜・電極アッセンブリーを製造できる。また前記通気性基材の両サイドに粘着剤を施与する方法はグラビアロールなどを使用して粘着剤を点在させてポーラス状にすると貼り付けた電解質膜まで吸着もできるので粘着剤は後工程で剥離させやすい微粘着剤を使用することができる。 Further, in the present invention, the electrolyte membrane is damaged because it can be heated at, for example, 50 to 120 ° C. through a microporous breathable base material, for example, dust-free paper, and sucked by a commercially available inexpensive vacuum pump having a vacuum degree of 60 KPa or more. It is possible to manufacture a film / electrode assembly that is not only free of defects but also free of defects. In addition, in the method of applying the adhesive to both sides of the breathable base material, if the adhesive is scattered on both sides using a gravure roll or the like to form a porous shape, the adhesive can be adsorbed to the attached electrolyte membrane, so the adhesive can be used later. A slight adhesive that can be easily peeled off in the process can be used.

真空ポンプは市販の安価な例えば2002年ごろから燃料電池業界のCCMアプリケーションで採用されているオリオン社のKRF、KHA、KHHなどから選択するとよい。 The vacuum pump may be selected from commercially available inexpensive KRF, KHA, KHH, etc. of Orion, which has been used in CCM applications in the fuel cell industry since around 2002, for example.

本発明は特開2004−351413の液体の塗布及び乾燥方法の特許出願時の想定外の極薄膜で変形しやすく扱いづらい電解質膜に直接電極インクをスプレイ方法等により薄膜で積層して品質的に安定した膜・電極アッセンブリーを製造することである。 In the present invention, the electrode ink is directly laminated with a thin film by a spray method or the like on an electrolyte film which is easily deformed and difficult to handle due to an ultra-thin film unexpected at the time of filing a patent application for a liquid coating and drying method of JP2004-351413. It is to manufacture a stable film / electrode assembly.

上記のように本発明によればデリケートな電解質に電極インクを直接塗布しても理想的な膜・電極の界面を得ることができ高品質の膜・電極アッセンブリーをひいては燃料電池を製造できる。 As described above, according to the present invention, even if the electrode ink is directly applied to the delicate electrolyte, an ideal film-electrode interface can be obtained, and a high-quality film / electrode assembly and thus a fuel cell can be manufactured.

本発明の実施の形態に係る電解質膜の幅方向に関するバックシート、電解質膜、補強テープの構造の略断面図である。It is a schematic cross-sectional view of the structure of the back sheet, the electrolyte membrane, and the reinforcing tape with respect to the width direction of the electrolyte membrane which concerns on embodiment of this invention. 本発明の実施の形態に係る電解質膜、電極の幅方向に関する略断面図である。It is a schematic cross-sectional view about the width direction of an electrolyte membrane and an electrode which concerns on embodiment of this invention. 本発明の実施の形態に係る電解膜、通気性シートの幅方向に関する略断面図である。It is a schematic sectional drawing about the width direction of the electrolytic membrane and the breathable sheet which concerns on embodiment of this invention. 本発明の実施の形態に関するバックシート、電解質膜、第一の電極の幅方向の略断面図である。It is a schematic cross-sectional view in the width direction of the back sheet, the electrolyte membrane, and the first electrode which concerns on embodiment of this invention. 本発明の実施の形態に関する第二の電極形成のための反転した電解質膜の略断面図である。FIG. 5 is a schematic cross-sectional view of an inverted electrolyte membrane for forming a second electrode according to an embodiment of the present invention. 本発明の実施の形態に関する第二の電極形成した略断面図である。It is a schematic cross-sectional view which formed the 2nd electrode which concerns on embodiment of this invention. 本発明の実施の形態に関する膜・電極アッセンブリーの略断面図である。It is a schematic cross-sectional view of the membrane-electrode assembly which concerns on embodiment of this invention. 本発明の実施の形態に関する巻き出し、第一の電極インク塗布乾燥、巻き取りの該略図である。FIG. 5 is a schematic diagram of unwinding, first electrode ink coating and drying, and winding according to an embodiment of the present invention. 本発明の実施の形態に関する巻き出し、第二の電極インク塗布乾燥、巻き取りの概略図である。It is the schematic of the unwinding, the second electrode ink application drying, and winding concerning the Embodiment of this invention.

以下、図面を参照して本発明の好適な実施形態について説明する。なお、以下の実施形態は発明の理解を容易にするための一例にすぎず本発明の技術的思想を逸脱しない範囲において当業者により実施可能な付加、置換、変形等を施すことを排除するものではない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. It should be noted that the following embodiments are merely examples for facilitating the understanding of the invention, and excludes addition, substitution, modification, etc. that can be carried out by those skilled in the art within a range that does not deviate from the technical idea of the present invention. is not it.

図面は本発明の好適な実施の形態を概略的に示している。 The drawings schematically show preferred embodiments of the present invention.

図1においてバックシート2を備えた電解質膜1に補強テープ3を貼り付ける。補強テープは加熱や溶媒雰囲気に耐え、剥離した時残渣の残らないものであれば材質を問わない。 In FIG. 1, the reinforcing tape 3 is attached to the electrolyte membrane 1 provided with the back sheet 2. The reinforcing tape can withstand heating and solvent atmosphere, and can be made of any material as long as it does not leave a residue when peeled off.

図2は図1の構成に電解質膜に貼り付けた補強テープ以外の箇所に電解膜に第一の電極インクを塗布し第一の電極4を形成させたものである。塗布がスプレイの場合は補強テープの上に電極インクが若干付着しても問題ない。 FIG. 2 shows the configuration of FIG. 1 in which the first electrode ink is applied to the electrolytic film at a portion other than the reinforcing tape attached to the electrolyte film to form the first electrode 4. If the coating is spray, there is no problem even if some electrode ink adheres to the reinforcing tape.

図3は図2を反転させて通気性基材2を第一の電極面4に積層した図である。補強テープ3の表面に微粘着剤などの粘着剤をあらかじめ施与してあると電解質膜を貼り合わせることができる。 FIG. 3 is a view in which FIG. 2 is inverted and the breathable base material 2 is laminated on the first electrode surface 4. If an adhesive such as a slight adhesive is previously applied to the surface of the reinforcing tape 3, the electrolyte film can be attached.

図4は補強テープを貼り付けないでバックシート2で支持された電解質膜1に第一の電極を形成した図である。 FIG. 4 is a diagram in which the first electrode is formed on the electrolyte membrane 1 supported by the back sheet 2 without attaching the reinforcing tape.

図5は通気性基材6の両サイドに予め粘着剤7を施与した通気性基材6を電解質膜1の電極形成されていない部位に貼り付けた図である。電解質膜1の上部にはバックシート2が残されている。バックシート2は後述する吸着ロール上で通気性基材を吸着している際に吸着するとよい。 FIG. 5 is a diagram in which a breathable base material 6 to which an adhesive 7 is previously applied to both sides of the breathable base material 6 is attached to a portion of the electrolyte membrane 1 where electrodes are not formed. The back sheet 2 is left on the upper part of the electrolyte membrane 1. The back sheet 2 may be adsorbed when the breathable base material is adsorbed on the adsorption roll described later.

図6は図5のバックシートを剥離して、後述する加熱吸着ロール上で通気性シート6を介して吸着された電解質膜に第二の電極インクを塗布して乾燥された第二の電極が形成された図である。 In FIG. 6, the back sheet of FIG. 5 is peeled off, and the second electrode is dried by applying the second electrode ink to the electrolyte membrane adsorbed via the breathable sheet 6 on the heat adsorption roll described later. It is a formed figure.

図7は本発明により製造された膜・電極アッセンブリーの図である。図6の通気性シート6を電解質膜1から剥離することにより得られる。電解質膜1に第一の電極4と第二の電極が形成されている。 FIG. 7 is a diagram of a membrane / electrode assembly manufactured by the present invention. It is obtained by peeling the breathable sheet 6 of FIG. 6 from the electrolyte membrane 1. A first electrode 4 and a second electrode are formed on the electrolyte membrane 1.

図8は巻き出しロールストック10からバックシートで支持された電解質膜が送り出されガイドロール1で圧接しながら吸着加熱ロール20に送られ吸引加熱された状態で塗布ヘッド21から電極インクがスプレイ塗布され、十分乾燥された後、吸着ロールとガイドロールから離脱し巻き取りロールストック11として巻き取られる。塗布方法はスプレイに限定するものではない。また乾燥工程が後工程にある場合ここでの乾燥は十分でなくてもよい。
また吸着加熱ロールは吸着加熱ベルトでよい。また吸着加熱は吸着ドラムまたは吸着ベルトだけでも良く電解質膜の加熱は塗布以降の工程だけでよい。
In FIG. 8, the electrolyte film supported by the back sheet is sent out from the unwinding roll stock 10, is sent to the adsorption heating roll 20 while being pressed by the guide roll 1, and the electrode ink is spray-coated from the coating head 21 in a state of being sucked and heated. After being sufficiently dried, it is separated from the suction roll and the guide roll and wound as a take-up roll stock 11. The application method is not limited to spray. Further, when the drying step is in the subsequent step, the drying here does not have to be sufficient.
Further, the adsorption heating roll may be an adsorption heating belt. Further, the adsorption heating may be performed only by the adsorption drum or the adsorption belt, and the electrolyte membrane may be heated only in the steps after coating.

図9は図8に多機能さを併せ持ったシステムで、巻き出しロールストック10と一緒に通気性基材6を送り込みガイドロールと吸着加熱ロール20で圧接して吸着させつつ、バックシート2を剥離して、電解質膜は加熱吸着したまま移動し、塗布ヘッドで第二の電極インクを塗布し、乾燥させて第二の電極を形成した後、ガイドロールから離脱して巻き取られる。通気性基材6は剥離して別に巻き取られる。
その際、別の電極支持基材8をガイドロールと加熱吸着ロール間から電極に積層させながら移動させ巻き取ることができる。尚電極を形成した後通気性基材6と一緒に巻きとる場合、電極支持基材は必要なくなる。
FIG. 9 shows a system having multiple functions as shown in FIG. 8, in which the back sheet 2 is peeled off while the breathable base material 6 is fed together with the unwinding roll stock 10 and pressed and adsorbed by the guide roll and the adsorption heating roll 20. Then, the electrolyte membrane moves while being heated and adsorbed, the second electrode ink is applied by the coating head, dried to form the second electrode, and then separated from the guide roll and wound up. The breathable base material 6 is peeled off and wound separately.
At that time, another electrode supporting base material 8 can be moved and wound while being laminated on the electrode from between the guide roll and the heat adsorption roll. When the electrode is formed and then wound together with the breathable base material 6, the electrode support base material is not required.

本発明によればPEFC燃料電池用膜・電極アッセンブリーをCCM方式で高品質で製造できる。 According to the present invention, a PEFC fuel cell membrane / electrode assembly can be manufactured with high quality by the CCM method.

1 電解質膜
2 バックシート
3、3´ 補強テープ
4 第一の電極
5 第二の電極
6 通気性基材(シート)
7、7´ 粘着剤層
8 電極支持基材
10 巻き出しロールストック
11 巻き取りロールストック
20 加熱吸着ロール
21 塗布ヘッド
23 ガイドロール1
24 ガイドロール2
1 Electrolyte membrane 2 Backsheet 3, 3'Reinforcing tape 4 First electrode 5 Second electrode
6 Breathable base material (sheet)
7, 7'Adhesive layer 8 Electrode support base material
10 Unwinding roll stock 11 Unwinding roll stock 20 Heat adsorption roll 21 Coating head
23 Guide roll 1
24 Guide roll 2

Claims (6)

燃料電池の製造方法であって、バックシート上の電解質膜に第一の電極インクを塗布して乾燥し第一の電極を形成するにあたり前記第一の低固形分の第一の電極インクを低圧のエアレススプレイノズルの液膜で第一の電極と該電極外に未塗布部を形成するように薄膜で積層塗布する工程と、乾燥して第一の電極を形成する工程と、該第一の電極を 通気性基材を介して加熱吸着ロールまたは加熱吸着ベルトで吸引し前記バックシートを剥離する工程と、加熱吸着された前記第一の電極面の反対面の電解質膜上に第二の電極インクを塗布し乾燥して第二の電極を形成する工程とから膜・電極アッセンブリーを形成してなることを特徴とする燃料電池の製造方法。
In the method for manufacturing a fuel cell, when the first electrode ink is applied to the electrolyte film on the back sheet and dried to form the first electrode, the first electrode ink having the first low solid content is subjected to low pressure. A step of laminating and coating a first electrode with a liquid film of the airless spray nozzle and a thin film so as to form an uncoated portion outside the electrode, a step of drying to form a first electrode, and the first step. The step of sucking the electrode with a heat-adsorption roll or a heat-adsorption belt via a breathable base material to peel off the back sheet, and the second electrode on the electrolyte membrane opposite to the heat-adsorbed first electrode surface. A method for manufacturing a fuel cell, which comprises forming a film / electrode assembly from a step of applying ink and drying to form a second electrode.
燃料電池の製造方法であって、バックシート上の電解質膜に第一の電極インクを塗布して乾燥し第一の電極と該電極外に未塗布部を形成する工程と、該電極および未塗布部と積層する通気性基材の前記電解質膜未塗布部には粘着剤が塗布されていることと、前記電解質膜上の第一の電極と前記未塗布部は前記通気性基材を介して真空で吸引しまたは加熱吸着ロールまたは加熱吸着ベルトで吸引し前記バックシートを剥離する工程と、加熱吸着された前記第一の電極面の反対面の電解質膜上に第二の電極インクを塗布し乾燥して第二の電極を形成する工程とから膜・電極アッセンブリーを形成してなることを特徴とする燃料電池の製造方法。
A method for manufacturing a fuel cell, which is a step of applying a first electrode ink to an electrolyte film on a back sheet and drying it to form an uncoated portion on the first electrode and the outside of the electrode, and the electrode and the uncoated portion. An adhesive is applied to the uncoated portion of the electrolyte membrane of the breathable base material to be laminated with the portion, and the first electrode on the electrolyte membrane and the uncoated portion are via the breathable base material. The step of peeling off the back sheet by sucking with a vacuum or by sucking with a heat suction roll or a heat suction belt, and applying the second electrode ink on the electrolyte film on the opposite surface of the first electrode surface that has been heat-sucked. A method for manufacturing a fuel cell, which comprises forming a film / electrode assembly from a step of drying to form a second electrode.
燃料電池の製造方法であって、長尺の電解質膜を連続的または間欠的に移動して電極インクを塗布するにあたり、バックシート上の電解質膜に直交して低固形分の第一の電極インクを低圧でエアレススプレイノズルをトラバースしてスプレイし霧化前の液膜で 薄膜で積層塗布し乾燥して第一の電極と未塗布部を形成する工程と、該第一の電極を形成した面に通気性基材を積層して真空または加熱吸着ロールまたは加熱吸着ベルトで吸引し前記バックシートを前記電解質膜から剥離する工程と、前記通気性基材を介して加熱吸引した前記第一の電極形成面の反対側の電解質膜面に第二の電極インクを塗布し乾燥させて第二の電極を形成する工程とから膜・電極アッセンブリーを形成してなることを特徴とする請求項1の燃料電池の製造方法。
A method for manufacturing a fuel cell, in which an electrode ink is applied by continuously or intermittently moving a long electrolyte film, the first electrode ink having a low solid content orthogonal to the electrolyte film on the back sheet. The step of traversing the airless spray nozzle at low pressure, spraying, laminating and coating with a thin film with the liquid film before atomization, and drying to form the first electrode and the uncoated part, and the surface on which the first electrode is formed. A step of laminating a breathable base material on the electrode and sucking it with a vacuum or a heat suction roll or a heat suction belt to peel off the back sheet from the electrolyte membrane, and the first electrode heat sucked through the breathable base material. The fuel according to claim 1, wherein the film / electrode assembly is formed from the step of applying the second electrode ink to the electrolyte membrane surface on the opposite side of the forming surface and drying it to form the second electrode. How to make a battery.
燃料電池の製造方法であって、バックシート上の電解質膜に第一の電極インクをスロットノズル(ダイコート)の液膜で電解質膜に塗布し乾燥して第一の電極と未塗布部を形成する工程と、前記第一の電極外の未塗布部と通気性基材に形成した粘着剤層の位置を位置決めして積層する工程と、前記通気性基材を介して前記第一の電極面を真空または加熱吸着ロールまたは加熱吸着ベルトで吸引しバックフィルムを剥離する工程と、通気性基材を介して加熱吸着した前記第一電極形成面の反対側の電解質膜面に前記第二の電極インクを塗布し乾燥させて第二の電極を形成させて膜・電極アッセンブリーを形成してなることを特徴とする請求項2の燃料電池の製造方法。
A method for manufacturing a fuel cell, in which the first electrode ink is applied to the electrolyte membrane on the back sheet with a liquid film of a slot nozzle (die coat) and dried to form the first electrode and the uncoated portion. The step, the step of positioning and laminating the uncoated portion outside the first electrode and the pressure-sensitive adhesive layer formed on the breathable base material, and the step of laminating the first electrode surface via the breathable base material. The step of peeling off the back film by sucking with a vacuum or a heat suction roll or a heat suction belt, and the second electrode ink on the electrolyte membrane surface on the opposite side of the first electrode forming surface heat-adsorbed via the breathable base material. The method for manufacturing a fuel cell according to claim 2, wherein a film / electrode assembly is formed by applying and drying to form a second electrode.
前記電解質膜の第一の電極外の未塗布部と通気性基材の粘着剤層は微粘着剤層部またはポーラス状の粘着剤層部であって位置決めして張り合わすことを特徴とする請求項2乃至4の燃料電池の製造方法。
The uncoated portion outside the first electrode of the electrolyte membrane and the pressure-sensitive adhesive layer of the breathable base material are a fine pressure-sensitive adhesive layer portion or a porous pressure-sensitive adhesive layer portion, which are positioned and bonded to each other. Item 2. The method for manufacturing a fuel cell according to Item 2.
触媒の平方センチメートル当たりの塗布重量を少なくするために前記第一の電極インクまたは第二の電極インクの少なくとも一つは固形分が重量比で10パーセント以下の低固形分にして薄膜積層することを特徴とする請求項1乃至5の燃料電池の製造方法。

In order to reduce the coating weight per square centimeter of the catalyst, at least one of the first electrode ink or the second electrode ink is characterized by thin-film lamination with a low solid content of 10% or less by weight. The method for manufacturing a fuel cell according to claims 1 to 5.

JP2016248157A 2016-12-21 2016-12-21 Fuel cell manufacturing method, membrane / electrode assembly, fuel cell Active JP6903910B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016248157A JP6903910B2 (en) 2016-12-21 2016-12-21 Fuel cell manufacturing method, membrane / electrode assembly, fuel cell
PCT/JP2017/044287 WO2018116875A1 (en) 2016-12-21 2017-12-11 Method for forming electrode of pefc-type fuel cell, and fuel cell
CN201780078210.4A CN110100341B (en) 2016-12-21 2017-12-11 Method for forming electrode of PEFC type fuel cell and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016248157A JP6903910B2 (en) 2016-12-21 2016-12-21 Fuel cell manufacturing method, membrane / electrode assembly, fuel cell

Publications (3)

Publication Number Publication Date
JP2018101580A JP2018101580A (en) 2018-06-28
JP2018101580A5 JP2018101580A5 (en) 2020-02-06
JP6903910B2 true JP6903910B2 (en) 2021-07-14

Family

ID=62626542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016248157A Active JP6903910B2 (en) 2016-12-21 2016-12-21 Fuel cell manufacturing method, membrane / electrode assembly, fuel cell

Country Status (3)

Country Link
JP (1) JP6903910B2 (en)
CN (1) CN110100341B (en)
WO (1) WO2018116875A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3106235A1 (en) * 2018-08-01 2020-02-06 Toray Industries, Inc. Method of manufacturing and device for manufacturing membrane-catalyst assembly
JP7180863B2 (en) * 2018-08-21 2022-11-30 エムテックスマート株式会社 Method for manufacturing all-solid-state battery
JP7395127B2 (en) * 2019-08-23 2023-12-11 エムテックスマート株式会社 Battery manufacturing method and battery
JP2022172677A (en) * 2021-05-06 2022-11-17 エムテックスマート株式会社 Method for manufacturing laminate of membrane electrode assembly and gas-permeable substrate, laminate of membrane electrode assembly and gas-permeable substrate, and method for manufacturing fuel cell
JP2022178501A (en) * 2021-05-20 2022-12-02 エムテックスマート株式会社 Method for manufacturing membrane/electrode assembly, method for manufacturing laminate of membrane/electrode assembly and air-permeable substrate, laminate of membrane/electrode assembly and air-permeable substrate, method for manufacturing fuel cell, and fuel cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343529B2 (en) * 2008-11-26 2013-11-13 日産自動車株式会社 Method for producing fuel cell electrode laminate
JP5707825B2 (en) * 2010-09-29 2015-04-30 凸版印刷株式会社 Membrane electrode assembly for polymer electrolyte fuel cell and method for producing the same
JP2013084427A (en) * 2011-10-07 2013-05-09 Panasonic Corp Method for manufacturing membrane-catalyst layer assembly and method for manufacturing membrane electrode assembly
JP2013161557A (en) * 2012-02-02 2013-08-19 Panasonic Corp Manufacturing method of film-catalyst layer junction and manufacturing apparatus of film-catalyst layer junction
JP5928030B2 (en) * 2012-03-15 2016-06-01 凸版印刷株式会社 Manufacturing apparatus for membrane electrode assembly for polymer electrolyte fuel cell
JP2014229370A (en) * 2013-05-20 2014-12-08 大日本スクリーン製造株式会社 Production apparatus and production method of composite membrane
US20160064741A1 (en) * 2014-09-02 2016-03-03 GM Global Technology Operations LLC Electrode design with optimal ionomer content for polymer electrolyte membrane fuel cell

Also Published As

Publication number Publication date
CN110100341B (en) 2022-08-26
JP2018101580A (en) 2018-06-28
CN110100341A (en) 2019-08-06
WO2018116875A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
JP6903910B2 (en) Fuel cell manufacturing method, membrane / electrode assembly, fuel cell
JP6984848B2 (en) Manufacturing method of membrane electrode assembly for fuel cells
KR20160030920A (en) Composite film producing apparatus and method of producing composite film
CN110249465B (en) Method for manufacturing membrane-electrode assembly of fuel cell of PEFC type
JP2004351413A (en) Method for applying and drying liquid
JP2018020307A (en) Method and device for preparing catalyst coated thin film
JP2020129495A (en) Method for producing all-solid-state battery
JP6930709B2 (en) Method for manufacturing catalyst-forming electrolyte membrane for PEFC type fuel cell
JP2023175697A (en) Coating method and coating device
JP2015069739A (en) Device and method of manufacturing membrane-catalyst layer assembly
JP2015015258A (en) Device for manufacturing film-electrode assembly
JP2022172677A (en) Method for manufacturing laminate of membrane electrode assembly and gas-permeable substrate, laminate of membrane electrode assembly and gas-permeable substrate, and method for manufacturing fuel cell
JP6311041B2 (en) Manufacturing method of membrane / catalyst layer assembly
JP7075087B2 (en) Fuel cell manufacturing method
JP7215697B2 (en) Fuel cell manufacturing equipment
JP6127692B2 (en) Membrane electrode assembly manufacturing apparatus and holding member used for manufacturing membrane electrode assembly
JP4391067B2 (en) Method for producing dye-sensitized solar cell
JP2023093904A (en) Fuel cell manufacturing method and fuel cell
JP2022178501A (en) Method for manufacturing membrane/electrode assembly, method for manufacturing laminate of membrane/electrode assembly and air-permeable substrate, laminate of membrane/electrode assembly and air-permeable substrate, method for manufacturing fuel cell, and fuel cell
WO2021079990A1 (en) Carbonaceous structure forming method and substrate having carbonaceous structure
CN216857240U (en) Electrode coating device
JP2024030236A (en) Coating method, coating device, and lamination base material
CN110739233A (en) Method for manufacturing flexible sensor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210607

R150 Certificate of patent or registration of utility model

Ref document number: 6903910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150